JP5143440B2 - Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid - Google Patents

Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid Download PDF

Info

Publication number
JP5143440B2
JP5143440B2 JP2007022827A JP2007022827A JP5143440B2 JP 5143440 B2 JP5143440 B2 JP 5143440B2 JP 2007022827 A JP2007022827 A JP 2007022827A JP 2007022827 A JP2007022827 A JP 2007022827A JP 5143440 B2 JP5143440 B2 JP 5143440B2
Authority
JP
Japan
Prior art keywords
acid
hydrofluoric acid
waste liquid
silicohydrofluoric
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007022827A
Other languages
Japanese (ja)
Other versions
JP2008189483A (en
Inventor
邦堯 百田
瓊 厳
龍三 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morita Kagaku Kogyo Co Ltd
Original Assignee
Morita Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morita Kagaku Kogyo Co Ltd filed Critical Morita Kagaku Kogyo Co Ltd
Priority to JP2007022827A priority Critical patent/JP5143440B2/en
Publication of JP2008189483A publication Critical patent/JP2008189483A/en
Application granted granted Critical
Publication of JP5143440B2 publication Critical patent/JP5143440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

近年、電子産業の発展とともに、フラットパネルディスプレイやウェハーなどケイ酸を主成分とする材料のケミカルエッチングやケミカルクリーニング等の分野で、フッ化水素酸またはフッ化水素酸に他の酸類を配合した溶液の使用が増大している。
それとともに、使用後の廃酸量も増加しており、地球環境保全の観点からその適切な処理、とりわけ廃酸中に残留している未反応酸や反応生成物などの有価物を、効率的に回収・再利用できる技術の確立が望まれている。
In recent years, with the development of the electronics industry, hydrofluoric acid or solutions containing other acids in hydrofluoric acid in fields such as chemical etching and chemical cleaning of materials based on silicic acid such as flat panel displays and wafers The use of is increasing.
At the same time, the amount of waste acid after use has increased, and from the viewpoint of global environmental protection, appropriate treatment, in particular, valuable materials such as unreacted acids and reaction products remaining in the waste acid can be efficiently used. Therefore, establishment of technology that can be recovered and reused is desired.

本発明は、これらの用途から排出される、フッ化水素酸、塩酸およびケイフッ化水素酸を含有する廃液の処理方法とその装置に関し、特に、蒸留法によりフッ化水素酸と塩酸を主成分とする留分と、塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分とする留分とに分離して回収し、工業的に再利用可能な有価成分を分離・回収する方法とその装置に関する。   The present invention relates to a method and apparatus for treating waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid discharged from these uses, and in particular, hydrofluoric acid and hydrochloric acid as main components by distillation. And a method for separating and recovering valuable components that can be industrially reused by separating and recovering them into fractions that contain almost no hydrochloric acid and fractions containing hydrofluoric acid and silicohydrofluoric acid as main components, and It relates to the device.

一般にフッ化水素酸やフッ素化合物を含む廃液の処理には、水酸化カルシウム、酸化カルシウム、炭酸カルシウムなどのカルシウム化合物と反応させ、難溶性のフッ化カルシウムとして固定化する方法が用いられる。廃液にホウ素を含有する場合には、カルシウム化合物による処理だけではホウフッ化物は固定化できないため、アルミニウム化合物を用いたホウフッ化物の分解処理(例えば、特許文献1参照)が必要となる。   In general, for treatment of a waste liquid containing hydrofluoric acid or a fluorine compound, a method of reacting with a calcium compound such as calcium hydroxide, calcium oxide, or calcium carbonate and immobilizing it as hardly soluble calcium fluoride is used. When boron is contained in the waste liquid, borofluoride cannot be fixed only by treatment with a calcium compound, and therefore, borofluoride decomposition treatment using an aluminum compound (for example, see Patent Document 1) is required.

特公昭54−5628号公報(森田化学工業株式会社、発明の名称:ホウフッ化物を含む廃液中のフッ素固定方法)Japanese Examined Patent Publication No. 54-5628 (Morita Chemical Co., Ltd., Title of Invention: Method for fixing fluorine in waste liquid containing borofluoride)

しかし、このような処理で生成したフッ化カルシウムなどは、粒径が非常に細かく、そのままではほとんど濾過できないため凝集剤を用いてフロックにし、シックナーなどで沈降分離したのち、沈降したスラリーはフィルタープレスなどの濾過を行っている。濾過後の水分が50〜60%もあり、さらに、不純物を多量に含むため産業用として再利用できないだけでなく、そのボリュームも大きいためその処分が問題となっている。   However, the calcium fluoride produced by such treatment has a very fine particle size and can hardly be filtered as it is, so it is made floc using a flocculant and settled and separated with a thickener, etc., and the precipitated slurry is filtered with a filter press. Etc. are filtered. The water content after filtration is as high as 50 to 60%. Further, since it contains a large amount of impurities, it cannot be reused for industrial use, and its disposal is problematic due to its large volume.

また、特許文献2には、フッ化水素酸とケイフッ化水素酸を含む使用後のガラス洗浄液に、ナトリウム化合物やカリウム化合物を加え、難溶性のケイフッ化ナトリウムやケイフッ化カリウムを析出させて分離し、処理後の液をガラス洗浄液として再生させる方法が開示されている。しかし、この方法は、ガラス洗浄液として再生・再利用するには有効であるが、分離回収したケイフッ化ナトリウムやケイフッ化カリウムは不純物を含んでおり、工業的に再利用するのは困難なため、結局産業廃棄物として処分せざるをえないという問題がある。 Patent literature 2, the glass cleaning solution after use containing hydrofluoric acid and silicic hydrofluoric acid, and a sodium compound and a potassium compound is added to precipitate fluorosilicate of sodium or fluorosilicate of potassium sparingly soluble separating However, a method for regenerating the treated liquid as a glass cleaning liquid is disclosed. However, this method is effective for recycling and reuse as a glass cleaning solution, but the separated and recovered sodium silicofluoride and potassium silicofluoride contain impurities and are difficult to reuse industrially. After all, there is a problem that it must be disposed of as industrial waste.

特許第3623663号公報(松下電器産業株式会社・株式会社化研、発明の名称:ガラス洗浄用溶液の再生方法と再生装置、および珪酸塩ガラスの洗浄方法と洗浄装置)Japanese Patent No. 3623663 (Matsushita Electric Industrial Co., Ltd., Kaken Co., Ltd., title of invention: glass cleaning solution regeneration method and regeneration device, and silicate glass cleaning method and cleaning device)

さらに、特許文献3には、フッ化水素酸とケイフッ化水素酸やホウフッ化水素酸等を含む廃液のフッ素処理方法として、該廃液に塩化ナトリウムや塩化カリウムを加え、ケイフッ化水素酸を難溶性のケイフッ化物として固定化した後、カルシウム塩を加えてフッ素を固定化するか、ホウフッ化水素酸を含む場合は、あらかじめアルミニウム化合物を加えてホウフッ化物をホウ酸とフッ化物に分解した後、カルシウム塩を加えてフッ素を除去する方法が開示されている。 Furthermore, in Patent Document 3, as a fluorine treatment method for waste liquid containing hydrofluoric acid, silicohydrofluoric acid, borohydrofluoric acid, and the like, sodium chloride and potassium chloride are added to the waste liquid, and hydrosilicic acid is hardly soluble. after fixing as silicofluoride of either immobilizing the fluorine added calcium salt, if it contains fluoroboric acid, after decomposing the fluoroborate compound fluoride and boric acid in advance the aluminum compound is added, calcium A method for adding fluorine to remove fluorine is disclosed.

特許第3635643号公報(西山ステンレスケミカル株式会社、発明の名称:廃液の処理方法)Japanese Patent No. 36356643 (Nishiyama Stainless Chemical Co., Ltd., Title of Invention: Waste Liquid Treatment Method)

しかしながら、この方法は、フッ素含有廃液からフッ素を除去する方法としては有効であるが、特許文献2と同様の理由で、固定化分離したフッ素のカルシウム化合物の再利用が困難で、産業廃棄物として処分するしかないという問題がある。   However, this method is effective as a method for removing fluorine from a fluorine-containing waste liquid. However, for the same reason as in Patent Document 2, it is difficult to reuse the calcium calcium compound that has been immobilized and separated, and as an industrial waste. There is a problem that there is no choice but to dispose.

一方、最近、ガラスのケミカルエッチング廃液からフッ化水素酸を分離・回収する手段として、蒸留法を適用する試みが特許文献4や特許文献5に開示されている。
しかしながら、これらの文献では、塩酸が共存する場合やケイフッ化水素酸が共存する場合の蒸留特性などについては言及されていない。
On the other hand, recently, attempts to apply a distillation method as means for separating and collecting hydrofluoric acid from glass chemical etching waste liquid are disclosed in Patent Documents 4 and 5.
However, these documents do not mention the distillation characteristics in the case where hydrochloric acid coexists or in the case where hydrofluoric acid coexists.

特開2006−76811号公報(三菱化学エンジニアリング株式会社・菱化フォワード株式会社・日本リファイン株式会社、発明の名称:フッ酸の回収方法)JP 2006-76811 A (Mitsubishi Chemical Engineering Co., Ltd., Ryoka Forward Co., Ltd., Nippon Refine Co., Ltd., title of invention: method for recovering hydrofluoric acid)

特開2006−111487号公報(三菱化学エンジニアリング株式会社・菱化フォワード株式会社・日本リファイン株式会社、発明の名称:フッ酸の回収方法)JP 2006-111487 A (Mitsubishi Chemical Engineering Co., Ltd., Ryoka Forward Co., Ltd., Nippon Refine Co., Ltd., Title of Invention: Method for recovering hydrofluoric acid)

本発明は、以上のような化学的処理を主体とする背景技術では成し得ず、かつ背景技術で述べた問題点を解消し、フッ化水素酸、塩酸およびケイフッ化水素酸を含有する廃液から、再利用可能なフッ化水素酸および塩酸ならびにケイフッ化水素酸を効率よく分離・回収する方法とその装置とを提供することを目的とする。   The present invention can not be achieved by the background art mainly composed of the chemical treatment as described above, solves the problems described in the background art, and contains a waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid. Therefore, an object of the present invention is to provide a method and an apparatus for efficiently separating and recovering reusable hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid.

一般に、ガラスのケミカルエッチングには、フッ化水素酸やフッ化アンモニウム等のフッ化物を主成分とし、これに塩酸、硫酸、硝酸、リン酸等の無機酸を配合したエッチング液が多く用いられる。これら各種成分の種類や配合比はエッチングメーカーのノウハウとしてブラックボックス化されているが、いずれの場合も、決められた成分の濃厚原液を決められた濃度となるように混合して、すなわち、エッチング液を調整して用いるのが一般的である。   In general, for chemical etching of glass, an etchant containing a fluoride such as hydrofluoric acid or ammonium fluoride as a main component and an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like is often used. The types and mixing ratios of these various components are black boxed as an etching manufacturer's know-how, but in each case, a concentrated stock solution of a predetermined component is mixed to a predetermined concentration, that is, etched. In general, the liquid is used after being adjusted.

本発明では、これらのうちフッ化水素酸と塩酸を主要成分とするケミカルエッチング液の使用済み廃液を主たる対象とし、各成分の配合比には左右されずに未反応成分や有価物を分離・回収できる方法とその装置とを提供するものである。   In the present invention, among these, used waste liquid of chemical etching liquids mainly composed of hydrofluoric acid and hydrochloric acid is mainly targeted, and unreacted components and valuable materials are separated regardless of the mixing ratio of each component. Provided are a recoverable method and an apparatus therefor.

一方、本発明では、ケミカルエッチングの対象となるガラスの種類は特に限定されるものではなく、例えば、フラットパネルディスプレイ用に用いられるアルミノホウケイ酸ガラスのケミカルエッチング廃液に適用できる。   On the other hand, in the present invention, the type of glass to be subjected to chemical etching is not particularly limited, and can be applied to, for example, chemical etching waste liquid of aluminoborosilicate glass used for flat panel displays.

アルミノホウケイ酸ガラスの構成成分は、SiO、Al、B、CaO、MgO、BaO、SrOなどから成り、それらをフッ化水素酸を含む液でエッチングすると、次式のような反応により各種のフッ素化合物を生成する。
(反応式)
SiO+ 6HF → HSiF + 2HO (1)
+ 8HF → 2HBF + 3HO (2)
Al + 6HF → 2AlF + 3HO (3)
MgO + 2HF → MgF + HO (4)
CaO + 2HF → CaF + HO (5)
SrO + 2HF → SrF + HO (6)
The constituents of aluminoborosilicate glass are composed of SiO 2 , Al 2 O 3 , B 2 O 3 , CaO, MgO, BaO, SrO, etc. When etched with a liquid containing hydrofluoric acid, the following formula is obtained: Various fluorine compounds are produced by a simple reaction.
(Reaction formula)
SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (1)
B 2 O 3 + 8HF → 2HBF 4 + 3H 2 O (2)
Al 2 O 3 + 6HF → 2AlF 3 + 3H 2 O (3)
MgO + 2HF → MgF 2 + H 2 O (4)
CaO + 2HF → CaF 2 + H 2 O (5)
SrO + 2HF → SrF 2 + H 2 O (6)

これらフッ素化合物のうち、Al、Ca、Mg、Sr、Baのフッ素化合物の一部もしくはほとんどは難溶性塩として析出するが、ケイフッ化水素酸(HSiF)および四フッ化ホウ素酸(HBF)は、析出することなくエッチング廃液中に溶解した状態で存在することになる。したがって、本発明においては、ケミカルエッチング廃液中の未反応のフッ化水素酸や塩酸を分離・回収するとともに、有価物であるケイフッ化水素酸を純度の高い状態で分離・回収することも重要な課題となる。 Among these fluorine compounds, some or most of the fluorine compounds of Al, Ca, Mg, Sr, and Ba are precipitated as hardly soluble salts. However, hydrofluoric acid (H 2 SiF 6 ) and tetrafluoroboric acid (HBF) 4 ) will exist in the state which melt | dissolved in the etching waste liquid, without depositing. Therefore, in the present invention, it is also important to separate and recover unreacted hydrofluoric acid and hydrochloric acid in the chemical etching waste liquid and to separate and recover valuable hydrosilicofluoric acid in a high purity state. It becomes a problem.

一般に、フッ化水素酸や塩酸のような揮発性の酸は、他の不揮発性の酸例えば硫酸やリン酸または塩類が共存することにより、揮発しやすさ(揮発度)が変化することが知られている。そこで、本発明者らはこの知見に着目し、蒸留法による揮発分離特性を鋭意検討した結果、上記ケミカルエッチング廃液中にケイフッ化水素酸が共存することによっても、フッ化水素酸や塩酸の揮発特性が変化することを見出し、本発明を完成させるに至った。   In general, volatile acids such as hydrofluoric acid and hydrochloric acid are known to change their volatility (volatility) due to the presence of other non-volatile acids such as sulfuric acid, phosphoric acid or salts. It has been. Therefore, the present inventors paid attention to this knowledge, and as a result of intensive studies on the volatilization separation characteristics by the distillation method, the volatilization of hydrofluoric acid and hydrochloric acid is also caused by the presence of hydrofluoric acid in the chemical etching waste liquid. The inventors have found that the characteristics are changed and have completed the present invention.

すなわち、模擬廃液として、フッ化水素酸5%、塩酸2%およびケイフッ化水素酸10%を含有する溶液を、市販の各酸の濃厚原液を用いて調製し、フッ素樹脂製の単蒸留装置を用い大気圧下で蒸留試験を行った結果、表1に示すデータを得た。   That is, as a simulated waste liquid, a solution containing 5% hydrofluoric acid, 2% hydrochloric acid and 10% silicofluoric acid was prepared using a concentrated concentrated stock solution of each acid, and a single distillation apparatus made of a fluororesin was prepared. As a result of performing a distillation test under atmospheric pressure, data shown in Table 1 was obtained.

Figure 0005143440
Figure 0005143440

表1の留分1と留分2の酸濃度組成を比較すれば明らかなように、塩酸は、蒸留初期(留分1)はフッ化水素酸より揮発しにくいが、被蒸留液中のケイフッ化水素酸が濃縮された状態で蒸留された留分2では、塩酸とフッ化水素酸の濃度が逆転し、フッ化水素酸より塩酸の方が揮発しやすくなっていることが分かる。   As is clear from the comparison of the acid concentration compositions of fraction 1 and fraction 2 in Table 1, hydrochloric acid is less volatile than hydrofluoric acid at the beginning of distillation (fraction 1), but It can be seen that in the fraction 2 distilled in a state where hydrofluoric acid is concentrated, the concentrations of hydrochloric acid and hydrofluoric acid are reversed, and hydrochloric acid is more easily volatilized than hydrofluoric acid.

さらに蒸留を続けると、留分3ではフッ化水素酸や塩酸とともにケイフッ化水素酸の揮発が起こり、最後に残った釜残には塩酸はほとんどなく、フッ化水素酸と高濃度のケイフッ化水素酸が残ることが確認され、留分分画をさらに最適化することにより、所望の酸を選択的に含む留分を効率的に分離・回収できる可能性を見出した。また、表1と同一組成の調製液にホウフッ化水素酸を1%添加して単蒸留した結果、表1とほぼ同様の結果が得られ、ホウフッ化水素酸は揮発せずに釜残中に残ることも確認することができた。   If distillation continues further, hydrofluoric acid and hydrochloric acid will volatilize together with hydrofluoric acid and hydrochloric acid in fraction 3, and there will be almost no hydrochloric acid in the residue remaining at the end. Hydrofluoric acid and high-concentration hydrogen silicofluoride It was confirmed that the acid remained, and the possibility of efficiently separating and recovering a fraction selectively containing a desired acid was found by further optimizing the fraction fraction. Moreover, as a result of adding 1% of borofluoric acid to the preparation solution having the same composition as in Table 1 and performing simple distillation, almost the same result as in Table 1 was obtained. I was able to confirm that it remained.

これらの結果を基に、本発明(第1の発明)では、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収するに当って、前記廃液を常圧もしくは減圧下における蒸留操作によって、酸をほとんど含まない水主体の留分、ケイフッ化水素酸をほとんど含まずフッ化水素酸と塩酸を主成分として含む留分、ならびに塩酸をほとんど含まずフッ水素酸とケイフッ化水素酸を主成分として含む釜残とに、順次分離して回収する。 Based on these results, in the present invention (first invention), in separating and recovering the acid component from the waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid, the waste liquid is subjected to normal pressure or reduced pressure. by distillation under, fractions containing almost no water mainly acid, and silicic hydrofluoric acid fraction containing as little contain not composed mainly of hydrofluoric acid and hydrochloric acid, and containing almost no hydrofluoric acid hydrochloride fluorosilicate Kamizu periodate in the bottoms containing as a main component, it is recovered sequentially separated.

蒸留は常圧もしくは減圧のいずれの条件で行なうことができるが、温度を80℃以下で操作できる減圧条件(100mmHg以下)で実施すれば、フッ素樹脂等の高価な装置材料を必要とせず、ポリエチレン、ポリプロピレンや耐熱ポリ塩化ビニール等の安価な材料を選択できるので有利である。   Distillation can be carried out under normal pressure or reduced pressure, but if it is carried out under reduced pressure conditions (100 mmHg or less) that can be operated at a temperature of 80 ° C. or less, it does not require expensive equipment materials such as fluororesin and polyethylene. It is advantageous because inexpensive materials such as polypropylene and heat-resistant polyvinyl chloride can be selected.

なお、本発明では、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液を蒸留する場合において、前記廃液が酸をほとんど含まない水主体の留分となる温度まで蒸留して得た留分を、「初留」という。また、前記廃液がケイフッ化水素酸をほとんど含まずフッ化水素酸と塩酸を主成分として含む留分となる温度まで蒸留して得た留分を、「主留」という。さらに、前記廃液がフッ化水素酸、塩酸とともにケイフッ化水素酸の揮発が起こる温度まで蒸留して得た留分を、「後留」という。そして、上記3段階の蒸留後において、塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸が残った状況を、「釜残」という。In the present invention, when the waste liquid containing hydrofluoric acid, hydrochloric acid and silicofluoric acid is distilled, a fraction obtained by distillation to a temperature at which the waste liquid becomes a water-based fraction containing almost no acid. Is called "Hatsuru". The fraction obtained by distillation to a temperature at which the waste liquid contains a fraction containing silicohydrofluoric acid and containing hydrofluoric acid and hydrochloric acid as main components is referred to as “main fraction”. Further, a fraction obtained by distilling the waste liquid to a temperature at which volatilization of hydrofluoric acid with hydrofluoric acid and hydrochloric acid occurs is referred to as “post distillation”. Then, after the above three-stage distillation, the situation in which hydrofluoric acid and silicohydrofluoric acid remain without any hydrochloric acid is referred to as “bottle residue”.

前記の場合において、前記塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分として含む釜残に、硫酸またはリン酸の一種もしくは二種を添加して常圧または減圧下で蒸留し、初留分を分離・回収した後、塩酸含有量がさらに少なくフッ化水素酸とケイフッ化水素酸を主成分として含む留分を分離・回収するとよい。   In the above case, one or two kinds of sulfuric acid or phosphoric acid are added to the residue of the kettle which contains almost no hydrochloric acid and contains hydrofluoric acid and silicohydrofluoric acid as main components, and distilled under normal pressure or reduced pressure. After separating and collecting the initial fraction, it is preferable to separate and collect the fraction having a smaller content of hydrochloric acid and containing hydrofluoric acid and silicohydrofluoric acid as main components.

これらの場合において、釜残液に硫酸および/またはリン酸を加え、揮発成分の揮発度を高めて蒸留することにより、残留しているほとんどの塩酸およびフッ化水素酸の一部を初留分として分離除去し、フッ化水素酸とケイフッ化水素酸を主成分として含む留分を回収することができる。添加する硫酸または/およびリン酸の濃度は、合計で5〜50%、好ましくは5〜30%でよく、硫酸およびリン酸は不揮性であってそのまま釜残に残るので、繰り返し利用することも可能である。   In these cases, sulfuric acid and / or phosphoric acid is added to the kettle residue to increase the volatility of the volatile components and distill. The fraction containing hydrofluoric acid and silicohydrofluoric acid as main components can be recovered. The concentration of sulfuric acid and / or phosphoric acid to be added may be 5 to 50% in total, preferably 5 to 30%. Since sulfuric acid and phosphoric acid are non-volatile and remain in the kettle, use them repeatedly. Is also possible.

ここに、フッ化水素酸、塩酸およびケイフッ化水素酸を含む前記廃液を本発明の方法によって処理した後の「釜残」を蒸留する場合において、前記釜残中に含まれる塩酸のほとんどを留出させる温度まで蒸留して得た留分を、「初留」という。また、大半の塩酸留出後、フッ化水素酸とケイフッ化水素酸を主成分として含む留分となる温度まで蒸留して得た留分を、「主留」という。そして、上記2段階の蒸留後において、塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸およびホウフッ酸が残った状況を、「釜残」という。When distilling the “bottle residue” after treating the waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid by the method of the present invention, most of the hydrochloric acid contained in the kettle residue is distilled. The fraction obtained by distillation up to the temperature to be discharged is referred to as “first distillation”. Further, a fraction obtained by distillation after distillation of most of hydrochloric acid to a temperature at which a fraction containing hydrofluoric acid and silicohydrofluoric acid as main components is obtained is referred to as “main fraction”. The situation in which hydrofluoric acid, silicohydrofluoric acid, and borofluoric acid remain substantially free of hydrochloric acid after the two-stage distillation is referred to as “bottle residue”.

また、本発明(第2の発明)では、前記の場合において分離・回収した、塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分として含む釜残もしくは留分に、酸化ケイ素を加え、共存するフッ化水素酸をケイフッ化水素酸に変換して、ケイフッ化水素酸を主成分とする溶液を調製する。   In the present invention (second invention), silicon oxide is added to the residue or fraction which is separated and recovered in the above-described case and contains almost no hydrochloric acid and contains hydrofluoric acid and silicohydrofluoric acid as main components. In addition, the coexisting hydrofluoric acid is converted to silicohydrofluoric acid to prepare a solution containing silicohydrofluoric acid as a main component.

すなわち、第2の発明は、分離・回収するケイフッ化水素酸溶液の純度と濃度を高めることを目的としており、フッ化水素酸と酸化ケイ素との反応によりケイフッ化水素酸が生成することを利用している。添加する酸化ケイ素は、溶存するフッ化水素酸との反応等量分で十分である。   That is, the second invention aims to increase the purity and concentration of the hydrofluoric acid solution to be separated / recovered, and utilizes the fact that silicofluoric acid is generated by the reaction of hydrofluoric acid and silicon oxide. doing. The amount of silicon oxide to be added is sufficient for the reaction equivalent with dissolved hydrofluoric acid.

前記いずれかの場合において、廃液中にアルミニウムを含有する系で蒸留により濃縮されて発生し釜残に析出するフッ化アルミニウム・3水和物を濾過手段により分離して有価物を回収することができる。回収したフッ化アルミニウム・3水和物は、純度が高いので工業的に再利用が可能である。   In any of the above cases, the aluminum fluoride trihydrate generated by concentration in the waste liquid by distillation in the system and precipitated in the kettle residue is separated by filtration means to recover valuable materials. it can. Since the recovered aluminum fluoride trihydrate has a high purity, it can be reused industrially.

本発明による蒸留法により分離された、フッ化水素酸と塩酸を含む回収酸は、工業用酸原液と同等の酸液として再利用が可能であり、実際にケミカルエッチング液に問題なく適用できることが確認されている。   The recovered acid containing hydrofluoric acid and hydrochloric acid separated by the distillation method according to the present invention can be reused as an acid solution equivalent to an industrial acid stock solution, and can be applied to a chemical etching solution without any problem. It has been confirmed.

前記いずれかの場合において、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液は、ガラスのケミカルエッチング廃液として利用することができる。これらの場合において回収されたフッ化水素酸および塩酸を主成分とする回収酸は、ガラスのケミカルエッチング液として再利用することができる。   In any of the above cases, the waste liquid containing hydrofluoric acid, hydrochloric acid, and silicohydrofluoric acid can be used as a chemical etching waste liquid for glass. The recovered acid mainly composed of hydrofluoric acid and hydrochloric acid recovered in these cases can be reused as a chemical etching solution for glass.

一方、本発明(第3の発明)は、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収するための常圧または減圧蒸留装置であって、蒸発缶、精留塔、初留受器、フッ化水素酸および塩酸の混合酸回収槽ならびに後留受器を備えたことを特徴とする。   On the other hand, the present invention (third invention) is an atmospheric or vacuum distillation apparatus for separating and recovering an acid component from a waste liquid containing hydrofluoric acid, hydrochloric acid, and silicohydrofluoric acid. A distillation column, an initial distillation receiver, a mixed acid recovery tank of hydrofluoric acid and hydrochloric acid, and a post distillation receiver are provided.

この場合において、釜残液に含まれる固形物を濾別する手段を備えていることが好ましい。この装置を用いて分離・回収される固形物は、高純度のフッ化アルミニウム・3水和物であり、工業的に再利用が可能である。   In this case, it is preferable to provide a means for filtering off the solids contained in the residual liquor. Solids separated and recovered using this apparatus are high-purity aluminum fluoride trihydrate and can be reused industrially.

そして、前記固形物を濾別する手段の後段に、濾液に硫酸またはリン酸の一種もしくは二種を添加して蒸留する蒸発缶、精留塔、初留受器ならびにケイフッ化水素酸回収槽を備えていることが望ましい。   Then, after the means for filtering out the solid matter, an evaporator, a rectifying column, an initial distillation receiver, and a hydrofluoric acid recovery tank for adding and distilling one or two kinds of sulfuric acid or phosphoric acid to the filtrate are provided. It is desirable to have it.

請求項1〜5のいずれかに記載の方法および請求項6〜8のいずれかに記載の装置を用いて、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収することにより、少なくともフッ化水素酸と塩酸を含む酸を効率よく回収することができる。この回収酸はケミカルエッチング液はもとより工業用酸液として再利用でき、高濃度・高純度のケイフッ化水素酸含有酸および高純度のフッ化アルミニウム・3水和物は工業的に再利用が可能であるとともに、産業廃棄物の量を著しく低減することができ、環境対策に大きく貢献できる。   Using the method according to any one of claims 1 to 5 and the apparatus according to any one of claims 6 to 8, an acid component is separated and recovered from a waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid. By doing so, an acid containing at least hydrofluoric acid and hydrochloric acid can be efficiently recovered. This recovered acid can be reused as a chemical etching solution as well as an industrial acid solution, and high-concentration, high-purity hydrofluoric acid-containing acid and high-purity aluminum fluoride trihydrate can be reused industrially. In addition, the amount of industrial waste can be significantly reduced, greatly contributing to environmental measures.

供試液として、フッ化水素酸6.0%、塩酸2.3%およびケイフッ化水素酸11.5%、ホウフッ化水素酸1.1%などを含むアルミノホウケイ酸ガラスのケミカルエッチング廃液を使用した。
図1は、ケミカルエッチング廃液の蒸留処理のためのベンチプラント図を示す。
ケミカルエッチング廃液を蒸発缶1に約5kgを仕込み、凝縮器3および凝縮器4に冷却水を流す。真空ポンプ9を作動させて系内を80mmHgに保持したのち、蒸発缶1の熱交換器に0.1MPaに減圧したスチームを一定速度で流して加熱して減圧蒸留を開始した。留出物は精留塔2に入り、凝縮器3および4で凝縮される。凝縮液の一部は精留塔2に戻して還流させ、残りは初留受器5、HClHF回収槽6、後留受器7の順に抜き出した。蒸留後、真空ポンプ9を停止し、系内を常圧に戻す。初留受器5中の液は酸分が1%以下でありそのまま通常の排水処理を行った。HClHF回収槽6中の液はケイフッ化水素酸をほとんど含まずフッ化水素酸と塩酸を主成分として含んでおり、抜き出した後、塩酸とフッ化水素酸濃度を調整してケミカルエッチング液として再利用する。後留受器7中の液は相当量のケイフッ化水素酸を含んでいるため、好ましくは蒸発缶1に戻して再度蒸留する。蒸発缶1に残った釜残は、フッ化アルミニウム・3水和物を含むスラリーで、濾過器10でフッ化アルミニウム・3水和物を濾別・回収し、塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分として含む濾液を粗製HSiF貯槽11に回収する。
As a test solution, a chemical etching waste solution of aluminoborosilicate glass containing 6.0% hydrofluoric acid, 2.3% hydrochloric acid, 11.5% silicofluoric acid, 1.1% borohydrofluoric acid and the like was used. .
FIG. 1 shows a bench plant diagram for distillation treatment of chemical etching waste liquid.
About 5 kg of chemical etching waste liquid is charged into the evaporator 1, and cooling water is allowed to flow through the condenser 3 and the condenser 4. After the vacuum pump 9 was operated and the system was maintained at 80 mmHg, steam reduced in pressure to 0.1 MPa was passed through the heat exchanger of the evaporator 1 at a constant rate and heated to start distillation under reduced pressure. The distillate enters the rectification column 2 and is condensed in the condensers 3 and 4. A part of the condensate was returned to the rectification column 2 to be refluxed, and the rest was extracted in the order of the initial distillation receiver 5, the HCl - HF recovery tank 6, and the rear distillation receiver 7. After distillation, the vacuum pump 9 is stopped and the system is returned to normal pressure. The liquid in the first fraction receiver 5 had an acid content of 1% or less and was subjected to normal waste water treatment as it was. The liquid in the HCl - HF recovery tank 6 contains almost no hydrofluoric acid and contains hydrofluoric acid and hydrochloric acid as main components. After extraction, the chemical etching liquid is prepared by adjusting the hydrochloric acid and hydrofluoric acid concentrations. Reuse as. Liquid in the rear clasp receiver 7 since it contains a substantial amount of fluorosilicate Kamizu periodate, preferably distilled again returned to evaporator 1. The residue remaining in the evaporator 1 is a slurry containing aluminum fluoride trihydrate. The aluminum fluoride trihydrate is filtered and collected by a filter 10 and contains almost no hydrochloric acid. The filtrate containing acid and silicohydrofluoric acid as main components is recovered in the crude H 2 SiF 6 storage tank 11.

図2は、エッチング廃液の蒸留処理で釜残として回収した粗製HSiFの蒸留処理のためのベンチプラント図を示す。
ケミカルエッチング廃液の蒸留処理で得られた、塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分として含む粗製HSiF4.0Kgと硫酸またはリン酸の一種もしくは二種を1.0kgテフロン(登録商標)製熱交換器を備えた蒸発缶13に仕込み、凝縮器15および凝縮器16に冷却水を流す。真空ポンプ20を作動させて系内を80mmHgに保持したのち、蒸発缶13の熱交換器に0.1MPaに減圧したスチームを一定速度で流して加熱して減圧蒸留を開始した。留出物は精留塔14に入り、凝縮器15および16で凝縮される。凝縮液の一部は蒸発缶13に戻して還流させ、残りは初留受器17、HSiF回収槽18の順に抜き出した。蒸留後、真空ポンプ20を停止し、系内を常圧に戻す。初留受器17中の液は0.5〜2.0%の塩酸を含んでおり、ケイフッ化水素酸の原料に使用できないため、蒸発缶13に戻しエッチング廃液と共に再蒸留する。HSiF回収槽18中の液は塩酸含量0.01%以下であり抜き出してから酸化ケイ素SiOを加え、共存するフッ化水素酸をケイフッ化水素酸に変換して、ケイフッ化水素酸溶液を調製する。
FIG. 2 shows a bench plant diagram for the distillation treatment of crude H 2 SiF 6 recovered as a residue in the etching waste liquid distillation treatment.
Crude H 2 SiF 6 ( 4.0 kg) containing almost no hydrochloric acid and containing hydrofluoric acid and silicohydrofluoric acid as main components, and one or two kinds of sulfuric acid or phosphoric acid obtained by distillation treatment of the chemical etching waste liquid An evaporator 13 equipped with a 0.0 kg Teflon (registered trademark) heat exchanger is charged, and cooling water is allowed to flow through the condenser 15 and the condenser 16. After the vacuum pump 20 was operated and the system was maintained at 80 mmHg, steam reduced to 0.1 MPa was passed through the heat exchanger of the evaporator 13 at a constant rate and heated to start distillation under reduced pressure. The distillate enters the rectification column 14 and is condensed in the condensers 15 and 16. A part of the condensate was returned to the evaporator 13 and refluxed, and the remainder was extracted in the order of the initial distillation receiver 17 and the H 2 SiF 6 recovery tank 18. After distillation, the vacuum pump 20 is stopped and the system is returned to normal pressure. Since the liquid in the first distillation receiver 17 contains 0.5 to 2.0% hydrochloric acid and cannot be used as a raw material for silicofluoric acid, it is returned to the evaporator 13 and redistilled together with the etching waste liquid. The liquid in the H 2 SiF 6 recovery tank 18 has a hydrochloric acid content of 0.01% or less and is extracted, and then silicon oxide SiO 2 is added to convert the coexisting hydrofluoric acid into silicohydrofluoric acid. Prepare the solution.

(実施例1:請求項1および請求項4の実施例)
図1に示す装置を用い、フッ化水素酸6.0%、塩酸2.3%およびケイフッ化水素酸11.5%、ホウフッ化水素酸1.1%などを含むアルミノホウケイ酸ガラスのケミカルエッチング実廃液5.0kgの蒸留試験を、80mmHgの減圧下、50〜70℃の条件で行った。得られた留分および釜残の分析結果を、表2に示す。
表2から分かるように、フッ化水素酸と塩酸の合計濃度が約1%の初留分1,460gと、フッ化水素酸と塩酸の合計濃度が約12%の主留分1,990gおよびケイフッ化水素酸を主成分とする後留および釜残とに分離・回収することができている。このときの釜残液の組成は、塩酸0.2%で、フッ化水素酸10.2%、ケイフッ化水素酸は38.3%と高濃度を有していた。さらに釜残には、スラリー状で高純度のフッ化アルミニウム・3水和物が含まれ、これを通常の濾過操作で27gを容易に回収することができた。
(Example 1: Examples of Claims 1 and 4)
Using the apparatus shown in FIG. 1, chemical etching of aluminoborosilicate glass containing 6.0% hydrofluoric acid, 2.3% hydrochloric acid, 11.5% silicofluoric acid, 1.1% borohydrofluoric acid, etc. A distillation test of 5.0 kg of actual waste liquid was conducted under conditions of 50 to 70 ° C. under reduced pressure of 80 mmHg. Table 2 shows the analysis results of the obtained fraction and residue.
As can be seen from Table 2, 1,460 g of the initial fraction having a total concentration of hydrofluoric acid and hydrochloric acid of about 1%, 1,990 g of the main fraction having a total concentration of hydrofluoric acid and hydrochloric acid of about 12%, and It can be separated and recovered into a bottom fraction and a kettle residue mainly composed of silicofluoric acid. At this time, the composition of the residue in the kettle was 0.2% hydrochloric acid, 10.2% hydrofluoric acid, and 38.3% hydrosilicic acid. Further, the residue of the kettle contained high purity aluminum fluoride trihydrate in a slurry state, and 27 g of this could be easily recovered by a normal filtration operation.

Figure 0005143440
Figure 0005143440

新たな供試液4.5kgに前回の後留分650gを加えて蒸留を行い、発生した後留分を次に回す操作を繰り返し計18回の減圧蒸留を行った。得られた留分および釜残の分析結果を、表3に示す。   Distillation was performed by adding 650 g of the previous fractional fraction to 4.5 kg of the new test solution, and repeating the operation of turning the generated fractional fraction next to perform vacuum distillation a total of 18 times. Table 3 shows the analysis results of the obtained fraction and residue.

Figure 0005143440
Figure 0005143440

主留分を回収し、フッ酸および水を加えて、塩酸2.5%、フッ化水素酸20%、ケイフッ化水素酸0.6%を含む溶液を調製し、アルミノホウケイ酸ガラスのケミカルエッチング剤に供した結果、何ら問題は見られなかった。   Collect the main fraction, add hydrofluoric acid and water to prepare a solution containing 2.5% hydrochloric acid, 20% hydrofluoric acid, and 0.6% silicofluoric acid. Chemical etching of aluminoborosilicate glass As a result of applying to the agent, no problem was found.

(実施例2:請求項3の実施例と釜残中の塩酸の低減)
実施例1で得た、釜残5.0kgを図2に示す蒸発缶13に仕込み、80mmHgの減圧下で蒸留した。得られた留分および釜残の分析結果を、表4に示す。
(Example 2: Example of claim 3 and reduction of hydrochloric acid in the residue)
The remaining kettle (5.0 kg) obtained in Example 1 was charged into the evaporator 13 shown in FIG. 2 and distilled under reduced pressure of 80 mmHg. Table 4 shows the analysis results of the obtained fraction and the residue of the kettle.

Figure 0005143440
Figure 0005143440

主留分のフッ化水素分を当量のSiOを加えて反応させてケイフッ化水素酸に変換し、水を加えて40%ケイフッ化水素酸を調製した。塩素分が200ppmと少し高い以外は市販品として問題はなかった。 Hydrogen fluoride in the main fraction is reacted by adding SiO 2 eq converted to silicic hydrofluoric acid was prepared 40% silicic hydrofluoric acid was added water. There was no problem as a commercial product except that the chlorine content was as high as 200 ppm.

(実施例3:請求項2および請求項3の実施例)
実施例2で得たケイフッ化水素酸よりも塩酸含量を減らす目的で、塩酸の揮発度を増加させるために不揮発酸として98%硫酸500gと実施例1で得た釜残5.0kgを蒸発缶13に仕込み、80mmHgの減圧下で蒸留した。得られた留分および釜残の分析結果を表5に示す。
(Embodiment 3: Embodiments of claims 2 and 3)
In order to reduce the content of hydrochloric acid compared to the hydrofluoric acid obtained in Example 2, 500 g of 98% sulfuric acid as non-volatile acid and 5.0 kg of the kettle remaining obtained in Example 1 were evaporated to increase the volatility of hydrochloric acid. 13 and distilled under reduced pressure of 80 mmHg. Table 5 shows the analysis results of the obtained fraction and residue.

Figure 0005143440
Figure 0005143440

主留分のフッ化水素分を当量のSiOを加えて反応させてケイフッ化水素酸に変換し、水を加えて40%ケイフッ化水素酸を調製した。不純物の分析結果、すべて市販用の高純度ケイフッ化水素酸の規格内であった。 Hydrogen fluoride in the main fraction is reacted by adding SiO 2 eq converted to silicic hydrofluoric acid was prepared 40% silicic hydrofluoric acid was added water. As a result of analysis of impurities, all were within the specifications of commercially available high purity hydrofluoric acid.

ケミカルエッチング廃液の蒸留処理のためのベンチプラント図を示す。The bench plant figure for the distillation process of a chemical etching waste liquid is shown. エッチング廃液の蒸留処理で釜残として回収した粗製HSiFの蒸留処理のためのベンチプラント図を示す。It shows a bench plant diagram for the distillation process of crude H 2 SiF 6 was recovered as still residue in the distillation process of etching waste liquid. エッチング廃液の蒸留処理と釜残として回収した粗製HSiFの蒸留処理を連続的に実施する場合のモデル図を示す。It illustrates a model of a case of continuously carrying out the distillation of the crude H 2 SiF 6 was recovered as a distillation treatment and bottoms of the etching waste liquid.

1 蒸発缶
2 精留塔
3 凝縮器
4 凝縮器
5 初留受器
6 HClHF回収槽
7 後留受器
8 バッファータンク
9 真空ポン
10 濾過器
11 粗製HSiF貯槽
12 送液ポンプ
13 蒸発缶
14 精留塔
15 凝縮器
16 凝縮器
17 初留受器
18 HSiF回収槽
19 バッファータンク
20 真空ポンプ
1 evaporator 2 fractionator 3 condenser 4 condenser 5 initial boiling receiver 6 HCl - HF distillate receiver 8 after collection tank 7 buffer tank 9 vacuum pumps
10 strainer 11 the crude H 2 SiF 6 storage tank 12 feeding pump 13 evaporator 14 fractionator 15 condenser 16 condenser 17 initial boiling receiver 18 H 2 SiF 6 collecting tank 19 buffer tank 20 vacuum pump

Claims (8)

フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収するに当って、前記廃液を常圧もしくは減圧下における蒸留操作によって、酸をほとんど含まない水主体の留分、ケイフッ化水素酸をほとんど含まずフッ化水素酸と塩酸を主成分として含む留分、ならびに塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分として含む釜残とに、順次分離して回収することを特徴とする、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収する方法。 In separating and recovering the acid component from the waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid, the waste liquid is a water-based fraction containing almost no acid by distillation operation under normal pressure or reduced pressure. silicic hydrofluoric acid fraction containing as a main component containing almost no hydrofluoric acid and hydrochloric acid, as well as little hydrofluoric acid and fluorosilicate Kamizu periodate free of hydrochloric acid and bottoms containing as a main component, sequentially separated And collecting the acid component from the waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid. 前記塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分として含む釜残に、硫酸またはリン酸の一種もしくは二種を添加して常圧または減圧下で蒸留し、初留分を分離・回収した後、塩酸含有量がさらに少なくフッ化水素酸とケイフッ化水素酸を主成分として含む留分を分離・回収することを特徴とする、請求項1記載のフッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収する方法。   One or two types of sulfuric acid or phosphoric acid are added to the residue of the kettle which contains almost no hydrochloric acid and contains hydrofluoric acid and silicohydrofluoric acid as main components, and distilled under normal pressure or reduced pressure. 2. The hydrofluoric acid and hydrochloric acid according to claim 1, wherein the fraction containing hydrochloric acid and hydrofluoric acid and silicohydrofluoric acid as main components is separated and recovered after separation and recovery. And a method for separating and recovering acid components from waste liquid containing hydrofluoric acid. 請求項1または2において、分離・回収した、塩酸をほとんど含まずフッ化水素酸とケイフッ化水素酸を主成分として含む釜残もしくは留分に、酸化ケイ素SiOを加え、共存するフッ化水素酸をケイフッ化水素酸に変換して、ケイフッ化水素酸を主成分とする溶液を調製することを特徴とする、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収する方法。 3. Hydrogen fluoride coexisting by adding silicon oxide SiO2 to the residue or fraction separated and recovered and containing almost no hydrochloric acid and containing hydrofluoric acid and silicohydrofluoric acid as main components. Separation of acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid, characterized by converting acid to silicohydrofluoric acid and preparing a solution mainly composed of silicohydrofluoric acid How to recover. 請求項1〜3のいずれかにおいて、廃液中にアルミニウムを含有する系で蒸留により濃縮されて発生し釜残に含まれるフッ化アルミニウム・3水和物を濾過して分離・回収することを特徴とする、フッ水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収する方法。 4. The method according to claim 1, wherein the aluminum fluoride trihydrate generated by concentration in the waste liquid by distillation in the system containing aluminum is filtered and separated and recovered. to, hydrofluoric acid, a method for separating and recovering an acid component from the waste liquid containing hydrochloric acid and silicic hydrofluoric acid. 前記フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液が、ガラスのケミカルエッチング廃液である請求項1〜4のいずれかに記載のフッ水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収する方法。 The hydrofluoric acid waste liquid containing hydrochloric acid and silicic hydrofluoric acid, hydrofluoric acid according to claim 1 is chemically etched waste glass, waste liquid containing hydrochloric acid and silicic hydrofluoric acid A method for separating and recovering acid components. 蒸発缶、精留塔、初留受器、フッ化水素酸および塩酸の混合酸回収槽ならびに後留受器を備えることを特徴とする、フッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収するための装置。   Waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid, characterized by comprising an evaporator, a rectifying column, a primary distillation receiver, a mixed acid recovery tank of hydrofluoric acid and hydrochloric acid, and a post distillation receiver For separating and recovering acid components from water. 釜残液に含まれる固形物を濾別する手段を備えた、請求項6記載のフッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収するための装置。   The apparatus for separating / recovering an acid component from a waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid according to claim 6, comprising means for filtering off solids contained in the kettle residue. 釜残液に含まれる固形物を濾別する手段の後段に、濾液に硫酸またはリン酸の一種もしくは二種を添加して蒸留する蒸発缶、精留塔、初留受器ならびにケイフッ化水素酸回収槽を備えることを特徴とする、請求項6または7記載のフッ化水素酸、塩酸およびケイフッ化水素酸を含む廃液から酸成分を分離・回収するための装置。   After the means for filtering off the solids contained in the kettle residue, an evaporator, rectifying column, initial fraction receiver, and hydrofluorosilicic acid, in which one or two kinds of sulfuric acid or phosphoric acid are added to the filtrate and distilled An apparatus for separating and recovering an acid component from a waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid according to claim 6 or 7, further comprising a recovery tank.
JP2007022827A 2007-02-01 2007-02-01 Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid Active JP5143440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022827A JP5143440B2 (en) 2007-02-01 2007-02-01 Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022827A JP5143440B2 (en) 2007-02-01 2007-02-01 Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid

Publications (2)

Publication Number Publication Date
JP2008189483A JP2008189483A (en) 2008-08-21
JP5143440B2 true JP5143440B2 (en) 2013-02-13

Family

ID=39749955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022827A Active JP5143440B2 (en) 2007-02-01 2007-02-01 Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid

Country Status (1)

Country Link
JP (1) JP5143440B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341634B2 (en) * 2009-06-22 2013-11-13 株式会社 電硝エンジニアリング Method for recovering mixed acid with increased hydrochloric acid concentration from hydrochloric acid-hydrofluoric acid mixed acid waste liquid
JP5421088B2 (en) * 2009-12-15 2014-02-19 森田化学工業株式会社 Method for producing valuable materials and hydrochloric acid from waste liquid
JP5661389B2 (en) * 2010-09-09 2015-01-28 株式会社ササクラ Acid recovery method
JP2012183457A (en) * 2011-03-03 2012-09-27 Seiko Epson Corp Separation method and separation device
KR101288822B1 (en) * 2011-08-25 2013-07-23 주식회사 전영 On-site recycling method for the high efficient recovery of waste generating from glass etching process
FR2981060B1 (en) 2011-10-06 2014-10-17 Arkema France PROCESS FOR THE VALORISATION OF THE EFFLUENTS OF CHLOROFLUORHYDRIC ACID
JP6162625B2 (en) * 2014-02-27 2017-07-12 株式会社日立製作所 Crystal growth crucible, crystal growth apparatus and crystal growth method provided therewith
CN111232927A (en) * 2020-03-09 2020-06-05 广东水清环保科技有限公司 Waste acid recovery method and system
TWI759787B (en) * 2020-07-07 2022-04-01 環創源科技股份有限公司 Method for processing waste polishing solution and waste solution containing hydrofluoric acid
CN114436216A (en) * 2022-03-03 2022-05-06 盛隆资源再生(无锡)有限公司 Method for separating and recovering mixed acid of hydrofluoric acid and hydrochloric acid
CN116692775B (en) * 2023-07-12 2024-05-07 深圳市超纯环保股份有限公司 Low-concentration hydrofluoric acid waste liquid recovery equipment
CN117699742A (en) * 2024-02-05 2024-03-15 上海联风气体有限公司 Hydrofluoric acid regeneration method for photovoltaic waste acid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116060A (en) * 1975-04-03 1976-10-13 Morita Kagaku Kogyo Kk Method of fixing fluorine in borofluoride-containing waste liquid
US5632866A (en) * 1994-01-12 1997-05-27 Fsi International, Inc. Point-of-use recycling of wafer cleaning substances
JP3635643B2 (en) * 2003-03-24 2005-04-06 西山ステンレスケミカル株式会社 Waste liquid treatment method
JP4635527B2 (en) * 2004-09-08 2011-02-23 三菱化学エンジニアリング株式会社 Method for recovering hydrofluoric acid
JP4581618B2 (en) * 2004-10-14 2010-11-17 三菱化学エンジニアリング株式会社 Method for recovering hydrofluoric acid
JP2006175364A (en) * 2004-12-22 2006-07-06 National Institute Of Advanced Industrial & Technology Recovery method and apparatus of fluorine from fluorine-containing material
JP3785418B1 (en) * 2005-06-30 2006-06-14 有限会社Jトップサービス Hydrofluoric acid generating apparatus and hydrofluoric acid generating method
JP5188064B2 (en) * 2006-12-15 2013-04-24 ステラケミファ株式会社 Method for recovering hydrofluoric acid and hydrochloric acid

Also Published As

Publication number Publication date
JP2008189483A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5143440B2 (en) Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid
JP5101121B2 (en) Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid and silicohydrofluoric acid
EP0606447B1 (en) Method for producing tetrafluorosilane and aluminum fluoride by hydrofluoric acid digestion of silica/alumina matrix
US20080053815A1 (en) Method for processing an etching mixture which is formed during the production of highly pure silicon
JP4691213B2 (en) Method for removing aluminum chloride and other metal chlorides from chlorosilanes
CN112607707B (en) Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade
TWI529141B (en) Recovery and treatment of hydrofluoric acid and fluorosilicic acid waste
DE4110177C2 (en) Process for the production of hydrochloric acid purified from foreign halogen
JPS60212288A (en) Treatment of waste water containing ammonium ion and fluorine ion
JP4174708B2 (en) Method for recovering and purifying calcium fluoride from a by-product mixed salt containing fluorine
CN112661115B (en) Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF produced by fluorite method
JP5101710B2 (en) Purification method of ethylene glycol
JP5661389B2 (en) Acid recovery method
JP5421088B2 (en) Method for producing valuable materials and hydrochloric acid from waste liquid
RU2572122C1 (en) Method for obtaining extra pure hydrogen fluoride and/or hydrofluoric acid
JPH09302483A (en) Method for recovering nitric acid from silicon treating waste solution
KR101308051B1 (en) Method for manufacturing of ultra-high-purity hydrofluoric acid
KR101028447B1 (en) Method and apparatus for separating hydrofluoric acid from mixed wasted acid solution using preferential precipitaion
JP2009269815A (en) Method for purifying trichlorosilane
CN112957758A (en) Method for recovering high-purity nitric acid and hydrofluoric acid from etching waste acid
JPH06263715A (en) Production of high-purity methanesulfonyl chloride
JP2004043434A (en) Method for refining high-purity dimethyl sulfoxide and mixture of dimethyl sulfoxide with amines
JP2775007B2 (en) Treatment method for aluminum-containing waste liquid
JP3019535B2 (en) How to collect indene from tar
KR20040091070A (en) Method of purifying niobium compound and/or tantalum compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250