JP5139215B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP5139215B2
JP5139215B2 JP2008239050A JP2008239050A JP5139215B2 JP 5139215 B2 JP5139215 B2 JP 5139215B2 JP 2008239050 A JP2008239050 A JP 2008239050A JP 2008239050 A JP2008239050 A JP 2008239050A JP 5139215 B2 JP5139215 B2 JP 5139215B2
Authority
JP
Japan
Prior art keywords
vacuum
insulating container
vacuum insulating
resistance layer
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008239050A
Other languages
Japanese (ja)
Other versions
JP2010073460A (en
Inventor
純一 佐藤
彰 石井
哲 塩入
直紀 浅利
修 阪口
治 多賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008239050A priority Critical patent/JP5139215B2/en
Publication of JP2010073460A publication Critical patent/JP2010073460A/en
Application granted granted Critical
Publication of JP5139215B2 publication Critical patent/JP5139215B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明は、接離自在の一対の接点を有する真空バルブに係り、特に真空中の沿面絶縁耐力を向上し得る真空バルブに関する。   The present invention relates to a vacuum valve having a pair of contacts that can be contacted and separated, and more particularly to a vacuum valve that can improve creeping dielectric strength in a vacuum.

従来、真空絶縁容器内に接離自在の一対の接点を収納した真空バルブは、真空が持つ優れた絶縁耐力やアーク消弧性などにより外形形状の小型化が図られている。真空絶縁容器には、機械的特性や絶縁抵抗などの電気的特性の優れたアルミナ磁器などのセラミックスが用いられている(例えば、特許文献1参照。)。
特開2004−319151号公報 (第3ページ、図1)
2. Description of the Related Art Conventionally, a vacuum valve in which a pair of contacts that can be freely contacted and separated in a vacuum insulating container has been reduced in size due to the excellent dielectric strength and arc extinguishing properties of the vacuum. Ceramics such as alumina porcelain having excellent electrical characteristics such as mechanical characteristics and insulation resistance are used for the vacuum insulating container (see, for example, Patent Document 1).
JP 2004-319151 A (page 3, FIG. 1)

上記の従来の真空バルブにおいては、次のような問題がある。真空絶縁容器の抵抗率が温度25℃で約1015Ω・cmと高く、優れた絶縁抵抗を示すものの、絶縁抵抗が高すぎてアークシールド端部など電界強度の高い部分から放出される電子がトラップされ、帯電を起こすことがある。 The above-described conventional vacuum valve has the following problems. Although the resistivity of the vacuum insulation container is as high as about 10 15 Ω · cm at a temperature of 25 ° C. and exhibits an excellent insulation resistance, electrons emitted from a portion having a high electric field strength such as an arc shield end due to the insulation resistance is too high. May be trapped and charged.

帯電が起きると、真空バルブ内の電界分布が乱れ、絶縁耐力の低下を招く。特に、真空絶縁容器内面においては、沿面絶縁耐力が低下し、貫通破壊を起こすこともある。このため、運転に影響を及ぼさない程度に抵抗率を小さくするとともに、沿面絶縁距離の増大を図り、帯電を起こし難く沿面絶縁耐力を向上し得るものが望まれていた。   When charging occurs, the electric field distribution in the vacuum bulb is disturbed, leading to a decrease in dielectric strength. In particular, on the inner surface of the vacuum insulating container, the creeping dielectric strength is reduced, which may cause penetration failure. For this reason, it has been desired to reduce the resistivity to such an extent that it does not affect the operation and to increase the creeping insulation distance so that it is difficult to cause charging and can improve the creeping dielectric strength.

本発明は上記問題を解決するためになされたもので、帯電し難く沿面絶縁距離を増大させた真空絶縁容器を用いた真空バルブを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vacuum valve using a vacuum insulating container that is difficult to be charged and has a creeping insulation distance increased.

上記目的を達成するために、本発明の真空バルブは、セラミックスからなる真空絶縁容器と、前記真空絶縁容器の両端開口部にそれぞれ封着された封着金具と、前記真空絶縁容器内に収納された接離自在の一対の接点と、前記真空絶縁容器の内面に設けられた前記セラミックスよりも抵抗率の小さい抵抗層とを備え、前記真空絶縁容器内面に凸凹部を設けるとともに、前記抵抗層を炭化水素あるいは炭素の同素体からなる非晶質で構成したことを特徴とする。 In order to achieve the above object, a vacuum valve according to the present invention is housed in a vacuum insulating container made of ceramics, a sealing metal fitting sealed at both ends of the vacuum insulating container, and the vacuum insulating container. was freely contacts and separates a pair of contacts, the than the ceramic on the inner surface of the vacuum insulating vessel and a small resistivity resistance layer, Rutotomoni provided irregularities section to the vacuum insulating vessel inner surface, said resistive layer Is made of an amorphous material composed of an allotrope of hydrocarbon or carbon .

本発明によれば、真空絶縁容器の内面に、セラミックスよりも抵抗率の小さい抵抗層を設けるとともに、内面を凸凹状としているので、帯電現象が起こり難く、沿面絶縁距離が増大し、真空中の沿面絶縁耐力を向上させることができる。   According to the present invention, a resistance layer having a resistivity lower than that of ceramics is provided on the inner surface of the vacuum insulating container, and the inner surface is uneven, so that the charging phenomenon hardly occurs, the creeping insulation distance increases, Creeping dielectric strength can be improved.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係る真空バルブを図1を参照して説明する。図1は、本発明の実施例1に係る真空バルブの構成を示す断面図である。   First, a vacuum valve according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating a configuration of a vacuum valve according to Embodiment 1 of the present invention.

図1に示すように、アルミナ磁器などのセラミックスからなる筒状の真空絶縁容器1の両端開口部には、固定側封着金具2と可動側封着金具3とが封着されている。固定側封着金具2には、固定側通電軸4が貫通固定され、真空絶縁容器1内の端部に固定側接点5が固着されている。   As shown in FIG. 1, a fixed-side sealing metal fitting 2 and a movable-side sealing metal fitting 3 are sealed at both end openings of a cylindrical vacuum insulating container 1 made of ceramics such as alumina porcelain. A fixed-side energizing shaft 4 is fixed through the fixed-side sealing fitting 2, and a fixed-side contact 5 is fixed to an end in the vacuum insulating container 1.

固定側接点5に対向して接離自在の可動側接点6が、可動側封着金具3の開口部を移動自在に貫通する可動側通電軸7の端部に固着されている。可動側通電軸7の中間部と可動側封着金具3間には、伸縮自在の筒状のベローズ8の両端が封着されている。これにより、真空絶縁容器1内の真空を保ちながら、可動側通電軸7を軸方向に移動させることができる。また、両接点5、6を包囲するように、筒状のアークシールド9が真空絶縁容器1の中間部に固定されている。   A movable contact 6 that can be moved toward and away from the fixed contact 5 is fixed to the end of the movable energizing shaft 7 that movably penetrates the opening of the movable seal 3. Between the middle part of the movable-side energizing shaft 7 and the movable-side sealing metal fitting 3, both ends of a telescopic cylindrical bellows 8 are sealed. Thereby, the movable energizing shaft 7 can be moved in the axial direction while maintaining the vacuum in the vacuum insulating container 1. A cylindrical arc shield 9 is fixed to the intermediate portion of the vacuum insulating container 1 so as to surround both the contacts 5 and 6.

真空絶縁容器1内面には、例えばサンドブラスト処理により山部と谷部とがランダムに形成された凸凹部10が設けられている。山部の高さは、数10〜数100μmである。また、凸凹部10の表面には、炭化水素、あるいは炭素の同素体からなる非晶質(アモルファス)の抵抗層11が、固定側封着金具2から可動側封着金具3までの全域に設けられている。抵抗層11は、厚さが数10nm〜数μmであり、凸凹部10に沿って表面の形状も凸凹状となる。   The inner surface of the vacuum insulating container 1 is provided with a convex recess 10 in which peaks and valleys are randomly formed by, for example, sandblasting. The height of the peak is several tens to several hundreds of micrometers. Further, an amorphous resistance layer 11 made of a hydrocarbon or carbon allotrope is provided on the surface of the convex / concave portion 10 over the entire area from the fixed-side sealing fitting 2 to the movable-side sealing fitting 3. ing. The resistance layer 11 has a thickness of several tens of nanometers to several μm, and the surface shape of the resistive layer 11 is uneven as well.

この抵抗層11は、所謂、ダイヤモンドライクカーボンで構成されており、例えば、アセチレンなどの炭化水素ガスをプラズマ化し、真空絶縁容器1内面に炭化水素を蒸着するプラズマCVD法により設けることができる。そして、蒸着後、熱処理する温度を制御することにより、抵抗率を10〜1014Ω・cmに変化させることができる。熱処理の温度を高温にすれば、ランダムに配列している炭素原子が規則的な配列となり、抵抗率が小さくなる。 The resistance layer 11 is made of so-called diamond-like carbon, and can be provided by, for example, a plasma CVD method in which a hydrocarbon gas such as acetylene is turned into plasma and the hydrocarbon is deposited on the inner surface of the vacuum insulating container 1. And after vapor deposition, the resistivity can be changed to 10 8 to 10 14 Ω · cm by controlling the temperature for heat treatment. If the temperature of the heat treatment is increased, the randomly arranged carbon atoms are regularly arranged and the resistivity is reduced.

これにより、真空絶縁容器1内面においては、約1015Ω・cmと高抵抗のセラミックスよりも小さい抵抗率に制御することができる。このため、アークシールド9端部などと対向し電界強度が高くなる部分では、帯電を起こし易くなるが、抵抗層11の抵抗率が小さいので、電荷は固定側封着金具2側や可動側封着金具3側に短時間で移動する。即ち、帯電し難いものとなる。更に、ランダムな凸凹部10によって、沿面絶縁距離が増大し沿面絶縁耐力を向上させることができる。 As a result, the inner surface of the vacuum insulating container 1 can be controlled to have a resistivity of about 10 15 Ω · cm, which is smaller than that of high-resistance ceramics. For this reason, charging tends to occur in the portion where the electric field strength is high facing the end of the arc shield 9 or the like, but since the resistivity of the resistance layer 11 is small, the electric charge is on the fixed side sealing metal fitting 2 side or the movable side sealing. Move to the fitting 3 side in a short time. That is, it becomes difficult to be charged. Further, the random convex and concave portions 10 can increase the creeping insulation distance and improve the creeping dielectric strength.

なお、抵抗層11の抵抗率が10Ω・cm未満では漏れ電流が増加し、また、1014Ω・cm超過では短時間で電荷を移動させることが困難となるため好ましくない。 Note that if the resistivity of the resistance layer 11 is less than 10 8 Ω · cm, the leakage current increases, and if it exceeds 10 14 Ω · cm, it is difficult to move charges in a short time, which is not preferable.

上記実施例1の真空バルブによれば、真空絶縁容器1の内面に、セラミックスよりも小さい抵抗率を持つ抵抗層11を設けるとともに、表面を凸凹状としているので、トラップされようとする電荷は短時間で封着金具2、3側に移動し、帯電が起こり難くなるとともに、沿面絶縁距離が増大し、真空中の沿面絶縁耐力を向上させることができる。   According to the vacuum valve of the first embodiment, since the resistance layer 11 having a resistivity smaller than that of ceramics is provided on the inner surface of the vacuum insulating container 1 and the surface is uneven, the charge to be trapped is short. It moves to the sealing metal fittings 2 and 3 side with time, charging becomes difficult to occur, the creeping insulation distance is increased, and the creeping dielectric strength in vacuum can be improved.

上記実施例1では、抵抗層11を炭素の同素体からなる非晶質の硬質膜で説明したが、酸化銅などを蒸着させた金属酸化層や、二酸化珪素に酸化マグネシウムや酸化ナトリウムなどの酸化物を添加した酸化ガラス層を設けても、セラミックスよりも小さい抵抗率となり帯電現象を抑制することができる。   In the first embodiment, the resistance layer 11 is described as an amorphous hard film made of an allotrope of carbon. However, a metal oxide layer obtained by evaporating copper oxide or the like, or an oxide such as magnesium oxide or sodium oxide on silicon dioxide. Even if an oxide glass layer to which is added is provided, the resistivity becomes smaller than that of ceramics, and the charging phenomenon can be suppressed.

また、真空絶縁容器1を熱処理して製造した時点では、素焼きの状態であり、その内面は多少凸凹状となっている。このため、凸凹状の大きさが抵抗層11の膜厚よりも大きく、凹部に窪んだ部分が抵抗層11の膜厚で埋もれない程度であれば、サンドブラスト処理を施す必要はない。   Further, when the vacuum insulating container 1 is manufactured by heat treatment, it is in an unglazed state, and its inner surface is somewhat uneven. For this reason, it is not necessary to perform the sandblasting process if the size of the unevenness is larger than the film thickness of the resistance layer 11 and the portion recessed in the recess is not buried by the film thickness of the resistance layer 11.

次に、本発明の実施例2に係る真空バルブを図2を参照して説明する。図2は、本発明の実施例2に係る真空バルブの構成を示す要部拡大半断面図である。なお、この実施例2が実施例1と異なる点は、真空絶縁容器内面を環状の凸凹部としたことである。図2において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum valve according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 2 is an enlarged half sectional view of a main part showing the configuration of the vacuum valve according to the second embodiment of the present invention. The difference between the second embodiment and the first embodiment is that the inner surface of the vacuum insulating container is an annular convex recess. In FIG. 2, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すように、真空絶縁容器1の内面には、環状の山部と谷部とを有する複数の凸凹部12を機械加工により設けている。山部の高さは、数10〜数100μmである。そして凸凹部12の表面には、実施例1と同様のセラミックスよりも抵抗率の小さい抵抗層13を設けている。凸凹部12と抵抗層13は固定側から可動側の全域に設けられている。なお、凸凹部12の表面に実施例1のようなランダムに形成された凸凹部を設けてもよい。   As shown in FIG. 2, a plurality of convex recesses 12 having annular crests and troughs are provided on the inner surface of the vacuum insulating container 1 by machining. The height of the peak is several tens to several hundreds of micrometers. A resistance layer 13 having a resistivity lower than that of ceramics similar to that of the first embodiment is provided on the surface of the convex and concave portion 12. The convex recess 12 and the resistance layer 13 are provided over the entire area from the fixed side to the movable side. In addition, you may provide the convex concave part formed at random like Example 1 in the surface of the convex concave part 12. FIG.

上記実施例2の真空バルブによれば、実施例1による効果のほかに、凸凹部12で接点5から放出される金属蒸気の拡散を抑制することができる。また、沿面絶縁距離を確実に増大させることができる。   According to the vacuum valve of the second embodiment, in addition to the effects of the first embodiment, diffusion of metal vapor released from the contact 5 at the convex and concave portions 12 can be suppressed. Further, the creeping insulation distance can be increased reliably.

次に、本発明の実施例3に係る真空バルブを図3を参照して説明する。図3は、本発明の実施例3に係る真空バルブの構成を示す要部拡大半断面図である。なお、この実施例3が実施例2と異なる点は、凸凹部を螺旋状としたことである。図3において、実施例2と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum valve according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 3 is an enlarged half sectional view of the main part showing the configuration of the vacuum valve according to Embodiment 3 of the present invention. The third embodiment is different from the second embodiment in that the convex and concave portions are formed in a spiral shape. In FIG. 3, the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、真空絶縁容器1の内面には、螺旋状の山部と谷部を有する凸凹部14を設けている。そして凸凹部14の表面には、実施例1と同様のセラミックスよりも抵抗率の小さい抵抗層15を設けている。凸凹部14と抵抗層15は固定側から可動側の全域に設けられている。なお、凸凹部14に実施例1のようなランダムに形成された凸凹部を設けてもよい。   As shown in FIG. 3, the inner surface of the vacuum insulating container 1 is provided with a convex recess 14 having spiral peaks and valleys. A resistance layer 15 having a resistivity lower than that of ceramics similar to that of the first embodiment is provided on the surface of the convex recess 14. The convex recesses 14 and the resistance layer 15 are provided over the entire area from the fixed side to the movable side. In addition, you may provide the convex concave part formed in the convex concave part 14 like Example 1 at random.

上記実施例3の真空バルブによれば、実施例2と同様の効果を得ることができる。   According to the vacuum valve of the third embodiment, the same effect as that of the second embodiment can be obtained.

本発明の実施例1に係る真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve which concerns on Example 1 of this invention. 本発明の実施例2に係る真空バルブの構成を示す要部拡大半断面図。The principal part expanded half sectional view which shows the structure of the vacuum valve which concerns on Example 2 of this invention. 本発明の実施例3に係る真空バルブの構成を示す要部拡大半断面図。The principal part expanded half sectional view which shows the structure of the vacuum valve which concerns on Example 3 of this invention.

符号の説明Explanation of symbols

1 真空絶縁容器
2 固定側封着金具
3 可動側封着金具
4 固定側通電軸
5 固定側接点
6 可動側接点
7 可動側通電軸
8 ベローズ
9 アークシールド
10、12、14 凸凹部
11、13、15 抵抗層
DESCRIPTION OF SYMBOLS 1 Vacuum insulating container 2 Fixed side sealing metal fitting 3 Movable side sealing metal fitting 4 Fixed side energizing shaft 5 Fixed side contact 6 Movable side contact 7 Movable side energizing shaft 8 Bellows 9 Arc shield 10, 12, 14 Convex recessed parts 11, 13, 15 Resistance layer

Claims (1)

セラミックスからなる真空絶縁容器と、
前記真空絶縁容器の両端開口部にそれぞれ封着された封着金具と、
前記真空絶縁容器内に収納された接離自在の一対の接点と、
前記真空絶縁容器の内面に設けられた前記セラミックスよりも抵抗率の小さい抵抗層とを備え、
前記真空絶縁容器内面に凸凹部を設けるとともに、
前記抵抗層を炭化水素あるいは炭素の同素体からなる非晶質で構成したことを特徴とする真空バルブ。
A vacuum insulating container made of ceramics;
Sealing metal fittings sealed at both ends of the vacuum insulating container, and
A pair of detachable contacts housed in the vacuum insulating container;
A resistance layer having a resistivity lower than that of the ceramic provided on the inner surface of the vacuum insulating container,
Rutotomoni unevenness part provided in the vacuum insulated vessel inner surface,
A vacuum valve characterized in that the resistance layer is made of an amorphous material made of an allotrope of hydrocarbon or carbon .
JP2008239050A 2008-09-18 2008-09-18 Vacuum valve Expired - Fee Related JP5139215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239050A JP5139215B2 (en) 2008-09-18 2008-09-18 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239050A JP5139215B2 (en) 2008-09-18 2008-09-18 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2010073460A JP2010073460A (en) 2010-04-02
JP5139215B2 true JP5139215B2 (en) 2013-02-06

Family

ID=42205054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239050A Expired - Fee Related JP5139215B2 (en) 2008-09-18 2008-09-18 Vacuum valve

Country Status (1)

Country Link
JP (1) JP5139215B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159060B2 (en) * 2012-07-11 2017-07-05 株式会社東芝 Resin mold vacuum valve
DE102015214509A1 (en) * 2015-07-30 2017-02-02 Siemens Aktiengesellschaft Electrical switching chamber with increased dielectric strength and its manufacturing process
DE102016214755A1 (en) * 2016-08-09 2018-02-15 Siemens Aktiengesellschaft Ceramic insulator for vacuum interrupters
CN109406978B (en) * 2018-12-21 2020-11-24 云南电网有限责任公司电力科学研究院 Terminal matching resistor for GIS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540935U (en) * 1978-09-12 1980-03-15
JPH0719516B2 (en) * 1987-12-07 1995-03-06 三菱電機株式会社 Vacuum discharge device
JPH052956A (en) * 1990-08-03 1993-01-08 Hitachi Ltd Vacuum circuit breaker

Also Published As

Publication number Publication date
JP2010073460A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5139215B2 (en) Vacuum valve
JP2008293975A (en) Gas discharge tube
TWI545688B (en) A method for manufacturing electrostatic chuck and electrostatic chuck
JP5705384B1 (en) Gas insulation equipment
CN103296579B (en) Surface-breakdown-type vacuum switch trigger electrode
JP5139179B2 (en) Vacuum valve
CN108475633A (en) Plasma processing apparatus
JP5139214B2 (en) Vacuum valve
JP4522896B2 (en) Adsorption method using electrostatic adsorption device
JP5451500B2 (en) Vacuum valve
JP5197065B2 (en) Vacuum valve
JP5292225B2 (en) Mold vacuum valve
JP5475559B2 (en) Vacuum switchgear
JP5238349B2 (en) Vacuum valve
JP2007115599A (en) Vacuum valve
JP4291013B2 (en) Vacuum valve
TWI435371B (en) Composite gas discharge tube
JP5525364B2 (en) Vacuum valve
JP6624142B2 (en) Vacuum valve
JP5537303B2 (en) Vacuum valve
JP2008295190A (en) Gas-insulated switchgear
RU2328066C1 (en) Lightning arrester
JP6159060B2 (en) Resin mold vacuum valve
JP2010177122A (en) Vacuum valve
JP2005149899A (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R151 Written notification of patent or utility model registration

Ref document number: 5139215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees