JP5139019B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5139019B2
JP5139019B2 JP2007252732A JP2007252732A JP5139019B2 JP 5139019 B2 JP5139019 B2 JP 5139019B2 JP 2007252732 A JP2007252732 A JP 2007252732A JP 2007252732 A JP2007252732 A JP 2007252732A JP 5139019 B2 JP5139019 B2 JP 5139019B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
primary
plate
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007252732A
Other languages
Japanese (ja)
Other versions
JP2009085453A (en
Inventor
和芳 関
明彦 平野
進一 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2007252732A priority Critical patent/JP5139019B2/en
Publication of JP2009085453A publication Critical patent/JP2009085453A/en
Application granted granted Critical
Publication of JP5139019B2 publication Critical patent/JP5139019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、冷却装置に関し、更に詳細には、一次冷媒を機械的に強制循環する一次回路と二次冷媒を自然循環する二次回路と、一次冷媒および二次冷媒の熱交換を行なう熱交換器とを備える冷却装置に関するものである。   The present invention relates to a cooling device, and more specifically, a primary circuit that mechanically circulates a primary refrigerant, a secondary circuit that naturally circulates a secondary refrigerant, and heat exchange that performs heat exchange between the primary refrigerant and the secondary refrigerant. And a cooling device.

一次冷媒を機械的に強制循環させる一次回路と、二次冷媒が自然循環する二次回路とを備え、一次冷媒と二次冷媒との間で熱交換するよう構成した冷却装置がある(例えば特許文献1参照)。このような冷却装置90の一次回路94は、図17に示すように、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる膨張弁EVと、プレート式熱交換器110に設けられて液相一次冷媒を気化する一次熱交換部96とを配管98で接続して構成されると共に、二次回路104は、プレート式熱交換器110に設けられて気相二次冷媒を液化する二次熱交換部106と、液相二次冷媒を気化する蒸発器EPとを別の配管108で接続して構成されて、プレート式熱交換器110において一次冷媒と二次冷媒とが熱交換することで、最終的に二次回路104の蒸発器EPを冷却するようになっている。そして、このような冷却装置90を備えた冷凍機器では、一次回路94の構成部材CM,CD,EVおよびプレート式熱交換器110を、外気に晒された開放空間に配設すると共に、台板112を介して開放空間の下方に画成した閉鎖空間に二次回路104を構成する蒸発器EPを配設して、閉鎖空間内を冷却するよう構成される。
特開2002−48484号公報
There is a cooling device that includes a primary circuit that mechanically circulates the primary refrigerant and a secondary circuit that naturally circulates the secondary refrigerant, and is configured to exchange heat between the primary refrigerant and the secondary refrigerant (for example, patents). Reference 1). As shown in FIG. 17, the primary circuit 94 of such a cooling device 90 includes a compressor CM that compresses the gas phase primary refrigerant, a condenser CD that liquefies the compressed primary refrigerant, and the pressure of the liquid phase primary refrigerant. The expansion valve EV to be lowered and the primary heat exchanging part 96 that is provided in the plate heat exchanger 110 and vaporizes the liquid phase primary refrigerant are connected by a pipe 98, and the secondary circuit 104 has a plate type. A plate formed by connecting a secondary heat exchange unit 106 provided in the heat exchanger 110 for liquefying the gas phase secondary refrigerant and an evaporator EP for vaporizing the liquid phase secondary refrigerant through another pipe 108. In the heat exchanger 110, the primary refrigerant and the secondary refrigerant exchange heat to finally cool the evaporator EP of the secondary circuit 104. In the refrigeration equipment provided with such a cooling device 90, the constituent members CM, CD, EV of the primary circuit 94 and the plate heat exchanger 110 are disposed in an open space exposed to the outside air, and a base plate. An evaporator EP that constitutes the secondary circuit 104 is disposed in a closed space defined below the open space via 112 to cool the inside of the closed space.
JP 2002-48484 A

ところで、前記プレート式熱交換器110では、前記一次冷媒と二次冷媒との間の熱交換効率を向上するため、該プレート式熱交換器110の外周囲を断熱材HIで覆うよう構成される。すなわち、プレート式熱交換器110を断熱材HIで覆うことにより、一次冷媒の蒸発により冷却されるプレート式熱交換器110の熱損失を防止すると共に、結露や凍結といった不具合を防ぐようになっている。また、プレート式熱交換器110で熱交換する二次冷媒も冷温となるため、前述と同様に、二次回路を構成する配管108の外周囲を断熱材HIで覆って、熱損失や、結露、凍結を防止している。このように、従来の冷却装置では、低温となるプレート式熱交換器110や二次回路の配管108を断熱材で覆う必要があり、製造工程が増加して製造コストが嵩む原因となっていた。   By the way, the plate heat exchanger 110 is configured to cover the outer periphery of the plate heat exchanger 110 with a heat insulating material HI in order to improve the heat exchange efficiency between the primary refrigerant and the secondary refrigerant. . That is, by covering the plate heat exchanger 110 with the heat insulating material HI, heat loss of the plate heat exchanger 110 cooled by evaporation of the primary refrigerant is prevented, and problems such as condensation and freezing are prevented. Yes. In addition, since the secondary refrigerant that exchanges heat with the plate heat exchanger 110 is also cold, the outer periphery of the pipe 108 constituting the secondary circuit is covered with a heat insulating material HI in the same manner as described above, so that heat loss and dew condensation are achieved. Prevents freezing. Thus, in the conventional cooling device, it is necessary to cover the plate-type heat exchanger 110 and the secondary circuit pipe 108 that are at a low temperature with the heat insulating material, which increases the manufacturing process and increases the manufacturing cost. .

そこで、本発明は、熱交換器における熱損失等の不具合を防止し得ると共に、製造コストを低減し得る冷却装置を提供することを目的とする。   Then, an object of this invention is to provide the cooling device which can prevent troubles, such as a heat loss in a heat exchanger, and can reduce manufacturing cost.

前記課題を克服し、所期の目的を達成するため、本発明に係る冷却装置は、
一次冷媒を機械的に強制循環する一次回路と、二次冷媒を自然循環する二次回路と、一次冷媒および二次冷媒の間で熱交換する熱交換器とを備え、前記一次回路を配設する開放空間と、前記二次回路を配設する閉鎖空間とを断熱壁部により区切るよう構成された冷却装置において、
前記熱交換器を前記断熱壁部内に埋め込むよう配設し
前記断熱壁部は、前記開放空間に開口する開口部から前記熱交換器を収納可能な収納部と、前記収納部の開口部を閉成する断熱蓋体とを有し、
前記収納部の内壁面と断熱蓋体との間に、冷媒の消炎距離以下の間隔に設定された隙間を介在させたことを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, a cooling device according to the present invention includes:
A primary circuit that mechanically circulates the primary refrigerant, a secondary circuit that naturally circulates the secondary refrigerant, and a heat exchanger that exchanges heat between the primary refrigerant and the secondary refrigerant. In a cooling device configured to partition an open space to be closed and a closed space in which the secondary circuit is disposed by a heat insulating wall,
Arranging the heat exchanger to be embedded in the heat insulating wall ,
The heat insulating wall portion includes a storage portion that can store the heat exchanger from an opening portion that opens into the open space, and a heat insulating lid that closes the opening portion of the storage portion,
The gist is that a gap set at an interval equal to or less than the extinguishing distance of the refrigerant is interposed between the inner wall surface of the storage portion and the heat insulating lid .

すなわち、開放空間と閉鎖空間とを区切る断熱壁部に熱交換器を埋め込むことで、熱交換器の熱損失を防止して一次冷媒と二次冷媒との熱交換効率の向上を図ることができ、また部品点数削減によるコスト低減や、製造工程の簡略化が図られる。また、熱交換器において二次熱交換部に接続する配管も、低温域となる閉鎖空間に配設し得るから、これら配管を断熱する断熱材を設ける必要がなく、コスト低減を図り得る。
また、前記収納部内の熱交換器から冷媒が漏出した場合であっても、漏出した冷媒が閉鎖空間内に侵入するのを阻止して、隙間を介して開放空間側に放散し得る。更に、前記隙間は、冷媒の消炎距離以下に設定されているから、冷媒として可燃性冷媒を用いた場合に、該収納部内で冷媒が発火することはない。
In other words, by embedding a heat exchanger in the heat insulating wall that divides the open space and the closed space, it is possible to prevent heat loss of the heat exchanger and improve the heat exchange efficiency between the primary refrigerant and the secondary refrigerant. In addition, the cost can be reduced by reducing the number of parts and the manufacturing process can be simplified. In addition, since the pipe connected to the secondary heat exchange section in the heat exchanger can also be arranged in a closed space that is a low temperature region, it is not necessary to provide a heat insulating material that insulates these pipes, and the cost can be reduced.
Further, even when the refrigerant leaks from the heat exchanger in the storage unit, the leaked refrigerant can be prevented from entering the closed space and diffused to the open space side through the gap. Furthermore, since the gap is set to be equal to or less than the flame extinguishing distance of the refrigerant, when a combustible refrigerant is used as the refrigerant, the refrigerant does not ignite in the storage portion.

請求項2に係る冷却装置は、前記断熱蓋体と熱交換器との間に、冷媒の消炎距離以下の間隔に設定された隙間を介在させたことを要旨とする。
このように、断熱蓋体と熱交換器との間にも、一次冷媒の消炎距離以下の間隔に設定された隙間を介在させることで、熱交換器から冷媒が漏出した場合には、冷媒を速やかに開放空間へ放散し得る。また、この断熱蓋体と熱交換器との間の隙間を、冷媒の消炎距離以下に設定することで、前述と同様に、冷媒として可燃性冷媒を用いた場合に、該収納部内で冷媒が発火することはない。
The gist of the cooling device according to claim 2 is that a gap set at an interval equal to or shorter than the extinguishing distance of the refrigerant is interposed between the heat insulating lid and the heat exchanger .
Thus, by interposing a gap set at an interval equal to or shorter than the extinguishing distance of the primary refrigerant between the heat insulating lid and the heat exchanger, if the refrigerant leaks from the heat exchanger, the refrigerant is removed. It can quickly dissipate into open space. In addition, by setting the gap between the heat insulating lid and the heat exchanger to be equal to or less than the flame extinguishing distance of the refrigerant, as described above, when a flammable refrigerant is used as the refrigerant, the refrigerant is contained in the storage unit. There is no ignition.

請求項3に係る冷却装置は、前記熱交換器は、複数のプレートを所要間隔離間するように並列に対向配置し、対向するプレートの間に形成される流路に、前記一次冷媒および二次冷媒が交互に流通させるよう構成されることを要旨とする。
前記熱交換器として、所謂プレート式熱交換器を用いることで、プレートの数を変えることにより熱交換器の容量を簡単に変更できる。
According to a third aspect of the present invention, in the cooling device, the heat exchanger includes a plurality of plates arranged in parallel so as to be spaced apart from each other by a predetermined distance, and the primary refrigerant and the secondary are disposed in a flow path formed between the opposed plates. The gist is that the refrigerant is configured to flow alternately .
By using a so-called plate heat exchanger as the heat exchanger, the capacity of the heat exchanger can be easily changed by changing the number of plates.

請求項4に係る冷却装置は、前記熱交換器は、外管と、前記外管の内部に挿通された内管とから構成され、前記外管および内管に、前記一次冷媒および二次冷媒を対向流となるよう流通させるよう構成されることを要旨とする。
前記熱交換器として、外管内に内管を挿通した所謂二重管式熱交換器を用いることで、熱交換器自体の構成を簡単にでき、コスト低減が図られる。
The cooling device according to claim 4, wherein the heat exchanger includes an outer pipe and an inner pipe inserted into the outer pipe, and the primary refrigerant and the secondary refrigerant are provided in the outer pipe and the inner pipe, respectively. The gist of the invention is that it is configured to circulate in a counterflow.
By using a so-called double-pipe heat exchanger in which the inner tube is inserted into the outer tube as the heat exchanger, the configuration of the heat exchanger itself can be simplified and the cost can be reduced.

すなわち、本発明によれば、熱交換器での熱損失等の不具合を防止し得ると共に製造コストを低減し得る。   That is, according to the present invention, problems such as heat loss in the heat exchanger can be prevented and the manufacturing cost can be reduced.

次に、本発明に係る冷却装置につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。実施例では、店舗等の業務用途に用いられ、野菜や肉等の物品を多量に収納し得る大型の縦型冷蔵庫に設けられる冷却装置を例に挙げて説明する。なお、従来技術において説明した部材・構成と同一の部材・構成に関しては、同一の符号を付してある。   Next, the cooling device according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments. In the embodiment, a cooling device provided in a large-sized vertical refrigerator that is used for business purposes such as a store and can store a large amount of articles such as vegetables and meat will be described as an example. In addition, the same code | symbol is attached | subjected about the same member and structure as the member and structure demonstrated in the prior art.

図1に示すように、実施例1に係る縦型冷蔵庫10は、収納室(閉鎖空間)14を内部画成した断熱構造の箱体12と、この箱体12の上方に設けられ、金属パネル18により外壁を構成したキャビネット16とを備えている。箱体12には、前側に開放して物品の出し入れ口となる開口部12aが収納室14に連通して開設される。また箱体12の前部には、断熱扉22が図示しないヒンジにより回動可能に配設され、断熱扉22を開放することで開口部12aを介して収納室14に対する物品の出し入れが許容されると共に、断熱扉22を閉成することで収納室14を密閉し得るようになっている。   As shown in FIG. 1, a vertical refrigerator 10 according to the first embodiment includes a box 12 having a heat insulating structure that internally defines a storage room (closed space) 14, and a metal panel provided above the box 12. The cabinet 16 which comprises the outer wall by 18 is provided. In the box 12, an opening portion 12 a that opens to the front side and serves as an entry / exit port for goods is opened in communication with the storage chamber 14. Further, a heat insulating door 22 is rotatably disposed at a front portion of the box body 12 by a hinge (not shown), and by opening the heat insulating door 22, an article can be taken into and out of the storage chamber 14 through the opening 12a. In addition, the storage chamber 14 can be sealed by closing the heat insulating door 22.

前記キャビネット16の内部には、収納室14を冷却するための冷却装置32の一部および該冷却装置32を制御する制御用電装箱(図示せず)が配設される機械室(開放空間)20が画成される(図2参照)。機械室20の底部には、箱体12の天板12bに載置されて、該機械室20に配設する機器の共通基板となる台板(断熱壁部)24が設置されている。そして、キャビネット16の外壁をなす金属パネル18には、機械室20に連通する空気流通孔(図示せず)が適宜部位に開設され、この空気流通孔を介して機械室20内の雰囲気と外気とが入替わるようになっている。   Inside the cabinet 16, a machine room (open space) in which a part of a cooling device 32 for cooling the storage chamber 14 and a control electrical box (not shown) for controlling the cooling device 32 are arranged. ) 20 is defined (see FIG. 2). At the bottom of the machine room 20, a base plate (heat insulating wall part) 24 that is placed on the top plate 12 b of the box 12 and serves as a common substrate for the devices disposed in the machine room 20 is installed. The metal panel 18 forming the outer wall of the cabinet 16 is provided with air circulation holes (not shown) communicating with the machine room 20 at appropriate locations, and the atmosphere in the machine room 20 and the outside air are communicated through the air circulation holes. And are to be replaced.

前記収納室14の上部には、箱体12における天板12bの下面から所定間隔離間して冷却ダクト26が配設され、この冷却ダクト26と、箱体12の天板12bに開設した切欠口12cを介して収納室14側に臨む台板24との間に冷却室28が画成される。この冷却室28は、冷却ダクト26の底部前側に形成した吸込口26aおよび後側に形成した冷気吹出口26bを介して収納室14に連通して、閉鎖空間としての収納室14の一部を構成している。吸込口26aには送風ファン30が配設され、該送風ファン30を駆動することで、吸込口26aから収納室14の空気を冷却室28に取込み、冷気吹出口26bから冷却室28の冷気が収納室14に送出される。天板12bの切欠口12cは、台板24で気密的に塞がれて、収納室14(冷却室28)と機械室20とは、台板24で区切られて互いに独立した空間となっている(図1参照)。   In the upper part of the storage chamber 14, a cooling duct 26 is disposed at a predetermined distance from the lower surface of the top plate 12b in the box 12, and the cooling duct 26 and a notch formed in the top plate 12b of the box 12 are provided. A cooling chamber 28 is defined between the base plate 24 facing the storage chamber 14 via 12c. The cooling chamber 28 communicates with the storage chamber 14 through a suction port 26a formed on the front side of the bottom of the cooling duct 26 and a cold air outlet 26b formed on the rear side, and a part of the storage chamber 14 as a closed space is formed. It is composed. A blower fan 30 is disposed at the suction port 26a. By driving the blower fan 30, the air in the storage chamber 14 is taken into the cooling chamber 28 from the suction port 26a, and the cool air in the cooling chamber 28 is drawn from the cool air outlet 26b. It is sent to the storage chamber 14. The notch 12c of the top plate 12b is hermetically closed by the base plate 24, and the storage chamber 14 (cooling chamber 28) and the machine room 20 are separated from each other by the base plate 24 and become independent spaces. (See FIG. 1).

図2に示す如く、冷却装置32は、一次冷媒を強制循環する機械圧縮式の一次回路34と、二次冷媒が自然対流するサーモサイフォンからなる二次回路44との2系統の回路を、傾斜配置されたプレート式熱交換器(熱交換器)HEを介して接続(カスケード接続)した二次ループ冷凍回路が採用される。プレート式熱交換器HEは、一次回路34を構成する一次熱交換部36と、この一次熱交換部36とは別系統に形成されて、二次回路44を構成する二次熱交換部46とを備え、収納室14と機械室20とを区画する台板24内に配設されている(図1参照)。すなわち、一次回路34および二次回路44には、独立した冷媒循環経路が夫々形成されている。また、一次回路34を循環する一次冷媒としては、蒸発熱や飽和圧等の冷媒としての特性に優れているブタンやプロパン等のHC系の冷媒またはアンモニアなどが採用され、二次回路44を循環する二次冷媒としては、毒性、可燃性および腐食性を有していない安全性の高い二酸化炭素が採用される。   As shown in FIG. 2, the cooling device 32 tilts two systems of circuits, a mechanical compression primary circuit 34 forcibly circulating the primary refrigerant and a secondary circuit 44 composed of a thermosiphon in which the secondary refrigerant naturally convects. A secondary loop refrigeration circuit connected (cascade connection) via a plate type heat exchanger (heat exchanger) HE arranged is employed. The plate heat exchanger HE includes a primary heat exchange unit 36 that constitutes the primary circuit 34, and a secondary heat exchange unit 46 that is formed in a separate system from the primary heat exchange unit 36 and constitutes the secondary circuit 44. And disposed in a base plate 24 that divides the storage chamber 14 and the machine chamber 20 (see FIG. 1). That is, independent refrigerant circulation paths are formed in the primary circuit 34 and the secondary circuit 44, respectively. Further, as the primary refrigerant circulating in the primary circuit 34, HC refrigerant such as butane or propane having excellent characteristics as a refrigerant such as heat of evaporation and saturation pressure, ammonia, or the like is adopted and circulated in the secondary circuit 44. As the secondary refrigerant, carbon dioxide having high safety that does not have toxicity, flammability, and corrosivity is employed.

(一次回路)
前記一次回路34は、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる膨張弁EVと、前記プレート式熱交換器HEに設けられて液相一次冷媒を蒸発させる一次熱交換部36とを備える。そして、一次回路34においては、凝縮器CD,膨張弁EVおよび一次熱交換部36を、液相一次冷媒が流通する一次液配管38で接続し、一次熱交換部36,圧縮機CMおよび凝縮器CDを、気相一次冷媒が流通する一次ガス配管40で接続している(図2参照)。すなわち、一次回路34では、圧縮機CMによる一次冷媒の圧縮により、圧縮機CM、凝縮器CD、膨張弁EV、一次熱交換部36(プレート式熱交換器HE)および圧縮機CMの順に一次冷媒が強制循環し、一次熱交換部36において液相一次冷媒が気化することでプレート式熱交換器HEを冷却する(図3参照)。
(Primary circuit)
The primary circuit 34 includes a compressor CM for compressing the gas phase primary refrigerant, a condenser CD for liquefying the compressed primary refrigerant, an expansion valve EV for reducing the pressure of the liquid primary refrigerant, and the plate heat exchanger. And a primary heat exchange unit 36 provided in the HE to evaporate the liquid phase primary refrigerant. In the primary circuit 34, the condenser CD, the expansion valve EV, and the primary heat exchange unit 36 are connected by a primary liquid pipe 38 through which the liquid phase primary refrigerant flows, and the primary heat exchange unit 36, the compressor CM, and the condenser are connected. CDs are connected by a primary gas pipe 40 through which a gas phase primary refrigerant flows (see FIG. 2). That is, in the primary circuit 34, the primary refrigerant is compressed in the order of the compressor CM, the condenser CD, the expansion valve EV, the primary heat exchanger 36 (plate heat exchanger HE), and the compressor CM by the compression of the primary refrigerant by the compressor CM. Is forcedly circulated, and the liquid phase primary refrigerant is vaporized in the primary heat exchanging section 36 to cool the plate heat exchanger HE (see FIG. 3).

また、前記圧縮機CMおよび凝縮器CDは、機械室20において台板24上に共通的に配設され、凝縮器CDを強制冷却する凝縮器ファンFMも、該凝縮器CDに対向して台板24上に配設される。すなわち、凝縮器ファンFMの駆動によりパネル18に開設した空気流通孔から外気が機械室20に取込まれて、凝縮器CDおよび圧縮機CMと熱交換するようになっている。なお、前述した制御用電装箱は、機械室20において凝縮器ファンFMによる空気の流れを阻害しない位置(実施例1では機械室20の側部)で台板24上に配設されている。   The compressor CM and the condenser CD are commonly disposed on the base plate 24 in the machine room 20, and a condenser fan FM for forcibly cooling the condenser CD is also placed on the stage facing the condenser CD. Arranged on the plate 24. That is, outside air is taken into the machine room 20 from the air circulation hole opened in the panel 18 by driving the condenser fan FM, and heat is exchanged with the condenser CD and the compressor CM. The control electrical box described above is disposed on the base plate 24 at a position that does not obstruct the air flow by the condenser fan FM in the machine room 20 (side of the machine room 20 in the first embodiment). .

(二次回路)
前記二次回路44は、前記プレート式熱交換器HEに設けられて気相二次冷媒を液化する二次熱交換部46と、液相二次冷媒を気化する蒸発器EPとを備えている(図2参照)。そして、二次回路44は、二次熱交換部46と蒸発器EPとを接続する配管として、二次熱交換部46から蒸発器EPへ重力の作用下に液相二次冷媒を導く二次液配管48と、蒸発器EPから二次熱交換部46へ気相二次冷媒を導く二次ガス配管50とを有している。ここで、蒸発器EPは台板24の下方に画成される冷却室28に配設されて、台板24内に配設される二次熱交換部46(プレート式熱交換器HE)より下方に蒸発器EPが位置するよう構成されている。すなわち、蒸発器EPが二次熱交換部46(プレート式熱交換器HE)より下方に配置された二次回路44では、前記一次回路34における圧縮機CMの動作により強制冷却されるプレート式熱交換器HE(二次熱交換部46)において凝縮された液相二次冷媒が重力作用下に蒸発器EPへ流下し、流下した液相二次冷媒が蒸発器EPにおいて冷却室28(機械室20)内の空気と熱交換して蒸発することで二次熱交換部46に再び戻る冷媒循環サイクルを構成している。なお、前記二次回路44には、二次ガス配管50の途中に膨張タンク54が接続されており、冷却装置32の停止時に常温では液化しない二次冷媒の圧力上昇を抑制するようになっている(図2参照)。
(Secondary circuit)
The secondary circuit 44 includes a secondary heat exchange unit 46 that is provided in the plate heat exchanger HE and liquefies the gas phase secondary refrigerant, and an evaporator EP that vaporizes the liquid phase secondary refrigerant. (See Figure 2). The secondary circuit 44 is a pipe that connects the secondary heat exchange unit 46 and the evaporator EP, and leads the secondary secondary refrigerant from the secondary heat exchange unit 46 to the evaporator EP under the action of gravity. It has a liquid pipe 48 and a secondary gas pipe 50 that guides the gas phase secondary refrigerant from the evaporator EP to the secondary heat exchange unit 46. Here, the evaporator EP is disposed in the cooling chamber 28 defined below the base plate 24, and from a secondary heat exchange section 46 (plate type heat exchanger HE) disposed in the base plate 24. The evaporator EP is configured to be positioned below. That is, in the secondary circuit 44 in which the evaporator EP is disposed below the secondary heat exchanger 46 (plate heat exchanger HE), the plate heat that is forcibly cooled by the operation of the compressor CM in the primary circuit 34. The liquid phase secondary refrigerant condensed in the exchanger HE (secondary heat exchange section 46) flows down to the evaporator EP under the action of gravity, and the liquid phase secondary refrigerant that has flowed down flows into the cooling chamber 28 (machine room) in the evaporator EP. 20) It constitutes a refrigerant circulation cycle that returns to the secondary heat exchange section 46 by exchanging heat with the air inside and evaporating. An expansion tank 54 is connected to the secondary circuit 44 in the middle of the secondary gas pipe 50 so as to suppress an increase in the pressure of the secondary refrigerant that does not liquefy at room temperature when the cooling device 32 is stopped. (See FIG. 2).

ここで、前記蒸発器EPは、管路を蛇行させた蒸発管(冷媒経路)52を有し、前記二次液配管48に接続する蒸発管52の流入端52aが、蒸発器EPの上部に設けられると共に、前記二次ガス配管50に接続する蒸発管52の流出端52bが、蒸発器EPの下部に設けられている(図2参照)。すなわち、前記蒸発器EPは、蒸発管52の流入端52aが流出端52bより上方に位置するようになっている。また蒸発管52は、流入端52aと流出端52bとの上下幅の間に延在するよう形成され、蒸発管52に流入した液相二次冷媒を、重力の作用下に流出端52b側まで拡散させるように導くようになっている。より具体的には、蒸発管52は、傾斜する直線部分が上下の関係で葛折り状態で折り重なると共に、屈曲部分が横方向に離間した蛇行形状に管路が形成され、この管路が流入端52a側から流出端52b側に向かうにつれて下り勾配となるよう構成されている。   Here, the evaporator EP has an evaporation pipe (refrigerant path) 52 having a meandering pipe line, and an inflow end 52a of the evaporation pipe 52 connected to the secondary liquid pipe 48 is formed above the evaporator EP. In addition, an outflow end 52b of the evaporation pipe 52 connected to the secondary gas pipe 50 is provided at the lower part of the evaporator EP (see FIG. 2). That is, the evaporator EP is configured such that the inflow end 52a of the evaporation pipe 52 is located above the outflow end 52b. The evaporation pipe 52 is formed so as to extend between the upper and lower widths of the inflow end 52a and the outflow end 52b, and the liquid-phase secondary refrigerant that has flowed into the evaporation pipe 52 is moved to the outflow end 52b side under the action of gravity. Guided to diffuse. More specifically, the evaporating pipe 52 is formed in a meandering shape in which the inclined straight part is folded in a distorted state in an up-and-down relationship, and the bent part is laterally spaced, and this pipe line is formed at the inflow end. It is comprised so that it may become a downward slope as it goes to the outflow end 52b side from 52a side.

(プレート式熱交換器HE)
前記プレート式熱交換器HEは、図3に示すように、複数のプレート60を所要間隔離間するように並列に対向配置して構成され、対向するプレート60,60の間に、前記一次回路34の一次熱交換部36を構成する第1の流路60aと、前記二次回路44の二次熱交換部46を構成する第2の流路60bとが並列に複数形成される。ここで、前記第1の流路60aと、第2の流路60bとは、前記プレート60の重ね合わせ方向に交互に位置するよう独立して形成されて、前記一次液配管38および一次ガス配管40の夫々が各第1の流路60aに連通するよう構成されると共に、前記二次液配管48および二次ガス配管50の夫々が各第2の流路60bに連通するよう構成される。すなわち、プレート式熱交換器HEでは、隣接する第1および第2の流路60a,60bに一次冷媒および二次冷媒を独立して流通させることで、各プレート60を介して一次冷媒および二次冷媒間で熱交換を図るようになっている。
(Plate type heat exchanger HE)
As shown in FIG. 3, the plate heat exchanger HE is configured by arranging a plurality of plates 60 facing each other in parallel so as to be spaced apart from each other, and the primary circuit 34 is disposed between the opposed plates 60, 60. A plurality of first flow paths 60a constituting the primary heat exchange section 36 and a plurality of second flow paths 60b constituting the secondary heat exchange section 46 of the secondary circuit 44 are formed in parallel. Here, the first flow path 60a and the second flow path 60b are independently formed so as to be alternately positioned in the overlapping direction of the plates 60, and the primary liquid pipe 38 and the primary gas pipe. Each of 40 is configured to communicate with each first flow path 60a, and each of the secondary liquid piping 48 and the secondary gas piping 50 is configured to communicate with each second flow path 60b. That is, in the plate heat exchanger HE, the primary refrigerant and the secondary refrigerant are allowed to flow independently through the respective plates 60 by allowing the primary refrigerant and the secondary refrigerant to flow independently through the adjacent first and second flow paths 60a and 60b. Heat is exchanged between the refrigerants.

ここで、図3に示すように、前記プレート式熱交換器HEは、前記第1および第2の流路60a,60bが水平面に対して所要の傾斜角θで交叉するよう前記台板24内に配設される(図4参照)。そして、プレート式熱交換器HEにおける機械室20に対向する面側(傾斜上面側)に前記一次液配管38および一次ガス配管40を接続し、プレート式熱交換器HEにおける収納室14に対向する面側(傾斜下面側)に前記二次液配管48および二次ガス配管50を接続するよう構成されている。また、前記一次液配管38および二次液配管48は、前記プレート式熱交換器HEの同一端部側(図3または図4では傾斜下端部側)で各対応の熱交換部36,46に接続されると共に、前記一次ガス配管40および二次ガス配管50は、プレート式熱交換器HEにおける一次液配管38および二次液配管48から離間する端部側(図3または図4では傾斜上端部側)で各対応の熱交換部36,46に接続されている。   Here, as shown in FIG. 3, the plate-type heat exchanger HE is arranged in the base plate 24 so that the first and second flow paths 60a and 60b intersect at a required inclination angle θ with respect to a horizontal plane. (See FIG. 4). The primary liquid pipe 38 and the primary gas pipe 40 are connected to the surface side (inclined upper surface side) facing the machine chamber 20 in the plate heat exchanger HE, and face the storage chamber 14 in the plate heat exchanger HE. The secondary liquid pipe 48 and the secondary gas pipe 50 are connected to the surface side (inclined lower surface side). Further, the primary liquid pipe 38 and the secondary liquid pipe 48 are connected to the corresponding heat exchanging portions 36 and 46 on the same end side (inclined lower end side in FIG. 3 or FIG. 4) of the plate heat exchanger HE. In addition, the primary gas pipe 40 and the secondary gas pipe 50 are connected to the end side away from the primary liquid pipe 38 and the secondary liquid pipe 48 in the plate heat exchanger HE (in FIG. 3 or FIG. Are connected to the corresponding heat exchanging parts 36, 46 on the part side).

なお、以下の説明では、前記プレート式熱交換器HEにおける液配管38,48を接続した端部側を基準として、プレート式熱交換器HEと水平面とがなす角を傾斜角θとして表わすものとする。また、一次液配管38および二次液配管48から一次ガス配管40および二次ガス配管50へ向けてプレート式熱交換器HEが上方傾斜する場合における傾斜角θを正の値とし、該プレート式熱交換器HEが下方傾斜する場合における傾斜角θを負の値とする。   In the following description, the angle between the plate heat exchanger HE and the horizontal plane is expressed as an inclination angle θ with reference to the end portion side where the liquid pipes 38 and 48 are connected in the plate heat exchanger HE. To do. Further, when the plate type heat exchanger HE is inclined upward from the primary liquid pipe 38 and the secondary liquid pipe 48 to the primary gas pipe 40 and the secondary gas pipe 50, the inclination angle θ is set to a positive value. The inclination angle θ when the heat exchanger HE is inclined downward is a negative value.

ここで、前記プレート式熱交換器HEは、傾斜角θが−4°<θ≦45°の範囲となるよう前記台板24に配設される。前記傾斜角45°<θに設定した場合には、傾斜配設したプレート式熱交換器HEの高さ寸法が大きくなり過ぎ、該プレート式熱交換器HEの台板24内への配設が困難となる。また、前記プレート式熱交換器HEの傾斜角θを−4°<θに設定することで、前記二次回路44の二次熱交換部46において二次冷媒を二次ガス配管50から二次液配管48へ自然循環させて所要の冷凍能力を発揮し得る一方で、該傾斜角θをθ≦−4°に設定した場合には、二次熱交換部46において二次冷媒が二次液配管48から二次ガス配管50へ循環して冷凍能力の低下を招来する。なお、二次熱交換部46にける二次ガス配管50から二次液配管48への二次冷媒の循環を正循環と指称し、二次液配管48から二次ガス配管50への二次冷媒の循環を逆循環と指称する。また、前記二次熱交換部46で二次冷媒を正循環させつつ、プレート式熱交換器HEを台板24内に配設するには、傾斜角θを−4°<θ≦8°に設定するのが好適である。傾斜角θを8°<θに設定すると、収納室14と機械室20との断熱を図るのに必要な厚み寸法以上に台板24が厚くなる。   Here, the plate heat exchanger HE is disposed on the base plate 24 so that the inclination angle θ is in the range of −4 ° <θ ≦ 45 °. When the inclination angle is set to 45 ° <θ, the height of the inclined plate heat exchanger HE becomes too large, and the plate heat exchanger HE is disposed in the base plate 24. It becomes difficult. Further, by setting the inclination angle θ of the plate heat exchanger HE to −4 ° <θ, the secondary refrigerant is supplied from the secondary gas pipe 50 to the secondary in the secondary heat exchange section 46 of the secondary circuit 44. While the required refrigeration capacity can be exhibited by natural circulation to the liquid pipe 48, the secondary refrigerant is converted into the secondary liquid in the secondary heat exchange unit 46 when the inclination angle θ is set to θ ≦ −4 °. The refrigerant is circulated from the pipe 48 to the secondary gas pipe 50 to cause a reduction in refrigeration capacity. Note that the circulation of the secondary refrigerant from the secondary gas pipe 50 to the secondary liquid pipe 48 in the secondary heat exchange section 46 is referred to as normal circulation, and the secondary refrigerant from the secondary liquid pipe 48 to the secondary gas pipe 50 is referred to. The circulation of the refrigerant is referred to as reverse circulation. In order to arrange the plate heat exchanger HE in the base plate 24 while the secondary refrigerant is normally circulated in the secondary heat exchange section 46, the inclination angle θ is set to −4 ° <θ ≦ 8 °. It is preferable to set. When the inclination angle θ is set to 8 ° <θ, the base plate 24 becomes thicker than the thickness dimension necessary for heat insulation between the storage chamber 14 and the machine chamber 20.

また、前記プレート式熱交換器HEは、前記第2の流路60bにおいて対向するプレート60,60の間が例えば1mm程度の狭小な関係に設定されて、液相二次冷媒の粘性力や表面張力等が作用して、二次回路44側の第2の流路60b(二次熱交換部46)の下部が液相二次冷媒で塞がれる所謂液封が生じるように構成されている(図3参照)。実施例1では、液相二次冷媒の流通により二次熱交換部46の第2の流路60bに生じる液封部62(図3参照)が、気相二次冷媒に対する抵抗部として機能し、蒸発器EPで蒸発した気相二次冷媒が逆流するのを防止している。   Further, the plate heat exchanger HE has a narrow relationship of about 1 mm between the opposing plates 60, 60 in the second flow path 60b, for example, so that the viscous force or surface of the liquid phase secondary refrigerant is reduced. The lower part of the second flow path 60b (secondary heat exchanging portion 46) on the secondary circuit 44 side is configured so as to cause a so-called liquid sealing in which the lower portion of the second flow path 60b (secondary heat exchanging portion 46) is closed with the liquid phase secondary refrigerant. (See Figure 3). In the first embodiment, the liquid sealing portion 62 (see FIG. 3) generated in the second flow path 60b of the secondary heat exchange portion 46 due to the circulation of the liquid phase secondary refrigerant functions as a resistance portion with respect to the gas phase secondary refrigerant. The vapor phase secondary refrigerant evaporated in the evaporator EP is prevented from flowing backward.

次に、前述したプレート式熱交換器HEを水平面に対して傾斜角θとなるよう配設する配設方法につき説明する。実施例1では、図8に示すように、前記台板24の外面を構成する外郭部材24a,24aと、前記プレート式熱交換器HEの傾斜上端側との間に突起部25を設けて、該外郭部材24aに対してプレート式熱交換器HEが所定の傾斜角θで位置決めされるよう構成されている。ここで、前記突起部25は、前記台板24の外郭部材24a,24aまたはプレート式熱交換器HEの何れかに設けられる。また、前記突起部25は、発泡スチロール等の断熱性能を有する部材により形成される。なお、前記外郭部材24a,24aには、プレート式熱交換器HEに接続する各配管38,48,40,50を挿通する通孔(図示せず)が対応的に開設されており、目地材(図示せず)により各配管38,48,40,50と通孔との隙間を封止される。   Next, an arrangement method for arranging the plate heat exchanger HE described above at an inclination angle θ with respect to a horizontal plane will be described. In Example 1, as shown in FIG. 8, a protrusion 25 is provided between outer members 24a and 24a constituting the outer surface of the base plate 24 and the inclined upper end side of the plate heat exchanger HE, A plate heat exchanger HE is positioned with respect to the outer member 24a at a predetermined inclination angle θ. Here, the protrusion 25 is provided on either the outer members 24a, 24a of the base plate 24 or the plate heat exchanger HE. Moreover, the said protrusion part 25 is formed with the member which has heat insulation performances, such as a polystyrene foam. The outer members 24a and 24a have correspondingly formed through holes (not shown) through which the pipes 38, 48, 40 and 50 connected to the plate heat exchanger HE are inserted. The gaps between the pipes 38, 48, 40, 50 and the through holes are sealed by (not shown).

そして、プレート式熱交換器HEを台板24の外郭部材24aに対して傾斜させた状態で、各外郭部材24aの外側を所定の発泡治具72,72で固定すると共に、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定し、また二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定する。この状態で、前記外郭部材24a,24a間に発泡材を充填して硬化させ、発泡材が硬化した後に各治具72,74,76の夫々を取り外すことにより、台板24内にプレート式熱交換器HEが傾斜状態で配設される。その後、前記縦型冷蔵庫10における箱体12の天板12bに、前記台板24を水平に設置することにより、台板24内に配設された前記プレート式熱交換器HEが水平面に対して傾斜角θで傾斜するようになっている。   The plate-type heat exchanger HE is inclined with respect to the outer member 24a of the base plate 24, and the outer sides of the outer members 24a are fixed by predetermined foaming jigs 72 and 72, and the plate-type heat exchanger The primary liquid pipe 38 and the primary gas pipe 40 connected to the HE are fixed by a first restraining jig 74, and the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by a second restraining jig 76. In this state, the outer shell members 24a and 24a are filled with a foaming material and cured, and after the foaming material is cured, the jigs 72, 74, and 76 are removed, so that the plate-type heat is placed in the base plate 24. The exchanger HE is arranged in an inclined state. Thereafter, the plate-type heat exchanger HE disposed in the base plate 24 is placed on the horizontal surface by horizontally installing the base plate 24 on the top plate 12b of the box 12 in the vertical refrigerator 10. It is inclined at an inclination angle θ.

〔実施例1の作用〕
次に、実施例1に係る冷却装置の作用について説明する。
[Operation of Example 1]
Next, the operation of the cooling device according to the first embodiment will be described.

先ず、プレート式熱交換器HEが4°≦θ≦45°の傾斜角θで配設された場合について説明する。冷却装置32では、冷却運転を開始すると、一次回路34および二次回路44の夫々で冷媒の循環が開始される。このとき、一次回路34では、圧縮機CDおよび凝縮器ファンFMが駆動され、圧縮機CMで圧縮された気相一次冷媒が一次ガス配管40を介して凝縮器CDに供給され、凝縮器ファンFMによる強制冷却により凝縮液化することで液相一次冷媒が得られる。この液相一次冷媒は、一次液配管38を介して膨張手段EVで減圧され、プレート式熱交換器HEの一次熱交換部36において二次熱交換部46を流通する二次冷媒から熱を奪って(吸熱)一挙に膨張気化する。すなわち、一次回路34は、プレート式熱交換器HE(二次熱交換部46)を強制冷却するように機能する。そして、一次熱交換部36で蒸発した気相一次冷媒は、一次ガス配管40を経て圧縮機CMに帰還する強制循環サイクルを繰返す。   First, the case where the plate heat exchanger HE is disposed at an inclination angle θ of 4 ° ≦ θ ≦ 45 ° will be described. In the cooling device 32, when the cooling operation is started, circulation of the refrigerant is started in each of the primary circuit 34 and the secondary circuit 44. At this time, in the primary circuit 34, the compressor CD and the condenser fan FM are driven, and the gas phase primary refrigerant compressed by the compressor CM is supplied to the condenser CD through the primary gas pipe 40, and the condenser fan FM. A liquid phase primary refrigerant is obtained by condensing and liquefying by forced cooling. This liquid primary refrigerant is decompressed by the expansion means EV through the primary liquid pipe 38, and takes heat from the secondary refrigerant flowing through the secondary heat exchange section 46 in the primary heat exchange section 36 of the plate heat exchanger HE. (Endothermic) expands and vaporizes all at once. That is, the primary circuit 34 functions to forcibly cool the plate heat exchanger HE (secondary heat exchange unit 46). Then, the gas phase primary refrigerant evaporated in the primary heat exchange unit 36 repeats the forced circulation cycle that returns to the compressor CM through the primary gas pipe 40.

一方、前記二次回路44では、一次回路34を循環する一次冷媒により二次熱交換部46(プレート式熱交換器HE)が冷却されているから、該二次熱交換部46においては気相二次冷媒が凝縮して液相二次冷媒に相変化する。ここで、プレート式熱交換器HEを4°≦θ≦45°の傾斜角θで傾斜させた状態では、二次熱交換部46(プレート式熱交換器HE)における二次液配管48の接続部位が二次ガス配管50の接続部位より下方に位置している。すなわち、二次液配管48の接続部位と二次ガス配管50の接続部位との間に生ずる高低差(ヘッド差)により、気相から液相に変化することで比重が増加した液相二次冷媒が二次熱交換部46の第2の流路60bに沿って重力の作用下に自然流下する。更に、二次回路44では、二次熱交換部46を台板24内に配置する一方、蒸発器EPを台板24の下方に位置する冷却室28に配設することで、二次熱交換部46と蒸発器EPとの間に落差を設けてある。このため、二次熱交換部46に接続した二次液配管48を介して、液相二次冷媒が蒸発器EPへ向けて重力の作用下に自然流下する。液相二次冷媒は、蒸発器EPの蒸発管52を流通する過程で冷却室28内の空気と熱交換して蒸発し、気相二次冷媒に状態変化する。そして、気相二次冷媒は、二次ガス配管50を介して蒸発器EPから二次熱交換部46へ還流し、二次回路44ではポンプやモータ等の動力を用いることなく、簡単な構成で二次冷媒が自然循環するサイクルが繰返される。   On the other hand, in the secondary circuit 44, the secondary heat exchange unit 46 (plate heat exchanger HE) is cooled by the primary refrigerant circulating in the primary circuit 34. The secondary refrigerant condenses and changes into a liquid phase secondary refrigerant. Here, in a state where the plate heat exchanger HE is inclined at an inclination angle θ of 4 ° ≦ θ ≦ 45 °, the connection of the secondary liquid piping 48 in the secondary heat exchange section 46 (plate heat exchanger HE) is performed. The part is located below the connection part of the secondary gas pipe 50. That is, the liquid phase secondary whose specific gravity is increased by changing from the gas phase to the liquid phase due to the height difference (head difference) generated between the connection portion of the secondary liquid pipe 48 and the connection portion of the secondary gas pipe 50. The refrigerant naturally flows under the action of gravity along the second flow path 60b of the secondary heat exchange unit 46. Further, in the secondary circuit 44, the secondary heat exchange unit 46 is disposed in the base plate 24, while the evaporator EP is disposed in the cooling chamber 28 located below the base plate 24, thereby performing secondary heat exchange. A head is provided between the portion 46 and the evaporator EP. For this reason, the liquid phase secondary refrigerant naturally flows under the action of gravity toward the evaporator EP via the secondary liquid pipe 48 connected to the secondary heat exchange unit 46. The liquid phase secondary refrigerant evaporates by exchanging heat with the air in the cooling chamber 28 in the process of flowing through the evaporation pipe 52 of the evaporator EP, and changes its state to a gas phase secondary refrigerant. Then, the gas phase secondary refrigerant is refluxed from the evaporator EP to the secondary heat exchange unit 46 via the secondary gas pipe 50, and the secondary circuit 44 has a simple configuration without using power from a pump, a motor, or the like. The cycle in which the secondary refrigerant naturally circulates is repeated.

そして、前記送風ファン30により吸込口26aから冷却室28に吸引された収納室14の空気を、冷却された蒸発器EPに吹付けて蒸発器EPと熱交換し、蒸発器EPと熱交換した冷気を冷却室28から冷気吹出口26bを介して収納室14に送出することで、収納室14が冷却される。更に、収納室14を冷却して温度上昇した空気が吸込口26aを介して再び冷却室28内に戻るサイクルを反復することで、収納室14内が所定温度まで冷却される。   Then, the air in the storage chamber 14 sucked into the cooling chamber 28 from the suction port 26a by the blower fan 30 is blown onto the cooled evaporator EP to exchange heat with the evaporator EP, and to exchange heat with the evaporator EP. The storage chamber 14 is cooled by sending the cold air from the cooling chamber 28 to the storage chamber 14 via the cold air outlet 26b. Furthermore, the inside of the storage chamber 14 is cooled to a predetermined temperature by repeating a cycle in which the air whose temperature has increased by cooling the storage chamber 14 returns to the cooling chamber 28 again through the suction port 26a.

このように、前記冷却装置32では、一次回路34と二次回路44とをプレート式熱交換器HEで接続したことで、このプレート式熱交換器HEの一次熱交換部36および二次熱交換部46において、一次回路34の一次冷媒と二次回路44の二次冷媒とが蒸発および凝縮作用下に熱交換を行なう。すなわち、実施例1のプレート式熱交換器HEでは、一次熱交換部36の一次冷媒と二次熱交換部46の二次冷媒との間で、相互の潜熱を利用して熱交換するよう構成され、顕熱による熱交換と比べて効率的な熱交換を行なうことができる。   Thus, in the cooling device 32, the primary circuit 34 and the secondary circuit 44 are connected by the plate heat exchanger HE, so that the primary heat exchange unit 36 and the secondary heat exchange of the plate heat exchanger HE are performed. In the part 46, the primary refrigerant of the primary circuit 34 and the secondary refrigerant of the secondary circuit 44 exchange heat under the action of evaporation and condensation. That is, the plate heat exchanger HE according to the first embodiment is configured to perform heat exchange between the primary refrigerant of the primary heat exchange unit 36 and the secondary refrigerant of the secondary heat exchange unit 46 using mutual latent heat. As a result, heat exchange can be performed more efficiently than heat exchange by sensible heat.

ここで、前記プレート式熱交換器HEを傾斜配置したことで、プレート式熱交換器HEを直立状態で設置する場合に較べて、一次液配管38と一次ガス配管40との高低差を小さくでき、重力に逆らって流通しつつ蒸発する一次冷媒の密度の上昇割合が抑えられる。このため、プレート式熱交換器HEを直立状態で設置する形態に較べて、一次回路34での一次冷媒の使用量を減少することができる。前記一次回路34に必要とされる一次冷媒量を減少することで、法令等で規定された冷媒の使用上限量を上回るのを回避することができ、また一次冷媒として使用する冷媒の種類についての選択肢の幅が広がる。   Here, by arranging the plate heat exchanger HE in an inclined manner, the difference in height between the primary liquid pipe 38 and the primary gas pipe 40 can be reduced as compared with the case where the plate heat exchanger HE is installed in an upright state. The rate of increase in the density of the primary refrigerant that evaporates while circulating against gravity is suppressed. For this reason, compared with the form which installs plate type heat exchanger HE in an upright state, the usage-amount of the primary refrigerant | coolant in the primary circuit 34 can be reduced. By reducing the amount of primary refrigerant required for the primary circuit 34, it is possible to avoid exceeding the use upper limit amount of the refrigerant stipulated by laws and regulations, etc., and the type of refrigerant used as the primary refrigerant A wider range of options.

また、前記プレート式熱交換器HEを傾斜配置する場合には、二次液配管48と二次ガス配管50との高低差も小さくなるため、重力作用による二次冷媒の流通量が低下する。このため、熱伝達率の低い顕熱による熱交換を行なう形態では、一次冷媒と二次冷媒との間の熱交換効率の低下を招来して冷却能力が低下する要因となるため、通常は採用し得ない。これに対して、実施例1に係る冷却装置32は、一次回路34と二次回路44とをプレート式熱交換器HEで接続し、この熱交換器HEにおいて一次回路34の一次冷媒と二次回路44の二次冷媒とを蒸発および凝縮作用下に熱交換を行なうよう構成されている。すなわち、顕熱に比べて非常に高い熱伝達率を持つ潜熱同士による熱交換がプレート式熱交換器HEで行なわれるから、プレート式熱交換器HEを傾斜配置することにより二次冷媒の重力による自然流下量が減少したとしても、熱交換器HEにおける熱交換量が低下するのを防止でき、冷却装置32の冷却能力を損なうことはない。   Further, when the plate heat exchanger HE is inclined, the difference in height between the secondary liquid pipe 48 and the secondary gas pipe 50 is also reduced, so that the flow rate of the secondary refrigerant due to the gravity action is reduced. For this reason, in the form of heat exchange by sensible heat with a low heat transfer coefficient, it is usually adopted because it causes a decrease in the heat exchange efficiency between the primary refrigerant and the secondary refrigerant and the cooling capacity decreases. I can't. On the other hand, in the cooling device 32 according to the first embodiment, the primary circuit 34 and the secondary circuit 44 are connected by the plate heat exchanger HE, and the primary refrigerant and the secondary refrigerant of the primary circuit 34 are connected to the heat exchanger HE. The secondary refrigerant of the circuit 44 is configured to exchange heat under the action of evaporation and condensation. That is, since the heat exchange between the latent heats having a very high heat transfer rate compared to the sensible heat is performed in the plate heat exchanger HE, the plate heat exchanger HE is inclined and arranged due to the gravity of the secondary refrigerant. Even if the natural flow rate decreases, it is possible to prevent the heat exchange amount in the heat exchanger HE from decreasing, and the cooling capacity of the cooling device 32 is not impaired.

次に、プレート式熱交換器HEが−4°<θ<4°の傾斜角θで配設された場合について説明する。この場合であっても一次回路34側における一次冷媒の流通過程は、プレート式熱交換器HEを4°≦θ≦45°の傾斜角θで配設する場合と同様である。すなわち、プレート式熱交換器HEを直立状態で設置する場合に較べて、一次液配管38と一次ガス配管40との高低差を小さくできるから、一次冷媒の使用量低減が図られる。   Next, the case where the plate heat exchanger HE is disposed at an inclination angle θ of −4 ° <θ <4 ° will be described. Even in this case, the flow of the primary refrigerant on the primary circuit 34 side is the same as the case where the plate heat exchanger HE is disposed at an inclination angle θ of 4 ° ≦ θ ≦ 45 °. That is, as compared with the case where the plate heat exchanger HE is installed in an upright state, the difference in height between the primary liquid pipe 38 and the primary gas pipe 40 can be reduced, so that the amount of primary refrigerant used can be reduced.

一方で、プレート式熱交換器HEを、傾斜角θが−4°<θ<4°の範囲となるまで傾斜させると、二次熱交換部46における二次液配管48の接続部位と二次ガス配管50の接続部位との間に生ずる高低差(ヘッド差)が小さくなり、重力作用による二次冷媒の循環方向が決定し得なくなることから、冷却装置32の冷凍能力が低下することも考えられる。ここで、プレート式熱交換器HEを傾斜角θが−4°<θ<4°の範囲となるまで傾斜させた状態では、前記一次冷媒は蒸発を伴って状態変化することから、一次熱交換部36は、気相一次冷媒の流出側の温度に較べて液相一次冷媒の流入側の温度が低くなる(図5(a)参照)。すなわち、二次熱交換部46では、二次ガス配管50側の温度に較べて二次液配管48側の温度の方が低くなる。一方、二次熱交換部46においては、気相二次冷媒が凝縮して液相二次冷媒に相変化することから、凝縮作用の高い低温側(すなわち二次液配管48側)に液相二次冷媒が集約され(冷媒集約作用)、二次液配管48を介して液相二次冷媒を蒸発器EPへ流下させ得る。このように、プレート式熱交換器HEを傾斜角θが−4°<θ<4°の範囲となるまで傾斜させて設置したとしても、二次熱交換部46における冷媒集約作用により、二次冷媒が正循環するよう循環方向を決定づけ得るから、冷却装置32の冷凍能力を維持し得る(図5(a)参照)。なお、プレート式熱交換器HEの傾斜角θをθ≦−4°となるまでプレート式熱交換器HEを傾斜させると、二次熱交換部46の温度差による二次液配管48側への液相二次冷媒の集約作用より、ヘッド差に起因して液相二次冷媒が二次液配管48側から二次ガス配管50側へ流下する重力作用が上回るようになり、循環方向の逆転を招来する可能性が高くなる。   On the other hand, when the plate-type heat exchanger HE is inclined until the inclination angle θ is in the range of −4 ° <θ <4 °, the secondary liquid piping 48 in the secondary heat exchange section 46 is connected to the secondary portion. The difference in height (head difference) generated between the gas pipe 50 and the connected portion is reduced, and the circulation direction of the secondary refrigerant due to the gravitational action cannot be determined, so that the cooling capacity of the cooling device 32 may be reduced. It is done. Here, in the state in which the plate heat exchanger HE is inclined until the inclination angle θ is in the range of −4 ° <θ <4 °, the primary refrigerant changes its state with evaporation. The temperature of the inflow side of the liquid phase primary refrigerant is lower in the portion 36 than the temperature of the outflow side of the gas phase primary refrigerant (see FIG. 5A). That is, in the secondary heat exchange section 46, the temperature on the secondary liquid pipe 48 side is lower than the temperature on the secondary gas pipe 50 side. On the other hand, in the secondary heat exchange section 46, the gas phase secondary refrigerant condenses and changes into a liquid phase secondary refrigerant, so that the liquid phase is placed on the low temperature side (that is, the secondary liquid piping 48 side) with high condensing action. The secondary refrigerant is collected (refrigerant collecting action), and the liquid phase secondary refrigerant can flow down to the evaporator EP via the secondary liquid pipe 48. Thus, even if the plate-type heat exchanger HE is installed so as to be inclined until the inclination angle θ is in the range of −4 ° <θ <4 °, the secondary heat exchange unit 46 causes the secondary heat exchanging effect to cause the secondary heat exchange. Since the circulation direction can be determined so that the refrigerant circulates normally, the refrigeration capacity of the cooling device 32 can be maintained (see FIG. 5A). If the plate heat exchanger HE is tilted until the tilt angle θ of the plate heat exchanger HE becomes θ ≦ −4 °, the temperature of the secondary heat exchange section 46 is increased to the secondary liquid pipe 48 side. The concentration effect of the liquid phase secondary refrigerant is greater than the gravity effect of the liquid phase secondary refrigerant flowing down from the secondary liquid pipe 48 side to the secondary gas pipe 50 side due to the head difference, and the circulation direction is reversed. Is more likely to be invited.

ところで、収納室14(冷却室28)の冷却が充分に進行して、収納室14(冷却室28)内の空気と二次冷媒との間の熱交換量が減少すると、一次冷媒と二次冷媒との間の熱交換量も減少する(すなわち冷凍負荷が減少する)。冷凍負荷が減少すると、液相一次冷媒が一次熱交換部36の流出側(一次ガス配管40側)まで飽和状態となる。この場合一次熱交換部36での圧力損失の影響により温度グライドが生ずるため、一次熱交換部36の流出側(一次ガス配管40側)の温度が流入側(一次液配管38側)の温度より低くなり温度勾配の逆転減少が現れる(図5(b)参照)。この場合には、二次回路44における二次冷媒は、凝縮作用の高い低温側(すなわち二次ガス配管50側)に集約されることになるため、二次冷媒の循環方向が逆転する。   By the way, when the cooling of the storage chamber 14 (cooling chamber 28) sufficiently proceeds and the amount of heat exchange between the air in the storage chamber 14 (cooling chamber 28) and the secondary refrigerant decreases, the primary refrigerant and the secondary refrigerant The amount of heat exchange with the refrigerant also decreases (that is, the refrigeration load decreases). When the refrigeration load is reduced, the liquid phase primary refrigerant is saturated up to the outflow side (primary gas pipe 40 side) of the primary heat exchange unit 36. In this case, temperature glide is generated due to the pressure loss in the primary heat exchange section 36, so the temperature on the outflow side (primary gas pipe 40 side) of the primary heat exchange section 36 is higher than the temperature on the inflow side (primary liquid pipe 38 side). It becomes lower and the reverse decrease of the temperature gradient appears (see FIG. 5 (b)). In this case, the secondary refrigerant in the secondary circuit 44 is concentrated on the low temperature side (that is, the secondary gas pipe 50 side) having a high condensing action, so that the circulation direction of the secondary refrigerant is reversed.

ここで、実施例1に係るプレート式熱交換器HEでは、一次回路34における一次液配管38と二次回路44における二次液配管48とを同一端部側に設けると共に、一次回路34における一次ガス配管40と二次回路44における二次ガス配管50とを同一端部側に設けるよう構成してあるから、通常の運転時には、プレート式熱交換器HEにおける一次冷媒と二次冷媒とは対向流をなし、一次冷媒と二次冷媒との間で効率的な熱交換が行なわれる。一方で、冷却装置32の冷凍負荷が減少して二次冷媒の流通方向が逆転した場合には、プレート式熱交換器HEにおける一次冷媒と二次冷媒とは平行流をなすため、対向流よりも流体間の温度差が増大して一次冷媒と二次冷媒との間の熱交換効率が低下する。すなわち、実施例1に係る冷却装置32では、収納室14内が冷却されて冷却装置32の冷却能力が過剰になる状況では、二次冷媒の循環方向が逆転することで自動的に冷却能力を抑制し得る。従って、収納室14の温度に応じて冷却装置32の冷凍能力を制御する電磁弁等の特別な部品を設ける必要がなく、部品点数の削減によるコスト低減を図り得ると共に、故障等の不具合が発生し難くなることから、冷却装置32の動作に対する信頼性が向上する。   Here, in the plate heat exchanger HE according to the first embodiment, the primary liquid pipe 38 in the primary circuit 34 and the secondary liquid pipe 48 in the secondary circuit 44 are provided on the same end side, and the primary in the primary circuit 34. Since the gas pipe 40 and the secondary gas pipe 50 in the secondary circuit 44 are provided on the same end side, the primary refrigerant and the secondary refrigerant in the plate heat exchanger HE are opposed to each other during normal operation. A flow is made and efficient heat exchange is performed between the primary refrigerant and the secondary refrigerant. On the other hand, when the refrigeration load of the cooling device 32 decreases and the flow direction of the secondary refrigerant is reversed, the primary refrigerant and the secondary refrigerant in the plate heat exchanger HE form a parallel flow, so that the counter flow However, the temperature difference between the fluids increases and the heat exchange efficiency between the primary refrigerant and the secondary refrigerant decreases. That is, in the cooling device 32 according to the first embodiment, in the situation where the inside of the storage chamber 14 is cooled and the cooling capacity of the cooling device 32 becomes excessive, the cooling capacity is automatically increased by reversing the circulation direction of the secondary refrigerant. Can be suppressed. Accordingly, it is not necessary to provide a special part such as a solenoid valve for controlling the refrigeration capacity of the cooling device 32 according to the temperature of the storage chamber 14, and the cost can be reduced by reducing the number of parts, and troubles such as failure occur Therefore, the reliability of the operation of the cooling device 32 is improved.

ところで、実施例1に係る冷却装置32の二次回路44では、蒸発器EPにおける蒸発管52の流入端52a(二次液配管48との接続部)を蒸発器EPの上部に設けると共に、流出端52b(二次ガス配管50との接続部)を蒸発器EPの下部に設けることで、流入端52aを流出端52bより上方に位置させて、流入端52aと流出端52bとの間に落差が生ずるよう構成されている。しかも、蒸発管52は、流出端52bと流入端52aとの間において、直線部分が上下の関係で折り重なった蛇行形状とすると共に、流入端52a側から流出端52b側に向かうにつれて下方傾斜するように管路を形成している。すなわち、蒸発管52は、二次冷媒が正循環する状況においては、全体として二次冷媒の循環方向前側に向けて下り勾配となるから、流入端52a(二次液配管48)から蒸発管52に流入した液相二次冷媒を、重力の作用下に管路に沿って流出端52b(二次ガス配管50)側に誘導しつつ蒸発させることができる。従って、冷却装置32の通常運転時には、蒸発器EPにおいて、蒸発管52の流入端52a近傍で液相二次冷媒が留まって当該流入端52a近傍で優先的に蒸発するのではなく、二次冷媒が管路に沿って流出端52b側に自然に拡散することにより、伝熱面積を広く確保して蒸発器EPの熱交換効率を向上し得る(図6参照)。   By the way, in the secondary circuit 44 of the cooling device 32 according to the first embodiment, the inflow end 52a of the evaporator pipe 52 in the evaporator EP (connecting portion with the secondary liquid pipe 48) is provided at the upper part of the evaporator EP and the outflow is performed. By providing the end 52b (connection portion with the secondary gas pipe 50) at the lower part of the evaporator EP, the inflow end 52a is positioned above the outflow end 52b, and there is a drop between the inflow end 52a and the outflow end 52b. Is configured to occur. In addition, the evaporation pipe 52 has a meandering shape in which the linear portion is folded up and down between the outflow end 52b and the inflow end 52a, and is inclined downward from the inflow end 52a toward the outflow end 52b. A pipe line is formed. That is, the evaporation pipe 52 is inclined downward toward the front side in the circulation direction of the secondary refrigerant as a whole in a situation where the secondary refrigerant is normally circulated, and therefore, the evaporation pipe 52 from the inflow end 52a (secondary liquid pipe 48). The liquid phase secondary refrigerant that has flowed into the pipe can be evaporated while being guided to the outflow end 52b (secondary gas pipe 50) side along the pipe line under the action of gravity. Therefore, during normal operation of the cooling device 32, in the evaporator EP, the liquid phase secondary refrigerant stays in the vicinity of the inflow end 52a of the evaporation pipe 52 and does not preferentially evaporate in the vicinity of the inflow end 52a. Is naturally diffused along the conduit toward the outflow end 52b, so that a wide heat transfer area can be secured and the heat exchange efficiency of the evaporator EP can be improved (see FIG. 6).

一方で、冷却装置32の冷凍負荷が減少して二次冷媒の流通方向が逆転した場合には、液相二次冷媒は二次ガス配管50側(すなわち流出端52b側)から前記蒸発器EPに流入し、蒸発器EPで蒸発した気相二次冷媒は二次液配管48(すなわち流入端52a側)から流出する。すなわち、二次冷媒の流通方向が逆転すると、蒸発器EPでは、二次回路における二次冷媒の循環方向前側に向けて上り勾配となるから、蒸発管52に流入した液相二次冷媒は、重力作用により蒸発管52の流出端52b近傍に留まって優先的に蒸発し、通常運転時とは反対に伝熱面積が小さくなるため、蒸発器EPの熱交換効率が低下する(図7参照)。すなわち、実施例1に係る冷却装置32では、収納室14内が冷却されて冷却装置32の冷却能力が過剰になる状況では、一次冷媒および二次冷媒間での熱交換効率を低下するだけでなく、蒸発器EPでの熱交換効率をも低下させて自動的に冷却能力を抑制し得る。   On the other hand, when the refrigeration load of the cooling device 32 is reduced and the flow direction of the secondary refrigerant is reversed, the liquid phase secondary refrigerant flows from the secondary gas pipe 50 side (that is, the outflow end 52b side) to the evaporator EP. The gas phase secondary refrigerant that has flowed into the evaporator and evaporated in the evaporator EP flows out from the secondary liquid pipe 48 (that is, the inflow end 52a side). That is, when the flow direction of the secondary refrigerant is reversed, the evaporator EP has an upward gradient toward the front side in the circulation direction of the secondary refrigerant in the secondary circuit. Therefore, the liquid phase secondary refrigerant flowing into the evaporation pipe 52 is Gravity action preferentially evaporates by staying in the vicinity of the outflow end 52b of the evaporation pipe 52, and the heat transfer area becomes smaller as opposed to normal operation, so that the heat exchange efficiency of the evaporator EP decreases (see FIG. 7). . That is, in the cooling device 32 according to the first embodiment, in a situation where the inside of the storage chamber 14 is cooled and the cooling capacity of the cooling device 32 becomes excessive, only the heat exchange efficiency between the primary refrigerant and the secondary refrigerant is reduced. In addition, the cooling capacity can be automatically suppressed by reducing the heat exchange efficiency in the evaporator EP.

また、実施例1に係るプレート式熱交換器HEでは、前記台板24の外郭部材24a,24aまたはプレート式熱交換器HEに突起部25を設けて、当該プレート式熱交換器HEを外郭部材24a上に配設することにより、所定の傾斜角θでプレート式熱交換器HEを傾斜させ、この状態で外郭部材24a,24aの間に発泡材を充填・硬化するよう構成されている。すなわち、前記突起部25を設けるだけでプレート式熱交換器HEを傾斜角θで傾斜させ得るから、プレート式熱交換器HEの位置決めを簡潔に行ない得る。また、外郭部材24a,24aの間に発泡材を充填するに先立って、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定すると共に、二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定するよう構成してあるから、発泡材の充填・硬化時にプレート式熱交換器HEが位置ズレするのを防止でき、プレート式熱交換器HEを所定の傾斜角θで確実に保持することが可能となる。   Further, in the plate heat exchanger HE according to the first embodiment, the protrusions 25 are provided on the outer members 24a and 24a of the base plate 24 or the plate heat exchanger HE, and the plate heat exchanger HE is used as the outer member. By being disposed on 24a, the plate heat exchanger HE is inclined at a predetermined inclination angle θ, and in this state, the foam material is filled and cured between the outer members 24a, 24a. That is, since the plate heat exchanger HE can be inclined at the inclination angle θ simply by providing the projection 25, the plate heat exchanger HE can be simply positioned. Prior to filling the foam material between the outer members 24a, 24a, the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are fixed by the first restraining jig 74, Since each of the secondary liquid pipe 48 and the secondary gas pipe 50 is configured to be fixed by the second restraining jig 76, it is possible to prevent the plate heat exchanger HE from being displaced during filling and curing of the foam material. The plate heat exchanger HE can be reliably held at a predetermined inclination angle θ.

また、収納室14と機械室20とを断熱する台板24内にプレート式熱交換器HEを埋め込むよう構成することで、該プレート式熱交換器HEの熱損失を防止して一次冷媒と二次冷媒との熱交換効率の向上を図ることができるから、プレート式熱交換器HEの外周を別途設けた断熱材で覆う必要がなく、部品点数削減によるコスト低減と共に、製造工程の簡略化が図られる。特に、収納室14と機械室20との断熱を図る台板24には、断熱性能の高い発泡材が利用されることから、プレート式熱交換器HEに別途断熱材を取り付ける場合に比して断熱性能の向上が図られ、熱損失の低減を効果的に図り得る利点もある。   Further, by configuring the plate heat exchanger HE to be embedded in the base plate 24 that insulates the storage chamber 14 and the machine chamber 20, heat loss of the plate heat exchanger HE is prevented, and the primary refrigerant and Since it is possible to improve the efficiency of heat exchange with the secondary refrigerant, there is no need to cover the outer periphery of the plate heat exchanger HE with a separate heat insulating material, which reduces costs by reducing the number of parts and simplifies the manufacturing process. Figured. In particular, the base plate 24 for heat insulation between the storage chamber 14 and the machine room 20 uses a foam material having high heat insulation performance, so that compared to a case where a separate heat insulation material is attached to the plate heat exchanger HE. There is an advantage that the heat insulation performance can be improved and the heat loss can be effectively reduced.

また、プレート式熱交換器HEを台板24に埋め込むことにより、前記収納室14(冷却室28)とプレート式熱交換器HEとを接続する二次液配管48および二次ガス配管50の夫々を低温域にのみ配管することができ、プレート式熱交換器HEを機械室20に配設して二次液配管48および二次ガス配管50を機械室20内に配管する従来の構成に較べて熱損失の大幅な低減を図り得る。また、二次液配管48および二次ガス配管50は低温域(冷却室28)にのみ配管されるから、これら配管48,50を断熱する断熱材を設ける必要がなく、コスト低減を図り得る利点もある。更に、前記プレート式熱交換器HEが台板24の発泡材で支持されることで、該プレート式熱交換器HEを支持する支持部材を別途設ける必要がなく、構造の簡略化や部品点数削減によるコスト低減を図り得る。   Further, by embedding the plate heat exchanger HE in the base plate 24, each of the secondary liquid pipe 48 and the secondary gas pipe 50 that connect the storage chamber 14 (cooling chamber 28) and the plate heat exchanger HE. Compared to the conventional configuration in which the plate type heat exchanger HE is disposed in the machine room 20 and the secondary liquid pipe 48 and the secondary gas pipe 50 are piped in the machine room 20. Heat loss can be greatly reduced. Further, since the secondary liquid pipe 48 and the secondary gas pipe 50 are piped only in the low temperature region (cooling chamber 28), there is no need to provide a heat insulating material for insulating the pipes 48, 50, and the cost can be reduced. There is also. Further, since the plate heat exchanger HE is supported by the foam material of the base plate 24, it is not necessary to separately provide a support member for supporting the plate heat exchanger HE, and the structure is simplified and the number of parts is reduced. The cost can be reduced.

更に、プレート式熱交換器HEを台板24内に埋め込むことで、機械室20に空きスペースを確保でき、機械室20に配設される凝縮器CD、凝縮器ファンFM、圧縮機CD、膨張タンク54、その他部材の配置の自由度が向上する。また、実施例1に係る冷却装置32では、凝縮器ファンFMの駆動によりキャビネット16の前側から機械室20に取込まれて凝縮器CDおよび圧縮機CMと熱交換した空気が膨張タンク54に吹付けられて、膨張タンク54が昇温する。ここで、膨張タンク54に滞留する二次冷媒の量は、圧力および温度に応じて変化する値であり、この圧力は、一次回路34において運転条件等で決定される蒸発温度に依存するので変化させることができない。そこで、膨張タンク54を一次回路34の排熱により昇温することで、膨張タンク54内の二次冷媒密度が低下するので、膨張タンク54に滞留する二次冷媒の量を減少させることができる。膨張タンク54に滞留する二次冷媒の量を減少させると、二次回路44における二次冷媒量を低減できるメリットがある。   Further, by embedding the plate heat exchanger HE in the base plate 24, an empty space can be secured in the machine room 20, and the condenser CD, the condenser fan FM, the compressor CD, and the expansion provided in the machine room 20 are expanded. The degree of freedom in arranging the tank 54 and other members is improved. Further, in the cooling device 32 according to the first embodiment, the air taken into the machine room 20 from the front side of the cabinet 16 and exchanging heat with the condenser CD and the compressor CM is blown to the expansion tank 54 by driving the condenser fan FM. In addition, the expansion tank 54 is heated. Here, the amount of the secondary refrigerant staying in the expansion tank 54 is a value that changes according to the pressure and temperature, and this pressure changes because it depends on the evaporation temperature determined by operating conditions and the like in the primary circuit 34. I can't let you. Therefore, by raising the temperature of the expansion tank 54 by the exhaust heat of the primary circuit 34, the secondary refrigerant density in the expansion tank 54 is reduced, so that the amount of the secondary refrigerant staying in the expansion tank 54 can be reduced. . If the amount of the secondary refrigerant staying in the expansion tank 54 is reduced, there is an advantage that the amount of secondary refrigerant in the secondary circuit 44 can be reduced.

次に、実施例2に係る冷却装置につき説明する。但し、実施例2に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to the second embodiment will be described. However, the cooling device according to the second embodiment is basically the same in configuration as the cooling device 32 described in the first embodiment, and members / configurations having the same functions are denoted by the same reference numerals and detailed explanations are given. Omitted.

実施例2に係る冷却装置32では、一次回路34の一次液配管38における凝縮器CDと一次熱交換部36との間に設けられる膨張弁EVとして、流通する液相一次冷媒の温度を検知して絞り度を変更可能な温度検知型の膨張弁が設けられている。具体的には、前記膨張弁EVは、一次液配管38を流通する液相一次冷媒の温度が所定温度以上に上昇した場合に、絞り度を小さくして一次熱交換部36へ流通する液相一次冷媒量を減少するよう調整する。   In the cooling device 32 according to the second embodiment, the temperature of the circulating liquid phase primary refrigerant is detected as an expansion valve EV provided between the condenser CD and the primary heat exchange unit 36 in the primary liquid pipe 38 of the primary circuit 34. In addition, a temperature detection type expansion valve that can change the throttle degree is provided. Specifically, the expansion valve EV is configured such that when the temperature of the liquid phase primary refrigerant flowing through the primary liquid pipe 38 rises to a predetermined temperature or more, the expansion degree EV is reduced and the liquid phase flowing to the primary heat exchange unit 36 is reduced. Adjust to reduce the amount of primary refrigerant.

すなわち、前述したようにプレート式熱交換器HEを−4°<θ<4°の傾斜角θで配設した状態においては、収納室14(冷却室28)内の空気と二次冷媒との間の熱交換量が減少して冷凍負荷が減少すると、液相一次冷媒が一次熱交換部36の流出側(一次ガス配管40側)まで飽和状態となり、一次熱交換部36での圧力損失の影響により温度グライドが生ずる。実施例2に係る冷却装置32では、一次熱交換部36において温度グライドが生じ、液相一次冷媒が所定温度に昇温すると、前記一次熱交換部36へ流通する液相一次冷媒量を減少するよう前記膨張弁EVが絞り度を調整する。すなわち、前記膨張弁EVにより一次熱交換部36へ流通する液相一次冷媒量が減少することで、一次熱交換部36における温度グライドの発生が防止でき、一次熱交換部36における流入側(一次液配管38側)の温度が、流出側(一次ガス配管40側)の温度より低温に維持される。このため、二次回路44では、凝縮作用の高い低温側(すなわち二次液配管48側)に液相二次冷媒を集約し得るから、二次冷媒の循環方向の逆転現象を防止し得る。また、前記プレート式熱交換器HEにおける一次熱交換部36を流通する一次冷媒量が減少することにより、一次冷媒と二次冷媒との間の熱交換量が減少するから、収納室14内が冷却されて冷却装置32の冷却能力が過剰になる状況では、二次冷媒の循環方向を逆転することなく自動的に冷却能力を抑制し得る。   That is, as described above, in the state in which the plate heat exchanger HE is disposed at the inclination angle θ of −4 ° <θ <4 °, the air in the storage chamber 14 (cooling chamber 28) and the secondary refrigerant When the amount of heat exchange between them decreases and the refrigeration load decreases, the liquid phase primary refrigerant becomes saturated up to the outflow side (primary gas pipe 40 side) of the primary heat exchange unit 36, and the pressure loss in the primary heat exchange unit 36 is reduced. Temperature glide occurs due to the influence. In the cooling device 32 according to the second embodiment, when temperature glide occurs in the primary heat exchange unit 36 and the liquid phase primary refrigerant is heated to a predetermined temperature, the amount of liquid phase primary refrigerant flowing to the primary heat exchange unit 36 is reduced. The expansion valve EV adjusts the degree of throttling. That is, by reducing the amount of the liquid phase primary refrigerant flowing to the primary heat exchange unit 36 by the expansion valve EV, generation of temperature glide in the primary heat exchange unit 36 can be prevented, and the inflow side (primary The temperature of the liquid pipe 38 side) is maintained at a lower temperature than the temperature of the outflow side (primary gas pipe 40 side). For this reason, in the secondary circuit 44, since the liquid phase secondary refrigerant can be concentrated on the low temperature side (that is, the secondary liquid pipe 48 side) having a high condensing action, the reverse phenomenon of the circulation direction of the secondary refrigerant can be prevented. In addition, since the amount of primary refrigerant flowing through the primary heat exchange unit 36 in the plate heat exchanger HE is reduced, the amount of heat exchange between the primary refrigerant and the secondary refrigerant is reduced. In a situation where the cooling capacity of the cooling device 32 becomes excessive due to cooling, the cooling capacity can be automatically suppressed without reversing the circulation direction of the secondary refrigerant.

このように、実施例2に係る冷却装置32では、温度検知型の膨張弁EVを設けることにより、プレート式熱交換器HEを−4°<θ<4°の傾斜角θで配設した状態においても二次冷媒の自然循環方向を一定に維持し得ると共に、冷却装置32の冷却能力の制御が可能となる。また、実施例2では、一次回路34に温度検知型の膨張弁EVを設けるようにしたが、プレート式熱交換器HEにおける一次熱交換部36の容量を大きくしたり、一次回路34を流通する一次冷媒量を減少することによっても、冷凍負荷が減少する局面において一次熱交換部36の温度勾配を一定に維持することができ、二次回路44における二次冷媒の循環方向を一定に保ち得る。   Thus, in the cooling device 32 according to the second embodiment, by providing the temperature detection type expansion valve EV, the plate-type heat exchanger HE is disposed at an inclination angle θ of −4 ° <θ <4 °. In this case, the natural circulation direction of the secondary refrigerant can be kept constant, and the cooling capacity of the cooling device 32 can be controlled. In the second embodiment, the temperature detection type expansion valve EV is provided in the primary circuit 34. However, the capacity of the primary heat exchange unit 36 in the plate heat exchanger HE is increased, or the primary circuit 34 is distributed. By reducing the amount of primary refrigerant, the temperature gradient of the primary heat exchange unit 36 can be kept constant in a phase where the refrigeration load is reduced, and the circulation direction of the secondary refrigerant in the secondary circuit 44 can be kept constant. .

次に、実施例3に係る冷却装置につき説明する。但し、実施例3に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to Embodiment 3 will be described. However, the cooling device according to the third embodiment is basically the same in configuration as the cooling device 32 described in the first embodiment, and members / configurations having the same functions are denoted by the same reference numerals and detailed description is given. Omitted.

実施例3では、プレート式熱交換器HEを水平面に対して傾斜角θとなるよう配設する別の製造方法につき説明する。実施例3に係る冷却装置32では、図9に示すように、台板24を構成する外郭部材24aに、水平面に対する傾斜角度がθとなる傾斜面80が形成されており、この傾斜面80に前記プレート式熱交換器HEを設置することで、プレート式熱交換器HEが水平面に対して傾斜角θで位置決めされるようになっている。そして、プレート式熱交換器HEを台板24の外郭部材24aに対して傾斜させた状態で、各外郭部材24aの外側を所定の発泡治具72,72で固定すると共に、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定し、また二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定する。この状態で、前記外郭部材24a,24a間に発泡材を充填して硬化させ、発泡材が硬化した後に各治具72,74,76の夫々を取り外すことにより、台板24内にプレート式熱交換器HEが傾斜状態で配設される。その後、前記縦型冷蔵庫10における箱体12の天板12bに、前記台板24を水平に設置することにより、台板24内に配設された前記プレート式熱交換器HEが水平面に対して傾斜角θで傾斜するよう構成される。   In the third embodiment, another manufacturing method in which the plate heat exchanger HE is disposed at an inclination angle θ with respect to the horizontal plane will be described. In the cooling device 32 according to the third embodiment, as illustrated in FIG. 9, an inclined surface 80 having an inclination angle θ with respect to a horizontal plane is formed on the outer member 24 a configuring the base plate 24. By installing the plate heat exchanger HE, the plate heat exchanger HE is positioned at an inclination angle θ with respect to the horizontal plane. The plate-type heat exchanger HE is inclined with respect to the outer member 24a of the base plate 24, and the outer sides of the outer members 24a are fixed by predetermined foaming jigs 72 and 72, and the plate-type heat exchanger The primary liquid pipe 38 and the primary gas pipe 40 connected to the HE are fixed by a first restraining jig 74, and the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by a second restraining jig 76. In this state, the outer shell members 24a and 24a are filled with a foaming material and cured, and after the foaming material is cured, the jigs 72, 74, and 76 are removed, so that the plate-type heat is placed in the base plate 24. The exchanger HE is arranged in an inclined state. Thereafter, the plate-type heat exchanger HE disposed in the base plate 24 is placed on the horizontal surface by horizontally installing the base plate 24 on the top plate 12b of the box 12 in the vertical refrigerator 10. It is configured to incline at an inclination angle θ.

すなわち、実施例3に係る冷却装置32では、前記台板24の外郭部材24aに傾斜面80を設けて、当該プレート式熱交換器HEを傾斜面80上に配設することにより、所定の傾斜角θでプレート式熱交換器HEを傾斜させ得るから、プレート式熱交換器HEの位置決めを簡潔に行ない得る。また、前述と同様に、外郭部材24a,24aの間に発泡材を充填するに先立って、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定すると共に、二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定するよう構成してあるから、発泡材の充填・硬化時にプレート式熱交換器HEが位置ズレするのを防止でき、プレート式熱交換器HEを所定の傾斜角θで確実に保持することが可能となる。   That is, in the cooling device 32 according to the third embodiment, the outer surface member 24a of the base plate 24 is provided with the inclined surface 80, and the plate heat exchanger HE is disposed on the inclined surface 80, thereby providing a predetermined inclination. Since the plate heat exchanger HE can be inclined at the angle θ, the positioning of the plate heat exchanger HE can be performed simply. Similarly to the above, the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are connected by the first restraining jig 74 prior to filling the foam material between the outer members 24a and 24a. Since the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by the second restraining jig 76, the plate heat exchanger HE is displaced when the foam material is filled and cured. Therefore, the plate heat exchanger HE can be reliably held at a predetermined inclination angle θ.

次に、実施例4に係る冷却装置につき説明する。但し、実施例4に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to Embodiment 4 will be described. However, the cooling device according to the fourth embodiment has basically the same configuration as the cooling device 32 described in the first embodiment, and members and configurations having the same functions are denoted by the same reference numerals and detailed description thereof is omitted. Omitted.

実施例4では、プレート式熱交換器HEを水平面に対して傾斜角θとなるよう配設する更に別の製造方法につき説明する。実施例4に係る冷却装置32では、図10に示すように、台板24を構成する外郭部材24aに対して前記プレート式熱交換器HE(一次熱交換部36および二次熱交換部46)が平行になるよう設置される。そして、各外郭部材24aの外側を所定の発泡治具72,72で固定すると共に、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定し、また二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定する。この状態で、前記外郭部材24a,24a間に発泡材を充填して硬化させ、発泡材が硬化した後に各治具72,74,76の夫々を取り外すことにより、台板24と平行になる姿勢でプレート式熱交換器HEが配設される。その後、前記縦型冷蔵庫10における箱体12の天板12bに、前記台板24を傾斜角θで傾斜するよう設置することにより、台板24内に配設された前記プレート式熱交換器HEが水平面に対して傾斜角θで傾斜するよう構成される。   In the fourth embodiment, another manufacturing method in which the plate heat exchanger HE is disposed at an inclination angle θ with respect to the horizontal plane will be described. In the cooling device 32 according to the fourth embodiment, as shown in FIG. 10, the plate heat exchanger HE (the primary heat exchanging unit 36 and the secondary heat exchanging unit 46) with respect to the outer member 24 a constituting the base plate 24. Are installed in parallel. Then, the outside of each outer member 24a is fixed by predetermined foaming jigs 72, 72, and the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are fixed by the first restraining jig 74. Further, each of the secondary liquid pipe 48 and the secondary gas pipe 50 is fixed by the second restraining jig 76. In this state, the foam member is filled and cured between the outer members 24a and 24a, and after the foam material is cured, the jigs 72, 74, and 76 are removed to be parallel to the base plate 24. A plate type heat exchanger HE is arranged. Thereafter, the plate-type heat exchanger HE disposed in the base plate 24 is installed on the top plate 12b of the box 12 in the vertical refrigerator 10 by inclining the base plate 24 at an inclination angle θ. Is inclined with respect to a horizontal plane at an inclination angle θ.

ここで、外郭部材24aを水平面に対して傾斜角θで傾斜するよう台板24を箱体12に設置するには、図11(a)に示すように、箱体12における前記台板24を設置する部位に高低差を設けることで、該箱体12に台板24を設置した際に、箱体12の高低差により台板24を傾斜角θで傾斜させることができる。また、図11(b)に示すように、台板24の一端部に下方に垂下する支持部82を形成すれば、台板24を箱体12に設置した際に、支持部82により台板24を傾斜角θで傾斜させることが可能となる。   Here, in order to install the base plate 24 in the box 12 so that the outer member 24a is inclined at an inclination angle θ with respect to the horizontal plane, as shown in FIG. By providing a height difference in the installation site, when the base plate 24 is installed in the box 12, the base plate 24 can be inclined at an inclination angle θ due to the height difference of the box 12. Further, as shown in FIG. 11 (b), if a support portion 82 that hangs downward is formed at one end of the base plate 24, the base plate 24 is supported by the support portion 82 when the base plate 24 is installed on the box 12. 24 can be tilted at the tilt angle θ.

このように、実施例4に係る冷却装置32では、プレート式熱交換器HEを平行に埋め込んだ台板24を、水平面に対して傾斜角θで傾斜するよう箱体12に配設することにより、プレート式熱交換器HEも水平面に対して傾斜角θで傾斜させ得る。すなわち、プレート式熱交換器HEを台板24に配設する際に、該プレート式熱交換器HE自体の傾斜角θを調整する必要がないから、製造工程の簡略化を図り得る。また台板24の傾斜により水平面に対するプレート式熱交換器HEの傾斜角θを調整し得るから、台板24内にプレート式熱交換器HEを傾斜配設する構成に較べて、プレート式熱交換器HEの傾斜角θの調整を容易に行ない得る利点がある。また、前述と同様に、外郭部材24a,24aの間に発泡材を充填するに先立って、プレート式熱交換器HEに接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定すると共に、二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定するよう構成してあるから、発泡材の充填・硬化時にプレート式熱交換器HEが位置ズレするのを防止できる。   As described above, in the cooling device 32 according to the fourth embodiment, the base plate 24 in which the plate heat exchanger HE is embedded in parallel is disposed in the box body 12 so as to be inclined at the inclination angle θ with respect to the horizontal plane. The plate heat exchanger HE can also be inclined at an inclination angle θ with respect to the horizontal plane. That is, when the plate heat exchanger HE is disposed on the base plate 24, it is not necessary to adjust the inclination angle θ of the plate heat exchanger HE itself, so that the manufacturing process can be simplified. In addition, since the inclination angle θ of the plate heat exchanger HE with respect to the horizontal plane can be adjusted by the inclination of the base plate 24, the plate type heat exchange is compared with the configuration in which the plate type heat exchanger HE is inclined in the base plate 24. There is an advantage that the inclination angle θ of the vessel HE can be easily adjusted. Similarly to the above, the primary liquid pipe 38 and the primary gas pipe 40 connected to the plate heat exchanger HE are connected by the first restraining jig 74 prior to filling the foam material between the outer members 24a and 24a. Since the secondary liquid pipe 48 and the secondary gas pipe 50 are each fixed by the second restraining jig 76, the plate heat exchanger HE is displaced when the foam material is filled and cured. Can be prevented.

次に、実施例5に係る冷却装置につき説明する。但し、実施例5に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。また、実施例5では冷却装置を横型冷蔵庫に設置する場合を例にして説明する。   Next, a cooling device according to Embodiment 5 will be described. However, the cooling device according to the fifth embodiment is basically the same in configuration as the cooling device 32 described in the first embodiment, and members / configurations having the same functions are denoted by the same reference numerals and detailed description is given. Omitted. Moreover, Example 5 demonstrates as an example the case where a cooling device is installed in a horizontal refrigerator.

図12(a)に示すように、実施例5に係る横型冷蔵庫120は、収納室(閉鎖空間)14を内部画成した断熱構造の箱体12を横長に形成すると共に、この箱体12の側方に、機械室(開放空間)20を画成するキャビネット16が設けられている。すなわち、実施例5に係る横型冷蔵庫120では、一次回路34と二次回路44とが左右に並ぶよう配置される。そして、前記一次回路34の一次熱交換部36および二次回路44の二次熱交換部46を設けたプレート式熱交換器HEが、前記収納室14と機械室16とを区画する箱体12の横壁部124内に埋め込むよう配設されている(図12(b)参照)。このとき、前記一次回路34における一次液配管38および二次回路44における二次液配管48がプレート式熱交換器HEの下端部に接続されると共に、一次ガス配管40および二次ガス配管50が上端部に接続される。なお、図12(b)では、プレート式熱交換器HEを直立状態で配設した例を示してあるが、該プレート式熱交換器HEを水平面に対して傾斜させるよう横壁部124内に配設することも可能である。   As shown in FIG. 12 (a), the horizontal refrigerator 120 according to the fifth embodiment forms a horizontally long box 12 having a heat insulating structure in which a storage room (closed space) 14 is internally defined. A cabinet 16 that defines a machine room (open space) 20 is provided on the side. That is, in the horizontal refrigerator 120 according to the fifth embodiment, the primary circuit 34 and the secondary circuit 44 are arranged side by side. The plate-type heat exchanger HE provided with the primary heat exchanging portion 36 of the primary circuit 34 and the secondary heat exchanging portion 46 of the secondary circuit 44 is a box 12 that partitions the storage chamber 14 and the machine chamber 16. It is arrange | positioned so that it may embed in the horizontal wall part 124 of this (refer FIG.12 (b)). At this time, the primary liquid pipe 38 in the primary circuit 34 and the secondary liquid pipe 48 in the secondary circuit 44 are connected to the lower end of the plate heat exchanger HE, and the primary gas pipe 40 and the secondary gas pipe 50 are connected. Connected to the upper end. FIG. 12 (b) shows an example in which the plate heat exchanger HE is disposed upright. However, the plate heat exchanger HE is disposed in the horizontal wall portion 124 so as to be inclined with respect to the horizontal plane. It is also possible to set up.

このように、横型冷蔵庫120における横壁部124にプレート式熱交換器HEを埋め込むよう配設した場合であっても、実施例1と同様にプレート式熱交換器HEの熱損失を防止して一次冷媒と二次冷媒との熱交換効率の向上を図ることができ、また部品点数削減によるコスト低減や、製造工程の簡略化が図られる。また、二次液配管48や二次ガス配管50に関しても、実施例1と同様に、低温域(収納室14)にのみ配管されるから、これら配管48,50を断熱する断熱材を設ける必要がなく、コスト低減を図り得る利点もある。   Thus, even if it is a case where it arrange | positions so that the plate-type heat exchanger HE may be embedded in the horizontal wall part 124 in the horizontal refrigerator 120, the heat loss of the plate-type heat exchanger HE is prevented similarly to Example 1, and it is primary. The heat exchange efficiency between the refrigerant and the secondary refrigerant can be improved, the cost can be reduced by reducing the number of parts, and the manufacturing process can be simplified. In addition, since the secondary liquid pipe 48 and the secondary gas pipe 50 are also piped only in the low temperature region (the storage chamber 14) as in the first embodiment, it is necessary to provide a heat insulating material that insulates the pipes 48 and 50. There is also an advantage that the cost can be reduced.

次に、実施例6に係る冷却装置につき説明する。但し、実施例6に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to Embodiment 6 will be described. However, the cooling device according to the sixth embodiment is basically the same in configuration as the cooling device 32 described in the first embodiment, and members / configurations having the same functions are denoted by the same reference numerals and detailed explanations are given. Omitted.

実施例6に係る冷却装置32では、一次冷媒と二次冷媒との間で熱交換を行なう熱交換器として、外管130と、該外管130内に挿通された内管132とから構成された二重管式熱交換器HE’が用いられている。前記二重管式熱交換器HE’は、図13に示すように、渦巻き状に巻回した外管130の内側に3本の内管132を挿通するよう構成され、該外管130内を前記一次冷媒が流通すると共に、各内管132内を前記二次冷媒が流通するよう構成される。すなわち、凝縮器CDで凝縮した一次冷媒が蒸発する一次熱交換部として前記外管130が機能し、該外管130で蒸発した一次冷媒との熱交換により二次冷媒を凝縮する二次熱交換部として前記各内管132が機能する。なお、外管130内に挿通する内管132の数は、3本に限られるものではなく、1本または2本以上の複数の内管132を外管130内に挿通してもよい。   The cooling device 32 according to the sixth embodiment includes an outer tube 130 and an inner tube 132 inserted into the outer tube 130 as a heat exchanger that exchanges heat between the primary refrigerant and the secondary refrigerant. A double tube heat exchanger HE ′ is used. As shown in FIG. 13, the double pipe heat exchanger HE ′ is configured to insert three inner pipes 132 inside the outer pipe 130 wound in a spiral shape. The primary refrigerant flows, and the secondary refrigerant flows in each inner pipe 132. In other words, the outer pipe 130 functions as a primary heat exchange part in which the primary refrigerant condensed in the condenser CD evaporates, and secondary heat exchange in which the secondary refrigerant is condensed by heat exchange with the primary refrigerant evaporated in the outer pipe 130. Each inner tube 132 functions as a part. Note that the number of inner tubes 132 inserted into the outer tube 130 is not limited to three, and one or more inner tubes 132 may be inserted into the outer tube 130.

そして、前記各内管132と蒸発器EPとを接続する二次液配管48が、前記外管130に対して一次液配管38の接続端側に接続されると共に、該各内管132と蒸発器EPとを接続する二次ガス配管50が、該外管130における前記一次ガス配管40の接続端側に接続され、外管130内を流通する一次冷媒と内管132内を流通する二次冷媒とが対向流となるよう構成されている。また、実施例6に係る二重管式熱交換器HE’は、前述した実施例1と同様に、収納室14と機械室20とを断熱する台板24内に埋め込むよう構成され、該二重管式熱交換器HE’の熱損失を防止して一次冷媒と二次冷媒との熱交換効率の向上を図るようになっている。従って、二重管式熱交換器HE’の外周を別途設けた断熱材で覆う必要がなく、部品点数削減によるコスト低減と共に、製造工程の簡略化が図られる。特に、収納室14と機械室20との断熱を図る台板24には、断熱性能の高い発泡材が利用されることから、二重管式熱交換器HE’に別途断熱材を取り付ける場合に比して断熱性能の向上が図られ、熱損失の低減を効果的に図り得る利点もある。また、前述したプレート式熱交換器HEに比べて構成の簡単な二重管式熱交換器HE’を用いることで、コスト低減が図られる。   A secondary liquid pipe 48 connecting the inner pipes 132 and the evaporator EP is connected to the connection end side of the primary liquid pipe 38 with respect to the outer pipe 130, and the inner pipes 132 are evaporated. A secondary gas pipe 50 that connects the vessel EP is connected to the connection end side of the primary gas pipe 40 in the outer pipe 130, and a primary refrigerant that circulates in the outer pipe 130 and a secondary that circulates in the inner pipe 132. It is comprised so that a refrigerant | coolant may become a counterflow. Further, the double-pipe heat exchanger HE ′ according to the sixth embodiment is configured to be embedded in a base plate 24 that insulates the storage chamber 14 and the machine chamber 20 in the same manner as in the first embodiment. The heat loss of the heavy pipe heat exchanger HE ′ is prevented and the heat exchange efficiency between the primary refrigerant and the secondary refrigerant is improved. Therefore, it is not necessary to cover the outer periphery of the double-pipe heat exchanger HE 'with a separately provided heat insulating material, thereby reducing the cost by reducing the number of parts and simplifying the manufacturing process. In particular, the base plate 24 that insulates the storage room 14 and the machine room 20 uses a foam material having high heat insulation performance. Therefore, when a separate heat insulation material is attached to the double-pipe heat exchanger HE ′. In comparison, the heat insulation performance is improved, and there is an advantage that heat loss can be effectively reduced. In addition, the use of the double-pipe heat exchanger HE 'having a simpler structure than the plate heat exchanger HE described above can reduce the cost.

また、前記二重管式熱交換器HE’を台板24内に固定する構成として、前述の実施例1〜5と同様に、台板24の外郭部材24a,24aの間に発泡材を充填するに先立って、二重管式熱交換器HE’に接続する一次液配管38および一次ガス配管40を第1拘束治具74で固定すると共に、二次液配管48および二次ガス配管50の夫々を第2拘束治具76で固定することで、発泡材の充填・硬化時に二重管式熱交換器HE’が位置ズレするのを防止でき、二重管式熱交換器HE’を所定位置で確実に保持することが可能となる。   Further, as a configuration for fixing the double-pipe heat exchanger HE ′ in the base plate 24, a foaming material is filled between the outer members 24a and 24a of the base plate 24 as in the first to fifth embodiments. Prior to this, the primary liquid pipe 38 and the primary gas pipe 40 connected to the double pipe heat exchanger HE ′ are fixed by the first restraining jig 74, and the secondary liquid pipe 48 and the secondary gas pipe 50 are connected. By fixing each with the second restraining jig 76, it is possible to prevent the displacement of the double tube heat exchanger HE 'during filling and curing of the foam material, and the double tube heat exchanger HE' is predetermined. It becomes possible to hold it securely in position.

次に、実施例7に係る冷却装置につき説明する。但し、実施例7に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to Embodiment 7 will be described. However, the cooling device according to the seventh embodiment has basically the same configuration as the cooling device 32 described in the first embodiment, and members and configurations having the same functions are denoted by the same reference numerals and detailed description thereof will be made. Omitted.

図14に示すように、前記収納室14と機械室16とを区画する台板224の台板本体224aには、該機械室16に開口して前記プレート式熱交換器HEを収納可能な収納部226が形成されており、該収納部226の開口部226aを、断熱蓋体228により閉成することで、該プレート式熱交換器HEが台板224内に埋め込まれるよう構成されている。なお、前記断熱蓋体228は、前記台板本体224aと同一の発泡材を断熱蓋体228の外郭体(図示せず)に充填・硬化することで形成される。   As shown in FIG. 14, a base plate body 224 a of a base plate 224 that partitions the storage chamber 14 and the machine chamber 16 is a storage that opens into the machine chamber 16 and can store the plate heat exchanger HE. A portion 226 is formed, and the plate heat exchanger HE is embedded in the base plate 224 by closing the opening 226 a of the storage portion 226 with a heat insulating lid 228. The heat insulating lid 228 is formed by filling and curing the same foam material as that of the base plate main body 224a in an outer body (not shown) of the heat insulating lid 228.

図14に示すように、前記断熱蓋体228は、前記台板本体224aにおける収納部226を画成する内壁面224bと断熱蓋体228との間、および前記プレート式熱交換器HEと断熱蓋体228との間に、プレート式熱交換器HE内を循環する冷媒の消炎距離以下の間隔に設定された隙間Sが介在する状態で固定される。また、同様に、前記収納部226に収納したプレート式熱交換器HEの外周と、前記収納部226を画成する内壁面224bとの間にも隙間Sが介在するように、該プレート式熱交換器HEが収納部226に設置されている。なお、前記隙間Sの間隔は、例えば一次冷媒としてブタンを採用する場合には、1.8mm以下に設定され、一次冷媒としてプロパンを採用する場合には1.7mm以下に設定される。   As shown in FIG. 14, the heat insulating lid 228 is formed between the inner wall surface 224 b defining the storage portion 226 in the base plate body 224 a and the heat insulating lid 228, and between the plate heat exchanger HE and the heat insulating lid. Between the body 228, it fixes in the state which the clearance gap S set to the space | interval below the flame extinction distance of the refrigerant | coolant which circulates in the plate type heat exchanger HE is interposed. Similarly, the plate-type heat exchanger 226 is arranged such that a gap S is interposed between the outer periphery of the plate heat exchanger HE stored in the storage portion 226 and the inner wall surface 224b that defines the storage portion 226. The exchanger HE is installed in the storage unit 226. The gap S is set to, for example, 1.8 mm or less when butane is used as the primary refrigerant, and is set to 1.7 mm or less when propane is used as the primary refrigerant.

一方で、前記台板224を貫通した二次液配管48および二次ガス配管50の周囲に生ずる隙間はパッキン230により気密的に閉成される。このパッキン230の取り付け構造としては、例えば、図14に示すように、前記プレート式熱交換器HEと前記二次液配管48および二次ガス配管50との接続端部に取り付けたパッキン230を、前記台板224(台板本体224a)に密着させるよう構成される。また、パッキン230の取り付け構造の別例として、図15(a)に示すように、二次液配管48および二次ガス配管50に取り付けたパッキン230を、台板本体224a内に埋め込むよう構成してもよく、また図15(b)に示すように、プレート式熱交換器HEおよび台板本体224aの対向面の全面に、シート状に形成したパッキン230が密着するよう構成してもよい。すなわち、台板224を貫通した二次液配管48および二次ガス配管50の周囲に生ずる隙間をパッキン230で密閉することで、台板224により収納室14と収納部226とが気密的に隔絶される。   On the other hand, a gap generated around the secondary liquid pipe 48 and the secondary gas pipe 50 penetrating the base plate 224 is hermetically closed by the packing 230. As an attachment structure of the packing 230, for example, as shown in FIG. 14, a packing 230 attached to a connecting end portion between the plate heat exchanger HE and the secondary liquid pipe 48 and the secondary gas pipe 50, The base plate 224 (the base plate body 224a) is configured to be in close contact with the base plate 224. As another example of the mounting structure of the packing 230, as shown in FIG. 15A, the packing 230 attached to the secondary liquid pipe 48 and the secondary gas pipe 50 is embedded in the base plate body 224a. Alternatively, as shown in FIG. 15 (b), the packing 230 formed in a sheet shape may be in close contact with the entire opposing surfaces of the plate heat exchanger HE and the base plate body 224a. That is, the gap formed around the secondary liquid pipe 48 and the secondary gas pipe 50 penetrating the base plate 224 is sealed with the packing 230, so that the storage chamber 14 and the storage portion 226 are hermetically separated by the base plate 224. Is done.

このように、前記プレート式熱交換器HEが設置された収納部226は、台板本体224aの内壁面224bと断熱蓋体228との間、およびプレート式熱交換器HEと断熱蓋体228との間に形成した隙間Sを介して機械室16に連通する一方、収納室14とは気密的に隔離される。従って、前記収納部226内のプレート式熱交換器HEから冷媒が漏出した場合であっても、漏出した冷媒が収納室14に侵入するのを阻止して、前記隙間Sを介して機械室16側に放散し得る。また、前記隙間Sは、冷媒の消炎距離以下に設定されているから、冷媒(実施例7では一次冷媒)として可燃性の冷媒を用いた場合に、該収納部226内で冷媒が発火することはない。更に、前記隙間Sは、前記プレート式熱交換器HEの略全周囲に形成されているから、冷媒が漏出した場合には、該冷媒を速やかに機械室16へ放出することができる。   As described above, the storage unit 226 in which the plate heat exchanger HE is installed has a space between the inner wall surface 224b of the base plate body 224a and the heat insulating lid body 228, and between the plate heat exchanger HE and the heat insulating lid body 228. While communicating with the machine room 16 through a gap S formed between them, the storage room 14 is hermetically isolated. Therefore, even if the refrigerant leaks from the plate heat exchanger HE in the storage portion 226, the leaked refrigerant is prevented from entering the storage chamber 14, and the machine chamber 16 is interposed via the gap S. Can dissipate to the side. Further, since the gap S is set to be equal to or less than the flame extinguishing distance of the refrigerant, when a combustible refrigerant is used as the refrigerant (the primary refrigerant in the seventh embodiment), the refrigerant ignites in the storage portion 226. There is no. Further, since the gap S is formed in substantially the entire periphery of the plate heat exchanger HE, when the refrigerant leaks, the refrigerant can be quickly discharged to the machine chamber 16.

更に、実施例7では、台板224(台板本体224a)に形成した収納部226にプレート式熱交換器HEを設置した後に、該収納部226の開口部226aを断熱蓋体228で閉成することにより、台板224内にプレート式熱交換器HEが埋め込まれるよう構成したから、実施例1等のように台板24の外郭部材24aの間にプレート式熱交換器HEを配置した状態で発泡材を充填して硬化させる構成に比べて、プレート式熱交換器HEを容易に台板224内に埋め込むことが可能となる。また、プレート式熱交換器HEを傾斜配置する場合には、台板224(台板本体224a)に形成した収納部226にプレート式熱交換器HEを設置することで、プレート式熱交換器HEの角度調節を容易になし得る利点がある。   Furthermore, in Example 7, after installing plate type heat exchanger HE in the accommodating part 226 formed in the base plate 224 (base plate main body 224a), the opening part 226a of this accommodating part 226 is closed with the heat insulation cover body 228. Since the plate heat exchanger HE is embedded in the base plate 224, the plate heat exchanger HE is disposed between the outer members 24a of the base plate 24 as in the first embodiment. Therefore, the plate heat exchanger HE can be easily embedded in the base plate 224 as compared with the configuration in which the foam material is filled and cured. Further, when the plate heat exchanger HE is inclined, the plate heat exchanger HE is installed in the storage portion 226 formed on the base plate 224 (the base plate body 224a), so that the plate heat exchanger HE is installed. There is an advantage that the angle can be easily adjusted.

次に、実施例8に係る冷却装置につき説明する。但し、実施例8に係る冷却装置は、実施例1で説明した冷却装置32と基本的に同一構成であり、同一の機能を有する部材・構成には同一の符号を付して詳細な説明を省略する。   Next, a cooling device according to Embodiment 8 will be described. However, the cooling device according to the eighth embodiment has basically the same configuration as the cooling device 32 described in the first embodiment, and members and configurations having the same functions are denoted by the same reference numerals and detailed description thereof will be made. Omitted.

図16に示すように、前記収納室14と機械室16とを区画する台板324の台板本体324aには、機械室16側に突出する台座部325が形成されており、該台座部325に、該機械室16に開口して前記プレート式熱交換器HEを収納可能な収納部326を形成するよう構成される。そして、前記収納部326の開口部326aを、断熱蓋体328により閉成することで、該プレート式熱交換器HEが台板324内に埋め込まれるよう構成されている。ここで、前述した実施例7と同様に、前記断熱蓋体328は、前記台座部325における収納部326を画成する内壁面325aと断熱蓋体328との間、および前記プレート式熱交換器HEと断熱蓋体328との間に、プレート式熱交換器HE内を循環する冷媒の消炎距離以下の間隔に設定された隙間Sが介在する状態で固定される。   As shown in FIG. 16, a base plate body 324 a of a base plate 324 that partitions the storage chamber 14 and the machine chamber 16 is formed with a base portion 325 that protrudes toward the machine chamber 16, and the base portion 325. In addition, a storage portion 326 that is open to the machine chamber 16 and can store the plate heat exchanger HE is formed. The plate heat exchanger HE is embedded in the base plate 324 by closing the opening 326a of the storage portion 326 with a heat insulating lid 328. Here, similarly to the above-described seventh embodiment, the heat insulating lid 328 is provided between the inner wall surface 325a defining the storage portion 326 in the pedestal portion 325 and the heat insulating lid 328, and the plate heat exchanger. Between HE and the heat insulation cover body 328, it fixes in the state in which the clearance gap S set to the space | interval below the extinction distance of the refrigerant | coolant which circulates in the plate type heat exchanger HE is interposed.

また、前記プレート式熱交換器HEに接続する二次液配管48および二次ガス配管50の夫々は、前記収納部326を画成する内底面325bから台座部325の側部に貫通するよう設けられている。すなわち、前記二次液配管48および二次ガス配管50は、前記収納部326から機械室16内に一旦導出された後に、前記台板本体324aを貫通して収納室14側の蒸発器EPに接続される。   In addition, each of the secondary liquid pipe 48 and the secondary gas pipe 50 connected to the plate heat exchanger HE is provided so as to penetrate from the inner bottom surface 325b defining the storage portion 326 to the side portion of the pedestal portion 325. It has been. That is, the secondary liquid pipe 48 and the secondary gas pipe 50 are once led out from the storage portion 326 into the machine chamber 16, and then penetrate the base plate body 324a to the evaporator EP on the storage chamber 14 side. Connected.

そして、台板本体324aを貫通した二次液配管48および二次ガス配管50の周囲に生ずる隙間をパッキン330により気密的に閉成するようになっている。このパッキン330の取り付け構造としては、前記二次液配管48および二次ガス配管50との接続端部に取り付けたパッキン330を、前記台板324(台板本体324a)に密着させるよう構成される。なお、前述と同様に、二次液配管48および二次ガス配管50に取り付けたパッキン330を、台板本体324a内に埋め込むよう構成してもよい。   A gap generated around the secondary liquid pipe 48 and the secondary gas pipe 50 penetrating the base plate main body 324 a is hermetically closed by the packing 330. The packing 330 is attached to the base plate 324 (the base plate body 324a) in close contact with the packing 330 attached to the connection end of the secondary liquid pipe 48 and the secondary gas pipe 50. . As described above, the packing 330 attached to the secondary liquid pipe 48 and the secondary gas pipe 50 may be embedded in the base plate body 324a.

このように、前記プレート式熱交換器HEが設置された収納部326は、台座部325の内壁面325aと断熱蓋体328との間、およびプレート式熱交換器HEと断熱蓋体228との間に形成した隙間Sを介して機械室16に連通する。従って、前記収納部326内のプレート式熱交換器HEから冷媒が漏出した場合であっても、漏出した冷媒が収納室14に侵入するのは阻止され、前記隙間Sを介して機械室16側に放散し得る。また、前記隙間Sは、冷媒の消炎距離以下に設定されているから、冷媒として可燃性冷媒を用いた場合に、該収納部326内で冷媒が発火することはない。更に、実施例8では、台板324(台座部325)に形成した収納部326にプレート式熱交換器HEを設置した後に、該収納部326の開口部326aを断熱蓋体328で閉成することにより、台板324内にプレート式熱交換器HEが埋め込まれるよう構成したから、実施例1等のように台板24の外郭部材24aの間にプレート式熱交換器HEを配置した状態で発泡材を充填して硬化させる構成に比べて、プレート式熱交換器HEを容易に台板324内に埋め込むことが可能となる。また、プレート式熱交換器HEを傾斜配置する場合には、台板324(台座部325)に形成した収納部326にプレート式熱交換器HEを設置することで、プレート式熱交換器HEの角度調節を容易になし得る。   As described above, the storage portion 326 in which the plate heat exchanger HE is installed has a space between the inner wall surface 325a of the pedestal portion 325 and the heat insulating lid 328, and between the plate heat exchanger HE and the heat insulating lid 228. It communicates with the machine room 16 through a gap S formed therebetween. Therefore, even if the refrigerant leaks from the plate heat exchanger HE in the storage portion 326, the leaked refrigerant is prevented from entering the storage chamber 14, and the machine chamber 16 side is interposed through the gap S. Can be dissipated. In addition, since the gap S is set to be equal to or shorter than the extinguishing distance of the refrigerant, the refrigerant does not ignite in the storage portion 326 when a combustible refrigerant is used as the refrigerant. Furthermore, in Example 8, after installing the plate-type heat exchanger HE in the storage portion 326 formed on the base plate 324 (base portion 325), the opening 326a of the storage portion 326 is closed by the heat insulating lid 328. Thus, since the plate heat exchanger HE is embedded in the base plate 324, the plate heat exchanger HE is disposed between the outer members 24a of the base plate 24 as in the first embodiment. Compared to the configuration in which the foam material is filled and cured, the plate heat exchanger HE can be easily embedded in the base plate 324. When the plate heat exchanger HE is inclined, the plate heat exchanger HE is installed in the storage portion 326 formed on the base plate 324 (base portion 325), so that the plate heat exchanger HE is installed. The angle can be adjusted easily.

また、前記プレート式熱交換器HEに接続する二次液配管48および二次ガス配管50を、前記台座部325の収納部326から機械室16へ一旦導出した後に、前記台板本体324aを貫通して収納室14側の蒸発器EPに接続しているから、該二次液配管48および二次ガス配管50と、台座部325内に充填された発泡材との間に生ずる微少な隙間(図示せず)を介しても、前記収納部326が機械室16に連通する。従って、プレート式熱交換器HEから冷媒の漏出が発生したとしても、該冷媒が収納室14に侵入することはない。また、二次液配管48および二次ガス配管50を、台座部325から機械室16内に一旦導出した後に、前記台板本体324aを貫通して収納室14側の蒸発器EPに接続するよう構成したことで、該二次液配管48および二次ガス配管50と台板本体324aとを密閉するパッキン330が機械室16に露出する。従って、パッキン330が経年的に劣化したとしても、該パッキン330を容易に交換し得る利点がある。   Further, the secondary liquid pipe 48 and the secondary gas pipe 50 connected to the plate heat exchanger HE are once led out from the storage portion 326 of the pedestal portion 325 to the machine chamber 16 and then penetrated through the base plate main body 324a. Since it is connected to the evaporator EP on the storage chamber 14 side, a minute gap (between the secondary liquid pipe 48 and the secondary gas pipe 50 and the foamed material filled in the pedestal portion 325 ( The storage portion 326 communicates with the machine room 16 even through a not-shown). Therefore, even if the refrigerant leaks from the plate heat exchanger HE, the refrigerant does not enter the storage chamber 14. Further, the secondary liquid pipe 48 and the secondary gas pipe 50 are once led out from the pedestal portion 325 into the machine chamber 16 and then penetrated through the base plate body 324a to be connected to the evaporator EP on the storage chamber 14 side. With the configuration, the packing 330 that seals the secondary liquid pipe 48 and the secondary gas pipe 50 and the base plate body 324 a is exposed to the machine chamber 16. Therefore, even if the packing 330 deteriorates with time, there is an advantage that the packing 330 can be easily replaced.

(変更例)
本発明に係る冷却装置としては、前述した各実施例のものに限られるものではなく、種々の変更が可能である。
(Example of change)
The cooling device according to the present invention is not limited to the above-described embodiments, and various modifications can be made.

各実施例では、断熱壁部を構成する外郭部材に傾斜面を設けたり、該外郭部材またはプレート式熱交換器に設けた突起部により、プレート式熱交換器を傾斜状態で配置するよう構成したが、プレート式熱交換器の各配管を位置決め固定する治具のみにより、プレート式熱交換器を傾斜状態で位置決めすることもできる。   In each embodiment, the outer member constituting the heat insulating wall is provided with an inclined surface, or the plate heat exchanger is arranged in an inclined state by the protrusion provided on the outer member or the plate heat exchanger. However, it is also possible to position the plate heat exchanger in an inclined state using only a jig for positioning and fixing each pipe of the plate heat exchanger.

また、蒸発器の蒸発管としては、外周に半径方向へ延出するフィンを設けた所謂フィンチューブや、外周に半径方向へ延出するフィンを螺旋状に設けた所謂スパイラルフィンチューブを採用してもよい。また、蒸発管の管路としては、流入端で複数(2系統)の系統に分岐されて、これら複数系統の分岐蒸発管が、循環方向前側に向けて下り勾配となるように蛇行状に延在し、流出端で再びまとめられる構成も採用し得る。   Moreover, as an evaporator tube of the evaporator, a so-called fin tube having a radially extending fin on the outer periphery, or a so-called spiral fin tube having a spiral extending radially on the outer periphery is adopted. Also good. Further, the pipes of the evaporation pipes are branched into a plurality of (two systems) systems at the inflow end, and these plurality of system branch evaporation pipes extend in a meandering manner so as to have a downward slope toward the front side in the circulation direction. It is also possible to adopt a configuration that exists and is brought together again at the outflow end.

各実施例では、蒸発管を流入端側から流出端側に向かうにつれて下方傾斜するように形成したが、全体として流出端側への重力作用下に液化冷媒を拡散し得るのであれば、管路の一部に流出端側に向けて上方傾斜する部位あるいは水平に延在する部位を設けてもよい。   In each embodiment, the evaporation pipe is formed so as to incline downward from the inflow end side to the outflow end side. However, if the liquefied refrigerant can be diffused under the action of gravity toward the outflow end side as a whole, the pipe line A part that is inclined upward toward the outflow end side or a part that extends horizontally may be provided in a part of the part.

各実施例では、二次回路における蒸発器において、二次液配管に接続する流入端を二次ガス配管に接続する流出端より上部に位置するよう構成したが、これに限られるものではなく、二次液配管に接続する流入端を二次ガス配管に接続する流出端より下部に位置するよう構成することも可能である。   In each example, in the evaporator in the secondary circuit, the inflow end connected to the secondary liquid pipe is configured to be located above the outflow end connected to the secondary gas pipe, but is not limited thereto, It is also possible to configure so that the inflow end connected to the secondary liquid pipe is positioned below the outflow end connected to the secondary gas pipe.

各実施例では、気相二次冷媒の逆流を防ぐ手段として、プレート式熱交換器における二次熱交換部の流路に形成される液封部を利用したが、これに限定されず、熱交換器の内部における二次液配管との接続部近傍から二次液配管の間に、気相二次冷媒に対し流通抵抗となる抗力を設ければよい。例えば、熱交換器の内底部または二次液配管の途中に液相二次冷媒を貯留する構成として、この貯留部に溜る二次冷媒のヘッド(水頭)を抵抗部としてもよい。更には、二次液配管に流れ抵抗が大きくなる手段や、絞り部あるいはトラップ等を設ける配管形状としたり、あるいは二次液配管に介挿した逆止弁等も抵抗部として用いることができる。これら種々の態様の抵抗部を単体で用いるだけでなく、実施例1および変更例の構成を組合わせて抵抗部として機能させてもよい。   In each embodiment, as a means for preventing the back flow of the gas phase secondary refrigerant, a liquid seal formed in the flow path of the secondary heat exchange section in the plate heat exchanger is used. What is necessary is just to provide the drag which becomes distribution resistance with respect to a gaseous-phase secondary refrigerant between the secondary liquid piping from the connection part vicinity with the secondary liquid piping in the inside of an exchanger. For example, as a configuration in which the liquid phase secondary refrigerant is stored in the inner bottom portion of the heat exchanger or in the middle of the secondary liquid pipe, a head (water head) of the secondary refrigerant stored in the storage portion may be used as the resistance portion. Furthermore, a means for increasing the flow resistance in the secondary liquid pipe, a pipe shape provided with a throttle part or a trap, or a check valve inserted in the secondary liquid pipe can be used as the resistance part. In addition to using the resistance portions of these various modes alone, the configurations of the first embodiment and the modified example may be combined to function as a resistance portion.

各実施例では、機械室に配設する機器の共通基板となる台板により、機械室と収納室との間で空気の流通がないように収納室と機械室とを区切る構成であるが、機械室と収納室とを箱体の天板で区切る構成であってもよい。   In each embodiment, the storage chamber and the machine room are separated so that there is no air flow between the machine room and the storage room by a base plate that is a common substrate of the equipment disposed in the machine room. The machine room and the storage room may be separated from each other by a box top plate.

各実施例では、冷却装置を冷蔵庫に採用する場合を例にして説明したが、冷凍庫、冷凍・冷蔵庫、ショーケースおよびプレハブ庫等の所謂貯蔵庫、その他空調機器等にも適用可能である。   In each of the embodiments, the case where the cooling device is employed in the refrigerator has been described as an example.

本発明の好適な実施例1に係る冷却装置により冷却される冷蔵庫を示す側断面図である。It is a sectional side view which shows the refrigerator cooled with the cooling device which concerns on suitable Example 1 of this invention. 実施例1に係る冷却装置を示す概略回路図である。1 is a schematic circuit diagram illustrating a cooling device according to Embodiment 1. FIG. 実施例1に係るプレート式熱交換器の断面図である。1 is a cross-sectional view of a plate heat exchanger according to Example 1. FIG. 実施例1に係るプレート式熱交換器の設置状態を示す概略説明図である。It is a schematic explanatory drawing which shows the installation state of the plate type heat exchanger which concerns on Example 1. FIG. 実施例1に係るプレート式熱交換器における温度勾配と二次冷媒の流通方向との関係を示す概略説明図であって、(a)は二次冷媒が正循環する状態を示し、(b)は二次冷媒が逆循環する状態を示す。It is a schematic explanatory drawing which shows the relationship between the temperature gradient in the plate type heat exchanger which concerns on Example 1, and the distribution direction of a secondary refrigerant | coolant, (a) shows the state in which a secondary refrigerant is circulating normally, (b) Indicates a state in which the secondary refrigerant is reversely circulated. 図2に示す蒸発器のA−A線断面図であって、二次冷媒が正循環する状態を示す。It is AA sectional view taken on the line of the evaporator shown in FIG. 2, Comprising: The state which a secondary refrigerant | coolant circulates normally is shown. 図2に示す蒸発器のB−B線断面図であって、二次冷媒が逆循環する状態を示す。It is a BB sectional view of the evaporator shown in Drawing 2, and shows the state where a secondary refrigerant carries out reverse circulation. 実施例1に係るプレート式熱交換器の配設方法を示す概略説明図である。It is a schematic explanatory drawing which shows the arrangement | positioning method of the plate type heat exchanger which concerns on Example 1. FIG. 実施例3に係るプレート式熱交換器の配設方法を示す概略説明図である。It is a schematic explanatory drawing which shows the arrangement | positioning method of the plate type heat exchanger which concerns on Example 3. FIG. 実施例4に係るプレート式熱交換器の配設方法を示す概略説明図である。It is a schematic explanatory drawing which shows the arrangement | positioning method of the plate type heat exchanger which concerns on Example 4. FIG. 実施例4に係るプレート式熱交換器を配設した台板を傾斜して配設する配設方法を示す概略説明図であって、(a)は箱体構造により傾斜させる構造を示し、(b)は台板構造により台板を傾斜させる構造を示す。It is a schematic explanatory drawing which shows the arrangement | positioning method which inclines and arrange | positions the base plate which arrange | positioned the plate-type heat exchanger which concerns on Example 4, Comprising: (a) shows the structure made to incline with a box structure, b) shows a structure in which the base plate is inclined by the base plate structure. (a)は、実施例5に係る冷却装置により冷却される横型冷蔵庫を示す側断面図であり、(b)は実施例5に係る冷却装置を示す概略回路図である。(a) is a sectional side view showing a horizontal refrigerator cooled by the cooling device according to the fifth embodiment, and (b) is a schematic circuit diagram showing the cooling device according to the fifth embodiment. 実施例6に係る二重管式熱交換器を模式的に示した説明図である。It is explanatory drawing which showed typically the double tube | pipe type heat exchanger which concerns on Example 6. FIG. 実施例7に係る冷却装置におけるプレート式熱交換器を、台板の収納部に設置した状態で示す概略説明図である。It is a schematic explanatory drawing shown in the state which installed the plate type heat exchanger in the cooling device which concerns on Example 7 in the accommodating part of a baseplate. 実施例7に係るパッキンの取付構造を示す概略説明図であって、(a)はパッキンを台板内に埋め込んだ状態を示し、(b)はプレート式熱交換器および台板本体の対向面の全面にパッキンを密着させた状態を示す。It is a schematic explanatory drawing which shows the attachment structure of the packing which concerns on Example 7, Comprising: (a) shows the state which embedded the packing in the base plate, (b) is the opposing surface of a plate type heat exchanger and a base plate main body. The state where the packing is in close contact with the entire surface is shown. 実施例8に係るプレート式熱交換器を、台板の台座部に形成した収納部に設置した状態で示す概略説明図である。It is a schematic explanatory drawing shown in the state installed in the storage part formed in the base part of the base plate of the plate type heat exchanger which concerns on Example 8. FIG. 従来技術に係る冷却装置を模式的に示した説明図である。It is explanatory drawing which showed typically the cooling device which concerns on a prior art.

符号の説明Explanation of symbols

14 収納室(閉鎖空間),20 機械室(開放空間),24 台板(断熱壁部)
34 一次回路,36 一次熱交換部,44 二次回路,46 二次熱交換部
124 横壁部(断熱壁部),224 台板(断熱壁部),224b 内壁面
226 収納部,226a 開口部,228 断熱蓋体,324 台板(断熱壁部)
325a 内壁面,326 収納部,326a 開口部,328 断熱蓋体
HE プレート式熱交換器(熱交換器),HE’ 二重管式熱交換器(熱交換器)
S 隙間
14 storage room (closed space), 20 machine room (open space), 24 base plate (heat insulation wall)
34 primary circuit, 36 primary heat exchanging part, 44 secondary circuit, 46 secondary heat exchanging part 124 lateral wall part (heat insulation wall part), 224 base plate (heat insulation wall part), 224b inner wall surface 226 storage part, 226a opening part, 228 Thermal insulation cover, 324 Base plate (thermal insulation wall)
325a Inner wall surface, 326 storage, 326a opening, 328 Insulation cover HE plate type heat exchanger (heat exchanger), HE 'double tube heat exchanger (heat exchanger)
S clearance

Claims (4)

一次冷媒を機械的に強制循環する一次回路(34)と、二次冷媒を自然循環する二次回路(44)と、一次冷媒および二次冷媒の間で熱交換する熱交換器(HE,HE’)とを備え、前記一次回路(34)を配設する開放空間(20)と、前記二次回路(44)を配設する閉鎖空間(14)とを断熱壁部(24,124,224,324)により区切るよう構成された冷却装置において、
前記熱交換器(HE,HE’)を前記断熱壁部(24,124,224,324)内に埋め込むよう配設し
前記断熱壁部(24,124,224,324)は、前記開放空間(20)に開口する開口部(226a,326a)から前記熱交換器(HE,HE’)を収納可能な収納部(226,326)と、前記収納部(226,326)の開口部(226a,326a)を閉成する断熱蓋体(228,328)とを有し、
前記収納部(226,326)の内壁面(224b,325a)と断熱蓋体(228,328)との間に、冷媒の消炎距離以下の間隔に設定された隙間(S)を介在させた
ことを特徴とする冷却装置。
A primary circuit (34) that mechanically circulates the primary refrigerant, a secondary circuit (44) that naturally circulates the secondary refrigerant, and a heat exchanger (HE, HE that exchanges heat between the primary refrigerant and the secondary refrigerant) '), And an open space (20) in which the primary circuit (34) is disposed and a closed space (14) in which the secondary circuit (44) is disposed are separated by a heat insulating wall (24, 124, 224, 324). In the configured cooling device,
The heat exchanger (HE, HE ′) is disposed so as to be embedded in the heat insulating wall (24, 124, 224, 324) ,
The heat insulating wall portions (24, 124, 224, 324) include storage portions (226, 326) that can store the heat exchangers (HE, HE ') from openings (226a, 326a) that open to the open space (20), and the storage portions. A heat insulating lid (228,328) for closing the opening (226a, 326a) of (226,326),
A gap (S) set at an interval equal to or less than the extinguishing distance of the refrigerant is interposed between the inner wall surface (224b, 325a) of the storage portion (226, 326) and the heat insulating lid (228, 328). A cooling device characterized by.
前記断熱蓋体(228,328)と熱交換器(HE,HE’)との間に、冷媒の消炎距離以下の間隔に設定された隙間(S)を介在させた請求項記載の冷却装置。 The heat insulating lid (228,328) and the heat exchanger (HE, HE ') and between the cooling apparatus of claim 1, wherein the set gap quenching distance following intervals refrigerant (S) is interposed. 前記熱交換器(HE)は、複数のプレート(60)を所要間隔離間するように並列に対向配置し、対向するプレート(60,60)の間に形成される流路(60a,60b)に、前記一次冷媒および二次冷媒が交互に流通させるよう構成される請求項1または2記載の冷却装置。 In the heat exchanger (HE), a plurality of plates (60) are arranged opposite to each other in parallel so as to be spaced apart from each other, and flow paths (60a, 60b) formed between the opposed plates (60, 60). The cooling device according to claim 1 or 2 , wherein the primary refrigerant and the secondary refrigerant are configured to flow alternately. 前記熱交換器(HE’)は、外管(130)と、前記外管(130)の内部に挿通された内管(132)とから構成され、前記外管(130)および内管(132)に、前記一次冷媒および二次冷媒を対向流となるよう流通させるよう構成される請求項1または2記載の冷却装置。 The heat exchanger (HE ′) includes an outer tube (130) and an inner tube (132) inserted into the outer tube (130). The outer tube (130) and the inner tube (132) 3) The cooling device according to claim 1 or 2 , wherein the primary refrigerant and the secondary refrigerant are circulated in a counter flow.
JP2007252732A 2007-09-27 2007-09-27 Cooling system Expired - Fee Related JP5139019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252732A JP5139019B2 (en) 2007-09-27 2007-09-27 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252732A JP5139019B2 (en) 2007-09-27 2007-09-27 Cooling system

Publications (2)

Publication Number Publication Date
JP2009085453A JP2009085453A (en) 2009-04-23
JP5139019B2 true JP5139019B2 (en) 2013-02-06

Family

ID=40659109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252732A Expired - Fee Related JP5139019B2 (en) 2007-09-27 2007-09-27 Cooling system

Country Status (1)

Country Link
JP (1) JP5139019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011201B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system mounted within a deck
JP6231425B2 (en) * 2014-04-21 2017-11-15 株式会社コロナ Refrigerant water heat exchanger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS455339Y1 (en) * 1966-07-28 1970-03-13
JPH07158886A (en) * 1993-12-03 1995-06-20 Matsushita Electric Ind Co Ltd Box for electrical components of air conditioner
JP3464294B2 (en) * 1994-12-15 2003-11-05 株式会社東芝 Freezer refrigerator
JP3523381B2 (en) * 1995-07-26 2004-04-26 株式会社日立製作所 refrigerator
JP3733661B2 (en) * 1996-10-04 2006-01-11 株式会社日立製作所 refrigerator
JP3563958B2 (en) * 1997-04-28 2004-09-08 株式会社大同工業所 Explosion-proof refrigeration / refrigeration equipment
JPH11125482A (en) * 1997-10-21 1999-05-11 Matsushita Electric Ind Co Ltd Ant-explosion unit for refrigerating machine employing inflammable coolant
JP2001091171A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Refrigeration system using heat conveying apparatus
JP2001118134A (en) * 1999-10-19 2001-04-27 Sanyo Electric Co Ltd Vending machine
JP2002022374A (en) * 2000-07-07 2002-01-23 Hitachi Ltd Plate type heat exchanger and freezing air conditioning apparatus
JP2005333020A (en) * 2004-05-20 2005-12-02 National Institute Of Advanced Industrial & Technology Open-type explosionproof container

Also Published As

Publication number Publication date
JP2009085453A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5275929B2 (en) Cooling system
JP6724888B2 (en) Equipment temperature controller
JP4945713B2 (en) Cooling system
WO2010001643A1 (en) Cooling device and method for manufacturing the same
KR20050077761A (en) Heating/cooling system
JP2009150588A (en) Cooling device
JP4945712B2 (en) Thermosiphon
WO2010092628A1 (en) Refrigerator
JP5219657B2 (en) Cooling device and manufacturing method thereof
JP5139019B2 (en) Cooling system
JP2018165104A (en) Thermal management system in vehicle cabin
JP5405058B2 (en) Cooling system
JP2011163704A (en) Refrigerator
JP2004326400A (en) Vending machine
WO2009157318A1 (en) Cooling device
JP3876719B2 (en) refrigerator
JP2009168288A (en) Cooling device
JP2009168337A (en) Cooling device
JP2001263919A (en) Refrigeration system
JP3833885B2 (en) vending machine
JPH0771857A (en) Refrigerator
JP2006004254A (en) Automatic vending machine
JP2009140308A (en) Vending machine
JP3762542B2 (en) Air conditioner
JP2023083192A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees