JP5138381B2 - Method and apparatus for producing a liquefied natural gas stream - Google Patents

Method and apparatus for producing a liquefied natural gas stream Download PDF

Info

Publication number
JP5138381B2
JP5138381B2 JP2007544910A JP2007544910A JP5138381B2 JP 5138381 B2 JP5138381 B2 JP 5138381B2 JP 2007544910 A JP2007544910 A JP 2007544910A JP 2007544910 A JP2007544910 A JP 2007544910A JP 5138381 B2 JP5138381 B2 JP 5138381B2
Authority
JP
Japan
Prior art keywords
stream
substream
scrub
feed
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007544910A
Other languages
Japanese (ja)
Other versions
JP2008523186A (en
Inventor
マルコ・ディック・ヤガー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2008523186A publication Critical patent/JP2008523186A/en
Application granted granted Critical
Publication of JP5138381B2 publication Critical patent/JP5138381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/06Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas by cooling or compressing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、主としてメタンを(好ましくは>90モル%)含む液化天然ガス(LNG)流の製造方法及び装置に関する。   The present invention relates to a method and apparatus for producing a liquefied natural gas (LNG) stream comprising mainly methane (preferably> 90 mol%).

発明の背景
天然ガスは、他の輸送手段が得られないか又は魅力的でない場合、キャリヤーで輸送できるように液化するのが普通の方法である。天然ガスを液化すると、容積が著しく低下し、輸送が非常に効率的になる。液化天然ガス(LNG)を製造するには、液化法が使用される。液化法は、普通、1回以上の冷凍サイクルを含む極低温帯域を有し、ここで天然ガスは、周囲温度から天然ガスの周囲沸点又はこれより若干低い温度まで冷却される。この沸点は、通常、約−160℃である。
BACKGROUND OF THE INVENTION Natural gas is usually liquefied so that it can be transported on a carrier if no other means of transport is available or attractive. When natural gas is liquefied, the volume is significantly reduced and transport becomes very efficient. A liquefaction process is used to produce liquefied natural gas (LNG). The liquefaction process typically has a cryogenic zone that includes one or more refrigeration cycles, where natural gas is cooled from ambient temperature to the ambient boiling point of natural gas or slightly below. This boiling point is usually about -160 ° C.

冷凍サイクルには、一般に冷媒流体が利用される。冷媒流体は混合物又は純粋な成分で形成できる。この冷媒は、通常、1種以上の熱交換器で気化され、その際、天然ガスは冷却される。次いで、気化した冷媒は、高圧レベル及び温度に圧縮される。周囲冷却器では、冷媒の熱は、水又は空気のような冷却媒体に吐き出され(reject)、次いで膨張により冷却される。多段サイクルによる液化法では、最初の冷凍サイクルで連続冷凍サイクルが冷却されるのは、極めて普通のことである。   In the refrigeration cycle, a refrigerant fluid is generally used. The refrigerant fluid can be formed of a mixture or pure components. This refrigerant is usually vaporized in one or more heat exchangers, at which time the natural gas is cooled. The vaporized refrigerant is then compressed to a high pressure level and temperature. In ambient coolers, the heat of the refrigerant is rejected into a cooling medium such as water or air and then cooled by expansion. In a liquefaction method using a multi-stage cycle, it is quite normal that the continuous refrigeration cycle is cooled in the first refrigeration cycle.

現在の液化法では、天然ガスを極低温熱交換器で冷却する前に、天然ガスから特定の複数成分を除去するのも普通のことである。通常、除去される成分は、二酸化炭素、硫黄含有化合物、水、及びブタンより高分子量の炭化水素である。後者の炭化水素は、本明細書では“重質炭化水素”という。これらの成分が存在すると、液化を行う極低温では固体となるので、除去しなければならない。   In current liquefaction methods, it is common to remove certain components from natural gas before it is cooled by a cryogenic heat exchanger. Usually, the components removed are carbon dioxide, sulfur-containing compounds, water, and hydrocarbons having a higher molecular weight than butane. The latter hydrocarbons are referred to herein as “heavy hydrocarbons”. The presence of these components becomes a solid at the very low temperatures at which liquefaction takes place and must be removed.

粗天然ガス流から、多くの物理的及び/又は化学的方法があるが、まず、水及び酸ガスによる汚染を除去する。次に、得られたスイートな乾燥天然ガスに対し重質炭化水素の除去工程を行なう。重質炭化水素の除去は、一般に、この天然ガス混合物の部分凝縮、及び引続き、重質炭化水素の希薄蒸気相と重質炭化水素の濃厚液相との或る程度の分離により行なわれる。この分離には、スクラブ塔を用いるのが最も普通である。スクラブ塔は、塔底端部と塔頂端部間に一連の分離段階を有する蒸留塔タイプで、ここで重質炭化水素濃縮混合物は塔底端部から排出され、天然ガスの軽質混合物は塔頂端部から塔頭上流の形態で排出される。   There are many physical and / or chemical methods from the crude natural gas stream, but first the contamination with water and acid gas is removed. Next, a heavy hydrocarbon removal step is performed on the obtained sweet dry natural gas. The removal of heavy hydrocarbons is generally accomplished by partial condensation of this natural gas mixture followed by some separation of the heavy hydrocarbon lean vapor phase and the heavy hydrocarbon rich liquid phase. Most commonly, a scrub column is used for this separation. The scrub column is a distillation column type with a series of separation stages between the bottom end and the top end, where the heavy hydrocarbon enriched mixture is discharged from the bottom end and the light mixture of natural gas is the top end. It is discharged in the form upstream of the tower.

USP 5,685,170は、天然ガスからプロパン、ブタン及びこれより重質の炭化水素成分を回収し、これにより主としてメタン及びエタンよりなるガス流も生成するシステム及び方法を開示している。
USP 5,325,673には、凍結可能なC+成分を除去すると共に、LNG生成物を得るため、単一スクラブ塔を用いて天然ガス流を予備処理する方法及びスクラブ塔列の各種実施態様が記載されている。
USP 5,685,170 discloses a system and method for recovering propane, butane and heavier hydrocarbon components from natural gas, thereby also producing a gas stream consisting primarily of methane and ethane.
USP 5,325,673 describes a method for pretreating a natural gas stream using a single scrub column and various implementations of a scrub column to remove refrigerated C 5 + components and obtain an LNG product. Embodiments are described.

一実施態様では、天然ガス原料流を幾つかの副原料流に分割し、冷却した後、スクラブ塔の頂部及び中央部付近の異なる供給点からスクラブ塔に導入している。天然ガスの第一部分は、Joule−Thompsonバルブ中で膨張により冷却され、低下させた圧力でスクラブ塔に導入される。第二及び第三部分は、圧力を低下させる前に、まず冷凍冷却器で冷却され、凝縮液体流と蒸気流とに分離される。凝縮液体流は、蒸気流よりも低い供給点からスクラブ塔に供給される。   In one embodiment, the natural gas feed stream is divided into several secondary feed streams, cooled, and then introduced into the scrub column from different feed points near the top and center of the scrub column. The first portion of natural gas is cooled by expansion in a Joule-Thompson valve and introduced into the scrub column at a reduced pressure. The second and third parts are first cooled in a refrigeration cooler and separated into a condensed liquid stream and a vapor stream before reducing the pressure. The condensed liquid stream is fed to the scrub column from a feed point lower than the vapor stream.

スクラブ塔の塔底端部に蓄積した重質炭化水素濃縮塔底流又は液体のフラクションを気化させるため、再沸器が設けられる。再沸器は、スクラブ塔の塔底部を冷却しすぎて、塔底流中に二酸化炭素のような不要成分が蓄積する恐れが確実に生じないように、スクラブ塔の塔底端部の温度を制御する働きもある。   A reboiler is provided to vaporize the heavy hydrocarbon enriched bottom stream or liquid fraction accumulated at the bottom end of the scrub column. The reboiler controls the temperature at the bottom end of the scrub column to ensure that the bottom of the scrub column is overcooled and there is no risk of accumulation of unwanted components such as carbon dioxide in the bottom stream. There is also work to do.

前記既知の実施態様は、多くの欠点を持っている。第一に、原料副流をスクラブ塔に供給する前に原料副流の圧力を低下させると、低圧での天然ガスの液化には多くのエネルギーを必要とするので、後の液化工程での効率は低下する。
再沸器の欠点は、液化法の性能自体で天然ガスを冷却しなければならないのに、再沸器により天然ガスに熱が加わることである。再沸器を使用すると、液化法の全体の効率に悪影響を与える。
USP 5,685,170 USP 5,325,673
The known embodiment has a number of drawbacks. First, reducing the pressure of the raw material substream before feeding the raw material substream to the scrub column requires a lot of energy to liquefy natural gas at a low pressure, so efficiency in the subsequent liquefaction process Will decline.
The disadvantage of the reboiler is that the natural gas is heated by the reboiler while the natural gas must be cooled by the performance of the liquefaction process itself. Using a reboiler will adversely affect the overall efficiency of the liquefaction process.
USP 5,685,170 USP 5,325,673

発明の概要
本発明の目的は、前記欠点の1つ以上を減らすことである。
本発明の更なる目的は、主として液化メタンを含む液化天然ガスの代替製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to reduce one or more of the above disadvantages.
It is a further object of the present invention to provide an alternative method for producing liquefied natural gas containing primarily liquefied methane.

前記又は他の目的の1つ以上は、本発明による以下の液化天然ガスの製造方法を提供することによって達成される。即ち、液化前にブタンよりも高分子量の重質炭化水素成分を除去した天然ガス流を液化する液化天然ガスの製造方法において、
原料流温度及び原料流圧力でほぼ蒸気状の天然ガス原料流を得る工程、
原料流を、2つ以上の分離段階を有する蒸留塔に供給する工程、
蒸留塔の下部から塔底流を、また蒸留塔の上部から、重質炭化水素成分の含有量が塔底流よりも相対的に少ない塔頭上流を抜出す工程、及び
塔頭上流の少なくとも一部を液化して液化天然ガスを得る工程、
を少なくとも含み、更に原料流を蒸留塔に供給する工程が、
原料流を、選択された分割比で第一副流と第二副流とに分割する副工程、
第一副流を、原料流圧力から前記原料流の分割により生じた圧力降下を差し引いた圧力以上の圧力で、蒸留塔底部の第一供給点から蒸留塔に供給する副工程、
第二副流を熱交換器で原料温度よりも低い温度に冷却する副工程、
冷却した第二副流を、蒸留塔の第一供給点頭上の第二供給点に供給する副工程、
を含む該製造方法。
本明細書の目的のため、分割比は、第一副流の質量流量を第二副流の質量流量で割った値と定義する
One or more of the above or other objects are achieved by providing the following method for producing liquefied natural gas according to the present invention. That is, in a method for producing liquefied natural gas in which a natural gas stream from which heavy hydrocarbon components having a higher molecular weight than butane are removed before liquefaction is liquefied
Obtaining an almost vaporized natural gas feed stream at the feed stream temperature and feed stream pressure;
Supplying a feed stream to a distillation column having two or more separation stages;
A step of extracting the tower bottom stream from the lower part of the distillation column and the upper part of the distillation column from the upper part of the distillation column, the upstream of the tower head having relatively less heavy hydrocarbon component content than the tower bottom stream, and at least a part of the tower head upstream is liquefied. To obtain liquefied natural gas,
And further supplying the raw material stream to the distillation column,
A sub-process for dividing the raw material stream into a first substream and a second substream at a selected split ratio;
A sub-step of supplying the first substream to the distillation column from the first supply point at the bottom of the distillation column at a pressure equal to or higher than the pressure obtained by subtracting the pressure drop caused by the division of the raw material flow from the raw material flow pressure;
A sub-process for cooling the second substream to a temperature lower than the raw material temperature by a heat exchanger;
A sub-process for feeding the cooled second substream to a second feed point above the first feed point of the distillation column;
This manufacturing method containing.
For purposes of this specification, the split ratio is defined as the mass flow rate of the first substream divided by the mass flow rate of the second substream.

本発明の利点は、原料流の圧力も或いは第一及び第二副流の圧力も(ターボ)膨張器又はJoule−Thompsonバルブのような専用の圧力降下装置中で故意に低下させないことである。
第一副流は、本質的に、原料流圧力から原料流の分割により生じた圧力降下を差し引いた圧力以上の圧力で、蒸留塔に供給されるので、第二供給点での圧力は下げる必要がない。したがって、蒸留は天然ガスの圧力を大幅に低下させることなく行なわれ、塔頭上流を液化する場合はエネルギー的に有利である。
An advantage of the present invention is that neither the feed stream pressure nor the first and second substream pressures are deliberately reduced in a dedicated pressure drop device such as a (turbo) expander or a Joule-Thompson valve.
The first substream is essentially supplied to the distillation column at a pressure equal to or higher than the feedstream pressure minus the pressure drop caused by the splitting of the feedstream, so the pressure at the second feed point must be reduced. There is no. Therefore, distillation is performed without significantly reducing the pressure of natural gas, and it is energetically advantageous when liquefying upstream of the tower.

その他、第一副流の圧力を故意に低下させない結果として、温度を原料流の温度付近に保持でき、好ましくは第一副流の加温がなくなることである。この利点は、通常、例えば再沸器で得られる追加の加熱力が、過冷却防止のため蒸留塔の塔底端部に入るのが少なくて済むことである。   In addition, as a result of not intentionally lowering the pressure of the first substream, the temperature can be maintained near the temperature of the raw material stream, and preferably the first substream is not heated. The advantage is that the additional heating power usually obtained, for example in a reboiler, is less likely to enter the bottom end of the distillation column to prevent overcooling.

十分高い分割比を選択すると、塔底の温度制御の目的で再沸器を備える必要がないほど、追加の加熱力を全く必要としないことさえある。
分割比は、蒸留塔塔底での温度が−10℃以上に維持されるように選択できることが見出された。
蒸留塔塔底端部での温度制御は、選択可能な又は制御可能に可変的な分割比を得ると共に、この分割比を選択するか制御して行なえる。
Choosing a sufficiently high split ratio may even require no additional heating power to the extent that it is not necessary to provide a reboiler for the purpose of bottom temperature control.
It has been found that the split ratio can be selected such that the temperature at the bottom of the distillation column is maintained above -10 ° C.
The temperature control at the bottom end of the distillation column can be performed by obtaining a selectable or controllably variable split ratio and selecting or controlling this split ratio.

本発明は、液化前にブタンよりも高分子量の重質炭化水素成分を除去した天然ガス流を液化する液化天然ガスの製造装置でも具体的に表現される。この装置は、 原料流温度及び原料流圧力でほぼ蒸気状の天然ガス原料流を運ぶための原料流ライン、
天然ガスから重質炭化水素を分離するための、2つ以上の分離段階を有する蒸留塔であって、塔底流を排出するため、蒸留塔の下部に配置された塔底流排出開口部と、重質炭化水素成分の含有量が塔底流よりも相対的に少ない塔頭上流を排出するため、スクラブ塔の上部に配置された塔頭上流排出開口部とを有する該蒸留塔、及び
塔頭上流の少なくとも一部を液化でき、これにより液化天然ガス流が得られる極低温帯、
を少なくとも備えたものである。ここで原料流ラインは、主分岐を第一及び第二分岐と流動可能に連結して、原料流を、選択された分割比で第一及び第二副流に分割する原料流接続部を有し、第一分岐は、原料流接続部と蒸留塔の塔底部の第一供給点とを、原料流の分割により生じる原料流の圧力降下以上の圧力で連結し、第二分岐は、原料流接続部と、蒸留塔の第一供給点に比べて頭上にあって熱交換器を備えた第二供給点とを連結する。
The present invention is also specifically expressed in a liquefied natural gas production apparatus for liquefying a natural gas stream from which a heavy hydrocarbon component having a higher molecular weight than butane is removed before liquefaction. This equipment has a feed stream line for carrying a near-vapor natural gas feed stream at feed stream temperature and feed stream pressure,
A distillation column having two or more separation stages for separating heavy hydrocarbons from natural gas, wherein a bottom stream discharge opening arranged at the bottom of the distillation column for discharging the bottom stream, A distillation column having a top upstream discharge opening disposed at an upper portion of the scrub column, and at least a part of the upstream side A cryogenic zone where a liquefied natural gas stream can be obtained,
Is provided at least. Here, the feed stream line has a feed stream connection that connects the main branch to the first and second branches in a flowable manner and divides the feed stream into the first and second substreams at a selected split ratio. The first branch connects the feed stream connection and the first feed point at the bottom of the distillation column at a pressure equal to or higher than the pressure drop of the feed stream generated by dividing the feed stream. The connection is connected to a second supply point that is overhead and has a heat exchanger compared to the first supply point of the distillation column.

本明細書の目的のため、熱交換器は、いわゆるスプール巻き型の熱交換器を少なくとも含むと理解される。最も広い定義では、本発明は、炭化水素ガス混合物からブタンよりも高分子量の重質炭化水素成分を除去するのに適した、いかなる種類の蒸留塔にも適用できる。しかし、本発明の1つ以上の好ましい実施態様は、スクラブ流を蒸留塔に供給することを必要とする。この場合、蒸留塔は、定義形式によっては、いわゆるスクラブ塔である。   For the purposes of this specification, a heat exchanger is understood to include at least a so-called spool-type heat exchanger. In its broadest definition, the present invention is applicable to any type of distillation column that is suitable for removing heavy hydrocarbon components of higher molecular weight than butane from a hydrocarbon gas mixture. However, one or more preferred embodiments of the present invention require a scrub stream to be fed to the distillation column. In this case, the distillation column is a so-called scrub column depending on the definition format.

本発明のこれらの特徴、その他の特徴を例示により、また添付の非限定的図面を参照して以下に詳細に説明する。
図面の簡単な説明
添付図面において、図1は、本発明の第一実施態様の概略工程図である。
図2は、本発明の第二実施態様の概略工程図である。
図3は、本発明の第三実施態様の概略工程図である。
図4は、本発明の第三実施態様の代わりの概略工程図である。
図5は、本発明の第二実施態様の代わりの概略工程図である。
図6は、本発明の第四実施態様の概略工程図である。
図7は、本発明の第五実施態様の概略工程図である。
図8は、原料流を分割しない概略工程図である。
この説明の目的のため、ライン及び該ライン内で運ばれる流れには、単一符号を付けた。同じ符号は、同様な成分を意味する。
These and other features of the invention are described in detail below by way of example and with reference to the accompanying non-limiting drawings.
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings, FIG. 1 is a schematic process diagram of a first embodiment of the present invention.
FIG. 2 is a schematic process diagram of the second embodiment of the present invention.
FIG. 3 is a schematic process diagram of the third embodiment of the present invention.
FIG. 4 is a schematic process diagram instead of the third embodiment of the present invention.
FIG. 5 is a schematic process diagram instead of the second embodiment of the present invention.
FIG. 6 is a schematic process diagram of the fourth embodiment of the present invention.
FIG. 7 is a schematic process diagram of the fifth embodiment of the present invention.
FIG. 8 is a schematic process diagram in which the raw material flow is not divided.
For purposes of this description, the lines and flows carried within the lines are labeled with a single symbol. The same sign means the same component.

実施態様の詳細な説明
図1は、炭化水素ガス混合物からブタンよりも高分子量の重質炭化水素成分を除去するためのシステムを、主としてメタンを含有するLNG流の製造装置の一部として含む工程図を示す。本明細書の目的のため、炭化水素ガス混合物は、当該技術分野で周知の手段及び方法により水、CO及び硫黄を除去するため予備処理した天然ガス混合物からなるものと仮定する。一般に、予備処理した天然ガス混合物は、蒸気状のメタンやエタン及びCやCを含む軽質成分及びメタンの液化中、潜在的に凍結可能なC+重質成分を含有する。
Detailed Description of Embodiments FIG. 1 includes a system for removing heavy hydrocarbon components of higher molecular weight than butane from a hydrocarbon gas mixture as part of an apparatus for producing a LNG stream containing primarily methane. The figure is shown. For the purposes of this specification, it is assumed that the hydrocarbon gas mixture consists of a natural gas mixture that has been pretreated to remove water, CO 2 and sulfur by means and methods well known in the art. Generally, natural gas mixture pretreated during liquefaction of light components and methane containing vaporous methane and ethane and C 3 and C 4, containing potentially freezable C 5 + heavier components.

図1の装置は、除去すべき重質炭化水素を含む炭化水素ガス混合物の原料流を受取って運ぶように配置された天然ガス原料ラインを有する。この原料流ラインは、主分岐1と第一副流3aと第二副流3bとに分割される。原料流接続部2は、主分岐1中の原料流を、それぞれ第一及び第二副流分岐3a、3bに流動可能な第一及び第二副流に分割するために設けたものである。原料流接続部2は、第一副流の質量流量を第二副流の質量流量で割った値と定義した特定の分割比に従って原料流を分割するために配置される。当業者ならば、原料流接続部2は、相分離器ではなく、むしろ主原料流を2つ以上の副流に分割することが理解されよう。   The apparatus of FIG. 1 has a natural gas feed line arranged to receive and carry a feed stream of a hydrocarbon gas mixture containing heavy hydrocarbons to be removed. This raw material flow line is divided into a main branch 1, a first substream 3a, and a second substream 3b. The raw material flow connection portion 2 is provided to divide the raw material flow in the main branch 1 into first and second substreams that can flow into the first and second substream branches 3a and 3b, respectively. The feed stream connection 2 is arranged to split the feed stream according to a specific split ratio defined as the value of the mass flow rate of the first side stream divided by the mass flow rate of the second side stream. One skilled in the art will appreciate that the feed stream connection 2 is not a phase separator, but rather divides the main feed stream into two or more substreams.

第一及び第二副流分岐3a、3bともスクラブ塔10と流動連絡可能である。本実施態様のスクラブ塔10は、複数の分離段階で重質炭化水素成分から軽質炭化水素成分を分離するため、多数のトレー11を備えた蒸留塔である。スクラブ塔内の温度は、通常、変化し、高い段階に行くほど冷たくなる。スクラブ塔10は、更にスクラブ塔10の下部には、重質炭化水素成分の濃厚な塔底流を例えば排出ライン17経由で排出するための塔底流排出開口部8を備え、またスクラブ塔10の上部には、軽質炭化水素成分の濃厚な塔頭上流を例えば排出ライン16経由で排出するための塔頭上流排出開口部12を配置する。塔頭上流16は、LNGを製造するための極低温帯域(図示せず)と連結している。   Both the first and second substream branches 3a, 3b are in fluid communication with the scrub column 10. The scrub column 10 of this embodiment is a distillation column equipped with a large number of trays 11 for separating light hydrocarbon components from heavy hydrocarbon components in a plurality of separation stages. The temperature in the scrub tower usually varies and gets colder as it goes higher. The scrub column 10 further includes a bottom flow discharge opening 8 for discharging a heavy bottom hydrocarbon-rich stream, for example, via a discharge line 17, at the bottom of the scrub column 10. In this case, a tower upstream discharge opening 12 for discharging the tower upstream rich in light hydrocarbon components via, for example, the discharge line 16 is arranged. The tower upstream 16 is connected to a cryogenic zone (not shown) for producing LNG.

第一分岐3aは、原料流接続部2をスクラブ塔10内の第一供給点7aと連結する。第一供給点7aは、第一副流3aを低い方のトレー11に供給するため、スクラブ塔10の塔底部に比較的近い。副流3aは、相分離用最低トレー11の下に供給することが好ましい。第一分岐3aは、原料流接続部2が本質的に圧力損失なく、流動可能に第一供給点7aに連結するように、本質的に圧力降下装置を持たない。この連結は、標準操作条件下で圧力損失が好ましくは5バール以下、更に好ましくは2バール以下となるよう、特定の寸法に合わせて作る。更に第一副流3aは加温しない。   The first branch 3 a connects the raw material flow connection 2 with the first supply point 7 a in the scrub column 10. The first supply point 7 a is relatively close to the bottom of the scrub column 10 in order to supply the first substream 3 a to the lower tray 11. The side stream 3a is preferably supplied below the lowest tray 11 for phase separation. The first branch 3a essentially has no pressure drop device so that the feed flow connection 2 is connected to the first feed point 7a in a flowable manner with essentially no pressure loss. This connection is made to specific dimensions so that under standard operating conditions the pressure loss is preferably less than 5 bar, more preferably less than 2 bar. Further, the first substream 3a is not heated.

第二分岐3bは、原料流接続部2をスクラブ塔10内の第二供給点7bと連結する。第二供給点7bは、第一副流を低い方のトレーよりも上にある複数トレーの1つに供給するため、第一供給点7aに比べて頭上に位置する。
第二分岐3bは、熱交換器6を備え、ここで第二分岐3bは、加温部分3bと冷却部分7とに分割される。熱交換器6は、第二副流3bを本質的に故意に圧力を低下させることなく、冷却するために配置される。熱交換器6は、いわゆるスプール巻き型の熱交換器のような、いかなる好適な種類の熱交換器であってもよい。
The second branch 3 b connects the raw material flow connection portion 2 to the second supply point 7 b in the scrub column 10. The second supply point 7b is located above the first supply point 7a in order to supply the first substream to one of the plurality of trays above the lower tray.
The second branch 3 b includes a heat exchanger 6, where the second branch 3 b is divided into a heating part 3 b and a cooling part 7. The heat exchanger 6 is arranged to cool the second substream 3b essentially without intentionally reducing the pressure. The heat exchanger 6 may be any suitable type of heat exchanger, such as a so-called spool-type heat exchanger.

標準操作条件下では第二副流での圧力降下は、6バール未満、好ましくは3バール未満である。熱交換器6には、冷媒4の供給箇所を少なくとも1つ、及び使用済み又は気化した冷媒5の除去箇所を1つ有する。熱交換器6は、専用の熱交換器であっても或いは他の用途のためにも冷却を行なう統合熱交換器であってもよい。好ましくは熱交換器6は、外部冷媒を使用し、該熱交換器6を専用の熱交換器にすることが好ましい。   Under standard operating conditions, the pressure drop in the second sidestream is less than 6 bar, preferably less than 3 bar. The heat exchanger 6 has at least one supply point for the refrigerant 4 and one removal point for the used or vaporized refrigerant 5. The heat exchanger 6 may be a dedicated heat exchanger or an integrated heat exchanger that cools for other uses. Preferably, the heat exchanger 6 uses an external refrigerant, and the heat exchanger 6 is a dedicated heat exchanger.

更に原料流の第一及び第二副流3a、3bへの分割に関する本発明では必要としないが、図1の実施態様においてスクラブ塔10に第三供給点7cを設けると有利である。第三供給点7cは、第二供給点7bに比べて頭上の、スクラブ塔10の塔頂部近くに位置する。任意のスクラブ流ライン18は、第三供給点7cをスクラブ流供給源と連結する。スクラブ流供給源は、重質炭化水素のスクラビングが可能な他の液体又は多相流を供給して、スクラブ塔10内でこれら炭化水素の下方輸送を促進する働きを有する。スクラブ流は、更に冷却された天然ガス、頭上凝縮器から得られる凝縮液、LNG、冷(chilled)LNG、冷凝縮液、それらの混合物、又は天然ガスから重質炭化水素の除去を促進する適性を有する、いずれかの他の流れよりなる群の1種以上を含有できる。   Further, although not required in the present invention relating to the splitting of the feed stream into the first and second substreams 3a, 3b, it is advantageous to provide the scrub column 10 with a third feed point 7c in the embodiment of FIG. The third supply point 7c is located closer to the top of the scrub column 10 than the second supply point 7b. An optional scrub flow line 18 connects the third feed point 7c with a scrub flow source. The scrub stream source serves to provide other liquids or multiphase streams capable of scrubbing heavy hydrocarbons to facilitate the downward transport of these hydrocarbons within the scrub column 10. The scrub stream is suitable for further promoting the removal of heavy hydrocarbons from chilled natural gas, condensate from overhead condensers, LNG, chilled LNG, cold condensate, mixtures thereof, or natural gas One or more of the group consisting of any other stream.

操作時、図1の装置は次のように働く。予備処理した炭化水素ガス混合物の原料流は、ライン1経由で原料流圧力及び原料流温度で供給される。原料流圧力は、一般に20〜80バール、更に通常、40〜65バールである。原料流温度は、一般に0〜50℃、通常、15〜25℃、更に通常、15〜20℃である。   In operation, the apparatus of FIG. 1 works as follows. A feed stream of the pretreated hydrocarbon gas mixture is fed via line 1 at feed stream pressure and feed stream temperature. The feed flow pressure is generally 20-80 bar, more usually 40-65 bar. The raw material flow temperature is generally 0 to 50 ° C., usually 15 to 25 ° C., more usually 15 to 20 ° C.

原料流は、原料流接続部2において、好ましくは小副流及び大副流の形態で、第一及び第二副流3a、3bに分割される。小副流3aは、原料流圧力から、原料流接続部2での原料流1の分割により生じた圧力降下を差し引いた圧力以上の圧力で、第一供給点7a経由でスクラブ塔10に供給される。実際には小副流3aの圧力は、故意に低下させないことを意味する。   The raw material flow is divided at the raw material flow connection 2 into first and second substreams 3a, 3b, preferably in the form of small and large substreams. The small side stream 3a is supplied to the scrub column 10 via the first supply point 7a at a pressure equal to or higher than the pressure obtained by subtracting the pressure drop caused by the division of the raw material flow 1 at the raw material flow connection 2 from the raw material flow pressure. The In practice, this means that the pressure of the small side stream 3a is not intentionally lowered.

通常、大副流である第二副流3bは、熱交換器6中で原料温度より低い温度に冷却される。大ざっぱに言えば、大副流3bは、−50℃以上の温度、好ましくは−20℃以上の温度まで冷却される。大副流3bは、−20℃以下の温度まで冷却することが好ましい。
冷却した大副流は、第二供給点7b及び第二副分岐3bの冷却部分7経由で、スクラブ塔10に供給される。供給箇所は、小副流3aがスクラブ塔10に供給された箇所の頭上である。
Usually, the second substream 3b, which is a large substream, is cooled in the heat exchanger 6 to a temperature lower than the raw material temperature. Roughly speaking, the large side stream 3b is cooled to a temperature of -50 ° C or higher, preferably -20 ° C or higher. The large side stream 3b is preferably cooled to a temperature of −20 ° C. or lower.
The cooled large substream is supplied to the scrub column 10 via the second supply point 7b and the cooling portion 7 of the second sub branch 3b. The supply location is above the location where the small side stream 3a is supplied to the scrub column 10.

スクラブライン18中の任意のスクラブ流は、第二供給点7b経由で入る第二副流の温度と同じか又はそれ以下の温度を有する。
比較的冷たい大副流7は、比較的暖かい小副流3aと共に、スクラブ塔10内の所望温度勾配を維持するのに寄与する。
Any scrub stream in the scrub line 18 has a temperature equal to or less than the temperature of the second substream entering via the second feed point 7b.
The relatively cool large side stream 7 together with the relatively warm small side stream 3a contributes to maintaining the desired temperature gradient in the scrub column 10.

大副流と小副流との分割比を制御することは可能である。これによりスクラブ塔10塔底部の温度勾配及び/又は温度を制御できる。分割比は、スクラブ塔内の温度が混合物から重質炭化水素成分を効率的に分離するのに確実に十分低くするには、1/5未満を選択するのが好ましいことが見出された。更に好ましくは分割比は、1/5未満が選択される。   It is possible to control the division ratio between the large and small substreams. Thereby, the temperature gradient and / or temperature at the bottom of the scrub column 10 can be controlled. It has been found that the split ratio is preferably selected to be less than 1/5 to ensure that the temperature in the scrub column is sufficiently low to efficiently separate heavy hydrocarbon components from the mixture. More preferably, the division ratio is selected to be less than 1/5.

分割比は、スクラブ塔の塔底部を−10℃より高い温度の維持に必要な外部加熱の要求を低減するという有益な効果を得るには、好ましくは1/100より高いことが見出された。1/50より高い分割比を選択することが好ましいので、再沸器の必要性を全くなくすことができる。したがって、好ましい実施態様では、再沸器は存在せず、その結果、塔頭上流排出開口部12と第三供給点7c間に再沸は起こらない。   It has been found that the split ratio is preferably higher than 1/100 to obtain the beneficial effect of reducing the external heating requirement required to maintain the bottom of the scrub column above -10 ° C. . Since it is preferable to select a split ratio higher than 1/50, the need for a reboiler can be eliminated altogether. Thus, in the preferred embodiment, there is no reboiler, and as a result, no reboiling occurs between the head upstream discharge opening 12 and the third feed point 7c.

スクラブ流18は、第二供給点7b頭上の第三供給点7c経由でスクラブ塔10に供給することが好ましい。スラブ流18の温度は、一般に、冷却した小副流の温度よりも低く、通常、−70〜−10℃である。更にこの温度は、スクラブ塔10内の所望温度を維持する助けとなる。   The scrub stream 18 is preferably supplied to the scrub column 10 via a third supply point 7c above the second supply point 7b. The temperature of the slab stream 18 is generally lower than the temperature of the cooled small side stream and is typically -70 to -10 ° C. This temperature further helps to maintain the desired temperature in the scrub column 10.

塔頂生成物は、塔頭上流排出開口部12経由でスクラブ塔10から抜出される。この生成物は、重質炭化水素が満足する程度に除去された天然ガスである。流れ17は、排出開口部経由で排出される重質炭化水素に富む生成物である。特に塔頂生成物は16は、重質炭化水素の希薄な天然ガス蒸気流で、この天然ガス蒸気流は、更に極低温帯域(図示せず)で天然ガス蒸気流を最終的に冷却、液化中、固体の形成を阻止する要件に適合する。当業者は、塔頂生成物16を極低温帯域で(例えば熱交換器を使用して)液化する方法を容易に理解しているので、液化法についてはここでは更に説明しない。塔底流17は、いかなる用途も見出すことができ、その一つは更に処理して液化石油ガス(LPG)を形成することである。   The top product is withdrawn from the scrub column 10 via the tower head upstream discharge opening 12. This product is natural gas that has been removed to the extent that heavy hydrocarbons are satisfactory. Stream 17 is a product rich in heavy hydrocarbons that is discharged via the discharge opening. In particular, the top product 16 is a dilute natural gas vapor stream of heavy hydrocarbons, which further cools and liquefies the natural gas vapor stream in a cryogenic zone (not shown). Meets the requirements to prevent the formation of solids. Since those skilled in the art readily understand how to liquefy the overhead product 16 in the cryogenic zone (eg, using a heat exchanger), the liquefaction process is not further described herein. The bottom stream 17 can find any use, one of which is further processed to form liquefied petroleum gas (LPG).

図2〜5は、代わりの装置を含む代わりの概略工程図を示す。これらの図において、図1を参照して既に説明した部品は、同一の参照符号を付け、ここでは再度説明しない。またそれらの機能及び操作も前述の説明に従う。
図2〜5は、スクラブ流18が原料流1から抜出した少なくとも一部である実施態様を示す。
2-5 show alternative schematic process diagrams that include alternative apparatus. In these figures, parts already described with reference to FIG. 1 bear the same reference numerals and will not be described again here. Also, their functions and operations follow the above description.
2-5 illustrate an embodiment in which the scrub stream 18 is at least a portion extracted from the feed stream 1.

図2から始めると、図1の実施態様との主な相違は、第二供給点7bの上流で、かつ熱交換器6の下流の第二分岐7内に設けた第二原料流接続部20により表される。第二分岐7は、原料接続部20の下流に続き、第三分岐22は、原料流1の第三副流を運ぶために形成される。第三分岐22は、第二熱交換器26を備え、この熱交換器の下流側は、スクラブ流ライン18に連結している。   Starting from FIG. 2, the main difference from the embodiment of FIG. 1 is that the second feed flow connection 20 provided in the second branch 7 upstream of the second supply point 7 b and downstream of the heat exchanger 6. It is represented by The second branch 7 continues downstream of the raw material connection 20, and the third branch 22 is formed to carry the third substream of the raw material stream 1. The third branch 22 includes a second heat exchanger 26, and the downstream side of the heat exchanger is connected to the scrub flow line 18.

第二熱交換器26は、第三副流22を本質的に故意に圧力降下させることなく、第二副流よりも低い温度に更に冷却するために配置される。標準操作条件下では、第三副流22の圧力降下は6バール未満、好ましくは3バール未満である。図2に示すように、冷媒24の少なくとも1つの供給箇所(supply)が第二熱交換器26に供給するために設けられ、ここで使用済み又は気化した冷媒25の除去箇所(removal)は、最初に述べた熱交換器6に供給するための冷媒4の供給箇所を形成できる。   The second heat exchanger 26 is arranged to further cool the third substream 22 to a lower temperature than the second substream without essentially deliberately dropping the pressure. Under standard operating conditions, the pressure drop of the third sidestream 22 is less than 6 bar, preferably less than 3 bar. As shown in FIG. 2, at least one supply point for the refrigerant 24 is provided to supply the second heat exchanger 26, where the removal point (removal) of the used or vaporized refrigerant 25 is The supply location of the refrigerant 4 for supplying to the heat exchanger 6 described first can be formed.

或いは第一及び第二熱交換器は、各々独立に冷媒の少なくとも1つの供給箇所及び除去箇所を備える。第二熱交換器26は、専用の熱交換器であっても或いは他の用途のためにも冷却を行なう統合熱交換器であってもよい。   Alternatively, the first and second heat exchangers each independently include at least one supply point and a removal point for the refrigerant. The second heat exchanger 26 may be a dedicated heat exchanger or an integrated heat exchanger that provides cooling for other applications.

図3に、第一熱交換器6の上流の第二分岐3b中に第二原料流接続部を設けた、図2の代わりの概略工程図を示す。第二熱交換器26は、図2直列配置の代わりに第一熱交換器6と並列関係で設けられる。第二分岐3bは、第二原料流接続部20の下流に続き、第三分岐22は、原料流1の第三副流を運ぶために形成される。前の図2のように、第二熱交換器の下流は、スクラブ流ライン18に連結している。   FIG. 3 shows a schematic process diagram instead of FIG. 2 in which a second raw material flow connection portion is provided in the second branch 3 b upstream of the first heat exchanger 6. The second heat exchanger 26 is provided in parallel with the first heat exchanger 6 instead of the serial arrangement shown in FIG. The second branch 3 b continues downstream of the second raw material flow connection 20, and the third branch 22 is formed to carry the third substream of the raw material stream 1. As in the previous FIG. 2, the downstream of the second heat exchanger is connected to a scrub flow line 18.

第一及び第二熱交換器6、26は、各々別個に冷媒4、24の少なくとも1つの供給箇所及び除去箇所5、25を有する。
第一及び第二熱交換器6、26は、1つのハウジング内で組合わせでき、これにより冷媒は1つの圧力レベルで操作可能である。
The first and second heat exchangers 6 and 26 have at least one supply point and a removal point 5 and 25 for the refrigerants 4 and 24, respectively.
The first and second heat exchangers 6, 26 can be combined in one housing so that the refrigerant can be operated at one pressure level.

図4に、第二及び第三副流を並列冷却し、これにより第一及び第二熱交換器が各々流路で示す1つのハウジング中に統合された前記並列冷却による概略例を示す。図5は、図2の実施態様の直列冷却を具体化する統合熱交換器の例である。本例では、第二原料流接続部20は、熱交換器ハウジングの外側に配置し、これにより第二及び第三分岐は熱交換器ハウジングの中にも外にも案内できる。或いは、現在、実用性が低いとみなされているが、原料流接続部20は、熱交換器ハウジング内に配置できる。   FIG. 4 shows a schematic example of parallel cooling of the second and third substreams, whereby the first and second heat exchangers are integrated into one housing, each represented by a flow path. FIG. 5 is an example of an integrated heat exchanger that embodies the series cooling of the embodiment of FIG. In this example, the second raw material flow connection 20 is arranged outside the heat exchanger housing so that the second and third branches can be guided into and out of the heat exchanger housing. Alternatively, the feed flow connection 20 can be placed in a heat exchanger housing, which is currently considered less practical.

こうして図2〜5の実施態様では、第二供給点7b頭上の第三供給点7cを介してスクラブ塔10に連結したスクラブ流供給源は、第二原料流接続部20及び第二熱交換器26を有する。   2-5, the scrub flow source connected to the scrub column 10 via the third supply point 7c above the second supply point 7b is the second raw material flow connection 20 and the second heat exchanger. 26.

操作時、図2〜5の装置は、図1の装置と同様に働く。しかし、ライン18中のスクラブ流は、第二副流3bからフラクションを抜出し、第三副流を形成して得られる。残留物は第二副流3bとして運ぶ。第三副流は、第二原料流接続部20の下流の第二熱交換器26中で、既に第一熱交換器6で冷却された第二副流の温度よりも低い温度に冷却される。   In operation, the apparatus of FIGS. 2-5 works similarly to the apparatus of FIG. However, the scrub flow in line 18 is obtained by extracting a fraction from the second substream 3b to form a third substream. The residue is carried as a second side stream 3b. The third substream is cooled to a temperature lower than the temperature of the second substream already cooled by the first heat exchanger 6 in the second heat exchanger 26 downstream of the second raw material flow connection 20. .

他の一実施態様を図6を参照して説明する。図1について既に説明した部品は、同じ符号を有し、ここでは再度説明しない。それらの機能及び操作は前記説明に従う。   Another embodiment will be described with reference to FIG. The parts already described for FIG. 1 have the same reference numerals and will not be described again here. Their functions and operations are as described above.

図6の実施態様では、頭上凝縮器が排出ライン16中に頭上熱交換器14の形態で設けられる。熱交換器14は、冷媒30の少なくとも1つの供給箇所及び使用済み又は気化した冷媒31の1つの除去箇所を備える。熱交換器14は、専用の熱交換器であっても或いは他の用途のためにも冷却を行なう統合熱交換器であってもよい。排出ライン16は、熱交換器14の下流出口で分離器27まで連結している。分離器27は、ライン15に排出する凝縮液出口35及びライン13に排出する蒸気出口33を備える。ライン15は、第三供給点7c及びライン18経由で直接、スクラブ塔10に連結できる。図6において、ライン15、18間には任意の還流ポンプ19が設けられる。   In the embodiment of FIG. 6, an overhead condenser is provided in the discharge line 16 in the form of an overhead heat exchanger 14. The heat exchanger 14 includes at least one supply point of the refrigerant 30 and one removal point of the used or vaporized refrigerant 31. The heat exchanger 14 may be a dedicated heat exchanger or an integrated heat exchanger that provides cooling for other uses. The discharge line 16 is connected to the separator 27 at the downstream outlet of the heat exchanger 14. The separator 27 includes a condensate outlet 35 that discharges to the line 15 and a steam outlet 33 that discharges to the line 13. Line 15 can be connected to scrub column 10 directly via third feed point 7 c and line 18. In FIG. 6, an optional reflux pump 19 is provided between the lines 15 and 18.

頭上凝縮器14及び分離器27は、1つのハウジング中に又はこれらの機能を組合わせた設備の一品に統合してもよい。
図6の実施態様は操作時、次のように働く。スクラブ塔10からライン16経由で排出中の塔頂生成物である塔頭上流は、頭上凝縮器14に案内され、ここで冷媒を用いて部分的に凝縮される。部分凝縮により、蒸気と凝縮液との混合相流が形成され、分離器27に案内される。分離器27からライン13経由で排出される蒸気は、重質炭化水素が充分に除去された天然ガスであり、LNGを得るため、液化されるものである。凝縮された液体状態の凝縮液は、スクラブ塔10に供給される、スクラブ流18を得るか或いは他のスクラブ流に加えるため、混合相流から抜出される。この液体を所望の圧力にするため、還流ポンプ19を使用してよい。
The overhead condenser 14 and the separator 27 may be integrated in one housing or in a piece of equipment that combines these functions.
The embodiment of FIG. 6 operates as follows during operation. The top of the head, which is the top product discharged from the scrub column 10 via line 16, is guided to the overhead condenser 14 where it is partially condensed using the refrigerant. Due to the partial condensation, a mixed phase flow of steam and condensate is formed and guided to the separator 27. The steam discharged from the separator 27 via the line 13 is natural gas from which heavy hydrocarbons have been sufficiently removed, and is liquefied to obtain LNG. Condensed liquid condensate is withdrawn from the mixed phase stream to obtain a scrub stream 18 or to be added to other scrub streams that are fed to the scrub column 10. A reflux pump 19 may be used to bring this liquid to the desired pressure.

図6の実施態様の利点は、第二副流3bの温度の選択が自由になることである。これは、第二副流3bを蒸留塔10に供給するトレーの数(蒸留塔10の高さに対応する)が選択できるからである。こうして、冷凍サイクルを最適化するために、ライン7中の第二副流の温度を制約なくできる。スクラブ塔10の塔底部分の温度勾配及び出口8、ライン17経由で排出される塔底生成物の温度は、分割比の選択又は制御により、任意に制御できる。図2〜5の実施態様の利点は、再沸器を頭上分離器27及び/又は還流ポンプ19の形態で使用する必要がない点である。   The advantage of the embodiment of FIG. 6 is that the temperature of the second substream 3b can be freely selected. This is because the number of trays (corresponding to the height of the distillation column 10) for supplying the second substream 3b to the distillation column 10 can be selected. Thus, in order to optimize the refrigeration cycle, the temperature of the second substream in the line 7 can be made without restriction. The temperature gradient of the bottom portion of the scrub column 10 and the temperature of the bottom product discharged via the outlet 8 and the line 17 can be arbitrarily controlled by selecting or controlling the split ratio. The advantage of the embodiment of FIGS. 2 to 5 is that the reboiler need not be used in the form of an overhead separator 27 and / or a reflux pump 19.

図6の実施態様と図2〜5の一実施態様とを組合わせできることは理解されよう。
以上の実施態様のいずれでも第三副流は原料流接続部2において分割されるような、第二副流の大フラクション又は元の第二副流の半分を超える大フラクションを形成する。第三副流は、通常、−10℃未満で−100℃以上の温度に冷却される。第三副流は、好ましくは−30℃未満の温度に冷却される。第三副流は、好ましくは−60℃以上の温度に冷却される。次いで第三副流は、第三供給点7cからスクラブ塔10に入る。
It will be appreciated that the embodiment of FIG. 6 can be combined with one embodiment of FIGS.
In any of the above embodiments, the third substream forms a large fraction of the second substream or more than half of the original second substream, such that it is split at the feed stream connection 2. The third side stream is usually cooled to a temperature below −10 ° C. and above −100 ° C. The third side stream is preferably cooled to a temperature below −30 ° C. The third side stream is preferably cooled to a temperature of −60 ° C. or higher. The third substream then enters the scrub column 10 from the third feed point 7c.

図7に、本発明の更に他の一実施態様を概略的に示す。第三供給点7cの機能は、ここでは第二供給点7bによるよりも優勢なので、図1の実施態様に比べて、更に設備品目が少なくて済む。この目的のため、第二供給点7bは、普通はスクラブ流の入口であるスクラブ塔10の塔頂付近に設けられる。こうして、特別の還流設備を必要としない。第二分岐中の熱交換器は、ここでは互いに直列に操作する複数の熱交換器6、6’で示す。熱交換器は、設備の単一品の形態で設けてよいことは理解されよう。   FIG. 7 schematically shows still another embodiment of the present invention. The function of the third supply point 7c is here superior to that of the second supply point 7b, so that fewer equipment items are required compared to the embodiment of FIG. For this purpose, the second feed point 7b is provided near the top of the scrub column 10, which is usually the entrance of the scrub stream. Thus, no special reflux equipment is required. The heat exchanger in the second branch is here represented by a plurality of heat exchangers 6, 6 'operating in series with each other. It will be appreciated that the heat exchanger may be provided in the form of a single piece of equipment.

第二分岐3b中の第二副流はライン7に供給する前に、液体/蒸気混合物を形成するのに十分低い温度に冷却される。この温度は、通常、−10℃未満で−60℃以上の温度である。第三副流は、好ましくは−30℃未満の温度に冷却される。第二副流は、好ましくは−60℃未満の温度に冷却される。第三副流は、好ましくは−60℃以上の温度に冷却される。   The second side stream in the second branch 3b is cooled to a sufficiently low temperature to form a liquid / vapor mixture before feeding it into line 7. This temperature is usually a temperature lower than −10 ° C. and higher than −60 ° C. The third side stream is preferably cooled to a temperature below −30 ° C. The second side stream is preferably cooled to a temperature below -60 ° C. The third side stream is preferably cooled to a temperature of −60 ° C. or higher.

図6の実施態様に対する図2〜5の実施態様及び図7の実施態様の利点は、第二熱交換器26又は該熱交換器の第二部分6’を通る流量が頭上凝縮器14を通る流量よりも少ないことである。これは、天然ガスの一部が第二熱交換器26又は第二部分6’を通らずにスクラブ塔に送られるからである。   The advantage of the embodiment of FIGS. 2-5 and FIG. 7 over the embodiment of FIG. 6 is that the flow through the second heat exchanger 26 or the second portion 6 ′ of the heat exchanger passes through the overhead condenser 14. It is less than the flow rate. This is because part of the natural gas is sent to the scrub column without passing through the second heat exchanger 26 or the second part 6 '.

比較例
図8は、原料流ライン1が副流に分割されないが、供給点7d経由でスクラブ塔10に供給する前に、任意に熱交換器6中で冷却される比較例を表す。供給点7dは、スクラブ塔の塔底又はその付近か或いは供給点7aよりも若干高くてもよい。図6、7、8に示す工程図に関連して、通常の原料ガス及び通常の周囲条件について質量及びエネルギーバランス計算を行なった。
Comparative Example FIG. 8 shows a comparative example in which the raw material flow line 1 is not divided into substreams, but is optionally cooled in the heat exchanger 6 before being fed to the scrub column 10 via the feed point 7d. The feed point 7d may be at or near the bottom of the scrub column or slightly higher than the feed point 7a. In connection with the process diagrams shown in FIGS. 6, 7, and 8, mass and energy balance calculations were performed for normal source gases and normal ambient conditions.

図8の方法では、ライン13の流れで0.03モル%のC+含有量を得るには相対電力(製造中のエンド−フラッシュ(end-flash)電力を含む)は13.1kW/tpdと計算される。
図7の方法では、原料流の大部分が熱交換器6、6’に案内されるように、分割比を8%に設定した。ライン7中の第二副流は、約−20℃に低下した。計算された相対電力(製造中のエンド−フラッシュ(end-flash)電力を含む)は、13.1kW/tpdであり、これによりライン16の流れ中のC+含有量は0.06モル%である。
In the method of FIG. 8, the relative power (including end-flash power during manufacture) is 13.1 kW / tpd to obtain 0.03 mol% C 5 + content in the line 13 flow. Is calculated.
In the method of FIG. 7, the split ratio was set to 8% so that most of the raw material flow was guided to the heat exchangers 6 and 6 ′. The second side stream in line 7 dropped to about -20 ° C. The calculated relative power (including the end-flash power during manufacture) is 13.1 kW / tpd, so that the C 5 + content in the line 16 stream is 0.06 mol%. It is.

こうして、原料流の分割により、僅かに分離費用が悪くなるだけで、頭上分離器27及び/又は還流ポンプ19のような還流流を発生する部品をなくす選択性が得られる。同時に、スクラブ塔10内の温度勾配に対する制御性が向上すると共に、スクラブ塔10塔底部の材料流は、一層スリムになり得るように、著しく減少する。   Thus, the splitting of the feed stream provides selectivity that eliminates components that generate a reflux stream, such as overhead separator 27 and / or reflux pump 19, with only a slight reduction in separation costs. At the same time, the control over the temperature gradient in the scrub column 10 is improved and the material flow at the bottom of the scrub column 10 is significantly reduced so that it can be slimmer.

図6の方法では、分割比は6%に選択した。相対電力12.9kW/tpd(1.5%の減少を表す)を用いた他は図7の方法と同じ分離(ライン13の流れ中のC+含有量は0.06モル%)を行なった。生成物の処理量が大量であることから、1.5%の消費電力の減少は著しい改良である。このような消費電力の減少は、還流設備を備える追加費用を相殺する。図8の方法と比べて、スクラブ塔10内の温度勾配に対する制御性が向上すると共に、スクラブ塔10塔底部の材料流は、一層スリムになり得るように、著しく減少する。 In the method of FIG. 6, the split ratio was selected to be 6%. The same separation as in the method of FIG. 7 (with a C 5 + content of 0.06 mol% in the flow of line 13) was performed except that a relative power of 12.9 kW / tpd (representing a 1.5% reduction) was used. It was. The 1.5% reduction in power consumption is a significant improvement due to the high product throughput. Such a reduction in power consumption offsets the additional cost of providing reflux equipment. Compared with the method of FIG. 8, the control over the temperature gradient in the scrub column 10 is improved and the material flow at the bottom of the scrub column 10 is significantly reduced so that it can be slimmer.

本発明の第一実施態様の概略工程図である。It is a schematic process drawing of the first embodiment of the present invention. 本発明の第二実施態様の概略工程図である。It is a schematic process drawing of the second embodiment of the present invention. 本発明の第三実施態様の概略工程図である。It is a schematic process drawing of the third embodiment of the present invention. 本発明の第三実施態様の代わりの概略工程図である。It is a general | schematic process drawing instead of the 3rd embodiment of this invention. 本発明の第二実施態様の代わりの概略工程図である。It is a schematic process drawing instead of the second embodiment of the present invention. 本発明の第四実施態様の概略工程図である。It is a schematic process drawing of the 4th embodiment of the present invention. 本発明の第五実施態様の概略工程図である。It is a schematic process drawing of the 5th embodiment of the present invention. 原料流を分割しない比較用概略工程図である。It is a general | schematic process drawing for a comparison which does not divide | segment a raw material flow.

符号の説明Explanation of symbols

1 主分岐
2 原料流接続部
3a 第一副流又は第一分岐
3b 第二副流、第二分岐又は加温部分
4 冷媒
5 使用済み又は気化した冷媒
6 熱交換器
7 冷却部分
7a 第一供給点
7b 第二供給点
7c 第三供給点
8 塔底流排出開口部
10 スクラブ塔又は蒸留塔
11 トレー又は分離段階
12 塔頭上流排出開口部
14 凝縮器
16 排出ライン又は塔頭上流
17 排出ライン又は塔底流
18 スクラブ流又はスクラブ流ライン
20 第二接続部
22 第三分岐
26 第二熱交換器
27 分離器
33 凝縮液出口
35 蒸気出口

DESCRIPTION OF SYMBOLS 1 Main branch 2 Raw material flow connection part 3a First substream or first branch 3b Second substream, second branch or warming part 4 Refrigerant 5 Used or vaporized refrigerant 6 Heat exchanger 7 Cooling part 7a First supply Point 7b Second feed point 7c Third feed point 8 Bottom stream discharge opening 10 Scrub column or distillation tower 11 Tray or separation stage 12 Top upstream discharge opening 14 Condenser 16 Discharge line or head upstream 17 Discharge line or bottom stream 18 Scrub flow or scrub flow line 20 Second connection 22 Third branch 26 Second heat exchanger 27 Separator 33 Condensate outlet 35 Steam outlet

Claims (17)

然ガス流を液化する液化天然ガスの製造方法であって、液化前にブタンよりも高分子量の重質炭化水素成分を除去する該製造方法において、
原料流温度及び原料流圧力でほぼ蒸気状の天然ガス原料流(1)を得る工程、
原料流(1)を、2つ以上の分離段階(11)を有する蒸留塔(10)に供給する工程、
蒸留塔(10)の下部から塔底流(17)を、また蒸留塔(10)の上部から、重質炭化水素成分の含有量が塔底流(17)よりも相対的に少ない塔頭上流(16)を抜出す工程、及び
塔頭上流(16)の少なくとも一部を液化して液化天然ガスを得る工程、
を少なくとも含み、更に原料流(1)を蒸留塔(10)に供給する工程が、
原料流(1)を、原料流接続部(2)において、選択された分割比で第一副流(3a)と第二副流(3b)とに分割する副工程、
第一副流(3a)を、原料流圧力から前記原料流(1)の分割により生じた圧力降下を差し引いた圧力以上の圧力で、蒸留塔(10)底部の第一供給点(7a)経由で蒸留塔(10)に供給する副工程であって、第一副流(3a)は、原料流の分割と、第一副流(3a)の蒸留塔(10)の第一供給点(7a)への供給との間で加温されない該副工程、
第二副流(3b)を熱交換器(6)中で原料温度よりも低い温度に冷却する副工程、
冷却した第二副流(7)を、蒸留塔(10)の第一供給点(7a)頭上の第二供給点(7b)に供給する副工程、
を含み、第二副流(3b)の圧力を故意に低下させない該製造方法。
A method of manufacturing a liquefied natural gas to liquefy the natural gas stream, in the manufacturing method of removing heavy hydrocarbon components of high molecular weight than butane prior liquefied,
Obtaining a substantially vaporized natural gas feed stream (1) at a feed stream temperature and feed stream pressure;
Feeding the raw material stream (1) to a distillation column (10) having two or more separation stages (11);
A tower bottom stream (17) from the lower part of the distillation tower (10) and an upstream part (16) from the upper part of the distillation tower (10) having a heavy hydrocarbon component content relatively smaller than that of the tower bottom stream (17). And a step of liquefying at least a part of the tower upstream (16) to obtain liquefied natural gas,
And further supplying the raw material stream (1) to the distillation column (10),
A sub-process for dividing the raw material stream (1) into the first substream (3a) and the second substream (3b) at the selected split ratio at the raw material stream connection (2) ;
Via the first feed point (7a) at the bottom of the distillation column (10), the first substream (3a) is at a pressure not less than the pressure obtained by subtracting the pressure drop caused by the division of the feed stream (1) from the feed stream pressure. The first substream (3a) is divided into the raw material stream and the first supply point (7a) of the distillation column (10) of the first substream (3a). The sub-process not heated between the supply to
A sub-step of cooling the second substream (3b) to a temperature lower than the raw material temperature in the heat exchanger (6);
A sub-step of feeding the cooled second substream (7) to the first feed point (7a) overhead second feed point (7b) of the distillation column (10);
Unrealized, the production method does not reduce intentionally the pressure of the second sub-stream (3b) a.
ほぼ蒸気状の原料流(1)が、蒸気を90容量%より多く含有する請求項1に記載の方法。Substantially vaporous feed stream (1) A method according to claim 1 having more free than 9 0% by volume of steam. 原料流接続部(2)と第一供給点(7a)間の第一副流(3a)の圧力降下が6バール未満である請求項1〜2のいずれか1項以上に記載の方法。The method according to any one or more of the preceding claims , wherein the pressure drop of the first substream (3a) between the feed stream connection (2) and the first feed point (7a) is less than 6 bar. 選択された分割比(但し、分割比は、第一副流(3a)の質量流量を第二副流(3b)の質量流量で割った値と定義する)が、1/5未満に保持される請求項1〜3のいずれか1項以上に記載の方法。Selected split ratio (where division ratio is first sidestream (the mass flow rate of 3a) is defined as a value obtained by dividing the mass flow rate of the second sub-stream (3b)) is held at less than 1/5 The method according to any one of claims 1 to 3, wherein: 選択された分割比が、1/100より高く保持される請求項4に記載の方法。The method of claim 4 selected split ratio is 1/100 high rather are retained from. 第二副流(3b)が、熱交換器(6)の外部冷媒により冷却される請求項1〜5のいずれか1項以上に記載の方法。  The method according to any one or more of the preceding claims, wherein the second substream (3b) is cooled by an external refrigerant of the heat exchanger (6). 蒸留塔(10)がスクラブ塔の形態で供給され、このスクラブ塔にスクラブ流(18)が、冷却された第二副流(7)よりも低い温度で第供給点(7b)頭上の第三供給点(7c)経由で供給される請求項1〜のいずれか1項以上に記載の方法。A distillation column (10) is fed in the form of a scrub column, into which the scrub stream (18) is at a temperature lower than that of the cooled second substream (7) at a second feed point (7b) overhead. The method according to any one of claims 1 to 6 , which is supplied via three supply points (7c). スクラブ流(18)がほぼ液体である請求項7に記載の方法。  The method of claim 7, wherein the scrub stream (18) is substantially liquid. スクラブ流(18)が、
第二副流(3b)からフラクションを抜出して第三副流(22)を形成する工程であって、抜出し後の残留物は第二副流(3b)として引継ぐ該工程、
第三副流(22)を第二熱交換器(26)で冷却してスクラブ流(18)を形成する工程、
により得られる請求項7又は8に記載の方法。
Scrub style (18)
Extracting a fraction from the second substream (3b) to form a third substream (22), wherein the residue after extraction is taken over as the second substream (3b);
Cooling the third substream (22) with a second heat exchanger (26) to form a scrub stream (18);
The method according to claim 7 or 8, which is obtained by:
スクラブ流(18)が、
塔頭上流(16)を部分凝縮して蒸気と凝縮液との混合相流を形成し、混合相流から凝縮液を抜出してスクラブ流(18)を得る工程、
により得られる請求項7又は8に記載の方法。
Scrub style (18)
Partially condensing the tower upstream (16) to form a mixed phase flow of steam and condensate, and extracting the condensate from the mixed phase flow to obtain a scrub stream (18);
The method according to claim 7 or 8, which is obtained by:
スクラブ流(18)として使用される塔頭上流(16)の一部が、蒸留塔(10)と第三供給点(7c)間で膨張しない請求項10に記載の方法。The method according to claim 10, wherein a portion of the head upstream (16) used as the scrub stream (18) does not expand between the distillation column (10) and the third feed point (7c). スクラブ流(18)の温度が、充分低く、これにより重質炭化水素の凝縮液が形成される請求項7〜11のいずれか1項以上に記載の方法。  12. A process according to any one or more of claims 7 to 11, wherein the temperature of the scrub stream (18) is sufficiently low to form a heavy hydrocarbon condensate. 然ガス流を液化する液化天然ガスの製造装置であって、液化前にブタンよりも高分子量の重質炭化水素成分を除去する該装置において、該装置は、
原料流温度及び原料流圧力でほぼ蒸気状の天然ガス原料流(1)を運ぶための原料流ライン(1)、
天然ガスから重質炭化水素を分離するための2つ以上の分離段階に、重質炭化水素成分から軽質炭化水素成分を分離するため、多数のトレー(11)を備えた蒸留塔(10)であって、塔底流(17)を排出するため、蒸留塔(10)の下部に配置された塔底流排出開口部(8)と、重質炭化水素成分の含有量が塔底流(17)よりも相対的に少ない塔頭上流(16)を排出するため、蒸留塔(10)の上部に配置された塔頭上流排出開口部(12)とを有する該蒸留塔、及び
塔頭上流(16)の少なくとも一部を液化でき、これにより液化天然ガス流が得られる極低温帯、
を少なくとも備え、
原料流ライン(1)は、該原料流ライン(1)を第一副流ライン及び第二副流ラインに分割して、原料流を、選択された分割比で第一及び第二副流(3a、3b)に分割する原料流接続部(2)を有し、第一副流(3a)は、原料流接続部(2)と蒸留塔(10)の塔底部の第一供給点(7a)とを、原料流の圧力から原料流(1)の分割により生じる圧力降下を差し引いた圧力以上の圧力で連結し、第二副流(3b)は、原料流接続部(2)と、蒸留塔(10)の第一供給点(7a)に比べて頭上にあって熱交換器(6)を備えた第二供給点(7b)とを連結し、第一供給点(7a)は、蒸留塔(10)の最も低い位置にある相分離用トレー(11)の下に位置し、第一副流(3a)は、第一副流(3a)加熱用の熱交換器を備えず、また第二副流(3b)の圧力を故意に低下させる圧力降下装置は存在しない該装置。
An apparatus for producing a liquefied natural gas to liquefy the natural gas stream, in the apparatus for removing heavier hydrocarbon components of the high molecular weight than butane before liquefaction, the apparatus comprising:
A feed stream line (1) for carrying a near-vapor natural gas feed stream (1) at a feed stream temperature and feed stream pressure;
Two or more separate stages for separating heavy hydrocarbons from natural gas, for the separation of light hydrocarbon components from heavier hydrocarbon components, evaporation column (10 with multiple trays (11) In order to discharge the bottom stream (17), the bottom stream discharge opening (8) disposed in the lower part of the distillation column (10) and the content of heavy hydrocarbon component is the bottom stream (17). A distillation column having a top upstream discharge opening (12) disposed at the top of the distillation column (10), and at least one of the top upstream (16) A cryogenic zone where a part can be liquefied, resulting in a liquefied natural gas stream,
Comprising at least
The raw material flow line (1) divides the raw material flow line (1) into a first substream line and a second substream line, and the raw material stream is divided into a first and second substream ( 3a, 3b) having a raw material flow connection part (2) , the first substream (3a) being a first supply point (7a) at the raw material flow connection part (2) and the bottom of the distillation column (10). the) and the raw material flow from the pressure of the feed stream (linked at a pressure above the pressure obtained by subtracting the Ru pressure drop caused by the division of 1), the second sub-stream (3b) is the feed stream connection portion (2) The first supply point (7a) is connected to a second supply point (7b) that is overhead and has a heat exchanger (6) compared to the first supply point (7a) of the distillation column (10). The first substream (3a) is located below the phase separation tray (11) at the lowest position of the distillation column (10) and does not include a heat exchanger for heating the first substream (3a). ,Also Two said device not pressure drop device exists to reduce the pressure to deliberate sidestream (3b).
蒸留塔(10)がスクラブ塔の形態であり、前記装置が、第二供給点(7b)のスクラブ塔頭上の第三供給点(7c)経由でスクラブ塔に連結したスクラブ流供給源を更に有する請求項13に記載の装置。  The distillation column (10) is in the form of a scrub column and the apparatus further comprises a scrub stream source connected to the scrub column via a third supply point (7c) on the scrub column head of the second supply point (7b). The apparatus of claim 13. スクラブ流供給源が、第二副流(3b)の中から、第二熱交換器(26)を備えた第三副流(22)を供給するため、第二供給点上流の第二副流(3b)中に設けた第二接続部(20)を有する請求項14に記載の装置。Since the scrub flow source supplies a third substream (22) with a second heat exchanger (26) from the second substream (3b), the second substream upstream of the second supply point 15. Device according to claim 14 , comprising a second connection (20) provided in (3b). スクラブ流供給源が、第三供給点(7c)経由でスクラブ塔に連結した凝縮液出口(33)、及び蒸気出口(35)を有する分離器(27)と共同で、スクラブ塔下流で塔頭上流(16)を受取るために備えた凝縮器(14)を有する請求項14又は15に記載の装置。  A scrubbing stream source is connected upstream with a condensate outlet (33) connected to the scrubbing tower via a third feed point (7c) and a separator (27) having a steam outlet (35) upstream of the scrubbing tower upstream. 16. A device according to claim 14 or 15, comprising a condenser (14) provided for receiving (16). 塔頭上流排出開口部(12)と第三供給点(7c)間に膨張器が存在しない請求項14〜16のいずれか1項以上に記載の装置。  17. A device according to any one or more of claims 14 to 16, wherein there is no expander between the top upstream discharge opening (12) and the third feed point (7c).
JP2007544910A 2004-12-08 2005-12-07 Method and apparatus for producing a liquefied natural gas stream Expired - Fee Related JP5138381B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04106389.2 2004-12-08
EP04106389 2004-12-08
PCT/EP2005/056561 WO2006061400A1 (en) 2004-12-08 2005-12-07 Method and apparatus for producing a liquefied natural gas stream

Publications (2)

Publication Number Publication Date
JP2008523186A JP2008523186A (en) 2008-07-03
JP5138381B2 true JP5138381B2 (en) 2013-02-06

Family

ID=34930018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007544910A Expired - Fee Related JP5138381B2 (en) 2004-12-08 2005-12-07 Method and apparatus for producing a liquefied natural gas stream

Country Status (12)

Country Link
US (1) US20080115532A1 (en)
EP (1) EP1819800B1 (en)
JP (1) JP5138381B2 (en)
KR (1) KR101260693B1 (en)
CN (1) CN101072848B (en)
AU (2) AU2005313333B2 (en)
BR (1) BRPI0518464B1 (en)
EG (1) EG25612A (en)
MY (1) MY146497A (en)
PE (1) PE20060989A1 (en)
RU (1) RU2402592C2 (en)
WO (1) WO2006061400A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2054685A2 (en) * 2006-08-23 2009-05-06 Shell Internationale Research Maatschappij B.V. Method and apparatus for treating a hydrocarbon stream
AU2008208879B2 (en) 2007-01-25 2010-11-11 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
US8028724B2 (en) 2007-02-12 2011-10-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and unloading of LNG from the tank
US7644676B2 (en) 2008-02-11 2010-01-12 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
RU2488759C2 (en) * 2008-02-20 2013-07-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method and device for cooling and separation of hydrocarbon flow
KR20090107805A (en) 2008-04-10 2009-10-14 대우조선해양 주식회사 Method and system for reducing heating value of natural gas
US9021831B2 (en) * 2009-02-17 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
EP2440867A4 (en) * 2009-06-11 2018-04-18 Ortloff Engineers, Ltd Hydrocarbon gas processing
AT508831B1 (en) * 2009-10-02 2012-09-15 Ge Jenbacher Gmbh & Co Ohg METHOD FOR THE TREATMENT OF PETROLEUM GAS
CA2764629C (en) * 2010-03-31 2017-05-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
CA2803468C (en) * 2010-06-30 2018-07-24 Shell Internationale Research Maatschappij B.V. Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
AP3845A (en) 2010-06-30 2016-09-30 Shell Int Research Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
RU2446854C1 (en) * 2010-11-15 2012-04-10 Открытое акционерное общество "НОВАТЭК" Method of de-ethanising of unstable gas condensate and plant to this end
US9920985B2 (en) 2011-08-10 2018-03-20 Conocophillips Company Liquefied natural gas plant with ethylene independent heavies recovery system
RU2493898C1 (en) * 2012-06-18 2013-09-27 Открытое акционерное общество "НОВАТЭК" Method of field processing of gas condensate deposit products using unstable gas condensate as coolant and plant to this end
US20140033762A1 (en) 2012-08-03 2014-02-06 Air Products And Chemicals, Inc. Heavy Hydrocarbon Removal From A Natural Gas Stream
CN104685036B (en) 2012-08-03 2017-07-11 气体产品与化学公司 Heavy hydrocarbon is removed from natural gas flow
WO2014021900A1 (en) 2012-08-03 2014-02-06 Air Products And Chemicals, Inc. Heavy hydrocarbon removal from a natural gas stream
DE102012020354A1 (en) * 2012-10-16 2014-04-17 Linde Aktiengesellschaft Process for separating heavy hydrocarbons from a hydrocarbon-rich fraction
WO2014116310A1 (en) 2013-01-25 2014-07-31 Exxonmobil Upstream Research Company Contacting a gas stream with a liquid stream
AR096132A1 (en) 2013-05-09 2015-12-09 Exxonmobil Upstream Res Co SEPARATE CARBON DIOXIDE AND HYDROGEN SULFIDE FROM A NATURAL GAS FLOW WITH CO-CURRENT SYSTEMS IN CONTACT
AR096078A1 (en) 2013-05-09 2015-12-02 Exxonmobil Upstream Res Co SEPARATION OF IMPURITIES OF A GAS CURRENT USING A CONTACT SYSTEM IN VERTICALLY ORIENTED EQUICORRIENT
JP2016539300A (en) * 2013-10-09 2016-12-15 ルマス テクノロジー インコーポレイテッド Divided supply addition for isobaric open frozen LPG recovery
WO2016111765A2 (en) 2015-01-09 2016-07-14 Exxonmobil Upstream Research Company Separating impurities from a fluid steam using multiple co-current contactors
US20160216030A1 (en) 2015-01-23 2016-07-28 Air Products And Chemicals, Inc. Separation of Heavy Hydrocarbons and NGLs from Natural Gas in Integration with Liquefaction of Natural Gas
MX2017008682A (en) 2015-02-17 2017-10-11 Exxonmobil Upstream Res Co Inner surface featurees for co-current contactors.
SG11201706589VA (en) 2015-03-13 2017-09-28 Exxonmobil Upstream Res Co Coalescer for co-current contactors
TWI707115B (en) 2015-04-10 2020-10-11 美商圖表能源與化學有限公司 Mixed refrigerant liquefaction system and method
US10619918B2 (en) 2015-04-10 2020-04-14 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas
US11668522B2 (en) 2016-07-21 2023-06-06 Air Products And Chemicals, Inc. Heavy hydrocarbon removal system for lean natural gas liquefaction
US11402155B2 (en) 2016-09-06 2022-08-02 Lummus Technology Inc. Pretreatment of natural gas prior to liquefaction
CN108072234B (en) * 2016-11-15 2020-03-06 北大方正集团有限公司 Control method of air separation device
JP6931405B2 (en) * 2017-06-15 2021-09-01 エクソンモービル アップストリーム リサーチ カンパニー Separation system using bundled compact parallel flow contact system
CA3066895C (en) * 2017-06-15 2023-02-21 Exxonmobil Upstream Research Company Fractionation system using compact co-current contacting systems
CA3067524C (en) 2017-06-20 2023-05-09 Exxonmobil Upstream Research Company Compact contacting systems and methods for scavenging sulfur-containing compounds
AU2018322436B2 (en) 2017-08-21 2021-07-22 Exxonmobil Upstream Research Company Integration of cold solvent and acid gas removal
RU2732998C1 (en) * 2020-01-20 2020-09-28 Андрей Владиславович Курочкин Low-temperature fractionation unit for complex gas treatment with production of liquefied natural gas

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186182A (en) * 1963-05-27 1965-06-01 Phillips Petroleum Co Low-temperature, low-pressure separation of gases
US4002042A (en) * 1974-11-27 1977-01-11 Air Products And Chemicals, Inc. Recovery of C2 + hydrocarbons by plural stage rectification and first stage dephlegmation
US4171964A (en) * 1976-06-21 1979-10-23 The Ortloff Corporation Hydrocarbon gas processing
US4318723A (en) * 1979-11-14 1982-03-09 Koch Process Systems, Inc. Cryogenic distillative separation of acid gases from methane
DE3528071A1 (en) * 1985-08-05 1987-02-05 Linde Ag METHOD FOR DISASSEMBLING A HYDROCARBON MIXTURE
US4687499A (en) * 1986-04-01 1987-08-18 Mcdermott International Inc. Process for separating hydrocarbon gas constituents
US5325673A (en) * 1993-02-23 1994-07-05 The M. W. Kellogg Company Natural gas liquefaction pretreatment process
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
US5685170A (en) * 1995-11-03 1997-11-11 Mcdermott Engineers & Constructors (Canada) Ltd. Propane recovery process
AR007346A1 (en) * 1996-06-05 1999-10-27 Shell Int Research A METHOD FOR SEPARATING CARBON DIOXIDE, ETHANE, AND HEAVIER COMPONENTS FROM A HIGH PRESSURE NATURAL GAS FLOW
US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
US6354105B1 (en) * 1999-12-03 2002-03-12 Ipsi L.L.C. Split feed compression process for high recovery of ethane and heavier components
US6510706B2 (en) * 2000-05-31 2003-01-28 Exxonmobil Upstream Research Company Process for NGL recovery from pressurized liquid natural gas
GB0111961D0 (en) * 2001-05-16 2001-07-04 Boc Group Plc Nitrogen rejection method
US6941771B2 (en) * 2002-04-03 2005-09-13 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US7051553B2 (en) * 2002-05-20 2006-05-30 Floor Technologies Corporation Twin reflux process and configurations for improved natural gas liquids recovery
US7107788B2 (en) * 2003-03-07 2006-09-19 Abb Lummus Global, Randall Gas Technologies Residue recycle-high ethane recovery process
JP4452239B2 (en) * 2003-07-24 2010-04-21 東洋エンジニアリング株式会社 Hydrocarbon separation method and separation apparatus
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
WO2005045338A1 (en) * 2003-10-30 2005-05-19 Fluor Technologies Corporation Flexible ngl process and methods
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction

Also Published As

Publication number Publication date
KR20070091323A (en) 2007-09-10
BRPI0518464B1 (en) 2015-10-06
WO2006061400A1 (en) 2006-06-15
PE20060989A1 (en) 2006-11-06
RU2402592C2 (en) 2010-10-27
AU2005313333A1 (en) 2006-06-15
AU2005313333B2 (en) 2009-04-23
RU2007125703A (en) 2009-01-20
MY146497A (en) 2012-08-15
CN101072848B (en) 2012-10-03
EP1819800B1 (en) 2017-09-13
KR101260693B1 (en) 2013-05-10
US20080115532A1 (en) 2008-05-22
BRPI0518464A2 (en) 2008-11-18
EP1819800A1 (en) 2007-08-22
AU2009202409B2 (en) 2010-11-11
EG25612A (en) 2012-03-21
JP2008523186A (en) 2008-07-03
CN101072848A (en) 2007-11-14
AU2009202409A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5138381B2 (en) Method and apparatus for producing a liquefied natural gas stream
JP6144714B2 (en) Integrated nitrogen removal in the production of liquefied natural gas using intermediate feed gas separation
JP6126163B2 (en) Integrated nitrogen removal in the production of liquefied natural gas using a cooled heat pump
JP6087978B2 (en) Integrated nitrogen removal in the production of liquefied natural gas using a contributing reinjection circuit
JP4216765B2 (en) Method and apparatus for removing nitrogen from condensed natural gas
US5566554A (en) Hydrocarbon gas separation process
US6125653A (en) LNG with ethane enrichment and reinjection gas as refrigerant
US6560989B1 (en) Separation of hydrogen-hydrocarbon gas mixtures using closed-loop gas expander refrigeration
US5983665A (en) Production of refrigerated liquid methane
EP2165140A1 (en) Method and system for producing lng
CN104390426B (en) ISO-pressure open refrigeration NGL recovery
JP2001165560A (en) Method of providing cold for liquefaction of source gas
AU1517100A (en) A process for separating a multi-component pressurized feed stream using distillation
CA2603294A1 (en) A flexible hydrocarbon gas separation process and apparatus
US4622053A (en) Separation of hydrocarbon mixtures
JP2008057962A (en) Process and device for liquefaction of natural gas
WO2009010558A2 (en) Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
AU2014265950B2 (en) Methods for separating hydrocarbon gases
TW201800333A (en) Process and device for cryogenic synthesis gas separation
KR20120139656A (en) Hydrocarbon gas processing
GB2146751A (en) Separation of hydrocarbon mixtures
US20110209498A1 (en) Process for separating off nitrogen
CN112781320A (en) Method and apparatus for separating hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081202

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090715

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20090715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120528

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120627

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees