JP5137640B2 - Optical fiber optical characteristic measuring method - Google Patents

Optical fiber optical characteristic measuring method Download PDF

Info

Publication number
JP5137640B2
JP5137640B2 JP2008071902A JP2008071902A JP5137640B2 JP 5137640 B2 JP5137640 B2 JP 5137640B2 JP 2008071902 A JP2008071902 A JP 2008071902A JP 2008071902 A JP2008071902 A JP 2008071902A JP 5137640 B2 JP5137640 B2 JP 5137640B2
Authority
JP
Japan
Prior art keywords
optical fiber
bending
optical
bending loss
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008071902A
Other languages
Japanese (ja)
Other versions
JP2009229120A (en
Inventor
浩 小山田
大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008071902A priority Critical patent/JP5137640B2/en
Publication of JP2009229120A publication Critical patent/JP2009229120A/en
Application granted granted Critical
Publication of JP5137640B2 publication Critical patent/JP5137640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、1.3〜1.625μmの波長帯で動作し、屋内配線などに好適に用いられる曲げ損失特性に優れた樹脂被覆シングルモード光ファイバの曲げ損失特性を簡便かつ正確に評価する、光ファイバの光学特性測定方法に関する。   The present invention simply and accurately evaluates the bending loss characteristics of a resin-coated single-mode optical fiber that operates in a wavelength band of 1.3 to 1.625 μm and is excellent in bending loss characteristics that are suitably used for indoor wiring and the like. The present invention relates to a method for measuring optical characteristics.

光ファイバの曲げ損失を測定する方法として、光ファイバを所定の外径のマンドレルに巻き付けて曲げを与え、測定する方法が知られている(非特許文献1参照)。図1は、その説明図である。光ファイバ1は、円柱状のマンドレル2に巻き付けられて所定径の曲げが与えられる。この光ファイバの一端に光源3を接続して任意の波長の光を送り、他端にパワーメーター4を接続して光パワーを測定する。   As a method for measuring the bending loss of an optical fiber, a method is known in which an optical fiber is wound around a mandrel having a predetermined outer diameter to bend (see Non-Patent Document 1). FIG. 1 is an explanatory diagram thereof. The optical fiber 1 is wound around a cylindrical mandrel 2 to bend with a predetermined diameter. A light source 3 is connected to one end of the optical fiber to send light of an arbitrary wavelength, and a power meter 4 is connected to the other end to measure the optical power.

光ファイバ1に、曲げを与えた状態でパワーメーター4によって測定された光パワーと、曲げの与えられていない状態で測定された光パワーとを比較することによって光ファイバの曲げ損失を測定することができる。
所定の屈折率分布を有する光ファイバに、一様な曲げを与えたときの曲げ損失量の理論的な解析は数々行われている。例えば、非特許文献2では、曲げ損失α(dB/turn)と曲げ半径R(m)との関係は、概ね、下記の数1式で近似させることができ、Rが小さいほどαが指数関数的に大きくなるとある。
[数1]
α=b・exp(−c・R)
ここでb,cは、光ファイバの材質、屈折率分布及び光の波長等によって決まる定数である。
Measuring the bending loss of the optical fiber by comparing the optical power measured by the power meter 4 with the optical fiber 1 bent and the optical power measured without the bending. Can do.
Numerous theoretical analyzes have been performed on the amount of bending loss when a uniform bend is applied to an optical fiber having a predetermined refractive index distribution. For example, in Non-Patent Document 2, the relationship between the bending loss α (dB / turn) and the bending radius R (m) can be approximated by the following equation (1). When it gets bigger.
[Equation 1]
α = b · exp (-c · R)
Here, b and c are constants determined by the material of the optical fiber, the refractive index distribution, the wavelength of light, and the like.

近年、インターネットを初めとする通信需要の急速な伸展により、通信容量の増大が求められており、その対応の一つとして光ファイバを電話局から各家庭まで配線するFTTH方式が注目されている。このFTTH方式で用いられる光ファイバは、電話局間の幹線に用いられる光ファイバとは異なり、屋内の狭小部分に配線されることが多く、曲率の小さな曲げを受けやすい。このため、特に曲げ特性に優れる(曲げ損失の小さな)光ファイバが求められており、このような光ファイバの曲げ損失特性は、半径15mm、10mmあるいは7.5mm等の比較的小さな径で測定される(非特許文献3参照)。   In recent years, due to the rapid expansion of communication demand including the Internet, an increase in communication capacity has been demanded. As one of the measures, the FTTH system in which an optical fiber is wired from a telephone station to each home is attracting attention. Unlike the optical fiber used for the trunk line between telephone offices, the optical fiber used in this FTTH system is often wired in a narrow portion in the room and is susceptible to bending with a small curvature. Therefore, there is a demand for optical fibers that are particularly excellent in bending characteristics (small bending loss), and the bending loss characteristics of such optical fibers are measured with a relatively small diameter such as a radius of 15 mm, 10 mm, or 7.5 mm. (Refer nonpatent literature 3).

ところが、図1のマンドレル径が小さくなると、図2に示すように、光損失スペクトル波形が振動を起こし、正確な曲げ損失の評価が困難になることが知られている。このスペクトル波形の振動現象は、次のように説明することができる(非特許文献4参照)。なお、図3は、典型的な光ファイバの断面構造を略示したものであり、図4は、光ファイバに曲げを与えたときの伝搬光と漏洩光との関係を略示している。   However, it is known that when the mandrel diameter in FIG. 1 is reduced, the optical loss spectrum waveform vibrates as shown in FIG. 2, making it difficult to accurately evaluate the bending loss. The vibration phenomenon of the spectrum waveform can be explained as follows (see Non-Patent Document 4). FIG. 3 schematically shows a cross-sectional structure of a typical optical fiber, and FIG. 4 schematically shows a relationship between propagation light and leakage light when the optical fiber is bent.

コア5を漏洩した漏洩光12は、クラッド6を透過し、さらに被覆材7を透過し、空気層8中に漏洩して失われる。このとき、漏洩光12の一部がクラッド6と被覆材7との界面9及び被覆材7と空気との界面10で反射し、その反射光がコア5に戻って伝播光と合流する。このとき、コア5を伝播する伝播光11と、界面9で反射した反射光13または界面10で反射した反射光14との間の位相差が、光の波長又は曲げ半径Rによって連続的に変化するため、互いに干渉し光を強めあったり弱めあったりして、パワーメーター4で測定される光パワーに振動パターンが生じ、スペクトル波形の振動現象となって現れる。   The leaked light 12 leaking through the core 5 passes through the cladding 6, further passes through the coating material 7, leaks into the air layer 8 and is lost. At this time, part of the leaked light 12 is reflected at the interface 9 between the cladding 6 and the covering material 7 and the interface 10 between the covering material 7 and air, and the reflected light returns to the core 5 and merges with the propagation light. At this time, the phase difference between the propagating light 11 propagating through the core 5 and the reflected light 13 reflected at the interface 9 or the reflected light 14 reflected at the interface 10 continuously changes depending on the wavelength of the light or the bending radius R. Therefore, they interfere with each other and strengthen or weaken the light, and a vibration pattern is generated in the optical power measured by the power meter 4 and appears as a vibration phenomenon of the spectrum waveform.

このような振動パターンの影響を除去するため、非特許文献3では、被覆材の表面に光を吸収する着色を施すことにより、被覆材7と空気層8との界面10での漏洩光の反射を抑制する方法が紹介されている。   In order to eliminate the influence of such a vibration pattern, in Non-Patent Document 3, the surface of the coating material is colored to absorb light, thereby reflecting the leaked light at the interface 10 between the coating material 7 and the air layer 8. A method to suppress this is introduced.

図5は、同一の光ファイバの被覆表面に着色を施した場合と施さない場合のそれぞれについて、曲げ半径7.5mmで測定した曲げ損失スペクトルの測定例を示したものであり、曲げ損失スペクトル21は光ファイバに着色を施した場合、曲げ損失スペクトル22は着色を施さない場合のものである。図からは、着色によって短周期(図では約50nm周期で反射した光との干渉パターンに相当)で出現する振動パターンが効果的に低減されていることが認められる。
しかし、この方法を採用しても、長周期(界面9で反射した光との干渉パターンに相当)で出現する振動パターンは本質的に除去されないという問題がある。この現象は、曲げ半径を小さくしたときに特に顕著となる。
FIG. 5 shows an example of measurement of a bending loss spectrum measured with a bending radius of 7.5 mm for the case where the coated surface of the same optical fiber is colored and the case where the surface is not colored. When the optical fiber is colored, the bending loss spectrum 22 is that when the optical fiber is not colored. From the figure, it is recognized that the vibration pattern that appears in a short period (corresponding to an interference pattern with light reflected at a period of about 50 nm in the figure) is effectively reduced by coloring.
However, even if this method is adopted, there is a problem that a vibration pattern that appears in a long period (corresponding to an interference pattern with light reflected by the interface 9) is not essentially removed. This phenomenon becomes particularly remarkable when the bending radius is reduced.

図6に、曲げ半径5mmの場合の曲げ損失スペクトル23の測定例を示した。これから光ファイバの被覆表面に着色を施したことにより、短周期の振動は低減されているが、長周期の振動は全く除去されていないのが認められるが。図5の曲げ損失スペクトル21でも、波長1400nm付近に屈曲点を確認することができ、この波長範囲に収まりきれない長周期の振動パターンの影響が残っていることが明らかである。   FIG. 6 shows a measurement example of the bending loss spectrum 23 when the bending radius is 5 mm. From this, it can be seen that by coloring the coated surface of the optical fiber, the short-period vibration is reduced, but the long-period vibration is not removed at all. Also in the bending loss spectrum 21 of FIG. 5, the inflection point can be confirmed in the vicinity of the wavelength of 1400 nm, and it is clear that the influence of the long-period vibration pattern that cannot be accommodated in this wavelength range remains.

また、非特許文献1によると、このような振動現象が生じた場合には、指数関数的な曲線でフィッティングすることにより、真の曲げ損失を評価するというガイドラインが設けられている。このような長周期の振動に対しては、測定波長範囲を大きく取らないと精度の良いフィッティングが不可能であるが、一般的なシングルモード光ファイバの場合、高次モードの影響やパワーメーターの感度領域を考慮すると、概ね1300〜1700nm程度の領域を測定するのが精一杯であるため、200nm程度の長周期の振動が重畳しているような測定データからは、実質的に精度の良いフィッティング式は不可能となる。   Further, according to Non-Patent Document 1, there is a guideline for evaluating the true bending loss by fitting with an exponential curve when such a vibration phenomenon occurs. For such long-period vibrations, accurate fitting is impossible unless the measurement wavelength range is large, but in the case of a general single-mode optical fiber, the effects of higher-order modes and the power meter Considering the sensitivity region, it is almost complete to measure the region of about 1300 to 1700 nm, so from the measurement data where the long-period vibration of about 200 nm is superimposed, the fitting is substantially accurate The formula becomes impossible.

IEC 60793-1-47:2006,"Optical Fibres−Part 1-47:Measurementmethods and test procedures−Macrobending loss")(IEC 60793-1-47: 2006, "Optical Fibers-Part 1-47: Measurement methods and test procedures-Macrorobending loss") Jun-ichi Sakai and Tatsuya Kimura,"Bending loss of propagationmodes in arbitrary-index profile optical fibers,"AppliedOptics,vol.17,No.10,pp.1499-1506,(1978))Jun-ichi Sakai and Tatsuya Kimura, "Bending loss of propagationmodes in arbitrary-index profile optical fibers," AppliedOptics, vol.17, No.10, pp.1499-1506, (1978)) ITU-T G.657(12/2006)"Characteristics of a bending lossinsensitive single mode optical fibre and cable for the access network")ITU-T G.657 (12/2006) "Characteristics of a bending lossinsensitive single mode optical fiber and cable for the access network") Luca Faustini and Giuseppe Martini,“Bend loss in single-mode fibes“,Journalof Lightwave Technology,vol.15,No.4,pp.971-679,(1997))Luca Faustini and Giuseppe Martini, “Bend loss in single-mode fibes”, Journal of Lightwave Technology, vol.15, No.4, pp.971-679, (1997))

本発明の目的は、上述の事情に鑑みてなされたものであり、光ファイバに曲げを与えたときの光学特性、特に曲げ損失特性を簡便かつ高い精度で評価することのできる光ファイバの光学特性測定方法を提供することにある。   The object of the present invention has been made in view of the above-described circumstances, and optical characteristics of an optical fiber that can easily and accurately evaluate optical characteristics when the optical fiber is bent, particularly bending loss characteristics. It is to provide a measurement method.

本発明の光ファイバの光学特性測定方法は、コア、該コアを取り囲むクラッド及び該クラッドを取り囲む透明な樹脂被覆からなり、これらが同心円状に配置されたシングルモード光ファイバの光学特性を測定する方法において、光ファイバに所定の曲げを与え、該曲げの曲率を光ファイバの長手方向に連続的に変化させて曲げによる光損失量を測定することを特徴としている。この光ファイバに与える曲げには、例えば、楕円形状が挙げられ、この楕円形状の長径/短径比を1.2以下とするのが好ましい。 The optical fiber optical characteristic measuring method of the present invention comprises a core, a clad surrounding the core, and a transparent resin coating surrounding the clad, and a method for measuring optical characteristics of a single mode optical fiber in which these are arranged concentrically. The optical fiber is characterized in that a predetermined bending is applied to the optical fiber, and the bending loss is continuously changed in the longitudinal direction of the optical fiber to measure the amount of light loss due to the bending . Examples of the bending applied to the optical fiber include an elliptical shape, and it is preferable that the major axis / minor axis ratio of the elliptical shape is 1.2 or less.

本発明によれば、曲げの曲率を光ファイバの長手方向に連続的に変化させることにより、漏洩光の反射光と伝播光との干渉によって生じる曲げ損失スペクトルの振動現象を簡単かつ効果的に抑制することができるとともに、一様な円形状の曲げ損失との差異を実用上差し支えない程度に抑制することができ、光ファイバの曲げ損失特性を簡便かつ高い精度で評価することができる。   According to the present invention, by continuously changing the bending curvature in the longitudinal direction of the optical fiber, the vibration phenomenon of the bending loss spectrum caused by the interference between the reflected light of the leaked light and the propagating light can be easily and effectively suppressed. In addition, the difference from the uniform circular bending loss can be suppressed to a practical level, and the bending loss characteristic of the optical fiber can be evaluated easily and with high accuracy.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these.

図7において、曲げ損失スペクトル31は、本発明の測定方法で測定したものであり、具体的には、被覆表面に着色を施した光ファイバを長径6mm、短径5mmの楕円柱に一周させて連続的に曲率が変化する曲げを与えて測定したものである。曲げ損失スペクトル32は、比較例として、被覆表面に着色を施した光ファイバを直径10mmの円柱に一周させて曲率の一様な曲げを与え、測定したものである。曲げ損失スペクトル33は、さらに別の比較例として、被覆表面に着色を施していない光ファイバを直径10mmの円柱に一周させて曲率の一様な曲げを与えて測定したものである。
図7から、本発明の測定方法による曲げ損失スペクトル31は、曲げ損失スペクトル32,33に対して、図5,6で見られた短周期及び長周期の振動パターンが効果的に除去されているのが認められる。
In FIG. 7, the bending loss spectrum 31 is measured by the measuring method of the present invention. Specifically, an optical fiber colored on the coating surface is made to circulate around an elliptical cylinder having a major axis of 6 mm and a minor axis of 5 mm. It is measured by applying a bending whose curvature changes continuously. As a comparative example, the bending loss spectrum 32 was measured by giving an optical fiber with a colored coating surface around a cylinder having a diameter of 10 mm and bending it with a uniform curvature. As another comparative example, the bending loss spectrum 33 is measured by bending an optical fiber whose coating surface is not colored around a cylinder having a diameter of 10 mm and bending it with a uniform curvature.
From FIG. 7, the bending loss spectrum 31 according to the measurement method of the present invention effectively removes the short-period and long-period vibration patterns seen in FIGS. Is allowed.

ケーブルカットオフ波長1110nm、波長1310nmにおけるモードフィールド直径9.2μmのG.652規格シングルモード光ファイバの一様な曲げ半径R(mm)と単位長さ当たりの曲げ損失(dB/m)との関係を非特許文献2の数1式を用いて計算し、その結果を図8に示した。
同様にして、ケーブルカットオフ波長1300nm、波長1310nmにおけるモードフィールド直径7.5μmのG.657規格シングルモード光ファイバの一様な曲げ半径R(mm)と単位長さ当たりの曲げ損失(dB/m)との関係を図9に示した。
図8,9から、曲げ半径と曲げ損失とは指数関数的関係にあることが認められ、これらのフィッティング式をexp(−k・R)と表すとき、指数係数kは、概ね0.5〜2.6の範囲内にある。
The relationship between the uniform bending radius R (mm) and the bending loss (dB / m) per unit length of a G.652 standard single-mode optical fiber with a mode field diameter of 9.2 μm at a cable cutoff wavelength of 1110 nm and a wavelength of 1310 nm. The calculation was performed using Equation 1 of Non-Patent Document 2, and the result is shown in FIG.
Similarly, uniform bending radius R (mm) and bending loss per unit length (dB / m) of a G.657 standard single-mode optical fiber with a mode field diameter of 7.5 μm at a cable cutoff wavelength of 1300 nm and a wavelength of 1310 nm Fig. 9 shows the relationship.
8 and 9, it is recognized that the bending radius and the bending loss have an exponential relationship, and when these fitting equations are expressed as exp (−k · R), the exponential coefficient k is approximately 0.5 to 2.6. Is in range.

図10は、光ファイバに長径a、短径bの楕円形状の曲げを1周与えたときの曲げ損失αeと、半径bの一様な円形状の曲げを1周与えたときの曲げ損失αcとの損失比(αec)を楕円の長径/短径比(a/b)の関数で表したものである。
図10から、指数係数k=0.5〜1.5の範囲内においては、a/bを概ね1.2以下に設定すれば、一様な円形状の曲げ損失との差異を1割程度に抑制することができる。また、k=2.5の場合でも、a/bを概ね1.1以下に設定すれば、一様な円形状の曲げ損失との差異を1割程度に抑制することができる。
FIG. 10 shows a bending loss α e when the optical fiber is given one round of elliptical bending with a major axis “a” and a minor axis “b”, and a bending loss when one round of uniform circular bending with a radius “b” is given. loss ratio of alpha c a (α e / α c) is a representation as a function of the ellipse of major axis / minor axis ratio (a / b).
From FIG. 10, within the range of the exponential coefficient k = 0.5 to 1.5, the difference from the uniform circular bending loss can be suppressed to about 10% if a / b is set to about 1.2 or less. . Even when k = 2.5, if a / b is set to approximately 1.1 or less, the difference from the uniform circular bending loss can be suppressed to about 10%.

すなわち、a/bを概ね1.2以下もしくは1.1以下に設定すれば、本発明の測定方法によって測定された光ファイバの曲げ損失特性は、漏洩光の反射光と伝播光との干渉によって生じる曲げ損失スペクトルの振動が抑制される上、一様な円形状の曲げ損失との差異を実用上差し支えない程度に抑制することができる。   That is, if a / b is set to approximately 1.2 or less or 1.1 or less, the bending loss characteristic of the optical fiber measured by the measurement method of the present invention is the bending loss spectrum generated by the interference between the reflected light of the leaked light and the propagating light. And the difference from the uniform circular bending loss can be suppressed to such an extent that it can be practically used.

光ファイバの曲げ損失特性の簡便かつ高い精度での測定が可能となる。   It is possible to easily and accurately measure the bending loss characteristics of optical fibers.

従来の光ファイバの曲げ損失測定方法の概略を示す説明図である。It is explanatory drawing which shows the outline of the bending loss measuring method of the conventional optical fiber. 巻き径が小さい場合の光ファイバの曲げ損失スペクトルを示すグラフである。It is a graph which shows the bending loss spectrum of an optical fiber in case a winding diameter is small. 典型的な光ファイバの断面構造を略示したものである。1 schematically shows a cross-sectional structure of a typical optical fiber. 光ファイバに曲げを与えたときの伝搬光と漏洩光との関係を説明する概略図である。It is the schematic explaining the relationship between the propagation light and bending light when a bend is given to the optical fiber. 光ファイバの被覆表面に着色を施した場合と施さない場合の曲げ損失スペクトルの測定例を示すグラフである。It is a graph which shows the example of a measurement of the bending loss spectrum when not coloring when the coating surface of an optical fiber is colored. 被覆表面に着色を施した光ファイバに一様な円形状の曲げを与えて測定した、曲げ損失スペクトルを示すグラフである。It is a graph which shows the bending loss spectrum measured by giving uniform circular bending to the optical fiber which colored the coating surface. 本発明の実施例及び比較例として測定した曲げ損失スペクトルを示すグラフである。It is a graph which shows the bending loss spectrum measured as an Example and comparative example of this invention. 数1式を用いて計算した、一様な曲げ半径と単位長さ当たりの曲げ損失との関係を示すグラフである。It is a graph which shows the relationship between the uniform bending radius and the bending loss per unit length calculated using Formula 1. 図8のものとは異なる規格の光ファイバについて計算した、一様な曲げ半径と単位長さ当たりの曲げ損失との関係を示すグラフである。It is a graph which shows the relationship between the uniform bending radius and the bending loss per unit length calculated about the optical fiber of a different standard from the thing of FIG. 光ファイバに楕円形状の曲げを与えたときの曲げ損失αeと、一様な円形状の曲げを与えたときの曲げ損失αcとの損失比(αec)を楕円の長径/短径比(a/b)の関数で表したグラフである。The loss ratio (α e / α c ) between the bending loss α e when the optical fiber is subjected to elliptic bending and the bending loss α c when applying a uniform circular bending is expressed as the major axis of the ellipse / It is a graph expressed as a function of the minor axis ratio (a / b).

符号の説明Explanation of symbols

1.光ファイバ、
2.マンドレル、
3.光源、
4.パワーメーター、
5.コア、
6.クラッド、
7.被覆材、
8.空気中、
9.界面、
10.界面、
11.伝播光、
12.漏洩光、
13,14.反射光、
21,22,23,31,32,33.曲げ損失スペクトル。
1. Optical fiber,
2. Mandrels,
3. light source,
4). Power meter,
5. core,
6). Cladding,
7). Covering material,
8). In the air,
9. interface,
10. interface,
11. Propagating light,
12 Leaked light,
13,14. reflected light,
21, 22, 23, 31, 32, 33. Bending loss spectrum.

Claims (3)

コア、該コアを取り囲むクラッド及び該クラッドを取り囲む透明な樹脂被覆からなり、これらが同心円状に配置されたシングルモード光ファイバの光学特性を測定する方法において、光ファイバに所定の曲げを与え、該曲げの曲率を光ファイバの長手方向に連続的に変化させて曲げによる光損失量を測定することを特徴とする光ファイバの光学特性測定方法。 In a method of measuring the optical characteristics of a single mode optical fiber comprising a core, a clad surrounding the core, and a transparent resin coating surrounding the clad, these being concentrically arranged, the optical fiber is given a predetermined bend, A method for measuring optical characteristics of an optical fiber, wherein the amount of optical loss due to bending is measured by continuously changing the bending curvature in the longitudinal direction of the optical fiber. 連続的に曲率を変化させて曲げられた部分が楕円形状をなす請求項1に記載の光ファイバの光学特性測定方法。 The method for measuring optical characteristics of an optical fiber according to claim 1, wherein a portion bent by changing the curvature continuously has an elliptical shape. 前記楕円形状の長径/短径比が1.2以下である請求項2に記載の光ファイバの光学特性測定方法。 The method for measuring optical characteristics of an optical fiber according to claim 2, wherein the ellipse has a major axis / minor axis ratio of 1.2 or less .
JP2008071902A 2008-03-19 2008-03-19 Optical fiber optical characteristic measuring method Expired - Fee Related JP5137640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071902A JP5137640B2 (en) 2008-03-19 2008-03-19 Optical fiber optical characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071902A JP5137640B2 (en) 2008-03-19 2008-03-19 Optical fiber optical characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2009229120A JP2009229120A (en) 2009-10-08
JP5137640B2 true JP5137640B2 (en) 2013-02-06

Family

ID=41244707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071902A Expired - Fee Related JP5137640B2 (en) 2008-03-19 2008-03-19 Optical fiber optical characteristic measuring method

Country Status (1)

Country Link
JP (1) JP5137640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768473B2 (en) * 2011-04-27 2015-08-26 住友電気工業株式会社 Cut-off wavelength measurement method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203938A (en) * 1988-02-10 1989-08-16 Fujikura Ltd Flexural loss measuring instrument for optical fiber
JP2000018981A (en) * 1998-06-30 2000-01-21 Mitsubishi Heavy Ind Ltd Optical fiber sensor
JP2000089042A (en) * 1998-09-16 2000-03-31 Furukawa Electric Co Ltd:The Optical fiber sensor and detection of information using the same
JP2003232702A (en) * 2002-02-12 2003-08-22 Furukawa Electric Co Ltd:The Method for identifying photosensor

Also Published As

Publication number Publication date
JP2009229120A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5945441B2 (en) Multimode optical fiber
RU2727854C2 (en) Low-loss at bends optical fiber
JP5967892B2 (en) Multimode optical fiber not affected by bending loss
JP6486533B2 (en) Optical fiber
JP5925842B2 (en) Extended effective area fiber
US8483535B2 (en) High-bandwidth, dual-trench-assisted multimode optical fiber
US8385704B2 (en) High-bandwidth multimode optical fiber with reduced cladding effect
US8644664B2 (en) Broad-bandwidth optical fiber
US8565568B2 (en) Broad-bandwidth multimode optical fiber having reduced bending losses
Jay An overview of macrobending and microbending of optical fibers
US8340488B2 (en) Multimode optical fiber
US11835755B2 (en) Optical fibre assemblies and methods of use
JP2012203416A (en) Multimode optical fiber with improved bend resistance
JP2010520496A (en) Wide effective area optical fiber
US9400352B2 (en) Polarization-maintaining optical fiber
US20120236295A1 (en) Method of measuring bending performance of optical fiber
JP5313079B2 (en) Optical fiber characterization method
JP4763106B2 (en) Optical fiber
JP5137640B2 (en) Optical fiber optical characteristic measuring method
JP5227152B2 (en) Method for confirming single mode transmission of optical fiber, method and apparatus for measuring cut-off wavelength
US8508724B2 (en) Method of measuring cutoff wavelength
CN111766663B (en) Method for eliminating reflection at tail end of optical fiber
KR101990337B1 (en) Mpi-evaluation system for improved bend-insensitive optical fiber for mpi-characteristics
TW202216634A (en) Optical fiber cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Ref document number: 5137640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees