JP5137172B2 - Electric discharge machine and method for correcting thermal displacement of electric discharge machine - Google Patents

Electric discharge machine and method for correcting thermal displacement of electric discharge machine Download PDF

Info

Publication number
JP5137172B2
JP5137172B2 JP2006211901A JP2006211901A JP5137172B2 JP 5137172 B2 JP5137172 B2 JP 5137172B2 JP 2006211901 A JP2006211901 A JP 2006211901A JP 2006211901 A JP2006211901 A JP 2006211901A JP 5137172 B2 JP5137172 B2 JP 5137172B2
Authority
JP
Japan
Prior art keywords
change
workpiece
electric discharge
temperature
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006211901A
Other languages
Japanese (ja)
Other versions
JP2008036739A (en
Inventor
博 英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2006211901A priority Critical patent/JP5137172B2/en
Priority to PCT/JP2007/000818 priority patent/WO2008015786A1/en
Publication of JP2008036739A publication Critical patent/JP2008036739A/en
Application granted granted Critical
Publication of JP5137172B2 publication Critical patent/JP5137172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45221Edm, electrical discharge machining, electroerosion, ecm, chemical
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49219Compensation temperature, thermal displacement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

本発明は、温度変化に伴う機械本体の熱変位を補正可能な放電加工機及び放電加工機における熱変位補正方法に関するものである。   The present invention relates to an electric discharge machine capable of correcting a thermal displacement of a machine main body accompanying a temperature change, and a thermal displacement correction method in the electric discharge machine.

電極と被加工物との極間に放電を発生させ、放電エネルギにより被加工物を加工する放電加工機が知られている。放電加工機を形成する機械本体の各部位は、一般的に厚さや長さ等、形状が異なるものであるため、放電加工機が温度変化の生じる環境下に設置されると、熱容量等の違いにより各部位で温度差が生じてしまう。該温度差が生じると前記各部位での熱変位量にも差が生じてしまうため、電極と被加工物との間の相対位置が変化して加工精度が低下する虞があった。そこで、従来、機械内部に外気を取り込んで機械本体の内壁と外壁との温度差を低減し、機械全体を均一な温度にして、熱変位による前記相対位置の変化を小さくする方法が開示されている。   2. Description of the Related Art An electric discharge machine that generates electric discharge between an electrode and a workpiece and processes the workpiece with discharge energy is known. Since each part of the machine body that forms the electric discharge machine is generally different in shape, such as thickness and length, when the electric discharge machine is installed in an environment where temperature changes occur, the difference in heat capacity, etc. Due to this, a temperature difference occurs in each part. If this temperature difference occurs, a difference also occurs in the amount of thermal displacement at each of the parts, so that the relative position between the electrode and the workpiece may change and the processing accuracy may be reduced. Therefore, conventionally, a method has been disclosed in which outside air is taken into the machine to reduce the temperature difference between the inner wall and the outer wall of the machine body, to make the entire machine a uniform temperature, and to reduce the change in the relative position due to thermal displacement. Yes.

上記の方法には、機械本体の各部位に温度検出用センサを配設し、前記各部位の温度差を指定された範囲内にするために、機械本体に取り付けた送風ファンの回転数を変えて通風量を制御する方法(特許文献1)や、コラムとベッド内に、これらと一体の分割リブを設けることにより、コラムとベッド内部に円滑な通風を施して、主要構造体全体の温度分布を均一化する方法(特許文献2)等がある。さらに機械内部に外気を取り込むだけでは不十分な場合には、精密に温度制御された気体や液体等を機械内部で循環させる方法や、放電加工機全体をカバーで覆い外気と遮断することによって、外気温度の変化による影響を受けないようにする方法等も開示されている。
特開平5−177502号公報 特許平2−30812号公報
In the above method, a temperature detection sensor is provided at each part of the machine body, and the rotational speed of the blower fan attached to the machine body is changed in order to keep the temperature difference between the parts within a specified range. The method of controlling the air flow rate (Patent Document 1) and the provision of a dividing rib integral with the column and bed to provide smooth ventilation inside the column and bed, and the temperature distribution of the entire main structure There exists a method (patent document 2) etc. which equalize. Furthermore, if it is not enough to simply take outside air into the machine, it is possible to circulate a precisely temperature-controlled gas or liquid inside the machine, or cover the whole EDM machine with a cover and shut it off from outside air. Also disclosed is a method for avoiding the influence of changes in the outside air temperature.
Japanese Patent Laid-Open No. 5-177502 Japanese Patent No. 2-30812

しかしながら、上記のように通風量を制御する方法や、温度制御された気体や液体を機械内部に循環させる方法は、複雑な制御機構を要するためコストがかかってしまう。放電加工機全体をカバーで覆う方法は、カバーの分のコストを必要とし、かつ機械全体が大型化してしまう。また上記方法により機械全体を均一な温度に保持することができても、機械本体の各部位は、形状の違いにより、熱応答速度すなわち温度が変化したときに各部位で全体が変化後の温度になるまでに要する時間が異なり、この時間差により熱変位量にばらつきが生じて、加工精度が低下してしまう虞がある。   However, the method for controlling the amount of ventilation as described above and the method for circulating the temperature-controlled gas or liquid inside the machine require a complicated control mechanism, and thus cost is increased. The method of covering the entire electric discharge machine with the cover requires the cost of the cover, and the entire machine becomes large. In addition, even if the entire machine can be maintained at a uniform temperature by the above method, each part of the machine body has a temperature after the change at each part when the thermal response speed, that is, the temperature changes due to the difference in shape. The time required to become different is different, and this time difference causes variations in the amount of thermal displacement, which may reduce the processing accuracy.

本発明はかかる事情に鑑みてなされたものであり、複雑な機構を有することなく容易に、かつ効果的に所定方向の相対変位量を抑制可能な放電加工機及び放電加工機における熱変位補正方法を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and an electric discharge machine capable of easily and effectively suppressing a relative displacement amount in a predetermined direction without having a complicated mechanism and a thermal displacement correction method in the electric discharge machine Is intended to provide.

本発明の放電加工機は、電極と被加工物との極間に放電を発生させ、放電エネルギにより前記被加工物の加工を行う放電加工機において、
前記電極と前記被加工物との所定方向の相対位置に変化を生じさせる2つの部位のうち、温度変化に対する前記所定方向における熱応答速度の遅い一方の部位の内部又は外面に、外気を送風する送風手段を備え
前記送風手段が、外気の温度が所定温度変化する所定時間中において複数の異なる風量毎に外気を前記一方の部位に送風したときの所定経過時間毎の前記一方の部位の熱変位量と前記熱応答速度が速い他方の部位の熱変位量との差で生じる前記電極と前記被加工物との前記所定方向の相対位置の変化を予め実験的に測定し、該測定結果に基づいて決定された外気の温度の変化に伴う前記電極と前記被加工物との前記所定方向の相対位置の変化が最も少なくなる風量で前記一方の部位の前記内部又は外面に外気を送風することを特徴とするものである。
The electric discharge machine of the present invention is an electric discharge machine that generates electric discharge between an electrode and a workpiece, and processes the workpiece by electric discharge energy.
Of the two sites that produce a change in the predetermined direction of the relative position between the workpiece and the electrode, inside or outer surface of one of the sites slow thermal response speed in the predetermined direction with respect to temperature change, blowing outside air Air blowing means to perform ,
The amount of thermal displacement of the one portion and the heat for each predetermined elapsed time when the air blows the outside air to the one portion for each of a plurality of different air volumes during a predetermined time when the temperature of the outside air changes by a predetermined temperature. A change in the relative position in the predetermined direction between the electrode and the workpiece caused by a difference from the thermal displacement amount of the other part having a high response speed was experimentally measured in advance, and determined based on the measurement result. The outside air is blown to the inside or the outside surface of the one part with an air volume that minimizes a change in the relative position in the predetermined direction between the electrode and the workpiece with a change in the temperature of the outside air. It is.

本発明の放電加工機の熱変位補正方法は、電極と被加工物との極間に放電を発生させ、放電エネルギにより前記被加工物の加工を行う放電加工機の熱変位補正方法において、
前記電極と前記被加工物との所定方向の相対位置に変化を生じさせる2つの部位のうち、温度変化に対する前記所定方向における熱応答速度の遅い一方の部位の内部又は外面に、外気の温度が所定温度変化する所定時間中において複数の異なる風量毎に外気を前記一方の部位に送風したときの所定経過時間毎の前記一方の部位の熱変位量と前記熱応答速度が速い他方の部位の熱変位量との差で生じる前記電極と前記被加工物との前記所定方向の相対位置の変化を予め実験的に測定し、該測定結果に基づいて決定された外気の温度の変化に伴う前記電極と前記被加工物との前記所定方向の相対位置の変化が最も少なくなる風量の外気を送風することを特徴とするものである。
A method for correcting a thermal displacement of an electric discharge machine according to the present invention includes a method for generating a discharge between an electrode and a workpiece, and for correcting the thermal displacement of the electric discharge machine that processes the workpiece with discharge energy.
Of the two parts that cause a change in the relative position in the predetermined direction between the electrode and the workpiece, the temperature of the outside air is inside or on the outer surface of one part having a slow thermal response speed in the predetermined direction with respect to a temperature change. Thermal displacement amount of the one part and heat of the other part where the thermal response speed is fast when the outside air is blown to the one part for each of a plurality of different air volumes during a predetermined time when the predetermined temperature changes. A change in the relative position in the predetermined direction between the electrode and the workpiece caused by a difference in displacement is experimentally measured in advance, and the electrode according to a change in the temperature of the outside air determined based on the measurement result And the work piece are blown with an air volume with an air volume that minimizes a change in the relative position of the workpiece in the predetermined direction.

なお本発明において「電極と被加工物との所定方向の相対位置」は電極と被加工物との間の所定方向の間隔すなわち距離をいう。「所定方向の相対位置の変化」は、温度変化させたときの最大間隔と最小間隔との差をいう。「熱応答速度が遅い」は、温度が変化したときに各部位で全体が変化後の温度になるまでに要する時間が長いことをいい、「熱応答速度が速い」は、前記要する時間が短いことをいう。   In the present invention, the “relative position in a predetermined direction between the electrode and the workpiece” refers to a distance, that is, a distance in a predetermined direction between the electrode and the workpiece. “Change in relative position in a predetermined direction” refers to a difference between the maximum interval and the minimum interval when the temperature is changed. “Slow thermal response speed” means that it takes a long time for the whole part to reach the temperature after the change when the temperature changes. “High thermal response speed” means that the time required is short. That means.

本発明において「2つの部位」は、各部位の前記所定方向における線熱膨張率(前記所定方向の全長の温度変化による変化率)が同程度であることが好ましく、具体的には、それぞれの線熱膨張率が、該2つの線熱膨張率の平均値の70%〜130%の範囲内にあることが好ましく、90%〜110%の範囲内にあればより好ましく、95%〜105%の範囲内にあればさらに好ましい。なお「部位」は複数の構成要素からなるものであっても、単一の構成要素からなるものであってもよい。「部位」が複数の構成要素からなるものである場合で、特に構成要素が離れて配置されている場合には、温度変化させる前と後とで、構成要素ごとに所定方向の全長を測定してそれら足し合わせ、温度変化させる前と後との値から所定方向の線熱膨張率を算出する。また「部位」が、例えば単一の材料によって形成された鋳物等の単一の構成材料からなるものである場合には、その材料の線熱膨張率を使用してもよい。   In the present invention, it is preferable that the “two parts” have approximately the same linear thermal expansion coefficient in each of the predetermined directions (change rate due to temperature change of the total length in the predetermined direction). The linear thermal expansion coefficient is preferably in the range of 70% to 130% of the average value of the two linear thermal expansion coefficients, more preferably in the range of 90% to 110%, and 95% to 105%. If it is in the range, it is more preferable. The “part” may be composed of a plurality of constituent elements or a single constituent element. When the “part” is composed of a plurality of components, especially when the components are arranged apart from each other, measure the total length in a given direction for each component before and after the temperature change. The linear thermal expansion coefficient in a predetermined direction is calculated from the values before and after the temperature change. When the “part” is made of a single constituent material such as a casting formed of a single material, for example, the linear thermal expansion coefficient of the material may be used.

本発明において「最も少なくなる風量」は、実際に最も少なくなる風量に限らず、その風量と同程度の風量、例えばその風量の±10%の範囲内の風量も含む。   In the present invention, “the smallest amount of air” is not limited to the smallest amount of air, but includes the same amount of air, for example, within the range of ± 10% of the amount of air.

なお本願出願人により、温度変化パターンが異なっても相対位置の変化が最も少なくなる風量は同じになることが実験で確認されている。   The applicant of the present application has confirmed through experiments that the airflow at which the change in relative position is the smallest is the same even if the temperature change pattern is different.

本発明では、前記一方の部位だけではなく、他方の部位にも所定量の外気を送風してよい。この場合、前記一方の部位に送風する外気の風量は、他方の部位に前記所定量の外気を送風したときに温度変化に伴う前記電極と前記被加工物との前記所定方向の相対位置の変化が最も少なくなる風量を、予め実験的に求めて決定したものとする。   In the present invention, a predetermined amount of outside air may be blown not only to the one part but also to the other part. In this case, the flow rate of the outside air blown to the one part is a change in the relative position of the electrode and the workpiece in the predetermined direction accompanying a temperature change when the predetermined amount of outside air is blown to the other part. It is assumed that the air volume that minimizes the airflow is determined experimentally in advance.

本発明の放電加工機及び放電加工機の熱変位補正方法によれば、電極と被加工物との所定方向の相対位置に変化を生じさせる2つの部位のうち、温度変化に対する所定方向における熱応答速度の遅い一方の部位の内部又は外面に、予め実験的に求められた風量の外気を送風するので、熱応答速度の遅い一方の部位の熱応答速度を速くすることにより、前記一方の部位と他方の部位とを略同じ熱応答速度にすることができて、温度変化に伴う時間毎の熱変位量のばらつきを抑制できる。このとき送風する風量が温度変化に伴う電極と被加工物との所定方向の相対位置の変化が最も少なくなるように決定されたものなので効果的に相対位置の変化すなわち所定方向の相対変位量を抑制でき、放電加工機の加工精度を向上させることができる。   According to the electric discharge machine and the electric displacement correction method of the electric discharge machine of the present invention, the thermal response in the predetermined direction with respect to the temperature change among the two parts that cause a change in the relative position of the electrode and the workpiece in the predetermined direction. Since the outside air of the air volume that has been experimentally obtained in advance is blown into the inside or the outer surface of one part having a low speed, by increasing the thermal response speed of one part having a low thermal response speed, The other part can be set to substantially the same thermal response speed, and variation in the amount of thermal displacement with time due to temperature change can be suppressed. Since the amount of air blown at this time is determined so that the change in the relative position in the predetermined direction between the electrode and the workpiece due to the temperature change is minimized, the change in the relative position, that is, the relative displacement in the predetermined direction is effectively determined. This can be suppressed, and the machining accuracy of the electric discharge machine can be improved.

また送風される風量が予め実験的に求められた一定の風量なので、風量を制御するための複雑な機構を必要としないため、コストを低減することができる。   Further, since the air volume to be blown is a constant air volume obtained experimentally in advance, a complicated mechanism for controlling the air volume is not required, and thus the cost can be reduced.

以下、本発明の放電加工機の一実施形態について、図面を参照して詳細に説明する。図1は本実施形態の放電加工機1の概略構成側面図である。なお本実施形態の放電加工機1は、便宜上、電極6が位置する側を上側(図1の紙面上側)、ベッド部2が位置する側を下側(図1の紙面下側)、作業者が作業する側すなわちコラム部3とテーブル部4を介して反対側を前側(図1の紙面右側)とし、前後方向(図1中左右方向)をY軸方向、上下方向(図1中上下方向)をZ軸方向として説明する。また本明細書中では各部位において熱膨張又は熱収縮による各部位の全長の変化量を「熱変位量」とする。   Hereinafter, an embodiment of an electric discharge machine according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration side view of an electric discharge machine 1 according to the present embodiment. For the sake of convenience, the electric discharge machine 1 of the present embodiment is such that the side on which the electrode 6 is located is the upper side (upper side of the paper in FIG. 1), the side on which the bed portion 2 is located is the lower side (lower side of the paper in FIG. 1), Is the front side (right side in FIG. 1) through the column portion 3 and the table portion 4, and the front-rear direction (left-right direction in FIG. 1) is the Y-axis direction, and the up-down direction (up-down direction in FIG. 1). ) As the Z-axis direction. In this specification, the amount of change in the total length of each part due to thermal expansion or contraction in each part is referred to as “thermal displacement amount”.

本実施形態の放電加工機1は、図1に示す如く、床面に設置されたベッド部2と、ベッド部2の上面後側に立設されたコラム部3と、ベッド部2の上面の、コラム部3よりも前側に載置され、被加工物Wが載置されるテーブル部4と、テーブル部4の上方に位置するようにコラム部3に保持されたヘッド部5と、ヘッド部5の下端に装着された電極6とから概略構成されている。ベッド部2、コラム部3、テーブル部4及びヘッド部5は線熱膨張率の等しい材料で形成された鋳物とする。   As shown in FIG. 1, the electric discharge machine 1 of the present embodiment includes a bed portion 2 installed on the floor surface, a column portion 3 erected on the rear side of the upper surface of the bed portion 2, and an upper surface of the bed portion 2. A table part 4 placed on the front side of the column part 3 and on which the workpiece W is placed; a head part 5 held on the column part 3 so as to be positioned above the table part 4; and a head part 5 and the electrode 6 attached to the lower end of 5. The bed part 2, the column part 3, the table part 4, and the head part 5 are made of a casting formed of a material having the same linear thermal expansion coefficient.

ベッド部2は、上面が平坦に形成された直方体であって、内部にベッド部内空洞21を有している。コラム部3は、ベッド部2の上面に該上面と略直角に立設され、四角柱状で内部にコラム本体部内空洞71を有するコラム本体部7と、コラム本体部7の上端面に、上面及び下面がコラム本体部7と略直角すなわちベッド部2の上面と平行になるように配設された略直方体で、内部にコラム上部内空洞81を有するコラム上部8とから構成されている。このときベッド部2、コラム本体部7及びコラム上部8の空洞21,71,81は、別々に区画して形成されている。   The bed portion 2 is a rectangular parallelepiped having a flat upper surface and has a bed portion cavity 21 therein. The column portion 3 is erected on the upper surface of the bed portion 2 at a substantially right angle with the upper surface, and has a columnar body 7 having a column main body inner cavity 71 therein, and an upper surface on the upper end surface of the column main body portion 7. The lower surface is a substantially rectangular parallelepiped arranged so as to be substantially perpendicular to the column main body portion 7, that is, parallel to the upper surface of the bed portion 2, and is composed of a column upper portion 8 having a column upper inner cavity 81 therein. At this time, the cavities 21, 71, 81 of the bed part 2, the column main body part 7, and the column upper part 8 are separately formed.

ヘッド部5は、内部に図示しないモータ等が設置され、下端に上下方向に移動可能に装着された電極6が配設されている。テーブル部4は、上面及び下面がベッド部2の上面と平行に形成され、被加工物Wが上面内で手動又は自動で移動可能に構成されている。そして被加工物Wは、内部に加工液が収容された図示しない加工槽の中に配置される。   The head unit 5 has a motor or the like (not shown) installed therein, and an electrode 6 mounted on the lower end of the head unit 5 so as to be movable in the vertical direction. The table portion 4 has an upper surface and a lower surface formed in parallel with the upper surface of the bed portion 2, and the workpiece W is configured to be movable manually or automatically within the upper surface. And the workpiece W is arrange | positioned in the processing tank which is not illustrated in which the processing liquid was accommodated.

上記のように構成された放電加工機1は、加工槽に収容された加工液の中で、電極6と被加工物Wとの極間Dに、図示しない電源によって放電を発生させ、放電エネルギによって被加工物Wの放電加工を行う。   The electric discharge machine 1 configured as described above generates electric discharge in a gap D between the electrode 6 and the workpiece W by a power source (not shown) in the machining liquid accommodated in the machining tank, and discharge energy The electric discharge machining of the workpiece W is performed.

本発明において特徴的なのは、電極6と被加工物Wとの所定方向の相対位置に変化を生じさせる2つの部位のうち、温度変化に対する所定方向における熱応答速度の遅い一方の部位の内部又は外面に、予め実験的に求められた、温度変化に伴う電極と被加工物との前記所定方向の相対位置の変化が最も少なくなる風量の外気を送風することである。   A characteristic of the present invention is that the inner or outer surface of one of the two portions that cause a change in the relative position of the electrode 6 and the workpiece W in a predetermined direction and that has a slow thermal response speed in a predetermined direction with respect to a temperature change. In addition, it is necessary to blow an outside air having an air volume that is experimentally obtained in advance and minimizes a change in the relative position of the electrode and the workpiece in the predetermined direction due to a temperature change.

本実施形態の放電加工機1における前記2つの部位は、熱変位を生じることにより電極と被加工物との相対位置に変化を生じさせることから、Y軸方向は一方をベッド部2、他方をコラム上部8とヘッド部5とを組み合わせてなる上部9とし、Z軸方向は一方をコラム部3、他方をテーブル部4、被加工物W、ヘッド部5及び電極6とを組み合わせた軸部10とする。前側からみて左右方向すなわち紙面奥行き方向であるX軸方向は、放電加工機1が前側からみて左右略対称に構成されているものであるため、他の軸方向と比較して左右の熱変位量に差が生じ難いので、本実施形態では考慮しないものとする。   The two parts in the electric discharge machine 1 of the present embodiment cause a change in the relative position between the electrode and the workpiece by causing thermal displacement. The upper part 9 is formed by combining the column upper part 8 and the head part 5, and in the Z-axis direction, one is the column part 3, and the other is the table part 4, the workpiece W, the head part 5, and the shaft part 10 combining the electrode 6. And The X-axis direction, which is the left-right direction when viewed from the front side, that is, the depth direction of the paper surface, is configured so that the electric discharge machine 1 is substantially symmetrical when viewed from the front side. In this embodiment, the difference is not considered.

先ずY軸方向の熱変位補正方法について説明する。通常、放電加工機1のベッド部2は、上面にコラム部3等が配設されるため、強度や安定性を考慮して、上部9と比較して厚み等、外形が大きく設計されている。そのためベッド部2の熱容量は、上部9の熱容量よりも大きくなり、放電加工機1の周囲において温度変化が生じた場合には、熱容量の違いにより、ベッド部2と上部9とは温度変化に差が生じる。そして温度変化に差が生じると、ベッド部2のY軸方向の全長(図1中、Y1)における熱変位量と、上部9のY軸方向の全長(図1中、Y2)における熱変位量とが異なる値となり、これにより電極6と被加工物WとのY軸方向の相対位置に変化が生じる。また上記のようにベッド部2の熱容量は、上部9の熱容量よりも大きいので、ベッド部2と上部9とを均一な温度にするために要する時間は、ベッド部2が上部9よりも多く必要となる。すなわちベッド部2は上部9よりも熱応答速度が遅い。   First, the thermal displacement correction method in the Y-axis direction will be described. Normally, the bed portion 2 of the electric discharge machine 1 is provided with the column portion 3 and the like on the upper surface, and therefore, the outer shape such as the thickness is designed larger than the upper portion 9 in consideration of strength and stability. . Therefore, the heat capacity of the bed part 2 becomes larger than the heat capacity of the upper part 9, and when a temperature change occurs around the electric discharge machine 1, the bed part 2 and the upper part 9 differ in temperature change due to the difference in heat capacity. Occurs. If there is a difference in temperature change, the thermal displacement amount in the entire length of the bed portion 2 in the Y-axis direction (Y1 in FIG. 1) and the thermal displacement amount in the entire length of the upper portion 9 in the Y-axis direction (Y2 in FIG. 1). Becomes a different value, which causes a change in the relative position of the electrode 6 and the workpiece W in the Y-axis direction. Moreover, since the heat capacity of the bed part 2 is larger than the heat capacity of the upper part 9 as described above, the time required for the bed part 2 and the upper part 9 to have a uniform temperature requires more time for the bed part 2 than the upper part 9. It becomes. That is, the bed part 2 has a slower thermal response speed than the upper part 9.

そこで本実施形態の放電加工機1の熱変位補正方法は、図1に示す如く、ベッド部2本体の前壁に、予め実験的に求められた、温度変化に伴う電極6と被加工物WとのY軸方向の相対位置の変化が最も少なくなる風量の外気を送風するように設定したベッド側ファン22を取り付けて、ベッド部内空洞21に、強制的に外気を送風する。このときベッド部2本体の後壁にベッド側開口23を形成して、ベッド部内空洞21の空気の流れを良くすることにより、ベッド部2をより早く外気温に近づけて熱応答速度を早くする。   Accordingly, the thermal displacement correction method for the electric discharge machine 1 according to the present embodiment, as shown in FIG. 1, is applied to the front wall of the main body of the bed portion 2 on the front wall of the bed portion 2 and has been experimentally obtained in advance. The bed side fan 22 set so as to blow the amount of the outside air with the smallest change in the relative position in the Y-axis direction is attached, and the outside air is forcibly blown into the bed portion cavity 21. At this time, the bed side opening 23 is formed in the rear wall of the bed part 2 main body to improve the air flow in the bed part cavity 21 so that the bed part 2 can be brought closer to the outside temperature earlier and the thermal response speed can be increased. .

以下、風量を決定する実験について説明する。図2にベッド側ファン22の回転数を制御して異なる風量の外気をベッド部内空洞21に送風したときの時間の経過とY軸方向の相対変位量との関係を示すグラフを示す。なお図2中の曲線の番号は、小さい番号が少ない風量の曲線であり、番号が大きくなるにつれて多い風量の曲線を示す。ここでNo1は風量が0のときの曲線を示す。また外気の温度の変化量は9℃とし、後述する図3中の外気温の曲線と同じ変化をさせた。   Hereinafter, an experiment for determining the air volume will be described. FIG. 2 is a graph showing the relationship between the passage of time and the relative amount of displacement in the Y-axis direction when the rotational speed of the bed-side fan 22 is controlled to blow outside air with different air volumes into the bed portion cavity 21. Note that the numbers of the curves in FIG. 2 are curves with a small air number and a small air number, and show a curve with a large air amount as the number increases. Here, No1 indicates a curve when the air volume is zero. The amount of change in the outside air temperature was 9 ° C., and the same change as the outside air temperature curve in FIG.

図2に示す如く、外気をベッド部内空洞21に送風すると、図示しない外気温の変化と連動してY軸方向の相対変位量が変化する。少ない風量(No1〜3)のときには、ベッド部2と上部9との熱応答速度に差があるので、時間毎のベッド部2のY軸方向の全長(図1中、Y1)における熱変位量と、上部のY軸方向の全長(図1中、Y2)における熱変位量とに差が生じるため、外気温を9℃変化させたときのY軸方向の相対変位量は大きいときには14μm程度となり、Y軸方向の相対変位量を充分に抑制できない。   As shown in FIG. 2, when the outside air is blown into the bed portion cavity 21, the amount of relative displacement in the Y-axis direction changes in conjunction with a change in the outside air temperature (not shown). When there is a small air volume (No. 1 to 3), there is a difference in the thermal response speed between the bed part 2 and the upper part 9, so the amount of thermal displacement in the entire length of the bed part 2 in the Y-axis direction (Y1 in FIG. 1) every hour. And the amount of thermal displacement in the entire length in the upper Y-axis direction (Y2 in FIG. 1), the relative displacement amount in the Y-axis direction when the outside air temperature is changed by 9 ° C. is about 14 μm. The relative displacement amount in the Y-axis direction cannot be sufficiently suppressed.

多い風量(No4〜7)のときには、ベッド部内空洞21により多くの外気が送風されるので、ベッド部2がより速く外気温に近づき、ベッド部2の熱応答速度が速くなる。これにより、ベッド部2と上部9との熱応答速度の差が小さくなるので、時間毎のベッド部2のY軸方向の全長(図1中、Y1)における熱変位量と、上部9のY軸方向の全長(図1中、Y2)における熱変位量との差を小さくすることができ、外気温を9℃変化させたときのY軸方向の相対変位量を5μm以内に抑制することができる。   When the air volume is large (No 4 to No. 7), a large amount of outside air is blown into the bed portion cavity 21, so that the bed portion 2 approaches the outside temperature faster and the thermal response speed of the bed portion 2 becomes faster. As a result, the difference in thermal response speed between the bed portion 2 and the upper portion 9 is reduced, so that the amount of thermal displacement of the entire length of the bed portion 2 in the Y-axis direction (Y1 in FIG. 1) per hour and the Y of the upper portion 9 are reduced. The difference from the amount of thermal displacement in the entire axial length (Y2 in FIG. 1) can be reduced, and the relative displacement in the Y-axis direction when the outside air temperature is changed by 9 ° C. can be suppressed to within 5 μm. it can.

ここで上記多い風量のうち風量No6,7のときには、ベッド部内空洞21に外気がより多く入るので、ベッド部2が速く外気温に近づき過ぎて、ベッド部2の方が上部9よりも熱応答速度が速くなってしまい、図2に示す如く、曲線の時間周期における位相が逆転する。本実験においては風量No5又は風量No6のときに、Y軸方向の相対変位量が最も抑制されているが、放電加工機1にさらに高い加工精度が要求されている場合には、風量No5と風量No6との間で風量を細かく設定し、Y軸方向の相対変位量がさらに抑制される値を求めることができる。   Here, when the air volume is No. 6 or 7 among the above-mentioned large air volumes, the outside air enters the bed portion cavity 21 more, so the bed portion 2 quickly approaches the outside air temperature, and the bed portion 2 is more responsive than the upper portion 9. The speed increases, and the phase in the time period of the curve is reversed as shown in FIG. In this experiment, the relative displacement amount in the Y-axis direction is most suppressed when the air volume No5 or the air volume No6. However, if higher machining accuracy is required for the electric discharge machine 1, the air volume No5 and the air volume. The air volume can be set finely with No. 6, and a value that further suppresses the relative displacement in the Y-axis direction can be obtained.

ここで、図3に上記のように決定された風量の外気をベッド側ファン22によってベッド部内空洞21に送風したときの時間の経過とY軸方向の相対変位量との関係を示すグラフを示す。このとき外気の温度の変化量は9℃とし、詳しくは、2℃/時で9℃上昇させ、2時間経過後に2℃/時で9℃降下させた。さらに2時間経過後2℃/時で9℃上昇させ、8時間経過後2℃/時で9℃降下させた。そしてさらに2時間経過後2℃/時で9℃上昇させ、2時間経過後2℃/時で9℃降下させた。なお図3中ファン無しの曲線は、上述した図2中のNo1の曲線と同じデータである。   Here, FIG. 3 is a graph showing the relationship between the passage of time and the relative displacement in the Y-axis direction when the outside air having the air volume determined as described above is blown to the bed-side cavity 21 by the bed-side fan 22. . At this time, the amount of change in the temperature of the outside air was 9 ° C., specifically, 9 ° C. was increased at 2 ° C./hour, and 9 ° C. was decreased at 2 ° C./hour after 2 hours. Further, 9 ° C. was increased at 2 ° C./hour after 2 hours, and 9 ° C. was decreased at 2 ° C./hour after 8 hours. Further, after 2 hours, the temperature was increased by 9 ° C. at 2 ° C./hour, and after 2 hours, the temperature was decreased by 9 ° C. at 2 ° C./hour. In addition, the curve without a fan in FIG. 3 is the same data as the curve of No. 1 in FIG.

図3に示す如く、ベッド側ファン22が取り付けられていない放電加工機1では、外気温の変化に連動してY軸方向の相対変位量が14μm程度まで上昇した。ベッド部2にベッド側ファン22を取り付けた放電加工機1では、外気温の変化とは時間周期における位相が逆転してY軸方向の相対変位量は4μm以内で変化した。   As shown in FIG. 3, in the electric discharge machine 1 to which the bed side fan 22 is not attached, the relative displacement amount in the Y-axis direction increased to about 14 μm in conjunction with the change in the outside air temperature. In the electric discharge machine 1 in which the bed side fan 22 is attached to the bed part 2, the phase in the time period is reversed from the change in the outside air temperature, and the relative displacement in the Y-axis direction is changed within 4 μm.

このように、前述のように決定された風量の外気をベッド側ファン22によってベッド部内空洞21に送風することにより、ベッド部2の熱応答速度を速くすることができるため、ベッド部2と上部9との熱応答速度の差を小さくすることができ、ベッド部2と上部9との時間毎のY軸方向の熱変位量の差を小さくできる。これによりY軸方向の相対変位量が抑制されるので、放電加工機1の加工精度を向上させることができる。また風量は一定であるため、風量を制御するための複雑な機構を必要としないことにより、コストを低減することができる。さらに風量は温度変化に伴う電極6と被加工物WとのY軸方向の相対位置の変化が最も少なくなる風量なので、効果的に前記相対位置の変化すなわちY軸方向の相対変位量を抑制でき、放電加工機1の加工精度を向上させることができる。   In this way, since the outside air having the air volume determined as described above is blown to the bed portion cavity 21 by the bed side fan 22, the thermal response speed of the bed portion 2 can be increased. 9 can be reduced, and the difference in the amount of thermal displacement between the bed portion 2 and the upper portion 9 in the Y-axis direction can be reduced. Thereby, since the relative displacement amount in the Y-axis direction is suppressed, the machining accuracy of the electric discharge machine 1 can be improved. Moreover, since the air volume is constant, the cost can be reduced by not requiring a complicated mechanism for controlling the air volume. Further, since the air volume is such that the change in the relative position of the electrode 6 and the workpiece W in the Y-axis direction with the change in temperature is the smallest, the relative position change, that is, the relative displacement in the Y-axis direction can be effectively suppressed. The machining accuracy of the electric discharge machine 1 can be improved.

次にZ軸方向の熱変位補正方法について説明する。通常、放電加工機1のコラム部3は、ヘッド部5を介して電極6を所定位置に保持するため、強度や安定性を考慮して、上述した軸部10と比較して外形が大きく設計されている。そのためコラム部3の熱容量は、軸部10の熱容量よりも大きくなり、放電加工機1の周囲において温度変化が生じた場合には、熱容量の違いにより、コラム部3と軸部10とは温度変化に差が生じる。そして温度変化に差が生じると、コラム部3のZ軸方向の大きさ(図1中、Z1)における熱変位量と、軸部10のZ軸方向の大きさ(図1中、Z2)における熱変位量とが異なる値となり、これにより電極6と被加工物WとのZ軸方向の相対位置に変化が生じる。また上記のようにコラム部3の熱容量は、軸部10の熱容量よりも大きいので、コラム部3と軸部10とを均一な温度にするために要する時間は、コラム部3が軸部10よりも多く必要となる。すなわちコラム部3は軸部10よりも熱応答速度が遅い。   Next, a thermal displacement correction method in the Z-axis direction will be described. Normally, the column part 3 of the electric discharge machine 1 holds the electrode 6 in a predetermined position via the head part 5, so that the outer shape is designed larger than the shaft part 10 in consideration of strength and stability. Has been. Therefore, the heat capacity of the column part 3 becomes larger than the heat capacity of the shaft part 10, and when a temperature change occurs around the electric discharge machine 1, the column part 3 and the shaft part 10 change in temperature due to the difference in heat capacity. There will be a difference. When a difference occurs in temperature change, the amount of thermal displacement in the size of the column portion 3 in the Z-axis direction (Z1 in FIG. 1) and the size of the shaft portion 10 in the Z-axis direction (Z2 in FIG. 1). The amount of thermal displacement becomes a different value, which causes a change in the relative position of the electrode 6 and the workpiece W in the Z-axis direction. Further, as described above, the heat capacity of the column portion 3 is larger than the heat capacity of the shaft portion 10, and therefore, the time required for the column portion 3 and the shaft portion 10 to have a uniform temperature is longer than that of the shaft portion 10. Much more. That is, the column part 3 has a slower thermal response speed than the shaft part 10.

そこで本実施形態の放電加工機1の熱変位補正方法は、図1に示す如く、コラム本体部7本体の後壁下端部に、予め実験的に求められた、温度変化に伴う極間DのZ軸方向の相対位置の変化が最も少なくなる風量の外気を送風するように設定したコラム側ファン72を取り付けて、コラム本体部内空洞71に、強制的に外気を送風する。このときコラム本体部7本体の後壁上端部にコラム側開口73を形成して、コラム本体部内空洞71の通風をより活性させる。なお本実施形態の放電加工機1は、上述したY軸方向の熱変位補正への影響を低減するために、コラム側ファン72による通風はコラム本体部内空洞71のみに行なうものとする。また風量については、上述したY軸方向と同様の実験方法にて決定するものとし、Z軸方向の実験方法についての説明は省略する。なおZ軸方向の実験は、被加工物Wを加工液に浸した状態で行い、加工液の温度をコラム部7の温度と同じ温度に制御する等、実際の加工状態と同様の構成にして行うものとする。   Therefore, the thermal displacement correction method for the electric discharge machine 1 according to the present embodiment, as shown in FIG. A column-side fan 72 that is set so as to blow the outside air with the air volume that minimizes the change in the relative position in the Z-axis direction is attached, and the outside air is forcibly blown into the column body inner cavity 71. At this time, a column side opening 73 is formed at the upper end of the rear wall of the column main body 7 to activate the ventilation of the column body inner cavity 71. In the electric discharge machine 1 of the present embodiment, ventilation by the column-side fan 72 is performed only in the column main body cavity 71 in order to reduce the influence on the Y-axis direction thermal displacement correction described above. The air volume is determined by the same experimental method as in the Y-axis direction described above, and the description of the experimental method in the Z-axis direction is omitted. The experiment in the Z-axis direction is performed in a state in which the workpiece W is immersed in the machining liquid, and the temperature of the machining liquid is controlled to the same temperature as that of the column part 7. Assumed to be performed.

図4に上述のように構成された本実施形態の放電加工機1において、外気の温度を9℃変化させたときの時間の経過とY軸方向及びZ軸方向の相対変位量との関係を示すグラフを示す。図4に示す如く、Y軸方向の相対変位量は略4.0μm以内に抑制することができ、Z軸方向の相対変位量は略2.5μm以内に抑制することができた。   In the electric discharge machine 1 of the present embodiment configured as described above with reference to FIG. 4, the relationship between the passage of time and the relative displacement in the Y-axis direction and the Z-axis direction when the temperature of the outside air is changed by 9 ° C. The graph shown is shown. As shown in FIG. 4, the relative displacement amount in the Y-axis direction could be suppressed within approximately 4.0 μm, and the relative displacement amount in the Z-axis direction could be suppressed within approximately 2.5 μm.

上述のように本実施形態の放電加工機1及び放電加工機1の熱変位補正方法によれば、電極6と被加工物Wとの所定方向の相対位置に変化を生じさせる2つの部位のうち、温度変化に対する前記所定方向の熱応答速度の遅い一方の部位の内部又は外面に外気を送風するので、熱応答速度の遅い一方の部位の熱応答速度を速くすることにより、前記一方の部位と他方の部位とを略同じ熱応答速度にすることができて、温度変化に伴う時間毎の熱変位量のばらつきを抑制できる。このとき送風する風量が温度変化に伴う電極と被加工物との所定方向の相対位置の変化が最も少なくなるように決定されたものなので効果的に相対位置の変化すなわち所定方向の相対変位量を抑制でき、放電加工機の加工精度を向上させることができる。   As described above, according to the electric discharge machine 1 and the thermal displacement correction method for the electric discharge machine 1 according to the present embodiment, of the two parts that cause a change in the relative position of the electrode 6 and the workpiece W in the predetermined direction. Since the outside air is blown to the inside or the outer surface of the one part having a slow thermal response speed in the predetermined direction with respect to the temperature change, the one part having a slow thermal response speed is increased to increase the thermal response speed of the one part. The other part can be set to substantially the same thermal response speed, and variation in the amount of thermal displacement with time due to temperature change can be suppressed. Since the amount of air blown at this time is determined so that the change in the relative position in the predetermined direction between the electrode and the workpiece due to the temperature change is minimized, the change in the relative position, that is, the relative displacement in the predetermined direction is effectively determined. This can be suppressed, and the machining accuracy of the electric discharge machine can be improved.

また送風される風量が予め実験的に求められた一定の風量なので、風量を制御するための複雑な機構を必要としないため、コストを低減することができる。よって放電加工機は、被加工物に対して高精度で加工を行うことができる。   Further, since the air volume to be blown is a constant air volume obtained experimentally in advance, a complicated mechanism for controlling the air volume is not required, and thus the cost can be reduced. Therefore, the electric discharge machine can process the workpiece with high accuracy.

なお上記のY軸方向及びZ軸方向の相対変位量の測定は、一般的に使用される測定方法により求めるものとし、例えば電極6及び被加工物Wの位置に基準球を設置して測定する方法が使用される。   Note that the measurement of the relative displacement amount in the Y-axis direction and the Z-axis direction is obtained by a commonly used measurement method. For example, the measurement is performed by setting a reference sphere at the position of the electrode 6 and the workpiece W. The method is used.

また本実施形態の放電加工機1は、上述したようにベッド部2とコラム本体部7にファンを取り付けたものであるが、本発明の放電加工機はこれに限られるものではなく、例えばベッド部のみにファンを取り付けてもよい。   In addition, the electric discharge machine 1 of the present embodiment is one in which a fan is attached to the bed portion 2 and the column main body portion 7 as described above, but the electric discharge machine of the present invention is not limited to this, for example, a bed You may attach a fan only to a part.

また本実施形態の放電加工機1は、上述したようにベッド部2前面にベッド側ファン22を取り付けたものであるが、本発明の放電加工機はこれに限られるものではなく、例えば右側面にベッド側ファンを取り付けても、左側面にベッド側ファンを取り付けてもよく、適宜設計変更可能である。   Moreover, although the electric discharge machine 1 of this embodiment attaches the bed side fan 22 to the bed part 2 front as mentioned above, the electric discharge machine of this invention is not restricted to this, For example, a right side surface The bed side fan may be attached to the left side surface, or the bed side fan may be attached to the left side surface, and the design can be changed as appropriate.

また本実施形態の放電加工機1は、上述したようにコラム本体部7後面の下端部にコラム側ファン72を取り付けたものであるが、本発明の放電加工機はこれに限られるものではなく、例えば上端部に取り付けても、前面に取り付けてもよく、適宜設計変更可能である。   Moreover, although the electric discharge machine 1 of this embodiment attaches the column side fan 72 to the lower end part of the column main-body part 7 rear surface as mentioned above, the electric discharge machine of this invention is not restricted to this. For example, it may be attached to the upper end or the front surface, and the design can be changed as appropriate.

また本実施形態の放電加工機1は、上述したようにコラム本体部及びベッド部の内部に外気を送風するものであるが、本発明の放電加工機はこれに限られるものではなく、例えば外面に外気を送風してもよい。   Moreover, although the electric discharge machine 1 of this embodiment blows external air into the inside of a column main-body part and a bed part as mentioned above, the electric discharge machine of this invention is not restricted to this, For example, an outer surface You may blow outside air.

また本実施形態の放電加工機1は、上記のようにC形フレームと総称される形状としたが、本発明の放電加工機及び該放電加工機における熱変位補正方法はこれに限られるものではなく、例えば左右両側にコラム本体部を備えた門形フレームと総称される形状であってもよく、適宜設計変更可能である。門形フレームの放電加工機の場合は、Z軸方向の熱変位を補正するために、左右両側のコラムにコラム側ファンを取り付ける。   Moreover, although the electric discharge machine 1 of this embodiment was made into the shape generally called a C shape flame | frame as mentioned above, the electric displacement machine of this invention and the thermal displacement correction method in this electric discharge machine are not restricted to this. For example, it may be a shape generally referred to as a portal frame having column main body portions on the left and right sides, and the design can be changed as appropriate. In the case of a portal frame electric discharge machine, column-side fans are attached to the left and right columns in order to correct thermal displacement in the Z-axis direction.

本実施形態の放電加工機の右側面図Right side view of the electric discharge machine of this embodiment 異なる風量を送風したときの時間の経過とY軸方向の相対変位量との関係を示すグラフGraph showing the relationship between the passage of time and the relative displacement in the Y-axis direction when different air volumes are blown ファンが取り付けられた放電加工機とファンが取り付けられていない放電加工機とにおける時間の経過とY軸方向の相対変位量との関係を示すグラフGraph showing the relationship between the passage of time and the relative displacement in the Y-axis direction between an electric discharge machine with a fan attached and an electric discharge machine with no fan attached 外気の温度を9℃変化させたときの時間の経過とY軸方向及びZ軸方向の相対変位量との関係を示すグラフA graph showing the relationship between the passage of time when the outside air temperature is changed by 9 ° C. and the relative displacement in the Y-axis direction and the Z-axis direction.

符号の説明Explanation of symbols

1 放電加工機
2 ベッド部
21 ベッド内空洞
22 ベッド側ファン
23 ベッド側開口
3 コラム部
4 テーブル部
5 ヘッド部
6 電極
7 コラム本体部
71 コラム本体部内空洞
72 コラム側ファン
73 コラム側開口
8 コラム上部
81 コラム上部内空洞
9 上部
10 軸部
D 極間
W 被加工物
DESCRIPTION OF SYMBOLS 1 Electric discharge machine 2 Bed part 21 Bed internal cavity 22 Bed side fan 23 Bed side opening 3 Column part 4 Table part 5 Head part 6 Electrode 7 Column main body part 71 Column main body part internal cavity 72 Column side fan 73 Column side opening 8 Column upper part 81 Column upper cavity 9 Upper part 10 Shaft part D Between poles W Workpiece

Claims (2)

電極と被加工物との極間に放電を発生させ、放電エネルギにより前記被加工物の加工を行う放電加工機において、
前記電極と前記被加工物との所定方向の相対位置に変化を生じさせる2つの部位のうち、温度変化に対する前記所定方向における熱応答速度の遅い一方の部位の内部又は外面に、外気を送風する送風手段を備え
前記送風手段が、外気の温度が所定温度変化する所定時間中において複数の異なる風量毎に外気を前記一方の部位に送風したときの所定経過時間毎の前記一方の部位の熱変位量と前記熱応答速度が速い他方の部位の熱変位量との差で生じる前記電極と前記被加工物との前記所定方向の相対位置の変化を予め実験的に測定し、該測定結果に基づいて決定された外気の温度の変化に伴う前記電極と前記被加工物との前記所定方向の相対位置の変化が最も少なくなる風量で前記一方の部位の前記内部又は外面に外気を送風することを特徴とする放電加工機。
In an electric discharge machine that generates an electric discharge between an electrode and a workpiece, and processes the workpiece by discharge energy,
Of the two sites that produce a change in the predetermined direction of the relative position between the workpiece and the electrode, inside or outer surface of one of the sites slow thermal response speed in the predetermined direction with respect to temperature change, blowing outside air Air blowing means to perform ,
The amount of thermal displacement of the one portion and the heat for each predetermined elapsed time when the air blows the outside air to the one portion for each of a plurality of different air volumes during a predetermined time when the temperature of the outside air changes by a predetermined temperature. A change in the relative position in the predetermined direction between the electrode and the workpiece caused by a difference from the thermal displacement amount of the other part having a high response speed was experimentally measured in advance, and determined based on the measurement result. Discharging characterized in that the outside air is blown to the inside or the outside surface of the one portion with an air volume that minimizes a change in the relative position in the predetermined direction between the electrode and the workpiece in accordance with a change in the temperature of the outside air. Processing machine.
電極と被加工物との極間に放電を発生させ、放電エネルギにより前記被加工物の加工を行う放電加工機の熱変位補正方法において、
前記電極と前記被加工物との所定方向の相対位置に変化を生じさせる2つの部位のうち、温度変化に対する前記所定方向における熱応答速度の遅い一方の部位の内部又は外面に、外気の温度が所定温度変化する所定時間中において複数の異なる風量毎に外気を前記一方の部位に送風したときの所定経過時間毎の前記一方の部位の熱変位量と前記熱応答速度が速い他方の部位の熱変位量との差で生じる前記電極と前記被加工物との前記所定方向の相対位置の変化を予め実験的に測定し、該測定結果に基づいて決定された外気の温度の変化に伴う前記電極と前記被加工物との前記所定方向の相対位置の変化が最も少なくなる風量の外気を送風することを特徴とする放電加工機の熱変位補正方法。
In a method for correcting a thermal displacement of an electric discharge machine that generates an electric discharge between an electrode and a workpiece, and processes the workpiece by discharge energy,
Of the two parts that cause a change in the relative position in the predetermined direction between the electrode and the workpiece, the temperature of the outside air is inside or on the outer surface of one part having a slow thermal response speed in the predetermined direction with respect to a temperature change. Thermal displacement amount of the one part and heat of the other part where the thermal response speed is fast when the outside air is blown to the one part for each of a plurality of different air volumes during a predetermined time when the predetermined temperature changes. A change in the relative position in the predetermined direction between the electrode and the workpiece caused by a difference in displacement is experimentally measured in advance, and the electrode according to a change in the temperature of the outside air determined based on the measurement result A method of correcting a thermal displacement of an electric discharge machine, wherein the outside air is blown with an air volume that minimizes a change in relative position between the workpiece and the workpiece in the predetermined direction.
JP2006211901A 2006-08-03 2006-08-03 Electric discharge machine and method for correcting thermal displacement of electric discharge machine Active JP5137172B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006211901A JP5137172B2 (en) 2006-08-03 2006-08-03 Electric discharge machine and method for correcting thermal displacement of electric discharge machine
PCT/JP2007/000818 WO2008015786A1 (en) 2006-08-03 2007-07-31 Electric discharge machine and method for correcting thermal displacement of the electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211901A JP5137172B2 (en) 2006-08-03 2006-08-03 Electric discharge machine and method for correcting thermal displacement of electric discharge machine

Publications (2)

Publication Number Publication Date
JP2008036739A JP2008036739A (en) 2008-02-21
JP5137172B2 true JP5137172B2 (en) 2013-02-06

Family

ID=38996973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211901A Active JP5137172B2 (en) 2006-08-03 2006-08-03 Electric discharge machine and method for correcting thermal displacement of electric discharge machine

Country Status (2)

Country Link
JP (1) JP5137172B2 (en)
WO (1) WO2008015786A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449086B2 (en) * 2010-08-11 2014-03-19 三菱重工業株式会社 Machine Tools
JP6382911B2 (en) * 2016-11-01 2018-08-29 ファナック株式会社 Wire electric discharge machine
CN107984242B (en) * 2017-12-20 2019-12-27 舒能数控机床有限公司 Digit control machine tool is with heat dissipation base

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55169332U (en) * 1979-05-22 1980-12-05
JPS60191727A (en) * 1983-12-12 1985-09-30 Mitsubishi Electric Corp Electric discharge machining apparatus
JPS60191729A (en) * 1983-12-12 1985-09-30 Mitsubishi Electric Corp Electric discharge machining apparatus
JPH01140945A (en) * 1987-11-25 1989-06-02 Makino Milling Mach Co Ltd Machine tool wherein air of room temperature is circulated
JPH05177502A (en) * 1991-12-25 1993-07-20 Mitsubishi Electric Corp Electric discharge machining device

Also Published As

Publication number Publication date
JP2008036739A (en) 2008-02-21
WO2008015786A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
KR101134204B1 (en) Spindle tilting detection device and machine tool provided with this
JP5001870B2 (en) Machine Tools
JP5137172B2 (en) Electric discharge machine and method for correcting thermal displacement of electric discharge machine
CN106211706B (en) The method of the flow abnormalities of motor drive and notice fluid
WO2011099599A1 (en) Machine tool thermal displacement correction method and thermal displacement correction device
KR101192696B1 (en) Lathe and method of machining by lathe
JP7130022B2 (en) Machine Tools
TWI788870B (en) Wire electric discharge machining apparatus
JPH10315057A (en) Wire electric discharge machine
JP6138466B2 (en) cyclotron
JP2008157439A (en) Magnetic bearing device and compressor for fuel cell
JP5144348B2 (en) Processing equipment with temperature controller
JP2008246620A (en) Machine tool, control program for correcting thermal expansion, and storage medium
JP2018079520A (en) Temperature adjustment device of machine tool
JP4055074B2 (en) Machine tool control device, machine tool control method, machine tool control program, and computer-readable recording medium recording the machine tool control program
JP5789220B2 (en) Machine Tools
JP2006272538A (en) Machine tool and displacement correction method of machine tool
JP5252392B2 (en) Precision machine
JP7038304B2 (en) Shape measuring device
JPH01140945A (en) Machine tool wherein air of room temperature is circulated
JP7185576B2 (en) Control device
JP2008174195A (en) Device for detecting temperature inside cabin
JP4928837B2 (en) Machine Tools
JPH0639682A (en) Posture control method and device for machine tool
JP5698804B2 (en) Molding device for injection molding machine with temperature control function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

R150 Certificate of patent or registration of utility model

Ref document number: 5137172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250