JP5137068B2 - Power generation system with a power supply countermeasure - Google Patents

Power generation system with a power supply countermeasure Download PDF

Info

Publication number
JP5137068B2
JP5137068B2 JP2007268316A JP2007268316A JP5137068B2 JP 5137068 B2 JP5137068 B2 JP 5137068B2 JP 2007268316 A JP2007268316 A JP 2007268316A JP 2007268316 A JP2007268316 A JP 2007268316A JP 5137068 B2 JP5137068 B2 JP 5137068B2
Authority
JP
Japan
Prior art keywords
power
power generation
load
generation means
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007268316A
Other languages
Japanese (ja)
Other versions
JP2009100520A (en
Inventor
安伸 多田
直樹 宜保
寛 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007268316A priority Critical patent/JP5137068B2/en
Publication of JP2009100520A publication Critical patent/JP2009100520A/en
Application granted granted Critical
Publication of JP5137068B2 publication Critical patent/JP5137068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は瞬低対策機能付発電システムに関し、特に停電補償負荷及び瞬低対策負荷に電力を供給する発電システムに適用して有用なものである。   The present invention relates to a power generation system with a voltage sag countermeasure function, and is particularly useful when applied to a power generation system that supplies power to a power failure compensation load and a power sag countermeasure load.

一般的な需要家で瞬低対策を行う場合の従来技術に係る瞬低対策機能付発電システムを図8に示す。同図に示すように、一般負荷1は、遮断器2、変圧器3及び遮断器4を介して送電線5に接続されている。すなわち、遮断器2、変圧器3及び遮断器4を機器として有する給電系統Iが構成されている。停電補償負荷6は給電系統Iに高速遮断器7を介して接続されるとともに、発電手段であるガスエンジン発電機8に変圧器9及び遮断器10を介して接続されている。瞬低対策負荷11は給電系統Iに高速遮断器12を介して接続されるとともに、蓄電池13に、この蓄電池13の出力を交流に変換するインバータ14、変圧器15及び遮断器16を介して接続されている。すなわち、停電補償のための装置と瞬低補償のための機器とが高速遮断器7,12を介して給電系統Iに並列に接続されている。ここで、停電補償負荷6とは瞬間的な電圧の低下を含め、停電状態になることが許容されない負荷をいい、瞬低対策負荷11とはある程度の頻度で発生する瞬間的な電圧低下を補償すべき負荷であって、やむを得ない場合は停電が許容される負荷をいう。そこで、停電補償負荷6にはガスエンジン発電機8による永続的な電力の供給を補償し、瞬低対策負荷11には蓄電池13による一定時間の電力の供給を補償している。   FIG. 8 shows a power generation system with a voltage sag countermeasure function according to the prior art when a voltage drop countermeasure is taken by a general customer. As shown in the figure, a general load 1 is connected to a power transmission line 5 via a circuit breaker 2, a transformer 3 and a circuit breaker 4. That is, a power feeding system I having the circuit breaker 2, the transformer 3, and the circuit breaker 4 as devices is configured. The power failure compensation load 6 is connected to the power supply system I through a high-speed circuit breaker 7 and is connected to a gas engine generator 8 as a power generation means through a transformer 9 and a circuit breaker 10. The instantaneous voltage reduction load 11 is connected to the power supply system I through a high-speed circuit breaker 12, and is connected to the storage battery 13 through an inverter 14, a transformer 15 and a circuit breaker 16 that convert the output of the storage battery 13 into alternating current. Has been. In other words, the power failure compensation device and the sag compensation device are connected in parallel to the power feeding system I via the high-speed circuit breakers 7 and 12. Here, the power failure compensation load 6 refers to a load that is not allowed to enter a power failure state, including a momentary voltage drop, and the voltage sag countermeasure load 11 compensates for a momentary voltage drop that occurs at a certain frequency. If it is unavoidable, it means a load that allows power outages. Therefore, the power failure compensation load 6 is compensated for the permanent power supply by the gas engine generator 8, and the instantaneous voltage drop countermeasure load 11 is compensated for the power supply for a certain time by the storage battery 13.

かかる瞬低対策機能付発電システムにおいて給電系統Iの瞬低が検出された場合、高速遮断器7,12が遮断されて給電系統からの電力の供給が遮断されるが、ガスエンジン発電機8から継続して停電補償負荷6に電力が供給され、同時に蓄電池13から継続して瞬低対策負荷11に電力が供給される。かくして瞬低による負荷側への影響を回避するようになっている。   In such a power generation system with a function for preventing voltage sag, when a power supply system I is detected to have a voltage sag, the high-speed circuit breakers 7 and 12 are cut off and the power supply from the power feeding system is cut off. Electric power is continuously supplied to the power failure compensation load 6, and at the same time, electric power is continuously supplied from the storage battery 13 to the instantaneous voltage reduction load 11. Thus, the influence on the load side due to the instantaneous drop is avoided.

なお、瞬低対策に関する技術を開示する公知文献として特許文献1を挙げることができる。   In addition, patent document 1 can be mentioned as well-known literature which discloses the technique regarding a voltage drop countermeasure.

特開平11−69664号公報Japanese Patent Laid-Open No. 11-69664

上記従来技術においては、停電補償と瞬低対策とを別々の装置で行っている。このため、設備費の高騰を招来する。特に、高速遮断器7,12の価格は通常の遮断器10,16等の数十倍と、極めて高価である。なお、高速遮断器7,12は遮断時の動作時間が5msec程度と極めて短時間である。このため、瞬低が発生した給電系統Iを瞬時に切り離し、所定電圧の電力を停電補償負荷6及び瞬低対策負荷11へ継続して供給することができる。   In the above prior art, the power failure compensation and the voltage drop countermeasure are performed by separate devices. For this reason, the equipment cost increases. In particular, the price of the high-speed circuit breakers 7 and 12 is extremely expensive, several tens of times that of the normal circuit breakers 10 and 16. The high-speed circuit breakers 7 and 12 have an extremely short operation time of about 5 msec when interrupted. For this reason, it is possible to instantaneously disconnect the power supply system I in which a voltage sag has occurred and to continuously supply power of a predetermined voltage to the power failure compensation load 6 and the voltage sag countermeasure load 11.

本発明は、上記従来技術に鑑み、構成機器数の可及的な低減を図り得る瞬低対策機能付発電システムを提供することを目的とする。   In view of the above-described prior art, an object of the present invention is to provide a power generation system with an instantaneous voltage reduction countermeasure function capable of reducing the number of constituent devices as much as possible.

上記課題を解決する本発明の第1の態様は、
発電手段と、
一般負荷に電力を供給すべく送電線に接続されている給電系統に高速遮断器を介して接続されるとともに、前記発電手段に接続されている停電補償負荷と、
前記発電手段に、前記高速遮断器よりも動作時間が遅い遮断器を介して接続されている瞬低対策負荷と、
前記給電系統の瞬低が検出されたとき前記高速遮断器を遮断するとともに、前記発電手段を過負荷運転して前記瞬低対策負荷への電力の供給が継続されるように制御し、さらに前記過負荷運転が予め定めた所定時間行なわれるように前記発電手段を制御するとともに、前記所定時間を経過した時点で前記遮断器を介して前記瞬低対策負荷への前記発電手段からの電力の供給が遮断されるように制御する制御手段とを有することを特徴とする瞬低対策機能付発電システムにある。
The first aspect of the present invention for solving the above problems is as follows.
Power generation means;
A power failure compensation load connected to the power generation means connected to the power supply system connected to the power transmission line to supply power to the general load, and connected to the power generation means,
The power generation means, a momentary voltage reduction load connected via a circuit breaker whose operation time is slower than the high-speed circuit breaker ,
While blocking the high-speed switch when the instantaneous drop of the power supply system is detected, the power generating means is controlled so that the supply of electric power is continued to overload operation to the sag measures load, further wherein The power generation means is controlled so that overload operation is performed for a predetermined time, and when the predetermined time elapses, power is supplied from the power generation means to the instantaneous voltage reduction load via the circuit breaker. And a control means for controlling the power supply to be shut off .

本発明の第2の態様は、
第1の態様に記載する瞬低対策機能付発電システムにおいて、
前記発電手段は燃料電池と、この燃料電池の出力を交流に変換するインバータとで構成したことを特徴とする瞬低対策機能付発電システムにある。
The second aspect of the present invention is:
In the power generation system with a voltage sag countermeasure function described in the first aspect ,
The power generation means is a power generation system with a function for preventing voltage sag, comprising a fuel cell and an inverter that converts the output of the fuel cell into alternating current.

本発明の第3の態様は、
第1の態様に記載する瞬低対策機能付発電システムにおいて、
前記発電手段はエンジン発電機で構成したことを特徴とする瞬低対策機能付発電システ
ムにある。
The third aspect of the present invention is:
In the power generation system with a voltage sag countermeasure function described in the first aspect ,
The power generation means is an electric power generation system with a voltage sag countermeasure function, characterized by comprising an engine generator.

本発明によれば、高速遮断器の遮断動作により給電系統Iが切り離されても、発電手段の過負荷運転により停電補償負荷のみならず、瞬低対策負荷への電力の供給も継続し得る。したがって、発電手段を停電補償用及び瞬低対策用として兼用し得るとともに、高価な高速遮断器は1個設けるだけで良い。この結果、当該瞬低対策機能付発電システムに要する設備費を大幅に削減することができる。   According to the present invention, even when the power supply system I is disconnected by the breaking operation of the high-speed circuit breaker, not only the power failure compensation load but also the power supply to the instantaneous voltage reduction load can be continued by the overload operation of the power generation means. Therefore, the power generation means can be used both for power failure compensation and for measures against voltage sag, and only one expensive high-speed circuit breaker needs to be provided. As a result, the equipment cost required for the power generation system with the instantaneous voltage drop countermeasure function can be greatly reduced.

以下本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1の実施の形態>
図1は本発明の第1の実施の形態に係る瞬低対策機能付発電システムを示すブロック線図である。同図中、図8と同一部分には同一番号を付し、重複する説明は省略する。
<First Embodiment>
FIG. 1 is a block diagram showing a power generation system with a voltage sag countermeasure function according to a first embodiment of the present invention. In the figure, the same parts as those in FIG.

図1に示すように、本形態の発電手段は燃料電池28とこの燃料電池28の出力を交流に変換するインバータ29とで構成してある。停電補償負荷6は、給電系統Iに高速遮断器27を介して接続されるとともに、発電手段である燃料電池28及びインバータ29に遮断器31及び変圧器30を介して接続されている。瞬低対策負荷11は発電手段である燃料電池28及びインバータ29に遮断器31及び変圧器30に加え、さらに遮断器32を介して接続されている。すなわち、遮断器32の遮断動作により瞬低対策負荷11を発電手段(燃料電池28及びインバータ29)から切り離すことができるようになっている。   As shown in FIG. 1, the power generation means of this embodiment includes a fuel cell 28 and an inverter 29 that converts the output of the fuel cell 28 into alternating current. The power failure compensation load 6 is connected to the power supply system I through a high-speed circuit breaker 27, and is connected to a fuel cell 28 and an inverter 29, which are power generation means, through a circuit breaker 31 and a transformer 30. The instantaneous voltage reduction load 11 is connected to a fuel cell 28 and an inverter 29, which are power generation means, in addition to a circuit breaker 31 and a transformer 30, and further via a circuit breaker 32. That is, the voltage drop countermeasure load 11 can be disconnected from the power generation means (the fuel cell 28 and the inverter 29) by the breaking operation of the breaker 32.

かかる瞬低対策機能付発電システムにおいて、通常時には高速遮断器27及び遮断器32とともに他の全ての遮断器2,4,31は閉状態となっている。かかる状態で所定の瞬低が検出されると高速遮断器27を動作させて停電補償負荷6及び瞬低対策負荷11を給電系統Iから切り離す。同時に、燃料電池28を過負荷運転する。このことにより瞬低対策負荷11への電力を賄う。この結果、停電補償負荷6のみならず、瞬低対策負荷11にも継続して必要な電力を供給することができる。本形態では、給電系統Iでの電圧低下あるいは停電状態が所定の時間以上継続する場合には遮断器32を動作させて瞬低対策負荷11を停電補償負荷6側(発電手段側)から切り離す。ここで、高速遮断器27が動作した時点から遮断器32が動作するまでの瞬低補償時間は、燃料電池28の過負荷運転特性と瞬低対策負荷11の容量とを考慮して決定する。ちなみに、給電系統Iにおける瞬低時間の多くは1秒未満と考えられ、燃料電池28に溶融炭酸塩形燃料電池(MCFC)を用いた場合は、1秒間で140%程度の過負荷運転が可能である。そこで、本形態では燃料電池28の過負荷運転可能時間を1秒とした。   In such a power generation system with an instantaneous voltage drop countermeasure function, all the other circuit breakers 2, 4, and 31 together with the high-speed circuit breaker 27 and the circuit breaker 32 are normally closed. When a predetermined voltage sag is detected in this state, the high-speed circuit breaker 27 is operated to disconnect the power failure compensation load 6 and the voltage sag countermeasure load 11 from the power supply system I. At the same time, the fuel cell 28 is overloaded. This provides power for the instantaneous voltage drop load 11. As a result, necessary power can be continuously supplied not only to the power failure compensation load 6 but also to the instantaneous voltage reduction load 11. In this embodiment, when the voltage drop or power failure state in the power feeding system I continues for a predetermined time or longer, the circuit breaker 32 is operated to disconnect the instantaneous voltage reduction load 11 from the power failure compensation load 6 side (power generation means side). Here, the sag compensation time from when the high-speed circuit breaker 27 operates until the circuit breaker 32 operates is determined in consideration of the overload operation characteristics of the fuel cell 28 and the capacity of the sag countermeasure load 11. Incidentally, most of the instantaneous drop time in the power supply system I is considered to be less than 1 second, and when a molten carbonate fuel cell (MCFC) is used as the fuel cell 28, overload operation of about 140% is possible in 1 second. It is. Therefore, in this embodiment, the overload operation possible time of the fuel cell 28 is set to 1 second.

なお、高速遮断器27、遮断器32、燃料電池28等の上述のごとき一連の動作は、図示はしないが各機器部での制御手段により行なう。   The series of operations as described above, such as the high-speed circuit breaker 27, the circuit breaker 32, and the fuel cell 28, are performed by control means in each device unit, although not shown.

図2は本形態に係る瞬低対策機能付発電システムにおいて給電系統Iでの電圧低下あるいは停電状態が過負荷運転可能時間よりも短い場合における各部の動作タイミングを示すタイミングチャートである。   FIG. 2 is a timing chart showing the operation timing of each part when the voltage drop or power outage state in the power supply system I is shorter than the overload operation possible time in the power generation system with a voltage drop countermeasure function according to this embodiment.

同図(a)に示すように、給電系統Iの電圧である系統電圧で図に示す位置で瞬低が発生し、その後復電した場合、同図(b)に示す高速遮断器27は瞬低発生による遮断動作により開状態となり、この状態が復電時点まで継続される。同図(c)に示す遮断器32は、瞬低時点から復電時点までの期間(以下、瞬低継続期間という。)が燃料電池28の過負荷運転可能時間より短いため、閉状態が維持される。同図(d)に示す燃料電池28は瞬低継続期間においては過負荷運転がなされる。この結果、瞬低対策負荷11にも燃料電池28から継続して電力が供給される。   As shown in FIG. 6A, when a voltage drop occurs at the position shown in the figure at the system voltage, which is the voltage of the power feeding system I, and then power is restored, the high-speed circuit breaker 27 shown in FIG. The open state is caused by the shut-off operation due to the low occurrence, and this state is continued until the power recovery time. The circuit breaker 32 shown in FIG. 6C is maintained in the closed state because the period from the instantaneous voltage drop time to the power recovery time (hereinafter referred to as the instantaneous voltage drop duration) is shorter than the overload operable time of the fuel cell 28. Is done. The fuel cell 28 shown in FIG. 4D is overloaded during the sag duration. As a result, power is continuously supplied from the fuel cell 28 to the instantaneous voltage drop load 11.

同図(e)に示す制御モードは、瞬低継続期間は出力電流制御から瞬低継続期間は負荷電圧制御となり、復電後に再度出力電流制御となる。このとき、同図(f)に示す停電補償負荷6の電圧及び同図(g)に示す瞬低対策負荷11の電圧は通常時と変わることなく一定に維持される。   In the control mode shown in FIG. 5E, the output current control is performed during the sag duration, the load voltage control is performed during the sag duration, and the output current control is performed again after power recovery. At this time, the voltage of the power failure compensation load 6 shown in FIG. 5F and the voltage of the instantaneous voltage drop load 11 shown in FIG.

図3は本形態に係る瞬低対策機能付発電システムにおいて給電系統Iでの電圧低下あるいは停電状態が過負荷運転可能時間よりも長い場合における各部の動作タイミングを示すタイミングチャートである。   FIG. 3 is a timing chart showing the operation timing of each part when the voltage drop or the power outage state in the power feeding system I is longer than the overload operation possible time in the power generation system with a voltage sag countermeasure function according to this embodiment.

同図(a)に示すように、給電系統Iの電圧である系統電圧において図に示す位置で瞬低が発生し、その後復電した場合、同図(b)に示す高速遮断器27は瞬低発生による遮断動作により開状態となり、この状態が復電時点まで継続される。同図に示す場合は、瞬低継続期間が燃料電池28の過負荷運転可能時間よりも長い場合であるので、同図(c)に示す遮断器32は、燃料電池28の過負荷運転可能時間(例えば1秒間)まで継続して閉状態が維持されるが、その可能時間を越えた時点で遮断動作により開状態となり復電時点までこの状態が継続される。これに伴い、同図(d)に示す燃料電池28は、遮断器32が継続して閉状態となっている間のみ過負荷運転がなされる。この結果、所定時間の経過後は停電補償負荷6のみに電力を供給して瞬低対策負荷11への電力の供給を停止する。   As shown in FIG. 5A, when a voltage drop occurs at the position shown in the figure in the system voltage, which is the voltage of the power feeding system I, and then power is restored, the high-speed circuit breaker 27 shown in FIG. The open state is caused by the shut-off operation due to the low occurrence, and this state is continued until the power recovery time. In the case shown in the figure, since the instantaneous drop duration is longer than the overload operable time of the fuel cell 28, the circuit breaker 32 shown in FIG. The closed state is maintained continuously (for example, for 1 second), but when the allowable time is exceeded, the closed state is opened due to the shut-off operation, and this state is continued until the power is restored. Accordingly, the fuel cell 28 shown in FIG. 4D is overloaded only while the circuit breaker 32 is continuously closed. As a result, after a predetermined time has elapsed, power is supplied only to the power failure compensation load 6 and the supply of power to the instantaneous voltage reduction load 11 is stopped.

同図(e)に示す制御モードでは、瞬低継続期間に出力電流制御から負荷電圧制御となり、復電後に再度出力電流制御となる。このとき、同図(f)に示す停電補償負荷6の電圧は通常時と変わることなく一定に維持されるが、同図(g)に示す瞬低対策負荷11の電圧は瞬低発生後、燃料電池28の過負荷運転可能時間を越えた時点から復電時点まで停電状態となる。   In the control mode shown in FIG. 5E, the output voltage control is changed to the load voltage control in the continuation period, and the output current control is performed again after the power recovery. At this time, the voltage of the power failure compensation load 6 shown in (f) of the figure is kept constant without changing from the normal time, but the voltage of the instantaneous voltage reduction load 11 shown in (g) of FIG. The fuel cell 28 is in a power failure state from the time when the overload operation possible time of the fuel cell 28 is exceeded to the time of power recovery.

図4は本形態に係る瞬低対策機能付発電システムにおける発電・負荷バランスの一例を示す説明図である。図4(a)に示す通常時には、燃料電池28が停電補償負荷6の全電力を供給し、瞬低対策負荷11には給電系統Iから高速遮断器27を介して必要な電力(停電補償負荷6への電力の40%)を供給している。かかる状態で瞬低が検出された場合、高速遮断器27が遮断されるので、給電系統Iから瞬低対策負荷11に供給されていた電力は燃料電池28を過負荷運転することにより賄う。すなわち、図4(b)に示すように、燃料電池28は過負荷運転により140%の電力を発生し、その40%分を瞬低対策負荷11に供給する。   FIG. 4 is an explanatory diagram showing an example of the power generation / load balance in the power generation system with a voltage sag countermeasure function according to the present embodiment. In the normal state shown in FIG. 4A, the fuel cell 28 supplies the entire power of the power failure compensation load 6, and the power supply system I supplies the necessary power (power failure compensation load) via the high-speed circuit breaker 27 to the voltage sag countermeasure load 11. 40% of the power to 6). When a voltage sag is detected in this state, the high-speed circuit breaker 27 is interrupted, so that the power supplied from the power supply system I to the voltage sag countermeasure load 11 is supplied by overloading the fuel cell 28. That is, as shown in FIG. 4 (b), the fuel cell 28 generates 140% power by overload operation, and supplies 40% of the power to the instantaneous voltage reduction load 11.

<第2の実施の形態>
上記第1の実施の形態では発電手段を燃料電池28及びインバータ29で構成したが、他の発電手段も制限なく使用することができる。例えば、エンジン発電機であっても良い。この場合、このエンジン発電機の過負荷運転はフライホイールに蓄積しておいた慣性エネルギを放出させることにより容易且つ円滑に行うことができる。
<Second Embodiment>
In the first embodiment, the power generation means is constituted by the fuel cell 28 and the inverter 29, but other power generation means can be used without limitation. For example, an engine generator may be used. In this case, the overload operation of the engine generator can be performed easily and smoothly by releasing the inertia energy accumulated in the flywheel.

発電手段としてエンジン発電機を用いた場合を第2の実施の形態として説明しておく。   A case where an engine generator is used as the power generation means will be described as a second embodiment.

図5は本発明の第2の実施の形態に係る瞬低対策機能付発電システムを示すブロック線図である。同図中、図1と同一部分には同一番号を付し、重複する説明は省略する。   FIG. 5 is a block diagram showing a power generation system with a voltage sag countermeasure function according to the second embodiment of the present invention. In the figure, the same parts as those in FIG.

同図に示すように、本形態に係る発電手段であるエンジン発電機は原動機として機能するエンジン41とこのエンジン41で回転駆動される発電機42とからなる。ここで、エンジン41と発電機42との連結軸には脈動を防止するためのフライホイール43が配設してある。また、エンジン41はこれに供給する燃料の量を燃料流量制御弁45を介してガバナ44で制御することにより、所定の回転数で回転するように制御される。発電機42は自動電圧調整装置(AVR)46で励磁装置47に供給される励磁電流が制御される。   As shown in the figure, the engine generator as the power generation means according to this embodiment includes an engine 41 that functions as a prime mover and a generator 42 that is rotationally driven by the engine 41. Here, a flywheel 43 for preventing pulsation is disposed on a connecting shaft between the engine 41 and the generator 42. Further, the engine 41 is controlled to rotate at a predetermined rotational speed by controlling the amount of fuel supplied thereto by the governor 44 via the fuel flow control valve 45. The generator 42 is controlled by an automatic voltage regulator (AVR) 46 for the excitation current supplied to the excitation device 47.

かかるエンジン発電機においては、ガバナ44でエンジン41の回転数を制御することにより発電機42の出力周波数が制御されるとともに、自動電圧調整装置46で励磁装置47に供給される励磁電流により出力電圧が制御される。ちなみに、通常時(瞬低前)の発電機42の出力は停電補償負荷6の電力を賄うように制御される。かくして、発電機42は変圧器30及び遮断器31を介して停電補償負荷6に、さらに遮断器32を介して瞬低対策負荷11にそれぞれ電力を供給するようになっている。すなわち、本形態にかかる瞬低対策機能付発電システムは発電手段がエンジン発電機になるだけで、他は第1の実施の形態に係る瞬低対策機能付発電システムと同様の構成となっている。   In such an engine generator, the output frequency of the generator 42 is controlled by controlling the rotational speed of the engine 41 with the governor 44, and the output voltage by the excitation current supplied to the excitation device 47 with the automatic voltage regulator 46. Is controlled. Incidentally, the output of the generator 42 at the normal time (before the momentary drop) is controlled so as to cover the power of the power failure compensation load 6. Thus, the power generator 42 supplies power to the power failure compensation load 6 via the transformer 30 and the circuit breaker 31 and further to the voltage sag countermeasure load 11 via the circuit breaker 32. In other words, the power generation system with a voltage sag countermeasure function according to this embodiment has the same configuration as the power generation system with a voltage sag countermeasure function according to the first embodiment except that the power generation means is an engine generator. .

図6は本形態に係る瞬低対策機能付発電システムにおいて給電系統Iでの電圧低下あるいは停電状態が過負荷運転可能時間よりも短い場合における各部の動作タイミングを示すタイミングチャートである。   FIG. 6 is a timing chart showing the operation timing of each part when the voltage drop or power outage state in the power feeding system I is shorter than the overload operation possible time in the power generation system with an instantaneous voltage drop countermeasure function according to this embodiment.

同図(a)に示すように、給電系統Iの電圧である系統電圧で図に示す位置で瞬低が発生し、その後復電した場合、同図(b)に示す高速遮断器27は瞬低発生による遮断動作により開状態となり、この状態が復電時点まで継続される。同図(c)に示す遮断器32は、瞬低時点から復電時点までの期間(以下、瞬低継続期間という。)が発電機42の過負荷運転可能時間より短いため、閉状態が維持される。   As shown in FIG. 6A, when a voltage drop occurs at the position shown in the figure at the system voltage, which is the voltage of the power feeding system I, and then power is restored, the high-speed circuit breaker 27 shown in FIG. The open state is caused by the shut-off operation due to the low occurrence, and this state is continued until the power recovery time. The circuit breaker 32 shown in FIG. 6C is maintained in the closed state because the period from the instantaneous voltage drop to the power recovery time (hereinafter referred to as the instantaneous voltage drop continuation period) is shorter than the overload operable time of the generator 42. Is done.

同図(d)に示すように発電機42は瞬低継続期間においては過負荷運転が行なわれる。この結果、瞬低対策負荷11にも発電機42から継続して電力が供給される。ここで、エンジン発電機の場合は瞬時に所定の過負荷となることはできず、ガバナ44の制御によりエンジン41に供給する燃料を増やして徐々に負荷上昇させる。したがって、エンジン41が出力上昇するまでの間はフライホイール43から過負荷分のエネルギを供給する。この結果、エンジン41の回転数(発電機42の出力周波数)が下がるが、ガバナ44の制御により所定の回転数になるようにエンジン41を加速する。すなわち、このように加速するためには(停電補償負荷6+瞬低対策負荷11)より大きなエンジン41の出力が必要になるので、これに見合うだけの燃料をエンジン41に供給する。したがって、エンジン41の加速性能、過負荷量、負荷における許容周波数低下量を考慮してフライホイール43の慣性モーメントの大きさを選定しておく。一般的に、過負荷性能は110〜120%で過負荷運転可能時間は30秒〜数分程度である。   As shown in FIG. 4D, the generator 42 is overloaded during the sag duration. As a result, power is continuously supplied from the generator 42 to the instantaneous voltage drop load 11. Here, in the case of an engine generator, a predetermined overload cannot be instantaneously generated, and the fuel supplied to the engine 41 is increased under the control of the governor 44 to gradually increase the load. Therefore, overload energy is supplied from the flywheel 43 until the output of the engine 41 increases. As a result, the rotational speed of the engine 41 (the output frequency of the generator 42) decreases, but the engine 41 is accelerated to a predetermined rotational speed by the control of the governor 44. That is, in order to accelerate in this way, a larger output of the engine 41 is required than (the power failure compensation load 6 + the instantaneous drop countermeasure load 11), and therefore, fuel corresponding to this output is supplied to the engine 41. Therefore, the magnitude of the inertia moment of the flywheel 43 is selected in consideration of the acceleration performance of the engine 41, the overload amount, and the allowable frequency decrease amount in the load. Generally, the overload performance is 110 to 120%, and the overload operation possible time is about 30 seconds to several minutes.

かかる過負荷運転により、瞬低中、エンジン41は(停電補償負荷6+瞬低対策負荷11+フライホイール43の加速分)に見合うエネルギを供給する。したがって、瞬低対策負荷11の消費エネルギが次の関係式を満足するように構成する必要がある。   By such overload operation, the engine 41 supplies energy commensurate with (power failure compensation load 6 + instantaneous voltage reduction load 11 + acceleration of the flywheel 43) during the power sag. Therefore, it is necessary to configure so that the energy consumption of the instantaneous voltage drop countermeasure load 11 satisfies the following relational expression.

(瞬低対策負荷11の消費エネルギ)=(発電機42の過負荷許容電力エネルギ)−(停電補償負荷6の消費エネルギ)−(フライホイール43の加速分に必要なエネルギ)   (Energy consumption of instantaneous voltage reduction load 11) = (Allowable power energy of generator 42) − (Energy consumption of power failure compensation load 6) − (Energy required for acceleration of flywheel 43)

同図(e)に示す負荷周波数は、過負荷運転が開始されるとエンジン41が減速されて一旦低下するが、ガバナ44の制御によりエンジン41が加速されて短時間で元に戻る。同図(f)に示すように、高速遮断器27を介して供給される系統受電電力は瞬低対策負荷11の電力に等しくなるようにしてある。また、同図(g)に示す停電補償負荷6の電圧及び同図(h)に示す瞬低対策負荷11の電圧は通常時と変わることなく一定に維持される。   When the overload operation is started, the engine 41 is decelerated and temporarily decreases. However, the engine 41 is accelerated by the control of the governor 44 and returns to the original load frequency in a short time. As shown in FIG. 5F, the system received power supplied via the high-speed circuit breaker 27 is made equal to the power of the instantaneous voltage drop load 11. Further, the voltage of the power failure compensation load 6 shown in FIG. 6G and the voltage of the instantaneous voltage drop load 11 shown in FIG.

図7は本形態に係る瞬低対策機能付発電システムにおいて給電系統Iでの電圧低下あるいは停電状態が過負荷運転可能時間よりも長い場合における各部の動作タイミングを示すタイミングチャートである。   FIG. 7 is a timing chart showing the operation timing of each part when the voltage drop or power outage state in the power feeding system I is longer than the overload operation possible time in the power generation system with an instantaneous voltage drop countermeasure function according to this embodiment.

同図(a)に示すように、給電系統Iの電圧である系統電圧において図に示す位置で瞬低が発生し、その後復電した場合、同図(b)に示す高速遮断器27は瞬低発生による遮断動作により開状態となり、この状態が復電時点まで継続される。同図に示す場合は、瞬低継続期間が発電機42の過負荷運転可能時間よりも長い場合であるので、同図(c)に示す遮断器32は、発電機42の過負荷運転可能時間(例えば1秒間)まで継続して閉状態が維持されるが、その可能時間を越えた時点で遮断動作により開状態となり復電時点までこの状態が継続される。これに伴い、同図(d)に示す発電機42の出力は、遮断器32が継続して閉状態となっている間のみ過負荷運転がなされる。この結果、所定時間の経過後は停電補償負荷6のみに電力を供給して瞬低対策負荷11への電力の供給を停止する。   As shown in FIG. 5A, when a voltage drop occurs at the position shown in the figure in the system voltage, which is the voltage of the power feeding system I, and then power is restored, the high-speed circuit breaker 27 shown in FIG. The open state is caused by the shut-off operation due to the low occurrence, and this state is continued until the power recovery time. In the case shown in the figure, since the sag duration is longer than the overload operation possible time of the generator 42, the circuit breaker 32 shown in FIG. The closed state is maintained continuously (for example, for 1 second), but when the allowable time is exceeded, the closed state is opened due to the shut-off operation, and this state is continued until the power is restored. Along with this, the output of the generator 42 shown in FIG. 4D is overloaded only while the circuit breaker 32 is continuously closed. As a result, after a predetermined time has elapsed, power is supplied only to the power failure compensation load 6 and the supply of power to the instantaneous voltage reduction load 11 is stopped.

同図(g)に示す停電補償負荷6の電圧は通常時と変わることなく一定に維持されるが、同図(h)に示す瞬低対策負荷11の電圧は瞬低発生後、発電機42の過負荷運転可能時間を越えた時点から復電時点まで停電状態となる。   The voltage of the power failure compensation load 6 shown in FIG. 6G is kept constant without changing from the normal time, but the voltage of the instantaneous voltage reduction load 11 shown in FIG. It will be in a power outage from the time when the overload operation possible time is exceeded until the power is restored.

本発明は発電設備の製造・販売及び運用・保守を行なう産業分野において有効に利用し得る。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in the industrial field where manufacturing, sales, operation, and maintenance of power generation facilities are performed.

本発明の第1の実施の形態に係る瞬低対策機能付発電システムを示すブロック線図である。It is a block diagram which shows the power generation system with the voltage drop countermeasure function which concerns on the 1st Embodiment of this invention. 図1に示す瞬低対策機能付発電システムにおいて電圧低下あるいは停電時間が過負荷運転可能時間よりも短い場合における各部の動作タイミングを示すタイミングチャートである。2 is a timing chart showing the operation timing of each part when the voltage drop or power failure time is shorter than the overload operation possible time in the power generation system with the instantaneous voltage drop countermeasure function shown in FIG. 1. 図1に示す瞬低対策機能付発電システムにおいて電圧低下あるいは停電時間が過負荷運転可能時間よりも長い場合における各部の動作タイミングを示すタイミングチャートである。2 is a timing chart showing the operation timing of each part when the voltage drop or the power failure time is longer than the overload operation possible time in the power generation system with an instantaneous voltage drop countermeasure function shown in FIG. 図1に示す瞬低対策機能付発電システムにおける発電・負荷バランス例を示す説明図で、(a)が通常時、(b)が瞬低時である。It is explanatory drawing which shows the example of the electric power generation and load balance in the power generation system with a power supply countermeasure function shown in FIG. 1, where (a) is a normal time and (b) is a power supply voltage drop. 本発明の第2の実施の形態に係る瞬低対策機能付発電システムを示すブロック線図である。It is a block diagram which shows the power generation system with the voltage drop countermeasure function which concerns on the 2nd Embodiment of this invention. 図5に示す瞬低対策機能付発電システムにおいて電圧低下あるいは停電時間が過負荷運転可能時間よりも短い場合における各部の動作タイミングを示すタイミングチャートである。6 is a timing chart showing the operation timing of each part when the voltage drop or the power failure time is shorter than the overload operation possible time in the power generation system with an instantaneous voltage drop countermeasure function shown in FIG. 5. 図5に示す瞬低対策機能付発電システムにおいて電圧低下あるいは停電時間が過負荷運転可能時間よりも長い場合における各部の動作タイミングを示すタイミングチャートである。6 is a timing chart showing the operation timing of each part when the voltage drop or power outage time is longer than the overload operation possible time in the power generation system with the instantaneous voltage drop countermeasure function shown in FIG. 5. 従来技術に係る瞬低対策機能付発電システムを示すブロック線図である。It is a block diagram which shows the power generation system with the voltage drop countermeasure function which concerns on a prior art.

符号の説明Explanation of symbols

I 給電系統
1 一般負荷
2、4、10、16、31、32 遮断器
3、9、15、30 変圧器
5 送電線
6 停電補償負荷
8 ガスエンジン発電機
11 瞬低対策負荷
13 蓄電池
7、12、27 高速遮断器
28 燃料電池
14、29 インバータ
41 エンジン
42 発電機
43 フライホイール
44 ガバナ
45 燃料流量制御弁
46 自動電圧調整装置
47 励磁装置
I Power supply system 1 General load 2, 4, 10, 16, 31, 32 Circuit breaker 3, 9, 15, 30 Transformer 5 Transmission line 6 Power failure compensation load 8 Gas engine generator 11 Instantaneous voltage drop load 13 Storage batteries 7, 12 27 High-speed circuit breaker 28 Fuel cell 14, 29 Inverter 41 Engine 42 Generator 43 Flywheel 44 Governor 45 Fuel flow control valve 46 Automatic voltage regulator 47 Exciter

Claims (3)

発電手段と、
一般負荷に電力を供給すべく送電線に接続されている給電系統に高速遮断器を介して接続されるとともに、前記発電手段に接続されている停電補償負荷と、
前記発電手段に、前記高速遮断器よりも動作時間が遅い遮断器を介して接続されている瞬低対策負荷と、
前記給電系統の瞬低が検出されたとき前記高速遮断器を遮断するとともに、前記発電手段を過負荷運転して前記瞬低対策負荷への電力の供給が継続されるように制御し、さらに前記過負荷運転が予め定めた所定時間行なわれるように前記発電手段を制御するとともに、前記所定時間を経過した時点で前記遮断器を介して前記瞬低対策負荷への前記発電手段からの電力の供給が遮断されるように制御する制御手段とを有することを特徴とする瞬低対策機能付発電システム。
Power generation means;
A power failure compensation load connected to the power generation means connected to the power supply system connected to the power transmission line to supply power to the general load, and connected to the power generation means,
The power generation means, a momentary voltage reduction load connected via a circuit breaker whose operation time is slower than the high-speed circuit breaker ,
While blocking the high-speed switch when the instantaneous drop of the power supply system is detected, the power generating means is controlled so that the supply of electric power is continued to overload operation to the sag measures load, further wherein The power generation means is controlled so that overload operation is performed for a predetermined time, and when the predetermined time elapses, power is supplied from the power generation means to the instantaneous voltage reduction load via the circuit breaker. And a control means for controlling the power supply to be shut off .
請求項1に記載する瞬低対策機能付発電システムにおいて、
前記発電手段は燃料電池と、この燃料電池の出力を交流に変換するインバータとで構成したことを特徴とする瞬低対策機能付発電システム。
In the power generation system with an instantaneous voltage drop countermeasure function according to claim 1 ,
The power generation means includes a fuel cell and an inverter that converts the output of the fuel cell into an alternating current.
請求項1に記載する瞬低対策機能付発電システムにおいて、
前記発電手段はエンジン発電機で構成したことを特徴とする瞬低対策機能付発電システ
ム。
In the power generation system with an instantaneous voltage drop countermeasure function according to claim 1 ,
A power generation system with a sag reduction function, wherein the power generation means is composed of an engine generator.
JP2007268316A 2007-10-15 2007-10-15 Power generation system with a power supply countermeasure Expired - Fee Related JP5137068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268316A JP5137068B2 (en) 2007-10-15 2007-10-15 Power generation system with a power supply countermeasure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268316A JP5137068B2 (en) 2007-10-15 2007-10-15 Power generation system with a power supply countermeasure

Publications (2)

Publication Number Publication Date
JP2009100520A JP2009100520A (en) 2009-05-07
JP5137068B2 true JP5137068B2 (en) 2013-02-06

Family

ID=40703030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268316A Expired - Fee Related JP5137068B2 (en) 2007-10-15 2007-10-15 Power generation system with a power supply countermeasure

Country Status (1)

Country Link
JP (1) JP5137068B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081751A (en) * 2008-09-26 2010-04-08 Kansai Electric Power Co Inc:The Power supply system
JP5437707B2 (en) * 2009-06-24 2014-03-12 清水建設株式会社 Autonomous operation control system for important loads
JP2013090524A (en) * 2011-10-21 2013-05-13 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
JP2013143212A (en) * 2012-01-10 2013-07-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method thereof
JP6903990B2 (en) * 2017-03-24 2021-07-14 日本製鉄株式会社 Voltage abnormality judgment device and recovery control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341534A (en) * 1997-06-06 1998-12-22 Meidensha Corp Non-utility substation
JP2000156935A (en) * 1998-11-18 2000-06-06 Tokyo Gas Co Ltd Method and apparatus for controlling self power generation system
JP2001061238A (en) * 1999-06-15 2001-03-06 Tokyo Gas Co Ltd Power supply system
JP4285895B2 (en) * 2000-09-11 2009-06-24 富士電機ホールディングス株式会社 Auxiliary power generator
JP2002171671A (en) * 2000-12-04 2002-06-14 Mitsubishi Electric Corp Non-interruptible self-changeover power generator system
JP2004015883A (en) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd Stabilized power supply system, its operating method and operating program for stabilized power supply

Also Published As

Publication number Publication date
JP2009100520A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US6404075B1 (en) Uninterruptible power generation system
JP4947926B2 (en) Method of operating private power generation equipment equipped with power storage means and private power generation equipment
JP5137068B2 (en) Power generation system with a power supply countermeasure
US8860247B2 (en) Electric power system and uninterruptible power supply for important load
WO2011052407A1 (en) Switching circuit, control apparatus, and power generating system
RU2708646C1 (en) Method, as well as wind-driven electric power supply unit
TW201409894A (en) Method for controlling an electrical producer
KR20160071338A (en) Power generation system and method with resistive braking capability
WO2003105310A1 (en) Stable power supply system, operation method thereof, and stable power supply operation program
RU2750612C1 (en) Actuator with an integrated battery
JP4717856B2 (en) Battery system, battery system control method, battery system control program, and program recording medium
WO2020021925A1 (en) Power supply system
Radan et al. Optimization of load dependent start tables in marine power management systems with blackout prevention
US6285533B1 (en) Method of and apparatus for controlling the operation of variable speed gearing
JPH08116629A (en) Power supply for circulating pump for reactor
CN109149626A (en) Operation control method, device and system of generator set
EP3654480B1 (en) Power conditioner, power system, and reactive power supressing method for power system
JP2012010554A (en) Private power generation system
JP6343375B1 (en) Power system control system
JP2005229702A (en) Method of reducing energy loss in power supply system, and power supply system
JP2010081751A (en) Power supply system
JP7101857B1 (en) Control system
JP3944057B2 (en) System interconnection protection device for power generation facilities
CN116388234B (en) Control method, system, controller and storage medium of grid-connected power generation system
KR20080026902A (en) Mcc provided in uninterruptible power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees