JP5136313B2 - Flow path switching device and hot water supply device having the same - Google Patents

Flow path switching device and hot water supply device having the same Download PDF

Info

Publication number
JP5136313B2
JP5136313B2 JP2008234802A JP2008234802A JP5136313B2 JP 5136313 B2 JP5136313 B2 JP 5136313B2 JP 2008234802 A JP2008234802 A JP 2008234802A JP 2008234802 A JP2008234802 A JP 2008234802A JP 5136313 B2 JP5136313 B2 JP 5136313B2
Authority
JP
Japan
Prior art keywords
flow path
switching device
channel
hot water
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008234802A
Other languages
Japanese (ja)
Other versions
JP2010063763A (en
Inventor
肇 江利川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2008234802A priority Critical patent/JP5136313B2/en
Publication of JP2010063763A publication Critical patent/JP2010063763A/en
Application granted granted Critical
Publication of JP5136313B2 publication Critical patent/JP5136313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)
  • Apparatus For Making Beverages (AREA)
  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)

Description

本発明は、湯などの液体の流路を切り替える流路切替装置およびこれを備えた給湯装置に関し、特に、カップ式の飲料自動販売機や飲料ディスペンサなどに備わる湯タンクなどによる給湯装置からの湯の供給先を切り替えるのに好適な流路切替装置およびこれを備えた給湯装置に関する。   The present invention relates to a flow path switching device that switches a flow path of liquid such as hot water and a hot water supply device including the same, and in particular, hot water from a hot water supply device such as a hot water tank provided in a cup-type beverage vending machine or a beverage dispenser. The present invention relates to a flow path switching device suitable for switching the supply destination of water and a hot water supply device including the same.

従来、カップ式の飲料自動販売機や飲料ディスペンサにおいて、給湯装置の温水流路(液体流路)が知られている(例えば、特許文献1の図2参照)。特許文献1の温水流路は、温水タンク(湯水タンク)に接続された複数の配管によって構成され、温水タンク内の温水は、各配管を介して複数の供給先に供給されるようになっている。   Conventionally, in cup-type beverage vending machines and beverage dispensers, a hot water channel (liquid channel) of a hot water supply device is known (for example, see FIG. 2 of Patent Document 1). The hot water flow path of Patent Document 1 is configured by a plurality of pipes connected to a hot water tank (hot water tank), and the hot water in the hot water tank is supplied to a plurality of supply destinations via each pipe. Yes.

特開2001−109937号公報JP 2001-109937 A

ところで、上記の従来の特許文献1の温水流路では、各配管が温水タンクに直接接続されてあるので、複数の配管のそれぞれに対して専用のバルブを設ける必要がある。この場合、バルブおよび配管の接続部の配置スペースを確保する必要から温水タンクの外形が大きくなってしまう。このため、構成部品が増えて構造が複雑となり部品や組立加工に係るコストが上昇するおそれがある。また、タンク容積が大きいとタンクの加熱や保温の効率において不利となりコストが上昇するおそれがある。   By the way, in the above-mentioned conventional hot water flow path of Patent Document 1, since each pipe is directly connected to the hot water tank, it is necessary to provide a dedicated valve for each of the plurality of pipes. In this case, the outer shape of the hot water tank becomes large because it is necessary to secure an arrangement space for the connection portion of the valve and the pipe. For this reason, the number of component parts increases, the structure becomes complicated, and there is a risk that the cost for parts and assembly processing will increase. In addition, if the tank volume is large, the efficiency of heating and heat retention of the tank is disadvantageous, and the cost may increase.

一方、省エネルギーの観点から、温水タンク周囲には断熱材を設けるのが通常である。この場合、断熱材には、配管を通すための開口が設けられる。通すべき配管の数が多いと開口の面積は必然的に大きくなる。開口面積が大きいと温水タンクの熱はこの大きな開口を通じて外部に放熱し易くなり、熱ロスが増大する。他方、配管の接続部やバルブの数が増すと監視負担が増大する。しかも温水タンクに接続する複数の配管やバルブが互いに接近するように密集配置してあると、点検や修理などのメンテナンス作業がしづらくなる。   On the other hand, from the viewpoint of energy saving, it is usual to provide a heat insulating material around the hot water tank. In this case, the heat insulating material is provided with an opening for passing the pipe. If the number of pipes to be passed is large, the area of the opening inevitably increases. When the opening area is large, the heat of the hot water tank is easily radiated to the outside through the large opening, and heat loss increases. On the other hand, as the number of pipe connections and valves increases, the monitoring burden increases. Moreover, if a plurality of pipes and valves connected to the hot water tank are closely arranged so as to approach each other, maintenance work such as inspection and repair becomes difficult.

本発明は、上記実情に鑑みてなされたものであり、単数の供給元の液体流路と、複数の供給先の液体流路との各連通を容易に切り替え可能で簡素な流路切替装置およびこれを備えた給湯装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a simple flow path switching device capable of easily switching each communication between a single supply source liquid flow path and a plurality of supply destination liquid flow paths, and It aims at providing the hot-water supply apparatus provided with this.

上記の目的を達成するために、本発明の請求項1に係る流路切替装置は、複数の液体流路のうちから少なくとも一つの液体流路を選択して液体が流れる流路を切り替える流路切替装置であって、底部上面の半径方向外側に周方向に離間して設けた複数の流路入口を有し、前記複数の流路入口にそれぞれ連通する複数の下流側流路を備える有底円筒状の本体と、前記本体内に液密かつ回動可能に収容される円柱状部であって、前記本体の底部上面と対向する底面の半径方向外側に流路出口を有し、前記流路出口に連通する上流側流路を備え、上面が円錐面の円柱状部を含むアクチュエータとを有し、前記上流側流路は、前記円柱状部の上面の回動軸心位置に入口が配置され、前記円柱状部を上から下に斜めに貫通する傾斜管路であり、前記入口から下方に延び、そこから傾斜して下方に行くに従い半径方向外側に延び、前記円柱状部の下面近くに至り下方に延びて前記流路出口に接続するものであり、前記アクチュエータの円柱状部の回動によって、上流側流路と連通する下流側流路を切り替えることを特徴とする。 In order to achieve the above object, a flow path switching device according to claim 1 of the present invention is a flow path for switching a flow path through which a liquid flows by selecting at least one liquid flow path from a plurality of liquid flow paths. A switching device having a plurality of flow path inlets provided in a circumferentially spaced manner on the radially outer side of the bottom upper surface, and having a plurality of downstream flow paths respectively communicating with the plurality of flow path inlets A cylindrical main body and a columnar portion that is liquid-tight and rotatably accommodated in the main body, and has a flow path outlet on a radially outer side of a bottom surface facing the upper surface of the bottom of the main body, And an actuator including a cylindrical portion having a conical surface on the upper surface , and the upstream flow channel has an inlet at a rotational axis position on the upper surface of the cylindrical portion. An inclined conduit that is disposed and obliquely penetrates the cylindrical part from top to bottom, and the inlet Extends Luo downwardly extending radially outward as it goes downward inclined therefrom, which extends downward and reaches near the lower surface of the cylindrical portion connected to the flow path outlet, a cylindrical portion of the actuator The downstream flow path communicating with the upstream flow path is switched by the rotation.

また、本発明の請求項2に係る流路切替装置は、上述した請求項1において、前記流路の内面を滑らかな曲面で構成するとともに、前記流路内を通過する液体を整流するためのフィレットを前記流路の内面に設けたことを特徴とする。   According to a second aspect of the present invention, there is provided a flow path switching device according to the first aspect, wherein the flow path has a smooth curved surface and rectifies the liquid passing through the flow path. A fillet is provided on the inner surface of the flow path.

また、本発明の請求項3に係る流路切替装置は、上述した請求項2において、前記フィレットは、前記流路内面の対向した二箇所から互いに向けて突出する一方で、前記流路の軸方向に延在する一対の平板部からなり、上流側流路と下流側流路の軸心を一致させた際における上流側流路内面の前記フィレットは、下流側流路内面の前記フィレットに対して軸周りに90度ずれた位置に配置されてあることを特徴とする。   The flow path switching device according to claim 3 of the present invention is the flow path switching device according to claim 2, wherein the fillet protrudes toward each other from two opposed positions on the inner surface of the flow path, while the shaft of the flow path The fillet on the inner surface of the upstream channel when the axial centers of the upstream channel and the downstream channel are aligned with the fillet on the inner surface of the downstream channel. It is arranged at a position shifted by 90 degrees around the axis.

また、本発明の請求項4に係る流路切替装置は、上述した請求項1から請求項3のいずれか一つにおいて、前記下流側流路の入口の縁部分にC面が形成されることを特徴とする。   According to a fourth aspect of the present invention, in the flow path switching device according to any one of the first to third aspects, a C surface is formed at an edge portion of the inlet of the downstream flow path. It is characterized by.

また、本発明の請求項5に係る流路切替装置は、上述した請求項4において、前記C面の傾斜角度は、前記本体の底部上面に対して30°以上の角度とされてあることを特徴とする。   In the flow path switching device according to claim 5 of the present invention, in the above-described claim 4, the inclination angle of the C surface is an angle of 30 ° or more with respect to the upper surface of the bottom of the main body. Features.

また、本発明の請求項6に係る流路切替装置は、上述した請求項1から請求項5のいずれか一つにおいて、前記円柱状部を回動駆動するステッピングモータまたは前記円柱状部の回動角度を検出するエンコーダを有し、前記ステッピングモータに設定した所定の回動角度または前記エンコーダの出力値に応じて前記円柱状部の回動位置を制御する回動位置制御手段をさらに備えることを特徴とする。   According to a sixth aspect of the present invention, there is provided the flow path switching device according to any one of the first to fifth aspects, wherein the stepping motor for rotating the columnar part or the rotation of the columnar part is provided. A rotation position control means for controlling a rotation position of the cylindrical portion according to a predetermined rotation angle set in the stepping motor or an output value of the encoder; It is characterized by.

また、本発明の請求項7に係る流路切替装置は、上述した請求項6において、前記回動位置制御手段は、前記円柱状部底面の上流側流路出口が前記本体の底部上面の隣り合う二つの下流側流路入口の間に位置するように前記円柱状部の回動位置を制御して上流側流路出口と前記二つの下流側流路入口とをそれぞれ連通状態にし、上流側流路からの液体流量を前記二つの下流側流路に対して前記円柱状部の回動位置に応じた所定の比率で分配することを特徴とする。   According to a seventh aspect of the present invention, in the flow path switching device according to the sixth aspect, the rotational position control means is configured such that the upstream flow path outlet of the bottom surface of the cylindrical portion is adjacent to the upper surface of the bottom portion of the main body. By controlling the pivot position of the cylindrical portion so as to be positioned between two matching downstream flow channel inlets, the upstream flow channel outlet and the two downstream flow channel inlets are in communication with each other. The liquid flow rate from the flow path is distributed to the two downstream flow paths at a predetermined ratio according to the rotational position of the cylindrical portion.

また、本発明の請求項8に係る流路切替装置は、上述した請求項6または7において、前記回動位置制御手段は、前記円柱状部の回動位置および回動停止時間を制御して、上流側流路から各下流側流路に流れ込む液体流量を制御することを特徴とする。   The flow path switching device according to claim 8 of the present invention is the flow path switching device according to claim 6 or 7, wherein the rotation position control means controls the rotation position and rotation stop time of the cylindrical portion. The flow rate of the liquid flowing from the upstream channel into each downstream channel is controlled.

また、本発明の請求項9に係る流路切替装置は、上述した請求項1から請求項8のいずれか一つにおいて、前記本体と前記円柱状部との間に、スケール物質の通過を許容する隙間を設けたことを特徴とする。   The flow path switching device according to claim 9 of the present invention allows passage of a scale substance between the main body and the cylindrical portion according to any one of claims 1 to 8 described above. A gap is provided.

また、本発明の請求項10に係る給湯装置は、上述した請求項1から請求項9のいずれか一つに記載の流路切替装置を備えた給湯装置であって、貯湯容器と、前記貯湯容器の周囲に配設した断熱部材と、前記貯湯容器内に貯えられた湯を前記断熱部材の外部に導く流路とをさらに備え、前記流路は、前記断熱部材の外部に設けた前記流路切替装置の上流側流路に接続されていることを特徴とする。   A hot water supply apparatus according to claim 10 of the present invention is a hot water supply apparatus including the flow path switching device according to any one of claims 1 to 9, wherein the hot water storage container and the hot water storage apparatus are provided. A heat insulating member disposed around the container; and a flow path for guiding the hot water stored in the hot water storage container to the outside of the heat insulating member, wherein the flow path is provided outside the heat insulating member. It is connected to the upstream flow path of the path switching device.

本発明の流路切替装置によれば、複数の液体流路のうちから少なくとも一つの液体流路を選択して液体が流れる流路を切り替える流路切替装置であって、底部上面の半径方向外側に周方向に離間して設けた複数の流路入口を有し、前記複数の流路入口にそれぞれ連通する複数の下流側流路を備える有底円筒状の本体と、前記本体内に液密かつ回動可能に収容される円柱状部であって、前記本体の底部上面と対向する底面の半径方向外側に流路出口を有し、前記流路出口に連通する上流側流路を備える円柱状部を含むアクチュエータとを有し、前記アクチュエータの円柱状部の回動によって、上流側流路と連通する下流側流路を切り替えるので、単数の供給元の液体流路(上流側流路)と、複数の供給先の液体流路(下流側流路)との各連通を容易に切り替えることができる。   According to the flow path switching device of the present invention, a flow path switching device that switches a flow path through which a liquid flows by selecting at least one liquid flow path from a plurality of liquid flow paths, and is provided on the radially outer side of the bottom upper surface. A cylindrical body having a bottom with a plurality of flow path inlets spaced apart in the circumferential direction and provided with a plurality of downstream flow paths respectively communicating with the plurality of flow path inlets; A circular part that is rotatably accommodated and has a flow path outlet on a radially outer side of a bottom surface facing the top surface of the bottom of the main body, and includes an upstream flow path that communicates with the flow path outlet. An actuator including a columnar part, and the downstream flow path communicating with the upstream flow path is switched by the rotation of the cylindrical portion of the actuator, so that a single supply source liquid flow path (upstream flow path) And communication with a plurality of supply destination liquid channels (downstream channels) It can be switched to easily.

このように、温水タンクなどの供給元の容器と接続される上流側流路の数が単数となって供給元の容器との接続箇所数が少なくて済むので、供給元の容器の構造の複雑化を招かない。また、容器側に接続部の配置スペースを多数確保する必要がないことから、容器の大型化を招かず、容器の大きさを必要最小限の大きさにすることができ、コスト低減を図ることができる。   Thus, since the number of upstream-side flow paths connected to the supply source container such as a hot water tank is singular and the number of connection points with the supply source container is small, the structure of the supply source container is complicated. Does not invite In addition, since it is not necessary to secure a large number of arrangement spaces for the connecting portion on the container side, the container size can be reduced to the minimum necessary size without incurring an increase in the size of the container, thereby reducing costs. Can do.

また、供給元の容器の大型化を招かないことから、例えば、供給元の容器が温水タンクの場合には、温水タンク内の水を加熱保温するためのヒータの容量を必要最小限の容量に設定することができる。しかも、容器は必要最小限の大きさでよく、この結果、容器内に余分な水を貯めなくて済むので、容器内の水を必要な水温まで昇温する時間は従来の構成よりも短時間で済む。このため、温水タンク内の水を所定温度まで昇温する間の待ち時間を従来よりも短くすることができる。このように、供給元の容器の大型化を招かず、容器の大きさを必要最小限にできることから、温水タンクのセッティング作業時や温水タンク内の湯切れ時などにおいて、湯を迅速に生成する場合などに有効である。   In addition, since the container of the supply source does not increase in size, for example, when the container of the supply source is a hot water tank, the capacity of the heater for heating and keeping the water in the hot water tank is reduced to the minimum necessary capacity. Can be set. In addition, the container may be the minimum size, and as a result, it is not necessary to store extra water in the container, so the time for raising the water in the container to the required water temperature is shorter than in the conventional configuration. Just do it. For this reason, the waiting time while raising the temperature of the water in the hot water tank to a predetermined temperature can be made shorter than before. In this way, since the size of the container can be minimized without causing an increase in the size of the container at the supply source, hot water is quickly generated when setting up the hot water tank or when the hot water tank is out of water. It is effective in some cases.

さらに、従来の構成ではバルブ数が複数に及び、しかも温水タンクに接近するように密集配置されてあったことから、複数の配管毎に設けた個々のバルブに対する監視負担やメンテナンスに係る労力は多大であった。しかし、本発明によれば、バルブ数は上流側流路への流入量を調整するためのバルブ1個で済み、このバルブと流路切替装置に対して監視およびメンテナンス作業を行えば足り、従来の構成に比べて監視負担やメンテナンスに係る労力を減らすことができる。さらに、これにより、複数の供給先に湯を供給する給湯装置などの給液装置における信頼性を高めることができる。   In addition, since the conventional configuration has a plurality of valves and is densely arranged so as to be close to the hot water tank, the monitoring burden and maintenance labor for each valve provided for each of the plurality of pipes is great. Met. However, according to the present invention, the number of valves is only one valve for adjusting the amount of flow into the upstream flow path, and it is sufficient to perform monitoring and maintenance work on this valve and the flow path switching device. Compared to the configuration, the monitoring burden and the maintenance labor can be reduced. Furthermore, this makes it possible to improve the reliability of a liquid supply apparatus such as a hot water supply apparatus that supplies hot water to a plurality of supply destinations.

一方、本発明の流路切替装置を備えた給湯装置によれば、貯湯容器と、前記貯湯容器の周囲に配設した断熱部材と、前記貯湯容器内に貯えられた湯を前記断熱部材の外部に導く流路とをさらに備え、前記流路は、前記断熱部材の外部に設けた前記流路切替装置の上流側流路に接続されているので、断熱部材に形成される湯供給のための流路挿通用の開口の大きさを小さくすることができる。このため、貯湯容器から開口を通じて外部に放熱することによる熱ロスの増大を抑制し、省エネルギー効果を高めることができる。   On the other hand, according to the hot water supply apparatus provided with the flow path switching device of the present invention, the hot water storage container, the heat insulating member disposed around the hot water storage container, and the hot water stored in the hot water storage container are external to the heat insulating member. And the flow path is connected to the upstream flow path of the flow path switching device provided outside the heat insulation member, so that the hot water supply formed in the heat insulation member is supplied. The size of the opening for channel insertion can be reduced. For this reason, the increase in the heat loss by radiating heat from the hot water storage container to the outside through the opening can be suppressed, and the energy saving effect can be enhanced.

以下に添付図面を参照しながら、本発明に係る流路切替装置およびこれを備えた給湯装置の好適な実施の形態を詳細に説明する。図1は、本発明に係る流路切替装置の断面図であり、図2は、流路切替装置の外観斜視図である。図3は、斜め下から見た流路切替装置の分解斜視図、図4は、斜め上から見た流路切替装置の分解斜視図である。   Exemplary embodiments of a flow path switching device according to the present invention and a hot water supply device including the same will be described below in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a flow path switching device according to the present invention, and FIG. 2 is an external perspective view of the flow path switching device. FIG. 3 is an exploded perspective view of the flow path switching device viewed from obliquely below, and FIG. 4 is an exploded perspective view of the flow path switching device viewed from diagonally above.

図1〜図4に示すように、本発明に係る流路切替装置10は、6本の下流側流路12を有する有底円筒状の本体14と、1本の上流側流路16を有する円柱状部18としてのアクチュエータ20と、回動位置制御手段としてのステッピングモータ22と、液体導入口24を有するカバー26とを備える。アクチュエータ20の円柱状部18は、本体14内に液密かつ回動可能に収容される。   As shown in FIGS. 1 to 4, the flow path switching device 10 according to the present invention has a bottomed cylindrical main body 14 having six downstream flow paths 12 and one upstream flow path 16. An actuator 20 as a cylindrical portion 18, a stepping motor 22 as a rotation position control means, and a cover 26 having a liquid inlet 24 are provided. The cylindrical portion 18 of the actuator 20 is accommodated in the main body 14 so as to be liquid-tight and rotatable.

図5は、斜め上から見た本体の斜視図であり、図6は、斜め下から見た本体の斜視図である。図7は、本体の上面図であり、図8は、図7のA−A線に沿った本体の切断斜視図である。   FIG. 5 is a perspective view of the main body viewed from diagonally above, and FIG. 6 is a perspective view of the main body viewed from diagonally below. FIG. 7 is a top view of the main body, and FIG. 8 is a cut perspective view of the main body taken along line AA of FIG.

本体14は、図5〜図8に示すように、底部28の上面28aに複数(本実施形態では6つ)の流路入口30を有する。この流路入口30は、上流側流路16を接続するためのものである。この6つの流路入口30は、底部上面28aの半径方向外側に周方向に離間して設けられ、各流路入口30には下流側流路12がそれぞれ連通してある。下流側流路12は、本体14の底部28を上下に貫通し、底部下面28bから下側に向けて突出した円形断面の管路により構成される。下流側流路12の下端は、各供給先への配管が接続可能とされてある。なお、本体14の底部上面28aの半径方向内側には凸状部32が形成され、中心にはステッピングモータ22の出力軸22aをアクチュエータ20に通す軸穴34が設けてある。   As shown in FIGS. 5 to 8, the main body 14 has a plurality (six in this embodiment) of channel inlets 30 on the upper surface 28 a of the bottom portion 28. The channel inlet 30 is for connecting the upstream channel 16. The six flow path inlets 30 are provided on the radially outer side of the bottom upper surface 28a so as to be spaced apart from each other in the circumferential direction, and the downstream flow paths 12 communicate with the flow path inlets 30 respectively. The downstream-side flow path 12 is configured by a pipe having a circular cross section that vertically penetrates the bottom portion 28 of the main body 14 and protrudes downward from the bottom surface 28b. A pipe to each supply destination can be connected to the lower end of the downstream channel 12. A convex portion 32 is formed radially inward of the bottom upper surface 28a of the main body 14, and a shaft hole 34 through which the output shaft 22a of the stepping motor 22 passes through the actuator 20 is provided at the center.

流路入口30は、円形断面の形状をしており、流路入口30の縁部分には、C面36が形成されてある。このC面36は、流路入口30における液体の飛散を抑制するためのものである。つまり、上流側流路16の出口38から出た液体が多少暴れたとしても、C面36の傾斜によって液体を下流側流路12にスムーズに流入させることができる。C面36の傾斜角度は、底部上面28aに対して30°以上の角度とするのが好ましい。   The channel inlet 30 has a circular cross-sectional shape, and a C surface 36 is formed at the edge of the channel inlet 30. The C surface 36 is for suppressing scattering of liquid at the flow path inlet 30. That is, even if the liquid exiting from the outlet 38 of the upstream channel 16 is somewhat violent, the liquid can smoothly flow into the downstream channel 12 due to the inclination of the C surface 36. The inclination angle of the C surface 36 is preferably set to an angle of 30 ° or more with respect to the bottom upper surface 28a.

図9は、斜め上から見たアクチュエータの円柱状部の斜視図であり、図10は、斜め下から見た円柱状部の斜視図である。図11は、円柱状部の上面図である。   FIG. 9 is a perspective view of the cylindrical portion of the actuator viewed from diagonally above, and FIG. 10 is a perspective view of the cylindrical portion viewed from diagonally below. FIG. 11 is a top view of the cylindrical portion.

また、図12は、図11のX1−X1線に沿った円柱状部の切断斜視図であり、図13は、図11のX2−X2線に沿った切断斜視図、図14は、図11のX3−X3線に沿った切断斜視図である。また、図15は、図11のY1−Y1線に沿った切断斜視図、図16は、図11のY2−Y2線に沿った切断斜視図、図17は、図11のY3−Y3線に沿った切断斜視図である。   12 is a cut perspective view of the cylindrical portion taken along line X1-X1 in FIG. 11, FIG. 13 is a cut perspective view taken along line X2-X2 in FIG. 11, and FIG. It is a cut perspective view along line X3-X3. 15 is a cut perspective view taken along line Y1-Y1 of FIG. 11, FIG. 16 is a cut perspective view taken along line Y2-Y2 of FIG. 11, and FIG. 17 is taken along line Y3-Y3 of FIG. FIG.

アクチュエータ20は、図9〜図12に示すように、上面18aが円錐面で下面18bが開口した円柱状部18からなり、内部には放射状のリブ40が形成されてある。上流側流路16は、円柱状部18を上から下に斜めに貫通しており、円柱状部18の上面18aの軸心位置に入口42が、下面18bの半径方向外側に流路出口38が配置される略円形断面の傾斜管路である。   As shown in FIGS. 9 to 12, the actuator 20 includes a columnar portion 18 having an upper surface 18 a having a conical surface and an open lower surface 18 b, and radial ribs 40 are formed therein. The upstream flow path 16 obliquely penetrates the cylindrical portion 18 from the top to the bottom, the inlet 42 is located at the axial center position of the upper surface 18a of the cylindrical portion 18, and the flow path outlet 38 is located radially outward of the lower surface 18b. Is an inclined pipe having a substantially circular cross section.

より詳細には、上流側流路16は、図12〜図17に示すように、入口42から下方に若干延び、そこから傾斜して下方に行くに従い半径方向外側に延び、下面18b近くに至り下方に延びて流路出口38に接続している。流路出口38は、本体14側の各流路入口30と対向可能な位置であって、下面18bよりも若干下方に突き出るように配置されてある。また、円柱状部18の下面18bの流路出口38よりも半径方向内側には凹状部44が形成される。この凹状部44が本体14の凸状部32が嵌り込む態様で円柱状部18は本体14内に収容される。また、円柱状部18の下面18bの軸心位置には軸凹孔46が設けられ、ステッピングモータ22の出力軸22aが係合してある。   More specifically, as shown in FIGS. 12 to 17, the upstream flow path 16 slightly extends downward from the inlet 42, and inclines from there and extends outward in the radial direction to reach the vicinity of the lower surface 18 b. It extends downward and is connected to the flow path outlet 38. The flow path outlet 38 is a position that can face each flow path inlet 30 on the main body 14 side, and is disposed so as to protrude slightly below the lower surface 18b. Further, a concave portion 44 is formed on the inner side in the radial direction from the flow path outlet 38 of the lower surface 18b of the cylindrical portion 18. The cylindrical portion 18 is accommodated in the main body 14 in such a manner that the concave portion 44 fits the convex portion 32 of the main body 14. Further, a shaft concave hole 46 is provided at the axial center position of the lower surface 18b of the cylindrical portion 18, and the output shaft 22a of the stepping motor 22 is engaged.

このような簡素な構成によって、ステッピングモータ22で円柱状部18を回動し、上流側流路16の出口38と下流側流路12の入口30とを対向させることで上流側流路16とこの下流側流路12とを連通状態にする一方、残りの下流側流路12との連通を絶つことができる。このため、本発明によれば、単数の供給元の液体流路(上流側流路16)と、複数の供給先の液体流路(下流側流路12)との各連通を容易に切り替えることができる。   With such a simple configuration, the columnar portion 18 is rotated by the stepping motor 22, and the upstream flow path 16 and the upstream flow path 16 are opposed to each other by making the outlet 38 of the upstream flow path 16 and the inlet 30 of the downstream flow path 12 face each other. While this downstream flow path 12 is brought into communication, communication with the remaining downstream flow paths 12 can be interrupted. Therefore, according to the present invention, each communication between a single supply source liquid channel (upstream channel 16) and a plurality of supply destination liquid channels (downstream channel 12) can be easily switched. Can do.

したがって、温水タンクなどの供給元の容器と接続される上流側流路の数が単数となって供給元の容器との接続箇所数が少なくて済むので、供給元の容器の構造の複雑化を招かない。また、容器側に接続部の配置スペースを多数確保する必要がないことから、容器の大型化を招かず、容器の大きさを必要最小限の大きさにすることができ、コスト低減を図ることができる。   Therefore, since the number of upstream flow paths connected to the supply source container such as a hot water tank is singular and the number of connection points with the supply source container is small, the structure of the supply source container is complicated. Do not invite. In addition, since it is not necessary to secure a large number of arrangement spaces for the connecting portion on the container side, the container size can be reduced to the minimum necessary size without incurring an increase in the size of the container, thereby reducing costs. Can do.

上流側流路16および下流側流路12の内面は、滑らかな曲面で構成されてあり、各流路12,16の内面には流路内を通過する液体を整流するためのフィレット48a,48bがそれぞれ設けてある。   The inner surfaces of the upstream flow path 16 and the downstream flow path 12 are configured with smooth curved surfaces, and fillets 48a and 48b for rectifying the liquid passing through the flow paths are formed on the inner surfaces of the flow paths 12 and 16, respectively. Are provided.

フィレット48a,48bは、流路内面の対向した二箇所から互いに向けて突出する一方で、流路の軸方向に延在する一対の平板部50からなる。そして、図11等に示すように、一対の平板部50の先端50a同士は離れており、流路断面の中央部分にスケール等の異物を詰まらせずに流下可能な開口52が確保してある。   The fillets 48a and 48b are composed of a pair of flat plate portions 50 that protrude toward each other from two opposed locations on the inner surface of the flow channel, and extend in the axial direction of the flow channel. As shown in FIG. 11 and the like, the tips 50a of the pair of flat plate portions 50 are separated from each other, and an opening 52 that can flow down without clogging foreign matters such as scales is secured in the central portion of the flow path cross section. .

図18は、本体内に円柱状部が収容された場合の上面図であり、上流側流路と下流側流路とが連通状態とされた図である。図18等に示すように、下流側流路12のフィレット48aの突出方向は、上流側流路16のフィレット48bの突出方向に対して流路軸周りに90度ずれた位置にされており、互いの流路の軸心を一致させた際には軸方向視で交差する位置関係になる。   FIG. 18 is a top view when the cylindrical portion is accommodated in the main body, and is a view in which the upstream flow path and the downstream flow path are in communication with each other. As shown in FIG. 18 and the like, the projecting direction of the fillet 48a of the downstream channel 12 is shifted by 90 degrees around the channel axis with respect to the projecting direction of the fillet 48b of the upstream channel 16, When the axial centers of the flow paths are made to coincide with each other, the positional relationship intersects when viewed in the axial direction.

より詳細には、上流側流路16のフィレット48bは、アクチュエータ20の軸心に対して放射方向に突出するように設けてある。一方、下流側流路12のフィレット48aは、アクチュエータの軸心に対して放射方向に直交する方向に突出するように設けてある。このため、流路が選択された時点で、上流側流路16および下流側流路12のフィレット48a,48bは、流路の軸方向視で交差部分が開いた略十字状に交差する態様となる。   More specifically, the fillet 48 b of the upstream flow path 16 is provided so as to protrude in the radial direction with respect to the axis of the actuator 20. On the other hand, the fillet 48a of the downstream channel 12 is provided so as to protrude in a direction perpendicular to the radial direction with respect to the axis of the actuator. For this reason, when the flow path is selected, the fillets 48a and 48b of the upstream flow path 16 and the downstream flow path 12 intersect with each other in a substantially cross shape in which an intersection portion is opened in the axial direction of the flow path. Become.

このように、フィレット48a,48bを交差配置することで、流路断面積を変化させず、かつ、流路断面積を減少させずに、液体の暴れを減衰させたり、偏流や乱れの発生を少なくし、流路内での液体の流れを整流して安定させることができる。このため、液体をスムーズに流下させることができる。また、乱れ等に伴う流路内の流動抵抗が低くなるので、フィレットを有しない同一断面積の流路よりも大きな流量を流すことができる。   In this manner, by arranging the fillets 48a and 48b in an intersecting manner, the liquid cross-sectional area is not changed and the cross-sectional area of the flow path is not reduced, so that the liquid turbulence is attenuated or the occurrence of drift and turbulence is prevented. The flow of the liquid in the flow path can be rectified and stabilized. For this reason, the liquid can flow smoothly. In addition, since the flow resistance in the flow path due to turbulence or the like is lowered, a larger flow rate can be flowed than a flow path having the same cross-sectional area without a fillet.

図19は、流路切替装置の切断斜視図であり、図20は、カバーを除いた流路切替装置の切断斜視図である。図19および図20等に示すように、特に本実施形態では、上流側流路16内において、流れの方向が下方、斜め下方、下方と変化してから下流側流路12内に流れ込むように構成されてあるので、流れの方向の変化に伴う遠心力などの慣性力の影響を受け流況に偏流や乱れが生じるおそれがある。しかし、上記のように、交差した態様のフィレット48a,48bを設けることで、こうした偏流や乱れの発生を少なくすることができる。   FIG. 19 is a cut perspective view of the flow path switching device, and FIG. 20 is a cut perspective view of the flow path switching device without the cover. As shown in FIGS. 19 and 20, in this embodiment in particular, in the upstream flow path 16, the flow direction changes from downward, obliquely downward, and downward to flow into the downstream flow path 12. Since it is configured, there is a possibility that drift or turbulence may occur in the flow state due to the influence of an inertial force such as a centrifugal force accompanying a change in the flow direction. However, as described above, by providing the fillets 48a and 48b in an intersecting manner, the occurrence of such drift and turbulence can be reduced.

ステッピングモータ22は、図1〜図4等に示すように、アクチュエータ20を回動駆動するためのものであり、本体14の底部下面28bに同軸状に設けられる。モータ22の出力軸22aは、本体14の底部28の軸穴34を挿通し液体侵入防止用Oリング54を介してアクチュエータ20の円柱状部18の下面18bの軸凹孔46に係合してある。円柱状部18の回動角度および回動位置は、ステッピングモータ22のパルス数制御によって制御され、これにより上流側流路16の軸心と下流側流路12の軸心とが合致するように制御することができる。なお、本体14の底部上面28aの半径方向外側には、図5等に示すように、アクチュエータ原点出し用の段差56が設けてあり、ステッピングモータ22によって回転して脱調させることで原点位置とするようにされてある。   The stepping motor 22 is for rotationally driving the actuator 20 as shown in FIGS. 1 to 4 and the like, and is provided coaxially on the bottom lower surface 28 b of the main body 14. The output shaft 22 a of the motor 22 is inserted into the shaft hole 34 of the bottom portion 28 of the main body 14 and engaged with the shaft concave hole 46 of the lower surface 18 b of the cylindrical portion 18 of the actuator 20 through the liquid intrusion preventing O-ring 54. is there. The rotation angle and the rotation position of the cylindrical portion 18 are controlled by the pulse number control of the stepping motor 22 so that the axis of the upstream channel 16 and the axis of the downstream channel 12 coincide with each other. Can be controlled. As shown in FIG. 5 and the like, a step 56 for obtaining the origin of the actuator is provided on the radially outer side of the bottom upper surface 28a of the main body 14 and is rotated by the stepping motor 22 to be out of step. To be done.

カバー26は、図1〜図4および図21の流路切替装置の上面図等に示すように、略円錐面状の半透明の部材であり、アクチュエータ20の円錐面(上面18a)と本体14の円筒外周面とを外嵌被覆するように配置され、本体14に係合してある。カバー26の円錐頂部には、上端に液体導入口24を備える円管が設けてあり、この円管の下端出口は、アクチュエータ20の上流側流路16の入口42に対向配置される。また、円錐下端には、図1および図2等に示すように、下方に延びる筒状鍔部58が形成してある。筒状鍔部58の周方向に等間隔の3箇所には、下方に延びる係合部60が設けてある。係合部60には、本体14の係合爪14aと係合可能な係合孔60aが設けてある。   The cover 26 is a semi-transparent member having a substantially conical surface shape as shown in the top view of the flow path switching device in FIGS. 1 to 4 and 21, and the conical surface (upper surface 18 a) of the actuator 20 and the main body 14. It is arranged so as to cover the outer peripheral surface of the cylinder and is engaged with the main body 14. A circular pipe having a liquid inlet 24 at the upper end is provided at the top of the cone of the cover 26, and the lower end outlet of the circular pipe is disposed opposite to the inlet 42 of the upstream flow path 16 of the actuator 20. Further, as shown in FIGS. 1 and 2 and the like, a cylindrical flange 58 extending downward is formed at the lower end of the cone. Engaging portions 60 that extend downward are provided at three equally spaced locations in the circumferential direction of the cylindrical flange portion 58. The engagement portion 60 is provided with an engagement hole 60a that can be engaged with the engagement claw 14a of the main body 14.

上記構成の動作および作用について説明する。
ステッピングモータ22を駆動すると、予め設定した所定角度だけアクチュエータ20の円柱状部18が回動して、円柱状部18の下面18bの上流側流路16の出口38が、本体14の底部上面28aの6つの下流側流路12の入口30のうち一つの入口30に対向配置される。これにより上流側流路16と下流側流路12とが連通状態になり、上流側流路16に液体を送る図示しないバルブを開くことで、上流側流路16からの液体が連通状態の下流側流路12に流れ込み、接続された図示しない配管を通じて所望の供給先に液体が供給される。また、他の流路に切り替える場合には、上流側流路16の出口38が所望の下流側流路12の入口30に対向配置されるように円柱状部18の回動角度を制御してステッピングモータ22を駆動すればよい。
The operation and action of the above configuration will be described.
When the stepping motor 22 is driven, the cylindrical portion 18 of the actuator 20 rotates by a predetermined angle set in advance, and the outlet 38 of the upstream flow path 16 on the lower surface 18b of the cylindrical portion 18 becomes the bottom upper surface 28a of the main body 14. Of the six downstream flow paths 12 are arranged to face one of the inlets 30. As a result, the upstream flow path 16 and the downstream flow path 12 are in communication with each other, and a valve (not shown) that sends the liquid to the upstream flow path 16 is opened, so that the liquid from the upstream flow path 16 is in the downstream of the communication state. The liquid flows into the side flow path 12 and is supplied to a desired supply destination through a connected pipe (not shown). Further, when switching to another flow path, the rotation angle of the cylindrical portion 18 is controlled so that the outlet 38 of the upstream flow path 16 is disposed opposite the inlet 30 of the desired downstream flow path 12. The stepping motor 22 may be driven.

こうすることで、温水タンクなどの供給元の容器と接続される上流側流路の数が単数となって供給元の容器との接続箇所数が少なくて済むので、供給元の容器の構造の複雑化を招かない。また、容器側に接続部の配置スペースを多数確保する必要がないことから、容器の大型化を招かず、容器の大きさを必要最小限の大きさにすることができ、コスト低減を図ることができる。   By doing so, the number of upstream flow paths connected to the supply source container such as a hot water tank is singular and the number of connection points with the supply source container can be reduced. Does not invite complications. In addition, since it is not necessary to secure a large number of arrangement spaces for the connecting portion on the container side, the container size can be reduced to the minimum necessary size without incurring an increase in the size of the container, thereby reducing costs. Can do.

また、上流側流路16と下流側流路12とが連通状態となった時点で、上流側流路16および下流側流路12のフィレット48a,48bは、流路の軸方向視で交差する態様となる。このフィレット48a,48bは、流路内での液体の流れを整流して、液体の暴れを減衰させたり、偏流や乱れの発生を少なくし、液体をスムーズに流下させるように作用する。   In addition, when the upstream flow path 16 and the downstream flow path 12 are in communication with each other, the fillets 48a and 48b of the upstream flow path 16 and the downstream flow path 12 intersect in the axial direction of the flow path. It becomes an aspect. The fillets 48a and 48b act to rectify the flow of the liquid in the flow path to attenuate the liquid turbulence, reduce the occurrence of uneven flow and turbulence, and cause the liquid to flow smoothly.

上記の実施形態において、回動位置制御手段は、ステッピングモータ22を備える代わりに、円柱状部18の回動角度を検出するエンコーダを備えてもよく、例えば、DCモータなどの他の方式のモータを用いて円柱状部18を回転駆動する一方でエンコーダの出力値に応じて円柱状部18の回動位置を制御するようにしてもよい。   In the above embodiment, the rotation position control means may include an encoder for detecting the rotation angle of the columnar portion 18 instead of including the stepping motor 22, for example, a motor of another system such as a DC motor. The cylindrical portion 18 may be driven to rotate while the rotational position of the cylindrical portion 18 is controlled according to the output value of the encoder.

上記の実施形態において、回動位置制御手段は、図22(b)および(c)の切断面図に示すように、流路出口38が隣り合う二つの流路入口30の間に位置するように円柱状部18の回動位置を制御して上流側流路16と二つの下流側流路12とを同時にそれぞれ連通状態にしてもよい。この場合、上流側流路16からの液体流量を、二つの下流側流路12に対して円柱状部18の回動位置に応じた所定の比率で分配することができる。   In the above embodiment, the rotation position control means is configured such that the flow path outlet 38 is located between two adjacent flow path inlets 30 as shown in the cross-sectional views of FIGS. 22 (b) and 22 (c). Alternatively, the upstream flow path 16 and the two downstream flow paths 12 may be simultaneously communicated with each other by controlling the rotational position of the cylindrical portion 18. In this case, the liquid flow rate from the upstream channel 16 can be distributed to the two downstream channels 12 at a predetermined ratio according to the rotational position of the cylindrical portion 18.

この場合、例えば、図22(a)の断面図に示す通常の場合のように、各流路入口30の中心を通る円の円周方向に沿って切った断面の形状を台形状とする代わりに、C面36の形成範囲を大きくして、図22(e)の概略平面図および図22(b)の断面図に示すように、この断面の形状を三角形状とし、図22(b)のように上流側流路16の軸心を2つの流路入口30間の中央に配置させて、2つの下流側流路12に同量の液体を同時に流し込んでもよい。   In this case, for example, as in the normal case shown in the cross-sectional view of FIG. 22A, the cross-sectional shape cut along the circumferential direction of a circle passing through the center of each flow path inlet 30 is made trapezoidal. In addition, the formation range of the C surface 36 is enlarged, and as shown in the schematic plan view of FIG. 22E and the cross-sectional view of FIG. As described above, the center of the upstream channel 16 may be arranged in the center between the two channel inlets 30, and the same amount of liquid may be poured into the two downstream channels 12 at the same time.

また、図22(c)の断面図に示すように、上流側流路16の軸心を2つの流路入口30間のやや左よりに配置することで、左側の下流側流路12に若干多めの液体を流し込んでもよい。この場合、上流側流路16の軸心の配置位置を変える制御を行うことで液体の分配比率を、例えば、6:4や7:3というような所望の比率にすることができる。なお、C面36の切断面の形状を三角形状とした場合であっても、図22(d)の断面図に示すように、上流側流路16の軸心の配置位置を下流側流路12の軸心に一致させるように制御すれば、液体はC面36によって流路入口30に導かれるので、1本の下流側流路12のみに液体を流し込むことができることはいうまでもない。   Also, as shown in the cross-sectional view of FIG. 22 (c), by arranging the axial center of the upstream channel 16 slightly from the left between the two channel inlets 30, the left downstream channel 12 is slightly A larger amount of liquid may be poured. In this case, the liquid distribution ratio can be set to a desired ratio such as 6: 4 or 7: 3 by controlling the arrangement position of the axial center of the upstream flow path 16. Note that, even when the shape of the cut surface of the C surface 36 is triangular, as shown in the sectional view of FIG. If the control is performed so as to coincide with the 12 axial centers, the liquid is guided to the flow path inlet 30 by the C surface 36, so that it is needless to say that the liquid can be poured into only one downstream flow path 12.

上記の実施形態において、回動位置制御手段は、円柱状部18の回動位置および回動停止時間を制御してもよい。この場合、例えば、タイマーの出力信号に基づいて定期的に各下流側流路12に対して上流側流路16を所定時間ずつ順々に連通状態にしてもよい。また、各下流側流路12と連通している時間を制御して、上流側流路16から各下流側流路12に流れ込む液体流量を制御することもできる。さらに、液体導入口24に連通してある上流側流路16への液体流入量を調整可能な図示しないバルブの開度を制御可能な構成としてもよく、円柱状部18の回動タイミングと連動させて流量を制御してもよい。   In the above embodiment, the rotation position control means may control the rotation position and rotation stop time of the columnar portion 18. In this case, for example, the upstream flow path 16 may be periodically communicated with each downstream flow path 12 in order for a predetermined time period based on the output signal of the timer. In addition, it is possible to control the flow rate of the liquid flowing from the upstream channel 16 into the downstream channel 12 by controlling the time of communication with each downstream channel 12. Further, the opening of a valve (not shown) capable of adjusting the amount of liquid flowing into the upstream flow path 16 communicating with the liquid inlet 24 may be controlled, and interlocked with the rotation timing of the cylindrical portion 18. The flow rate may be controlled.

上記の実施形態において、図22(a)等に示すように、本体14と円柱状部18との間に、スケール物質の通過を許容する隙間62を設け、スケール物質の詰まりによってアクチュエータ22が回動できなくなる事態の発生を回避してもよい。   In the above embodiment, as shown in FIG. 22A and the like, a gap 62 that allows the passage of the scale material is provided between the main body 14 and the cylindrical portion 18, and the actuator 22 is rotated by clogging of the scale material. You may avoid the situation where it becomes impossible to move.

次に、本発明の流路切替装置10を備えた給湯装置100について説明する。
図23は、給湯装置の外観斜視図であり、図24は、給湯装置のブロック図である。
図23に示すように、本発明に係る給湯装置100は、貯湯容器としての湯タンク70と、ヒータ72と、湯タンク70の周囲に配設した断熱部材74と、湯タンク70内に貯えられた湯を断熱部材74の外部に導く流路76およびバルブ78と、本発明の流路切替装置10とを備える。流路切替装置10は、断熱部材74の外部に設けられており、流路76は、流路切替装置10の液体導入口24に接続されてある。
Next, the hot water supply apparatus 100 provided with the flow path switching apparatus 10 of the present invention will be described.
FIG. 23 is an external perspective view of the hot water supply device, and FIG. 24 is a block diagram of the hot water supply device.
As shown in FIG. 23, a hot water supply device 100 according to the present invention is stored in a hot water tank 70 as a hot water storage container, a heater 72, a heat insulating member 74 disposed around the hot water tank 70, and the hot water tank 70. A channel 76 and a valve 78 for guiding the hot water to the outside of the heat insulating member 74 and the channel switching device 10 of the present invention are provided. The flow path switching device 10 is provided outside the heat insulating member 74, and the flow path 76 is connected to the liquid inlet 24 of the flow path switching device 10.

図24に示すように、リザーバまたは水道回路から供給された水は、ポンプによって湯タンク70に供給され、湯タンク70のヒータ72に昇温され湯が生成される。湯タンク70の湯はバルブ78と流路76を介して流路切替装置10に送られ、流路切替装置10の下流側流路を介して所望の各供給先に送られる。   As shown in FIG. 24, the water supplied from the reservoir or the water circuit is supplied to the hot water tank 70 by a pump, and the temperature is raised to the heater 72 of the hot water tank 70 to generate hot water. The hot water in the hot water tank 70 is sent to the flow path switching device 10 via the valve 78 and the flow path 76, and is sent to each desired supply destination via the downstream flow path of the flow path switching device 10.

このように、給湯装置100に対して本発明の流路切替装置10を用いることで、図25(a)に示すように、断熱部材74に形成される流路挿通用の開口80の大きさを、図25(b)に示す従来の構成と比較して小さくすることができる。このため、湯タンク70から開口80を通じて外部に放熱することによる熱ロスの増大を抑制し、省エネルギー効果を高めることができる。   Thus, by using the flow path switching apparatus 10 of the present invention for the hot water supply apparatus 100, the size of the opening 80 for flow path insertion formed in the heat insulating member 74 as shown in FIG. Can be made smaller than the conventional configuration shown in FIG. For this reason, an increase in heat loss due to heat radiation from the hot water tank 70 to the outside through the opening 80 can be suppressed, and the energy saving effect can be enhanced.

以上説明したように、本発明の流路切替装置によれば、単数の供給元の液体流路(上流側流路)と、複数の供給先の液体流路(下流側流路)との各連通を容易に切り替えることができる。温水タンクなどの供給元の容器と接続される上流側流路の数が単数となって供給元の容器との接続箇所数が少なくて済むので、供給元の容器の構造の複雑化を招かない。また、容器側に接続部の配置スペースを多数確保する必要がないことから、容器の大型化を招かず、容器の大きさを必要最小限の大きさにすることができ、コスト低減を図ることができる。   As described above, according to the flow path switching device of the present invention, each of a single supply source liquid flow path (upstream flow path) and a plurality of supply destination liquid flow paths (downstream flow paths). Communication can be easily switched. Since the number of upstream flow paths connected to a supply source container such as a hot water tank is reduced to a smaller number of connection points with the supply source container, the structure of the supply source container is not complicated. . In addition, since it is not necessary to secure a large number of arrangement spaces for the connecting portion on the container side, the container size can be reduced to the minimum necessary size without incurring an increase in the size of the container, thereby reducing costs. Can do.

また、供給元の容器の大型化を招かないことから、例えば、供給元の容器が温水タンクの場合には、温水タンク内の水を加熱保温するためのヒータの容量を必要最小限の容量に設定することができる。しかも、容器は必要最小限の大きさでよく、この結果、容器内に余分な水を貯めなくて済むので、容器内の水を必要な水温まで昇温する時間は従来の構成よりも短時間で済む。このため、温水タンク内の水を所定温度まで昇温する間の待ち時間を従来よりも短くすることができる。このように、供給元の容器の大型化を招かず、容器の大きさを必要最小限にできることから、温水タンクのセッティング作業時や温水タンク内の湯切れ時などにおいて、湯を迅速に生成する場合などに有効である。   In addition, since the container of the supply source does not increase in size, for example, when the container of the supply source is a hot water tank, the capacity of the heater for heating and keeping the water in the hot water tank is reduced to the minimum necessary capacity. Can be set. In addition, the container may be the minimum size, and as a result, it is not necessary to store extra water in the container, so the time for raising the water in the container to the required water temperature is shorter than in the conventional configuration. Just do it. For this reason, the waiting time while raising the temperature of the water in the hot water tank to a predetermined temperature can be made shorter than before. In this way, since the size of the container can be minimized without causing an increase in the size of the container at the supply source, hot water is quickly generated when setting up the hot water tank or when the hot water tank is out of water. It is effective in some cases.

また、本発明によれば、バルブ数は上流側流路への流入量を調整する1個で済み、このバルブと流路切替装置に対して監視およびメンテナンス作業を行えば足り、従来の構成に比べて監視負担やメンテナンスに係る労力を減らすことができる。また、複数の供給先に湯を供給する給湯装置などの給液装置における信頼性を高めることができる。   In addition, according to the present invention, the number of valves need only be one for adjusting the amount of inflow into the upstream flow path, and it is sufficient to perform monitoring and maintenance work on this valve and the flow path switching device. In comparison, the monitoring burden and the maintenance labor can be reduced. In addition, reliability in a liquid supply apparatus such as a hot water supply apparatus that supplies hot water to a plurality of supply destinations can be improved.

本発明に係る流路切替装置の一例を示す側断面図である。It is a sectional side view which shows an example of the flow-path switching apparatus concerning this invention. 本発明に係る流路切替装置の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the flow-path switching apparatus which concerns on this invention. 斜め下から見た流路切替装置の分解斜視図である。It is a disassembled perspective view of the flow-path switching apparatus seen from diagonally downward. 斜め上から見た流路切替装置の分解斜視図である。It is a disassembled perspective view of the flow-path switching apparatus seen from diagonally upward. 斜め上から見た本体の斜視図である。It is the perspective view of the main body seen from diagonally upward. 斜め下から見た本体の斜視図である。It is a perspective view of the main body seen from diagonally below. 本体の上面図である。It is a top view of a main body. 図7のA−A線に沿った本体の切断斜視図である。FIG. 8 is a cut perspective view of the main body along the line AA in FIG. 7. 斜め上から見たアクチュエータの円柱状部の斜視図である。It is the perspective view of the cylindrical part of the actuator seen from diagonally upward. 斜め下から見たアクチュエータの円柱状部の斜視図である。It is a perspective view of the cylindrical part of the actuator seen from diagonally below. アクチュエータの円柱状部の上面図である。It is a top view of the cylindrical part of an actuator. 図11のX1−X1線に沿った円柱状部の切断斜視図である。FIG. 12 is a cut perspective view of a cylindrical portion taken along line X1-X1 in FIG. 11. 図11のX2−X2線に沿った円柱状部の切断斜視図である。FIG. 12 is a cut perspective view of a cylindrical portion taken along line X2-X2 in FIG. 11. 図11のX3−X3線に沿った円柱状部の切断斜視図である。FIG. 12 is a cut perspective view of a columnar portion taken along line X3-X3 in FIG. 11. 図11のY1−Y1線に沿った円柱状部の切断斜視図である。FIG. 12 is a cut perspective view of a cylindrical portion along the line Y1-Y1 in FIG. 図11のY2−Y2線に沿った円柱状部の切断斜視図である。FIG. 12 is a cut perspective view of a columnar portion along the line Y2-Y2 of FIG. 図11のY3−Y3線に沿った円柱状部の切断斜視図である。FIG. 12 is a cut perspective view of a cylindrical portion along the line Y3-Y3 in FIG. 11. 本体内に円柱状部が収容された上面図であり、上流側流路と下流側流路とが連通状態とされた図である。It is the top view in which the cylindrical part was accommodated in the main body, and is the figure by which the upstream flow path and the downstream flow path were made into the communication state. 本発明に係る流路切替装置の切断斜視図である。1 is a cut perspective view of a flow path switching device according to the present invention. カバーを除いた流路切替装置の切断斜視図である。It is a cutaway perspective view of a channel change device except a cover. 本発明に係る流路切替装置の上面図である。It is a top view of the flow-path switching apparatus which concerns on this invention. 上流側流路の流路出口と下流側流路の流路入口の位置関係を説明する図であり、(a)は各流路入口の中心を通る円の円周方向に沿って切った断面の形状が台形状である場合の切断面図、(b)、(c)、(d)は断面の形状が三角形状である場合の切断面図、(e)は断面の形状が三角形状である場合の底部上面の部分平面図である。It is a figure explaining the positional relationship of the flow path outlet of an upstream flow path, and the flow path inlet of a downstream flow path, (a) is the cross section cut along the circumferential direction of the circle which passes along the center of each flow path inlet (B), (c), and (d) are cross-sectional views when the cross-sectional shape is a triangular shape, and (e) is a cross-sectional shape when the cross-sectional shape is a triangular shape. It is a partial top view of the bottom part upper surface in a certain case. 本発明に係る給湯装置の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the hot water supply apparatus which concerns on this invention. 本発明に係る給湯装置のブロック図である。It is a block diagram of the hot-water supply apparatus which concerns on this invention. 給湯装置の概略斜視図であり、(a)は本発明の給湯装置の斜視図、(b)は従来の給湯装置の斜視図である。It is a schematic perspective view of a hot water supply apparatus, (a) is a perspective view of the hot water supply apparatus of this invention, (b) is a perspective view of the conventional hot water supply apparatus.

符号の説明Explanation of symbols

10 流路切替装置
12 下流側流路
14 本体
14a 係合爪
16 上流側流路
18 円柱状部
18a 円柱状部の上面(円錐面)
18b 円柱状部の下面
20 アクチュエータ
22 ステッピングモータ(回動位置制御手段)
24 液体導入口
26 カバー
28 底部
28a 本体の底部上面
28b 本体の底部下面
30 流路入口(下流側流路入口)
32 凸状部
34 軸穴
36 C面
38 流路出口(上流側流路出口)
40 リブ
42 入口(上流側流路入口)
44 凹状部
46 軸凹孔
48a,48b フィレット
50 平板部
50a 平板部の先端
52 開口
54 Oリング
56 段差
58 筒状鍔部
60 係合部
60a 係合孔
62 隙間
70 湯タンク
72 ヒータ
74 断熱部材
76 流路
78 バルブ
80 開口
100 給湯装置
DESCRIPTION OF SYMBOLS 10 Channel switching device 12 Downstream channel 14 Main body 14a Engagement claw 16 Upstream channel 18 Cylindrical part 18a Upper surface (conical surface) of cylindrical part
18b Bottom surface of cylindrical portion 20 Actuator 22 Stepping motor (rotation position control means)
24 Liquid Inlet 26 Cover 28 Bottom 28a Main Body Bottom Upper Surface 28b Main Body Bottom Lower Surface 30 Channel Inlet (Downstream Channel Inlet)
32 Convex part 34 Shaft hole 36 C surface 38 Channel outlet (upstream channel outlet)
40 rib 42 inlet (upstream flow path inlet)
44 concave portion 46 shaft concave hole 48a, 48b fillet 50 flat plate portion 50a tip of flat plate portion 52 opening 54 O-ring 56 step 58 cylindrical flange 60 engaging portion 60a engaging hole 62 gap 70 hot water tank 72 heater 74 heat insulating member 76 Flow path 78 Valve 80 Opening 100 Hot water supply device

Claims (10)

複数の液体流路のうちから少なくとも一つの液体流路を選択して液体が流れる流路を切り替える流路切替装置であって、
底部上面の半径方向外側に周方向に離間して設けた複数の流路入口を有し、前記複数の流路入口にそれぞれ連通する複数の下流側流路を備える有底円筒状の本体と、
前記本体内に液密かつ回動可能に収容される円柱状部であって、前記本体の底部上面と対向する底面の半径方向外側に流路出口を有し、前記流路出口に連通する上流側流路を備え、上面が円錐面の円柱状部を含むアクチュエータとを有し、
前記上流側流路は、前記円柱状部の上面の回動軸心位置に入口が配置され、前記円柱状部を上から下に斜めに貫通する傾斜管路であり、前記入口から下方に延び、そこから傾斜して下方に行くに従い半径方向外側に延び、前記円柱状部の下面近くに至り下方に延びて前記流路出口に接続するものであり、
前記アクチュエータの円柱状部の回動によって、上流側流路と連通する下流側流路を切り替えることを特徴とする流路切替装置。
A flow path switching device that selects at least one liquid flow path from a plurality of liquid flow paths and switches the flow path of the liquid,
A bottomed cylindrical main body having a plurality of flow path inlets spaced apart in the circumferential direction on the radially outer side of the upper surface of the bottom portion, and having a plurality of downstream flow paths respectively communicating with the plurality of flow path inlets;
A cylindrical portion that is liquid-tightly and rotatably accommodated in the main body, and has a channel outlet on the radially outer side of the bottom surface facing the top surface of the bottom of the main body, and communicates with the channel outlet. An actuator including a side channel, and an upper surface including a cylindrical portion having a conical surface ,
The upstream channel is an inclined pipe line in which an inlet is disposed at a rotational axis position on the upper surface of the cylindrical part, and obliquely penetrates the cylindrical part from top to bottom, and extends downward from the inlet. Inclining from there, it extends radially outward as it goes downward, reaches the lower surface of the cylindrical part, extends downward, and connects to the flow path outlet,
A flow path switching device that switches a downstream flow path communicating with an upstream flow path by rotation of a cylindrical portion of the actuator.
前記流路の内面を滑らかな曲面で構成するとともに、前記流路内を通過する液体を整流するためのフィレットを前記流路の内面に設けたことを特徴とする請求項1に記載の流路切替装置。   2. The flow path according to claim 1, wherein an inner surface of the flow path is configured by a smooth curved surface, and a fillet for rectifying liquid passing through the flow path is provided on the inner surface of the flow path. Switching device. 前記フィレットは、前記流路内面の対向した二箇所から互いに向けて突出する一方で、前記流路の軸方向に延在する一対の平板部からなり、
上流側流路と下流側流路の軸心を一致させた際における上流側流路内面の前記フィレットは、下流側流路内面の前記フィレットに対して軸周りに90度ずれた位置に配置されてあることを特徴とする請求項2に記載の流路切替装置。
The fillet is composed of a pair of flat plate portions extending in the axial direction of the flow path while projecting toward each other from two opposed positions on the inner surface of the flow path,
The fillet on the inner surface of the upstream flow channel when the upstream flow channel and the downstream flow channel are aligned with each other is disposed at a position shifted 90 degrees around the axis with respect to the fillet on the inner surface of the downstream flow channel. The flow path switching device according to claim 2, wherein
前記下流側流路の入口の縁部分にC面が形成されることを特徴とする請求項1から請求項3のいずれか一つに記載の流路切替装置。   The channel switching device according to any one of claims 1 to 3, wherein a C surface is formed at an edge portion of the inlet of the downstream channel. 前記C面の傾斜角度は、前記本体の底部上面に対して30°以上の角度とされてあることを特徴とする請求項4に記載の流路切替装置。   The flow path switching device according to claim 4, wherein an inclination angle of the C surface is an angle of 30 ° or more with respect to an upper surface of a bottom portion of the main body. 前記円柱状部を回動駆動するステッピングモータまたは前記円柱状部の回動角度を検出するエンコーダを有し、前記ステッピングモータに設定した所定の回動角度または前記エンコーダの出力値に応じて前記円柱状部の回動位置を制御する回動位置制御手段をさらに備えることを特徴とする請求項1から請求項5のいずれか一つに記載の流路切替装置。   A stepping motor that rotationally drives the columnar portion or an encoder that detects a rotation angle of the columnar portion, and the circle according to a predetermined rotation angle set in the stepping motor or an output value of the encoder The flow path switching device according to claim 1, further comprising a rotation position control unit that controls a rotation position of the columnar part. 前記回動位置制御手段は、前記円柱状部底面の上流側流路出口が前記本体の底部上面の隣り合う二つの下流側流路入口の間に位置するように前記円柱状部の回動位置を制御して上流側流路出口と前記二つの下流側流路入口とをそれぞれ連通状態にし、上流側流路からの液体流量を前記二つの下流側流路に対して前記円柱状部の回動位置に応じた所定の比率で分配することを特徴とする請求項6に記載の流路切替装置。   The rotation position control means is configured to rotate the columnar portion so that the upstream channel outlet of the bottom surface of the columnar portion is positioned between two adjacent downstream channel inlets of the top surface of the bottom of the main body. And the upstream channel outlet and the two downstream channel inlets are in communication with each other, and the liquid flow rate from the upstream channel is controlled by the columnar portion with respect to the two downstream channels. 7. The flow path switching device according to claim 6, wherein distribution is performed at a predetermined ratio according to the moving position. 前記回動位置制御手段は、前記円柱状部の回動位置および回動停止時間を制御して、上流側流路から各下流側流路に流れ込む液体流量を制御することを特徴とする請求項6または7に記載の流路切替装置。   The said rotation position control means controls the liquid flow volume which flows into each downstream flow path from an upstream flow path by controlling the rotation position and rotation stop time of the said column-shaped part, It is characterized by the above-mentioned. 6. The flow path switching device according to 6 or 7. 前記本体と前記円柱状部との間に、スケール物質の通過を許容する隙間を設けたことを特徴とする請求項1から請求項8のいずれか一つに記載の流路切替装置。   9. The flow path switching device according to claim 1, wherein a gap that allows passage of a scale substance is provided between the main body and the cylindrical portion. 請求項1から請求項9のいずれか一つに記載の流路切替装置を備えた給湯装置であって、貯湯容器と、前記貯湯容器の周囲に配設した断熱部材と、前記貯湯容器内に貯えられた湯を前記断熱部材の外部に導く流路とをさらに備え、前記流路は、前記断熱部材の外部に設けた前記流路切替装置の上流側流路に接続されていることを特徴とする給湯装置。   A hot water supply apparatus comprising the flow path switching device according to any one of claims 1 to 9, wherein a hot water storage container, a heat insulating member disposed around the hot water storage container, and the hot water storage container A flow path that guides the stored hot water to the outside of the heat insulating member, and the flow path is connected to an upstream flow path of the flow path switching device provided outside the heat insulating member. A water heater.
JP2008234802A 2008-09-12 2008-09-12 Flow path switching device and hot water supply device having the same Expired - Fee Related JP5136313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234802A JP5136313B2 (en) 2008-09-12 2008-09-12 Flow path switching device and hot water supply device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234802A JP5136313B2 (en) 2008-09-12 2008-09-12 Flow path switching device and hot water supply device having the same

Publications (2)

Publication Number Publication Date
JP2010063763A JP2010063763A (en) 2010-03-25
JP5136313B2 true JP5136313B2 (en) 2013-02-06

Family

ID=42189882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234802A Expired - Fee Related JP5136313B2 (en) 2008-09-12 2008-09-12 Flow path switching device and hot water supply device having the same

Country Status (1)

Country Link
JP (1) JP5136313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175231A1 (en) * 2018-03-14 2019-09-19 Societe Des Produits Nestle S.A. Beverage machine with a partly closed dispensing face

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911497Y1 (en) * 1970-04-27 1974-03-19
JPS4847618A (en) * 1971-10-19 1973-07-06
JPS4873434U (en) * 1971-12-13 1973-09-13
FR2542825B1 (en) * 1983-03-15 1987-01-16 Flonic Sa TRANQUILIZER APPARATUS FOR REGULARIZING THE SPEED PROFILE OF A FLOWING FLUID
JPH0537213Y2 (en) * 1986-07-25 1993-09-21
JPH03143828A (en) * 1989-10-28 1991-06-19 Tsurumi Mfg Co Ltd Changeover mechanism for vacuum transport duct
JP3373667B2 (en) * 1994-08-22 2003-02-04 株式会社オーエスジー・コーポレーション Flow ratio / flow path switching valve device
JP2002251668A (en) * 2001-02-23 2002-09-06 Fuji Electric Co Ltd Hot-water supply device for cup type automatic vending machine
JP2008101833A (en) * 2006-10-19 2008-05-01 Fuji Electric Retail Systems Co Ltd Hot water tank for beverage supply device

Also Published As

Publication number Publication date
JP2010063763A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US7448553B2 (en) Fluid mixer
EP1840427B1 (en) Water valve assembly
CN101258349B (en) Water supply valve cartridge
US20080035672A1 (en) Selector, Particularly But Not Exclusively, for Beverage Vending Machines
CN102037268A (en) Integrated kitchen faucet side spray and diverter
EP2821679A1 (en) Temperature adjustment valve
JP5136313B2 (en) Flow path switching device and hot water supply device having the same
CN104110824A (en) Water heater
JP2008089046A5 (en)
JP5914703B2 (en) Dual venturi for water heater (water heater)
US20100126612A1 (en) Water flow temperature control system
JP6085494B2 (en) Single lever faucet
KR101320113B1 (en) Dual venturi for gas boiler
CN102734491B (en) Upper portion of conversion valve
JP5596018B2 (en) Water reservoir with vortex pump cavity and motor support
JP7091015B2 (en) Carbonated water pouring valve
CN203687338U (en) Water heater
US20180119396A1 (en) Manual water-feeding mechanism for sensor faucet
KR101826786B1 (en) Heating apparatus for hot water tank of bidet
US20120073686A1 (en) Control valve assembly for faucet and faucet using the same
CN112344566A (en) Constant temperature control assembly and water heater
KR102443438B1 (en) Water control module and water pressure control module combined water pressure control module
JP2002372306A (en) Heat exchanger
KR200285388Y1 (en) coolant mixing and supplying apparatus for machine tools
CN218094402U (en) Heat supply energy-saving thermostatic valve

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5136313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees