JP5135959B2 - Raw material charging method and raw material charging apparatus for blast furnace - Google Patents

Raw material charging method and raw material charging apparatus for blast furnace Download PDF

Info

Publication number
JP5135959B2
JP5135959B2 JP2007230884A JP2007230884A JP5135959B2 JP 5135959 B2 JP5135959 B2 JP 5135959B2 JP 2007230884 A JP2007230884 A JP 2007230884A JP 2007230884 A JP2007230884 A JP 2007230884A JP 5135959 B2 JP5135959 B2 JP 5135959B2
Authority
JP
Japan
Prior art keywords
furnace
raw material
charging
coke
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007230884A
Other languages
Japanese (ja)
Other versions
JP2009062576A (en
Inventor
佑介 柏原
健 佐藤
泰平 野内
道貴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007230884A priority Critical patent/JP5135959B2/en
Publication of JP2009062576A publication Critical patent/JP2009062576A/en
Application granted granted Critical
Publication of JP5135959B2 publication Critical patent/JP5135959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、ベルレス装入装置を有するベルレス高炉における高炉原料装入方法に関し、炉壁部近傍のガス流を制御するのに好適な高炉への原料装入方法及び原料装入装置に関する。   The present invention relates to a blast furnace raw material charging method in a bellless blast furnace having a bellless charging apparatus, and more particularly to a raw material charging method and a raw material charging apparatus into a blast furnace suitable for controlling a gas flow in the vicinity of a furnace wall.

高炉は巨大な向流移動層反応炉であり、安定操業のためには適正な装入物の降下、および炉内ガス流制御が重要である。一方で、特に近年では環境問題の観点から、高炉操業は低還元材比操業を指向しているが、この場合には、コークス比の低下により炉内の通気抵抗が増大し、炉内を通過するガス量が減少し、炉頂温度が低下する。炉頂温度が低下すると、炉壁温度が低下して、亜鉛が炉外へ排出され難くなり、亜鉛が炉壁部に付着して炉壁付着物を形成することが知られている。この炉壁付着物の量が過大になると、炉壁プロフィルの乱れによる装入物降下の不安定化や、有効断面積減少に伴うガス流速の上昇によって安定操業が阻害されるという問題がある。さらに、炉壁付着物が剥離して落下し、炉下部に達すると、炉熱が低下して冷え込み等の重大トラブルを引き起こす場合がある。   The blast furnace is a huge counter-current moving bed reactor, and proper charge lowering and gas flow control in the furnace are important for stable operation. On the other hand, especially in recent years, from the viewpoint of environmental problems, blast furnace operation is directed to low-reducing material ratio operation, but in this case, the reduction of coke ratio increases the airflow resistance in the furnace and passes through the furnace. The amount of gas to be reduced decreases, and the furnace top temperature decreases. It is known that when the furnace top temperature decreases, the furnace wall temperature decreases, making it difficult for zinc to be discharged outside the furnace, and zinc adheres to the furnace wall and forms a furnace wall deposit. If the amount of the deposit on the furnace wall becomes excessive, there is a problem that the stable operation is hindered due to the instability of the charge drop due to the disturbance of the furnace wall profile and the increase of the gas flow velocity accompanying the reduction of the effective cross-sectional area. Furthermore, if the furnace wall deposits peel and fall and reach the lower part of the furnace, the furnace heat may decrease, causing serious troubles such as cooling.

そのため、低還元材比操業時には特に、亜鉛の炉壁部への付着を抑止し、炉外への排出を促進するために炉壁部近傍のガス流を増加させて炉壁の温度低下を防止することが重要となる。一般に、高炉内での鉱石層厚/コークス層厚の比(以下、鉱石層厚比という)が小さい個所の通気抵抗は小さく、ガスが流れやすい傾向にある。従って、従来は、炉壁部近傍にコークスを重点的に堆積させることで、炉壁部の通気性を確保することが行われている。   Therefore, especially during operation with a low reductant ratio, the adhesion of zinc to the furnace wall is suppressed, and the gas flow in the vicinity of the furnace wall is increased to prevent the furnace wall from lowering temperature in order to promote the discharge to the outside of the furnace. It is important to do. Generally, the ventilation resistance is small at a portion where the ratio of ore layer thickness / coke layer thickness in the blast furnace (hereinafter referred to as ore layer thickness ratio) is small, and gas tends to flow easily. Therefore, conventionally, coke is concentrated in the vicinity of the furnace wall portion to ensure the air permeability of the furnace wall portion.

しかし、炉壁部近傍の通気抵抗を小さくするために鉱石層厚比を低下させようとして、炉内へのコークス装入位置を炉壁近傍に集中させる場合、通常の方法では、炉壁部近傍の狭い範囲のみを独立して制御することはできず、炉壁周辺の広い範囲での鉱石層厚比が低下してしまう。その結果、高炉全体のガス利用率が低下し、使用するコークス量が増加してしまう。したがって、炉壁部近傍のごく狭い領域のみ鉱石層厚比を低下させることが重要である。   However, in order to reduce the ore layer thickness ratio in order to reduce the ventilation resistance in the vicinity of the furnace wall, when the coke charging position in the furnace is concentrated in the vicinity of the furnace wall, in the normal method, in the vicinity of the furnace wall It is not possible to independently control only a narrow range, and the ore layer thickness ratio in a wide range around the furnace wall is lowered. As a result, the gas utilization rate of the entire blast furnace decreases, and the amount of coke used increases. Therefore, it is important to reduce the ore layer thickness ratio only in a very narrow region near the furnace wall.

高炉に原料を装入する際の原料装入装置としては、ベル式のものが広く採用されていたが、ベル式のものに代わり炉内に旋回シュートを設けたベルを有さない形式の炉頂装入装置が開発され使用されており、ベルレス装入装置と呼ばれている。   As a raw material charging device for charging raw materials into a blast furnace, a bell type was widely adopted, but instead of a bell type, a furnace without a bell provided with a turning chute in the furnace A top charging device has been developed and used, and is called a bellless charging device.

ベルレス装入装置には、原料ホッパー(炉頂バンカー)が並列に設置された「並列ホッパー型」と、原料ホッパーが上、下二段に設置されており、上部のホッパーから下部のホッパーへポート等を経由して材料を供給する「センターフィード型」があることが知られている。   The bell-less charging device has a “parallel hopper type” with raw material hoppers (top bunker) installed in parallel and a raw material hopper in two upper and lower stages, and a port from the upper hopper to the lower hopper. It is known that there is a “center feed type” in which materials are supplied via the like.

このようなベルレス装入装置を用いて原料を装入する場合においても、装入物を堆積させる場合には、コークス、鉱石それぞれの安息角が堆積形状を決める要因となり、安息角を超える堆積形状を作りこむことは困難であり、炉壁部近傍のごく狭い領域のみの鉱石層厚比を独立して低下させることは難しい。   Even when charging the raw material using such a bell-less charging device, when depositing the charge, the angle of repose of coke and ore becomes the factor that determines the shape of the deposit, and the shape of the deposit exceeds the angle of repose. It is difficult to make the ore layer thickness ratio only in a very narrow region near the furnace wall.

ベルレス装入装置を用いて原料を装入する際に、高炉炉頂部の原料装入堆積面に炉口外周部に沿って円筒部材を配置することで、高炉内の炉壁部近傍のガス流のみを独立に制御する方法が提案されている(例えば、特許文献1参照。)。
特開2005−314771号公報
When the raw material is charged using the bell-less charging device, a gas flow near the furnace wall in the blast furnace is provided by arranging a cylindrical member along the outer periphery of the furnace port on the raw material charging deposition surface at the top of the blast furnace. A method of independently controlling only the above has been proposed (for example, see Patent Document 1).
JP 2005-314771 A

特許文献1に記載の方法であれば、円筒部材の存在により、原料の堆積形状は安息角に左右されないものとなり、炉壁部近傍のごく狭い領域のみ鉱石層厚比を低下させることが可能となるが、円筒部材を設置した場所により、周辺ガス流量を強くできる領域の範囲が決まってしまうことから、操業条件を変更する場合には、必要なガス流量に合わせて円筒部材の大きさを変更する必要があり、周辺ガス流量を制御する自由度が少ないという問題がある。   With the method described in Patent Document 1, due to the presence of the cylindrical member, the deposition shape of the raw material is not affected by the angle of repose, and the ore layer thickness ratio can be reduced only in a very narrow region near the furnace wall. However, since the range of the area where the peripheral gas flow rate can be increased is determined by the location where the cylindrical member is installed, when changing the operating conditions, the size of the cylindrical member should be changed to match the required gas flow rate. There is a problem that the degree of freedom in controlling the peripheral gas flow rate is small.

したがって本発明の目的は、このような従来技術の課題を解決し、旋回シュートを有するベルレス高炉において、炉壁部近傍の狭い領域のみの鉱石層厚比を低下させ、これにより炉壁部近傍の狭い領域のみのガス流量を増大させ、高炉全体のガス利用率を向上させることができるとともに、周辺ガス流量を制御可能な、高炉への原料装入方法及び原料装入装置を提供することにある。   Therefore, the object of the present invention is to solve such a problem of the prior art and reduce the ore layer thickness ratio of only a narrow region near the furnace wall in the bell-less blast furnace having the swivel chute, thereby To provide a raw material charging method and a raw material charging device for a blast furnace that can increase the gas flow rate only in a narrow region, improve the gas utilization rate of the entire blast furnace, and control the peripheral gas flow rate. .

また本発明の他の目的は、炉壁部近傍のガス流量の制御により、特に低還元材比操業時の安定操業を継続させることのできる高炉への原料装入方法及び原料装入装置を提供することにある。   Another object of the present invention is to provide a raw material charging method and a raw material charging apparatus for a blast furnace capable of continuing a stable operation especially during operation with a low reducing material ratio by controlling the gas flow rate in the vicinity of the furnace wall. There is to do.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)、旋回シュートを有するベルレス装入装置を用いて高炉に原料を装入する際に、旋回シュート内で上部がコークス、下部が鉱石となるような状態で高炉の炉壁近傍に原料を装入することを特徴とする高炉への原料装入方法。
(2)、旋回シュートからの原料の落下半径位置(Rf)が、炉半径(R0)で無次元化した無次元半径(Rf/R0)で0.8〜1.0であることを特徴とする(1)に記載の高炉への原料装入方法。
(3)、(1)または(2)記載の高炉への原料装入方法に用いる原料装入装置であって、ベルレス装入装置が、複数の炉頂バンカーと、下部に垂直シュートを有し、前記炉頂バンカーから落下する原料を受けて前記垂直シュートを介して旋回シュートに原料を装入する集合ホッパーと、補助バンカーとを有し、前記補助バンカーの排出口が前記集合ホッパー内の前記垂直シュートの中心軸上に位置することを特徴とする高炉への原料装入装置。
The features of the present invention for solving such problems are as follows.
(1) When charging raw materials into a blast furnace using a bellless charging device having a swivel chute, the raw material is placed near the furnace wall of the blast furnace in a state where the upper part is coke and the lower part is ore in the swirl chute. A raw material charging method for a blast furnace, characterized by charging.
(2) The material is characterized in that the material falling radius position (Rf) from the turning chute is 0.8 to 1.0 in a dimensionless radius (Rf / R0) that is dimensionless by the furnace radius (R0). The raw material charging method to the blast furnace as described in (1).
(3) A raw material charging device used in the raw material charging method for a blast furnace according to (1) or (2), wherein the bell-less charging device has a plurality of furnace top bunker and a vertical chute at the bottom. A collecting hopper for receiving the material falling from the furnace top bunker and charging the material into the swivel chute via the vertical chute, and an auxiliary bunker, and the discharge port of the auxiliary bunker is located in the collecting hopper A raw material charging apparatus for a blast furnace, which is located on a central axis of a vertical chute.

本発明によれば、炉壁部近傍の狭い領域のみにコークスを堆積させることができ、炉壁部近傍の狭い領域のみの鉱石層厚比を低下させ、炉壁部近傍のガス流量のみを独立して増加させることができる。また炉壁部近傍のみで高ガス流量を安定確保できることから、それ以外の領域では高ガス利用率とすることができる。そのため、高炉全体でのガス利用率を向上させることができ、これによりコークス使用量を削減することができる。   According to the present invention, coke can be deposited only in a narrow region near the furnace wall, the ore layer thickness ratio of only the narrow region near the furnace wall is reduced, and only the gas flow rate near the furnace wall is independent. Can be increased. In addition, since a high gas flow rate can be secured stably only in the vicinity of the furnace wall, a high gas utilization rate can be achieved in other regions. Therefore, the gas utilization rate in the whole blast furnace can be improved, and thereby the amount of coke used can be reduced.

本発明では、旋回シュートを有するベルレス装入装置を用いて高炉に原料を装入する際に、旋回シュート内の上部がコークス、下部が鉱石となるような状態で高炉の炉壁近傍に原料を装入する。旋回シュート内の上部の原料は炉壁側に、下部の原料は炉中心寄りに落下するが、炉壁側の原料の炉中心に向かっての流れ込みが、炉中心寄りに落下した原料の存在により抑制される。すなわち、炉壁側に装入したコークスの安息角に応じた流れ込みが抑制され、炉壁側の狭い領域にコークスを堆積させることができる。   In the present invention, when a raw material is charged into a blast furnace using a bell-less charging device having a swirl chute, the raw material is placed near the furnace wall of the blast furnace so that the upper part in the swirl chute is coke and the lower part is ore. Insert. The upper raw material in the swivel chute falls to the furnace wall side, and the lower raw material falls closer to the furnace center, but the flow of the raw material on the furnace wall side toward the furnace center is due to the presence of the raw material that has dropped closer to the furnace center. It is suppressed. That is, the flow according to the angle of repose of the coke charged to the furnace wall side is suppressed, and the coke can be deposited in a narrow region on the furnace wall side.

なおここで旋回シュート内の上部の原料であるコークスとしては、塊コークス、小中塊コークス、鉄内装型コークス等、通常炉頂から装入されるコークスを用いることが望ましい。   In addition, as coke which is a raw material of the upper part in a rotation chute | shoot here, it is desirable to use coke normally charged from the top of a furnace, such as lump coke, small and medium lump coke, and iron interior type coke.

旋回シュートからの原料の落下位置は、高炉内の原料の装入面における装入物の落下半径位置(Rf)が、炉半径(R0)で無次元化した無次元半径(Rf/R0)で0.8〜1.0であることが好ましい。   The material dropping position from the turning chute is a dimensionless radius (Rf / R0) in which the material falling radius position (Rf) on the material charging surface in the blast furnace is made dimensionless by the furnace radius (R0). It is preferable that it is 0.8-1.0.

上記のように旋回シュート内の上部がコークス、下部が鉱石となるような状態で高炉の炉壁近傍に原料を装入するためには、ベルレス装入装置を有するベルレス高炉において、高炉炉頂部から鉱石とコークスを高炉内へ装入する際に、前記ベルレス装入装置が複数の炉頂バンカーと、下部に垂直シュートを有し、炉頂バンカーから落下する原料を受けて垂直シュートを介して旋回シュートに原料を装入する集合ホッパーと、補助バンカーとを有し、前記補助バンカーの排出口が集合ホッパー内の垂直シュートの中心軸上に位置するものを用いることができる。   In order to charge the raw material near the furnace wall of the blast furnace with the upper part in the swivel chute being coke and the lower part being ore as described above, in the bell-less blast furnace having the bell-less charging device, from the top of the blast furnace When charging ore and coke into the blast furnace, the bell-less charging device has a plurality of furnace top bunker and vertical chutes at the bottom, swivels through the vertical chutes receiving raw material falling from the furnace bunker It is possible to use a collecting hopper for charging raw materials into the chute and an auxiliary bunker, in which the discharge port of the auxiliary bunker is located on the central axis of the vertical chute in the collecting hopper.

上記の補助バンカーを有するベルレス装入装置を用い、炉頂バンカーから鉱石を集合ホッパーに装入する際に、鉱石の装入のタイミングと同時、もしくは鉱石を炉内に装入中に、補助バンカーからコークスを、集合ホッパー内の垂直シュートの中心軸上に投入し、旋回シュートを介して高炉内へ装入を開始し、鉱石装入終了までに補助バンカーからのコークスの装入を終了させる。これにより旋回シュート内の上部がコークス、下部が鉱石となるような状態で高炉に原料を装入することができる。すなわち、炉頂から装入するコークスの一部を通常装入で使用する炉頂バンカーとは別ルートの装入系統を用いて、旋回シュートを介して、炉頂バンカーからの装入物(鉱石)と同時に高炉周辺部へ装入するものである。   When using the bell-less charging device with the above-mentioned auxiliary bunker and charging ore from the furnace top bunker into the collecting hopper, the auxiliary bunker is used at the same time as the ore charging or during the charging of the ore into the furnace. The coke is put on the central axis of the vertical chute in the collecting hopper, charging into the blast furnace is started through the turning chute, and the charging of the coke from the auxiliary bunker is completed by the end of the ore charging. Thereby, the raw material can be charged into the blast furnace in such a state that the upper part in the turning chute is coke and the lower part is ore. In other words, the charge from the top bunker (ore ore) is passed through a turning chute using a charging system different from the top bunker used for normal charging. At the same time, it is charged into the blast furnace periphery.

炉頂から装入するコークスの一部を通常装入で使用する炉頂バンカーとは別ルートの装入系統を用いて装入するようにしたことで、旋回シュートを介して、コークスを鉱石と同時に高炉周辺部へ装入することができ、炉壁部近傍の狭い領域のみにコークスを堆積させることから、炉壁部近傍の狭い領域のみの鉱石層厚比を低下させ、炉壁部近傍のガス流量のみを独立して増加させることができる。また炉壁部近傍のみで高ガス流量を安定確保できることから、それ以外の領域では高ガス利用率とすることができる。これにより、高炉全体でのガス利用率を向上させることができることから、コークス使用量を削減することができる。   A part of the coke charged from the top of the furnace is charged using a charging system that is different from the furnace top bunker used for normal charging. At the same time, it can be charged to the blast furnace periphery, and the coke is deposited only in the narrow area near the furnace wall, so the ore layer thickness ratio in only the narrow area near the furnace wall is reduced, and the Only the gas flow rate can be increased independently. In addition, since a high gas flow rate can be secured stably only in the vicinity of the furnace wall, a high gas utilization rate can be achieved in other regions. Thereby, since the gas utilization rate in the whole blast furnace can be improved, the amount of coke used can be reduced.

5000m3の高炉の1/18縮尺模型を用いて、本発明の効果を確認する実験を行った。図1、図2に、使用した実験装置の模式図を示す。図1は別系統からの装入装置である補助バンカーを有する本発明の炉頂装入装置(ベルレス装入装置)を用いる場合であり、図2は従来法の炉頂装入装置(ベルレス装入装置)を用いる場合である。 An experiment for confirming the effect of the present invention was conducted using a 1/18 scale model of a 5,000 m 3 blast furnace. 1 and 2 are schematic diagrams of the experimental apparatus used. FIG. 1 shows a case where the furnace top charging device (bellless charging device) of the present invention having an auxiliary bunker as a charging device from another system is used, and FIG. 2 shows a conventional furnace top charging device (bellless charging device). This is a case of using an input device.

図2の装置を用いる場合の、従来の高炉への原料装入方法について説明する。従来方法では、コークス、鉱石を別々に装入するもので、例えば炉頂バンカー1にコークスを、炉頂バンカー2に鉱石を装入し、炉頂バンカー1、2の下部に設置したポートの開閉により集合ホッパー3内にコークスまたは鉱石を装入し、垂直シュート4を介して旋回シュート5により高炉6に原料を装入する。装入物は炉内へ装入された後、装入された位置から炉内側へ流れ込んで堆積するため、炉壁部近傍のみにコークスを集中的に堆積させることは困難である。図2の、従来の原料装入方法を用いた場合のコークスの堆積状況を図3に示す。図3によれば、旋回シュートから高炉内に装入されるコークスaは、炉壁8側の広い領域bに堆積している。   A conventional raw material charging method in the case of using the apparatus of FIG. 2 will be described. In the conventional method, coke and ore are charged separately. For example, coke is charged in the furnace top bunker 1, ore is charged in the furnace top bunker 2, and the ports installed at the bottom of the furnace top bunker 1 and 2 are opened and closed. Then, the coke or ore is charged into the collecting hopper 3, and the raw material is charged into the blast furnace 6 by the turning chute 5 through the vertical chute 4. After the charge is charged into the furnace, it flows from the charged position to the inside of the furnace and accumulates. Therefore, it is difficult to concentrate coke only in the vicinity of the furnace wall. FIG. 3 shows the state of coke deposition when the conventional raw material charging method of FIG. 2 is used. According to FIG. 3, the coke a charged into the blast furnace from the turning chute is accumulated in a wide area b on the furnace wall 8 side.

これに対して本発明では、図1に示すように別系統からの装入装置である補助バンカー7を使用することで、コークス、鉱石を同時に装入することを可能としている。すなわち、鉱石を装入する際に、補助バンカー7によりコークスを、旋回シュート5内で鉱石の上部に偏析させることにより、コークスが炉壁側に装入され、そのまま炉壁部近傍に堆積する。図4に図1の装置を用いた本発明の原料装入方法を用いた場合の堆積状況を示す。図4によれば、コークスaの炉内側に本来の装入原料である鉱石cが堆積するため、補助バンカー7によって装入されたコークスaが炉内側に流れ込むことが抑制されて、炉壁部近傍のみの炉壁側の狭い領域dに集中的に堆積させることが可能となる。   On the other hand, in the present invention, coke and ore can be charged simultaneously by using an auxiliary bunker 7 which is a charging device from another system as shown in FIG. That is, when the ore is charged, coke is segregated to the upper part of the ore within the turning chute 5 by the auxiliary bunker 7, so that the coke is charged to the furnace wall side and is deposited in the vicinity of the furnace wall as it is. FIG. 4 shows the state of deposition when the raw material charging method of the present invention using the apparatus of FIG. 1 is used. According to FIG. 4, since ore c, which is the original charging raw material, is deposited inside the furnace of coke a, it is suppressed that coke a charged by auxiliary bunker 7 flows into the furnace, and the furnace wall portion It is possible to intensively deposit in a narrow area d on the furnace wall side only in the vicinity.

縮尺模型を用いた実験として、装入原料の落下半径位置(Rf)と、落下した原料の堆積幅(t)の関係を調べた。旋回シュートの角度を変更することで、炉内への落下位置を無次元半径で0.7、0.8、0.9にそれぞれ設定し、設定した落下位置で原料を6旋回装入した。装入後、模型を半裁して断面観察をすることによって、半径方向におけるコークスの堆積幅を測定した。図2に示す原料装入装置を用いた従来方法では、コークスを6旋回装入した後に鉱石を6旋回装入した。図2に示す原料装入装置を用いた本発明方法では、鉱石を装入するタイミングと同時に補助バンカーによりコークスの装入を開始し、6旋回装入した後にそれぞれ装入を完了させた。図5に模型実験における炉半径(R0)で無次元化した無次元半径で示した落下位置(Rf/R0)と無次元半径で示した堆積幅(t/R0)との関係を示す。   As an experiment using a scale model, the relationship between the falling radius position (Rf) of the charged raw material and the deposition width (t) of the dropped raw material was examined. By changing the angle of the turning chute, the dropping position into the furnace was set to a dimensionless radius of 0.7, 0.8, and 0.9, and the raw material was charged 6 turns at the set dropping position. After charging, the model was cut in half and the cross section was observed to measure the coke deposit width in the radial direction. In the conventional method using the raw material charging apparatus shown in FIG. 2, the ore was charged 6 turns after the coke was charged 6 turns. In the method of the present invention using the raw material charging apparatus shown in FIG. 2, the charging of coke was started by the auxiliary bunker simultaneously with the timing of charging the ore, and charging was completed after charging 6 turns. FIG. 5 shows the relationship between the drop position (Rf / R0) indicated by the dimensionless radius made non-dimensional with the furnace radius (R0) and the deposition width (t / R0) indicated by the dimensionless radius in the model experiment.

図5によれば、従来方法に比較した本発明方法による堆積幅の減少効果は、炉内へ装入する場合の装入面における装入物落下位置が無次元半径で0.8以上であると効果が顕著となる。無次元半径で0.8未満の落下位置に装入した場合には、従来方法と本発明方法とでは堆積幅に差が無く、かつ、落下位置が炉内側となっているため装入物が炉壁部から広範囲に堆積し、炉壁部近傍にコークスを集中的に堆積させることができない。したがって、補助バンカーを用いる本発明方法を実施する際には、できるだけ炉壁側へ装入物を装入することが望ましく、無次元半径で0.8〜1.0の位置に装入することが好ましい。   According to FIG. 5, the effect of reducing the deposition width by the method of the present invention compared to the conventional method is that the charge drop position on the charging surface when charging into the furnace is a dimensionless radius of 0.8 or more. And the effect becomes remarkable. When loaded into a drop position with a dimensionless radius of less than 0.8, there is no difference in the deposition width between the conventional method and the method of the present invention, and the charge is placed because the drop position is inside the furnace. It is possible to deposit a wide range from the furnace wall and to concentrate coke in the vicinity of the furnace wall. Therefore, when carrying out the method of the present invention using the auxiliary bunker, it is desirable to charge the furnace wall side as much as possible, and the charging should be performed at a dimensionless radius of 0.8 to 1.0. Is preferred.

縮尺模型を用いた実験として、炉内の各半径位置(r)での風速を測定した。測定結果を図6、図7に示す。図6に示す従来方法では、コークス落下位置の無次元半径(r/R0)が0.85となる傾動角で3旋回装入し、完了した後に、鉱石の装入を無次元半径0.85で3旋回装入した後に、炉内側へ順次装入を実施した。図7に示す本発明方法では、鉱石落下位置の無次元半径が0.85となる傾動角で装入開始するタイミングと同時に、補助バンカーによってコークスを3旋回装入し、コークス装入完了後も鉱石はそのまま炉内側へ順次装入を続けて実施したものである。   As an experiment using a scale model, the wind speed at each radial position (r) in the furnace was measured. The measurement results are shown in FIGS. In the conventional method shown in FIG. 6, the ore is charged three times at a tilt angle at which the dimensionless radius (r / R0) of the coke dropping position is 0.85, and after completion, the ore is charged with a dimensionless radius of 0.85. After charging 3 turns, the inside of the furnace was charged sequentially. In the method of the present invention shown in FIG. 7, at the same time when charging starts at an inclination angle at which the dimensionless radius of the ore falling position is 0.85, the coke is charged 3 turns by the auxiliary bunker, and even after the completion of charging the coke. The ore was continuously charged into the furnace as it was.

図6に示す従来方法と比較すると、図7に示す本発明方法では、中心部〜中間部にかけては風速にほとんど差は無いものの、特に炉壁部近傍のみ風速が増加している。これによりガス利用率が低い領域を炉壁部近傍の狭い領域に制御することができるため、高炉全体のガス利用率を向上させることができることが分かる。   Compared with the conventional method shown in FIG. 6, in the method of the present invention shown in FIG. 7, although there is almost no difference in the wind speed from the central part to the intermediate part, the wind speed is increased particularly in the vicinity of the furnace wall part. Thereby, since the area | region where a gas utilization factor is low can be controlled to the narrow area | region near a furnace wall part, it turns out that the gas utilization factor of the whole blast furnace can be improved.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

ここでは、本発明を、内容積5000m3、コークス比は370kg/t、微粉炭吹き込み量は130kg/t、還元材比は500kg/tで操業を行なう高炉に適用した例を示す。図1に示すものと同様の、補助バンカーを有するベルレス装入装置を用い、旋回シュートで鉱石を装入する際に、鉱石落下位置の無次元半径が0.85となる傾動角で装入開始するタイミングと同時に、補助バンカーから塊コークスを3旋回装入し、コークス装入完了後も鉱石はそのまま炉内側への装入を行った。表1に、補助バンカーを使用しない従来の操業の場合を従来例として、上記の本発明の装入方法を適用した場合を本発明例として、操業諸元を示す。 Here, an example is shown in which the present invention is applied to a blast furnace that operates at an internal volume of 5000 m 3 , a coke ratio of 370 kg / t, a pulverized coal injection amount of 130 kg / t, and a reducing material ratio of 500 kg / t. Using a bell-less charging device with an auxiliary bunker, similar to that shown in FIG. 1, when charging ore with a turning chute, charging starts at an inclination angle with a dimensionless radius of 0.85 at the ore falling position At the same time, 3 turns of coke was charged from the auxiliary bunker, and the ore was charged into the furnace as it was after the completion of coke charging. Table 1 shows the operation specifications with the case of the conventional operation not using the auxiliary bunker as a conventional example, and the case where the above-described charging method of the present invention is applied as an example of the present invention.

Figure 0005135959
Figure 0005135959

図5には、従来例と本発明例との高炉の半径位置(無次元半径:r/R0)におけるガス利用率の測定結果を示す。従来例と比較して、本発明例の場合は炉壁部近傍(r/R0≒1.0)のガス利用率が低下する領域が縮小した。これにより高炉全体としてのガス利用率が向上し、コークス比と還元材比を低減することができた。   In FIG. 5, the measurement result of the gas utilization rate in the radial position (dimensionalless radius: r / R0) of the blast furnace of a prior art example and the example of this invention is shown. Compared to the conventional example, in the case of the present invention example, the region where the gas utilization rate in the vicinity of the furnace wall (r / R0≈1.0) is reduced is reduced. As a result, the gas utilization rate of the entire blast furnace was improved, and the coke ratio and reducing material ratio could be reduced.

本発明で用いた実験装置(別系統からの装入装置を有する炉頂装入装置)の模式図。The schematic diagram of the experimental apparatus (furnace top charging apparatus which has the charging apparatus from another system | strain) used by this invention. 本発明で用いた実験装置(従来法の炉頂装入装置)の模式図。The schematic diagram of the experimental apparatus (conventional method furnace top charging apparatus) used by this invention. コークスの堆積状況の模式図(従来方法)。Schematic diagram of coke accumulation (conventional method). コークスの堆積状況の模式図(本発明方法)。Schematic diagram of the state of coke deposition (method of the present invention). 原料の落下位置と堆積幅の関係を示すグラフ。The graph which shows the relationship between the fall position of a raw material, and the deposition width. 高炉の半径位置と風速の関係を示すグラフ(従来方法)。Graph showing the relationship between the radial position of the blast furnace and the wind speed (conventional method). 高炉の半径位置と風速の関係を示すグラフ(本発明方法)。The graph which shows the relationship between the radial position of a blast furnace, and a wind speed (invention method). 高炉の半径位置とガス利用率の関係を示すグラフ。The graph which shows the relationship between the radial position of a blast furnace and a gas utilization factor.

符号の説明Explanation of symbols

1 炉頂バンカー
2 炉頂バンカー
3 集合ホッパー
4 垂直シュート
5 旋回シュート
6 高炉
7 補助バンカー
8 炉壁
a コークス
b 広い領域
c 鉱石
d 炉壁側の狭い領域
DESCRIPTION OF SYMBOLS 1 Furnace top bunker 2 Furnace top bunker 3 Collective hopper 4 Vertical chute 5 Turning chute 6 Blast furnace 7 Auxiliary bunker 8 Furnace wall a Coke b Wide area c Ore d Narrow area on the furnace wall side

Claims (2)

複数の炉頂バンカーと、該炉頂バンカーとは別系統の、コークスを収容する補助バンカーと、旋回シュートと、を有する原料装入装置を用いる高炉への原料装入方法であって、
前記炉頂バンカーから鉱石を前記旋回シュートに装入しながら、前記補助バンカーからコークスを前記旋回シュートに装入し、
旋回シュート内で上部がコークス、下部が鉱石となるような状態で、前記旋回シュートからの原料の落下半径位置(Rf)が、炉半径(R0)で無次元化した無次元半径(Rf/R0)で0.8〜1.0となるように、高炉の炉壁に向けて、前記コークスと前記鉱石とを同時に高炉へ装入することを特徴とする高炉への原料装入方法。
A plurality of furnace top bunker, of another system from the furnace top bunker, an auxiliary bunkers housing the coke, a material charging method to a turning chute, Ru using the raw material charging device having a blast furnace,
While charging the ore from the top bunker into the turning chute, charging the coke from the auxiliary bunker into the turning chute,
In a state where the upper part is coke and the lower part is ore in the swivel chute, the raw material fall radius position (Rf) from the swivel chute is dimensionless with the furnace radius (R0) being dimensionless (Rf / R0) ), The coke and the ore are simultaneously charged into the blast furnace toward the furnace wall of the blast furnace so as to be 0.8 to 1.0 .
請求項1に記載の高炉への原料装入方法に用いる原料装入装置であって
部に垂直シュートを有し、前記炉頂バンカーから落下する原料を受けて前記垂直シュートを介して、前記旋回シュートに原料を装入する集合ホッパーを有し、
前記補助バンカーの排出口が前記集合ホッパー内の前記垂直シュートの中心軸上に位置することを特徴とする高炉への原料装入装置。
A raw material charging apparatus used for the raw material charging method to the blast furnace according to claim 1 ,
Has a vertical chute at the bottom, through the vertical chute receiving material falling from the furnace top bunker has a collection hopper to charging the raw material to the swivel chute,
A raw material charging apparatus for a blast furnace, wherein a discharge port of the auxiliary bunker is located on a central axis of the vertical chute in the collecting hopper.
JP2007230884A 2007-09-06 2007-09-06 Raw material charging method and raw material charging apparatus for blast furnace Active JP5135959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230884A JP5135959B2 (en) 2007-09-06 2007-09-06 Raw material charging method and raw material charging apparatus for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230884A JP5135959B2 (en) 2007-09-06 2007-09-06 Raw material charging method and raw material charging apparatus for blast furnace

Publications (2)

Publication Number Publication Date
JP2009062576A JP2009062576A (en) 2009-03-26
JP5135959B2 true JP5135959B2 (en) 2013-02-06

Family

ID=40557423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230884A Active JP5135959B2 (en) 2007-09-06 2007-09-06 Raw material charging method and raw material charging apparatus for blast furnace

Country Status (1)

Country Link
JP (1) JP5135959B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589765B2 (en) * 2010-10-28 2014-09-17 Jfeスチール株式会社 Blast furnace operation method
WO2013179541A1 (en) 2012-05-28 2013-12-05 新日鐵住金株式会社 Method for charging raw material into bell-less blast furnace
CN112226557B (en) * 2020-09-27 2022-08-19 北京科技大学 Blast furnace burden distribution process evaluation method and system, readable storage medium and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118743U (en) * 1989-03-13 1990-09-25
JPH08239705A (en) * 1995-01-06 1996-09-17 Nippon Steel Corp Method for suppressing formation of deposition in blast furnace
JP3588877B2 (en) * 1995-10-30 2004-11-17 Jfeスチール株式会社 Ore and coke charging method in bellless blast furnace
JP2004204322A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for charging raw material for blast furnace
JP5034189B2 (en) * 2005-08-15 2012-09-26 Jfeスチール株式会社 Raw material charging method to blast furnace

Also Published As

Publication number Publication date
JP2009062576A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5585729B2 (en) Raw material charging apparatus for blast furnace and raw material charging method using the same
JP5135959B2 (en) Raw material charging method and raw material charging apparatus for blast furnace
JPS63153385A (en) Method and system of operating vertical type furnace
JP5861392B2 (en) Blast furnace operation method
JP6943339B2 (en) Raw material charging method and blast furnace operation method for bellless blast furnace
JP2000178616A (en) Method for charging iron ore having high blending ratio pellet into blast furnace
JP2009299154A (en) Apparatus and method for charging raw material to bell-less blast furnace
JP3975692B2 (en) Distribution chute structure of bellless type furnace top charging equipment for blast furnace.
JP2012132056A (en) Top bunker of blast furnace
JP3787240B2 (en) How to charge the blast furnace center
JP3572645B2 (en) Raw material charging method for vertical smelting furnace
JP5082488B2 (en) Raw material charging equipment for bellless blast furnace
JP5109417B2 (en) Raw material charging device and raw material charging method for bell-less blast furnace
JP5853904B2 (en) Raw material charging method for bell-type blast furnace
JP2009299155A (en) Apparatus and method for charging raw material to bell-less blast furnace
JP5082489B2 (en) Raw material charging method for bell-less blast furnace
JP3787238B2 (en) Charging method into the center of the blast furnace
JP5130749B2 (en) Raw material charging device and raw material charging method for bell-less blast furnace
JP4317505B2 (en) Raw material charging method for bell-type blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
JP3787236B2 (en) How to charge the blast furnace center
JP2000178617A (en) Method for charging charging material for activating furnace core part in blast furnace
JP2002302706A (en) Method for charging raw material into blast furnace
JP5034566B2 (en) Raw material charging device and raw material charging method for bell-less blast furnace
JP5082513B2 (en) Raw material charging device and raw material charging method for bell-less blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100812

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5135959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250