JP5135713B2 - Manufacturing method of semiconductor substrate - Google Patents

Manufacturing method of semiconductor substrate Download PDF

Info

Publication number
JP5135713B2
JP5135713B2 JP2006145599A JP2006145599A JP5135713B2 JP 5135713 B2 JP5135713 B2 JP 5135713B2 JP 2006145599 A JP2006145599 A JP 2006145599A JP 2006145599 A JP2006145599 A JP 2006145599A JP 5135713 B2 JP5135713 B2 JP 5135713B2
Authority
JP
Japan
Prior art keywords
active layer
wafer
oxide film
thickness
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006145599A
Other languages
Japanese (ja)
Other versions
JP2007317867A (en
Inventor
賢史 村上
信之 森本
秀樹 西畑
昭彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2006145599A priority Critical patent/JP5135713B2/en
Publication of JP2007317867A publication Critical patent/JP2007317867A/en
Application granted granted Critical
Publication of JP5135713B2 publication Critical patent/JP5135713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、貼り合わせ法による半導体基板の製造方法、特に埋め込み酸化膜の厚みが薄い、あるいは酸化膜を介さずにシリコン同士を直接貼り合せる、貼り合わせ法による半導体基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor substrate by a bonding method, and more particularly to a method for manufacturing a semiconductor substrate by a bonding method in which the thickness of a buried oxide film is thin or silicon is directly bonded without using an oxide film. .

近年、酸化膜の上にシリコン層、いわゆるSOI層が形成されたSOI構造を有する半導体基板は、デバイスの高速化に適合し、また消費電力が低く、高耐圧性や耐環境性等に優れていることから、電子デバイス用の高性能LSI用ウェーハとして適用されている。   In recent years, a semiconductor substrate having an SOI structure in which a silicon layer, a so-called SOI layer is formed on an oxide film, is suitable for high-speed devices, has low power consumption, and is excellent in high pressure resistance and environmental resistance. Therefore, it is applied as a high-performance LSI wafer for electronic devices.

この半導体基板は、シリコンウェーハに酸素イオンを高濃度で打ち込んだ後に高温で熱処理を行って内部に酸化膜を形成する、いわゆるSIMOX法のほか、貼り合わせ法と呼ばれる方法が知られている。この貼り合わせ法は、SOI層を形成する活性層用ウェーハと支持基板となる支持基板用ウェーハの少なくとも一方に酸化膜を形成し、その酸化膜を介して活性層用ウェーハと支持基板用ウェーハとを貼り合わせ、その後活性層用ウェーハを薄膜化することによって、絶縁膜である埋め込み酸化膜上にSOI層が形成された半導体基板を製造するものである。   In addition to the so-called SIMOX method, in which a semiconductor substrate is implanted with a high concentration of oxygen ions in a silicon wafer and then heat-treated at a high temperature to form an oxide film therein, a method called a bonding method is known. In this bonding method, an oxide film is formed on at least one of an active layer wafer for forming an SOI layer and a support substrate wafer to be a support substrate, and the active layer wafer, the support substrate wafer, After that, the active layer wafer is thinned to manufacture a semiconductor substrate in which an SOI layer is formed on a buried oxide film which is an insulating film.

さらに、貼り合わせ法は、研削研磨法、PACE(Plasma Assisted Chemical Etching)法、イオン注入剥離法(スマートカット(登録商標)法とも呼ばれる。)、ELTRAN法等に分類できる。中でも、イオン注入剥離法は、活性層の結晶性および活性層の膜厚均一性が良好であり、また表面の平坦度も得られることから多用されている。   Further, the bonding method can be classified into a grinding / polishing method, a PACE (Plasma Assisted Chemical Etching) method, an ion implantation separation method (also referred to as a Smart Cut (registered trademark) method), an ELTRAN method, and the like. Among them, the ion implantation separation method is frequently used because the crystallinity of the active layer and the film thickness uniformity of the active layer are good and the flatness of the surface is also obtained.

このイオン注入剥離法による半導体基板の製造手順を、図1に示す。すなわち、予め活性層用ウェーハ1と支持基板用ウェーハ2とを準備し(工程(a))、これらのうちの少なくとも一方のウェーハ(図示の場合は活性層用ウェーハ1)に酸化膜3を形成し(工程(b))、その後活性層用ウェーハ1に水素イオン(或いは不活性ガスイオン)を注入して活性層用ウェーハ1の内部にイオン注入層4を形成する(工程(c))。そして、活性層用ウェーハ1のイオンを注入した方の面を酸化膜3を介して支持基板用ウェーハ2と貼り合わせた(工程(d))後、剥離熱処理を加えてイオン注入層4を劈開面(剥離面)として活性層用ウェーハ1を部分的に剥離し(工程(e))、その後、活性層表面に形成されているダメージ層を除去するために、再度酸化処理を施して(工程(f))から、この酸化膜を除去する工程(g)を経たのち、平坦化処理を施して、埋め込み酸化膜5上にシリコン層6が形成された半導体基板7が製造される。   A manufacturing procedure of a semiconductor substrate by this ion implantation separation method is shown in FIG. That is, an active layer wafer 1 and a support substrate wafer 2 are prepared in advance (step (a)), and an oxide film 3 is formed on at least one of these wafers (active layer wafer 1 in the case of illustration). (Step (b)), and then hydrogen ions (or inert gas ions) are implanted into the active layer wafer 1 to form the ion implantation layer 4 inside the active layer wafer 1 (step (c)). Then, the surface of the active layer wafer 1 on which the ions are implanted is bonded to the support substrate wafer 2 via the oxide film 3 (step (d)), and then the ion implantation layer 4 is cleaved by applying a separation heat treatment. The active layer wafer 1 is partially peeled as a surface (peeling surface) (step (e)), and then an oxidation treatment is performed again to remove the damaged layer formed on the surface of the active layer (step) After the step (g) of removing the oxide film from (f)), the semiconductor substrate 7 having the silicon layer 6 formed on the buried oxide film 5 is manufactured by performing a planarization process.

さて、近年の半導体デバイスの高集積化に伴い、より高品質のSOIウェーハの製造が求められており、従来に比し埋め込み酸化膜を薄く、例えば20nm程度の厚みまで薄くしたり、或いは酸化膜を介さずにシリコン同士を直接貼り合せる、貼り合わせウェーハに対する要求が高まっている。   Now, with the recent high integration of semiconductor devices, there is a demand for the production of higher quality SOI wafers, and the buried oxide film is thinner than before, for example, to a thickness of about 20 nm, or the oxide film. There is an increasing demand for bonded wafers in which silicon is bonded directly without intervening.

ここで、上記のイオン注入剥離法により貼り合わせウェーハを製造する際、埋め込み酸化膜を薄く、または酸化膜を設けることなくウェーハを作製するには、活性層用ウェーハと支持基板用ウェーハのいずれかに形成する酸化膜を薄くするか、形成しないで、ウェーハ同士を貼り合わせることになる。   Here, when manufacturing a bonded wafer by the above-described ion implantation separation method, either an active layer wafer or a support substrate wafer can be used to produce a wafer without forming a buried oxide film or providing an oxide film. The wafers are bonded to each other without thinning or forming the oxide film to be formed.

ところが、埋め込み酸化膜を設けない場合を含め、酸化膜の薄いウェーハを作製するに当って、ウェーハの貼り合わせ後に剥離熱処理を行う際に、支持基板用ウェーハと酸化膜との間にブリスタが発生したり、酸化膜から活性層に至るボイドが発生していた。   However, blisters are generated between the support substrate wafer and the oxide film when a heat treatment is performed after the wafers are bonded together in manufacturing a wafer with a thin oxide film, including when no buried oxide film is provided. Or voids from the oxide film to the active layer were generated.

すなわち、従来、貼り合わせ法に従って半導体基板を作製する際には、その貼り合わせ界面に上記ボイドやブリスタと呼ばれる欠陥が発生することがある。特に、これらボイドやブリスタの欠陥は、2枚の半導体基板の間に存在する埋め込み酸化膜の厚みが薄くなると多発する傾向にあり、酸化膜を薄く、または酸化膜のない、貼り合わせ半導体ウェーハの製造では大きな問題となっている。   That is, conventionally, when a semiconductor substrate is manufactured according to a bonding method, defects called voids or blisters may occur at the bonding interface. In particular, these voids and blister defects tend to occur frequently when the thickness of the buried oxide film existing between two semiconductor substrates is reduced, and the thickness of the bonded semiconductor wafer having a thin oxide film or no oxide film is reduced. It is a big problem in manufacturing.

ここに、特許文献1には、2枚の半導体ウェーハの間に存在する埋め込み酸化膜の厚さが薄くなるとボイドやブリスタが多発するため、その対策として、活性層ウェーハの厚みを増やして活性層側の厚みを増して活性層側の硬度を上げることが提案されている。
特開2004−259970号公報
Here, in Patent Document 1, voids and blisters frequently occur when the thickness of the buried oxide film existing between two semiconductor wafers is reduced. As a countermeasure, the thickness of the active layer wafer is increased and the active layer is increased. It has been proposed to increase the hardness on the active layer side by increasing the thickness on the side.
JP 2004-259970 A

しかしながら、活性層を厚くしても埋め込み酸化膜が薄ければボイドやブリスタは発生する。
また、活性層についても薄膜化が進むなか、硬度を上げるために途中工程での活性層の厚みを厚くすることは、その後の薄膜化の加工に手間を要し、また品質を劣化させる原因になる。すなわち、途中工程での活性層の厚みが厚い場合、最終的な活性層の厚みを得るためには、熱酸化+酸化膜除去あるいは、研削や研磨加工にて薄膜化する必要があり、この加工量(酸化量、エッチング量、研削量および研磨量)が増えると、活性層の膜厚均一性を劣化させる。
However, even if the active layer is made thick, voids and blisters are generated if the buried oxide film is thin.
Also, as the thickness of the active layer is reduced, increasing the thickness of the active layer in the middle of the process in order to increase the hardness may cause trouble in the subsequent thinning process and may cause deterioration in quality. Become. That is, when the thickness of the active layer in the middle process is thick, in order to obtain the final thickness of the active layer, it is necessary to reduce the thickness by thermal oxidation + oxide film removal or grinding or polishing. When the amount (oxidation amount, etching amount, grinding amount and polishing amount) increases, the film thickness uniformity of the active layer is deteriorated.

そこで、本発明の目的は、従来に比して酸化膜の厚みが薄い、あるいは酸化膜を介さずにシリコン同士を直接貼り合せる、貼り合わせウェーハにおいても、ボイドまたはブリスタと呼ばれる欠陥の発生を抑制するための方途を与えるところにある。   Therefore, an object of the present invention is to suppress the occurrence of defects called voids or blisters even in bonded wafers in which the thickness of the oxide film is thinner than in the past or silicon is directly bonded without using an oxide film. There is a way to do it.

発明者らは、貼り合わせウェーハの製造において、酸化膜の厚みが薄い場合にボイドまたはブリスタと呼ばれる欠陥が多発することの原因について鋭意究明したところ、
以下の知見を得るに到った。
The inventors have earnestly investigated the cause of frequent occurrence of defects called voids or blisters in the production of bonded wafers when the thickness of the oxide film is thin.
The following knowledge was obtained.

すなわち、ボイドやブリスタは、活性層中に注入した水素イオンが剥離熱処理時に貼り合せ界面に拡散して水素ガスとなり、活性層用ウェーハと支持基板用ウェーハとの結合強度が弱まるために発生する。活性層用ウェーハに形成した酸化膜が厚い場合、水素イオン注入時に注入エネルギーが大きいために、水素イオンが酸化膜中の酸素をはじき出し、活性層に酸素が注入されるという現象が起こる。   That is, voids and blisters are generated because hydrogen ions implanted into the active layer diffuse into the bonding interface during the peeling heat treatment and become hydrogen gas, and the bond strength between the active layer wafer and the support substrate wafer is weakened. When the oxide film formed on the active layer wafer is thick, since the implantation energy is large at the time of hydrogen ion implantation, a phenomenon occurs in which hydrogen ions expel oxygen in the oxide film and oxygen is implanted into the active layer.

この活性層用ウェーハを支持基板用ウェーハと貼り合わせ、剥離熱処理を行うと、今度は活性層に注入された酸素が、水素イオンをトラップし、水素の貼り合わせ界面への拡散を抑制する結果、ボイドやブリスタと呼ばれる欠陥の発生が抑制されていたことが新たに判明した。さらに、活性層に適量の酸素が注入されると、活性層用ウェーハが硬くなることも、ボイドやブリスタの発生抑制に寄与していることも判明した。   When this active layer wafer is bonded to the support substrate wafer and subjected to peeling heat treatment, the oxygen injected into the active layer traps hydrogen ions and suppresses diffusion of hydrogen to the bonded interface. It was newly found that the occurrence of defects called voids and blisters was suppressed. Further, it has been found that when an appropriate amount of oxygen is injected into the active layer, the wafer for active layer becomes hard and contributes to suppression of generation of voids and blisters.

これに対して、埋め込み酸化膜の厚みを薄くするために活性層用ウェーハに形成する酸化膜を薄くした場合、すなわち図1の工程(b)の段階において酸化膜厚を薄く形成した場合、次工程(c)において水素イオンの注入によってはじき出されて活性層に注入される酸素の濃度が小さくなる結果、剥離熱処理時に水素の拡散を抑えきれず、ボイドやブリスタと呼ばれる欠陥が発生していたのである。   In contrast, when the oxide film formed on the active layer wafer is thinned in order to reduce the thickness of the buried oxide film, that is, when the oxide film thickness is thinly formed in the step (b) of FIG. In the step (c), the concentration of oxygen that is expelled by the implantation of hydrogen ions and implanted into the active layer is reduced, so that the diffusion of hydrogen cannot be suppressed during the peeling heat treatment, and defects called voids and blisters have occurred is there.

かような知見に基づいて、酸化膜の厚みを薄くする場合にあっても、活性層に適量の酸素を注入することのできる手法について、様々な角度から検討を行った。
発明者らは、まず、上記した酸素による水素拡散抑制効果を因子毎に分けて検討するに当り、次式(a)を導入した。
=NHO+NIO+NID ---(a)
ここで、N:水素拡散抑制効果をもたらす因子の総数
HO:水素イオン注入によって活性層に導入される酸素
IO:水素以外のイオン注入によって活性層に導入される酸素
ID:水素以外のイオン注入によって活性層に導入される欠陥
Based on such knowledge, a technique that can inject an appropriate amount of oxygen into the active layer even when the thickness of the oxide film is reduced was studied from various angles.
The inventors first introduced the following equation (a) in examining the above-described effect of suppressing hydrogen diffusion by oxygen for each factor.
N D = N HO + N IO + N ID --- (a)
Here, N D : Total number of factors that bring about the effect of suppressing hydrogen diffusion
N HO : oxygen introduced into the active layer by hydrogen ion implantation
N IO : oxygen introduced into the active layer by ion implantation other than hydrogen
N ID : Defect introduced into the active layer by ion implantation other than hydrogen

上記(a)式に基づいて、種々の事例を検討して、酸化膜の厚みを薄くする場合に欠陥を回避するための最適な条件を模索した。
初めに、従来の手法として、通常の膜厚:150nmで酸化膜を形成した活性層用ウェハに、注入エネルギー:50keVおよびドーズ量:6×1016atoms/cm2にて水素イオン注入を行った場合において、欠陥のない良製品は、二次イオン質量分析法:Secondary Ion Mass Spectrometry(SIMS)データより、
HO=4.2×1014atoms/cm2
であった。また、水素以外のイオンを注入していないことから
IO=NID=0
であり、
>4.2×1014atoms/cm2
であれば良いことになる。
Based on the above equation (a), various cases were examined, and an optimum condition for avoiding defects when searching for a thin oxide film was sought.
First, as a conventional method, hydrogen ions were implanted into an active layer wafer having an oxide film formed at a normal film thickness of 150 nm at an implantation energy of 50 keV and a dose of 6 × 10 16 atoms / cm 2 . In some cases, good products with no defects are secondary ion mass spectrometry (SIMS) data,
N HO = 4.2 × 10 14 atoms / cm 2
Met. In addition, since ions other than hydrogen are not implanted, N IO = N ID = 0
And
N D > 4.2 × 10 14 atoms / cm 2
If it is good.

次に、酸化膜の厚みを変えた際に、水素イオン注入のみで上記の良製品が得られる条件を満たす場合を考える。
HO=D(水素ドーズ量)×tbox(酸化膜厚)×kHO(係数)---(b)
とすると
HO=4.2×1014atoms/cm2、D=6×1016atoms/cm2およびtbox=150nmから
HO=4.2×1014/{(6×1016)×(150×10-7)}=4.67×10(/cm)
上記(b)式より、D(水素ドーズ量)とtbox(酸化膜厚)との関係は
=A・1/tbox
A=NHO/kHO
となる。
この関係について、Dおよびtboxにて整理した結果を、図2に示す。この図において、水素ドーズ量の上限を超えると自己剥離を起こし、一方下限を下回ると熱処理で剥離しないことになるため、水素ドーズ量は上下限内に設定することが前提になる。
Next, let us consider a case where the above-mentioned good product condition is obtained only by hydrogen ion implantation when the thickness of the oxide film is changed.
N HO = D H (hydrogen dose) × t box (oxide thickness) × k HO (coefficient) --- (b)
N HO = 4.2 × 10 14 atoms / cm 2 , D H = 6 × 10 16 atoms / cm 2 and t box = 150 nm to k HO = 4.2 × 10 14 / {(6 × 10 16 ) × (150 × 10 -7 )} = 4.67 x 10 2 (/ cm)
From the above equation (b), the relationship between D H (hydrogen dose) and t box (oxide film thickness) is D H = A · 1 / t box
A = N HO / k HO
It becomes.
About this relationship, the result arranged in DH and tbox is shown in FIG. In this figure, if the upper limit of the hydrogen dose is exceeded, self-peeling will occur, while if it falls below the lower limit, it will not be peeled off by heat treatment, so it is assumed that the hydrogen dose is set within the upper and lower limits.

以上の関係を踏まえ、酸化膜の厚みを50nm以下に薄くするような場合を検討すると、水素注入のみでNを満たすことが難しいことは、図2に示されるとおりである。
従って、Nを満たすには、少なくとも水素注入時には酸化膜の厚みを確保しておく必要のあることが、新たに判明したのである。ここに、水素イオンを注入する際に活性層用ウェーハに形成した酸化膜が適正な厚みを持つことが極めて重要であることを見出し、本発明を完成するに到った。
Based on the above relationship, when considering the case the thickness of the oxide film such as thin 50nm or less, it is difficult to satisfy N D only hydrogen injection is as shown in FIG.
Therefore, to meet the N D, it is was found newly that during at least hydrogen implantation need to reserve the thickness of the oxide film. Here, it has been found that it is very important that the oxide film formed on the active layer wafer has an appropriate thickness when hydrogen ions are implanted, and the present invention has been completed.

すなわち、本発明の要旨は次の通りである。
(1)シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで酸化膜を50nm以下の厚みに調整した後、該酸化膜を介して活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離することを特徴とする半導体基板の製造方法(第1発明)。
That is, the gist of the present invention is as follows.
(1) After forming an oxide film having a thickness of more than 50 nm and less than 500 nm on the active layer wafer for forming the silicon layer, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then the oxide film is formed. After adjusting the thickness to 50 nm or less, the active layer wafer and the support substrate wafer are bonded to each other through the oxide film, and then peeled off by the ion implantation layer. First invention).

(2)シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで活性層用ウェーハの酸化膜を全て取り除いてから再度50nm以下の厚みの酸化膜を形成し、該酸化膜を介して活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離することを特徴とする半導体基板の製造方法(第2発明)。 (2) After forming an oxide film with a thickness of more than 50 nm and less than 500 nm on the active layer wafer for forming the silicon layer, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then for the active layer After removing all the oxide film on the wafer, an oxide film with a thickness of 50 nm or less is formed again, and the active layer wafer and the support substrate wafer are bonded together via the oxide film, and then peeled off by the ion implantation layer. A method of manufacturing a semiconductor substrate (second invention).

(3)シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで活性層用ウェーハの酸化膜を全て取り除く一方、支持基板用ウェーハの表面に50nm以下の厚みの酸化膜を形成し、該酸化膜を介して活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離することを特徴とする半導体基板の製造方法(第3発明)。 (3) After forming an oxide film having a thickness of more than 50 nm and less than 500 nm on the active layer wafer for forming the silicon layer, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then for the active layer While removing all the oxide film of the wafer, forming an oxide film having a thickness of 50 nm or less on the surface of the support substrate wafer, after bonding the active layer wafer and the support substrate wafer through the oxide film, A method of manufacturing a semiconductor substrate, wherein the ion implantation layer is peeled off (third invention).

(4)シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで活性層用ウェーハの酸化膜を全て取り除いてから、活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離することを特徴とする半導体基板の製造方法(第4発明)。 (4) After forming an oxide film with a thickness of more than 50 nm and less than 500 nm on the active layer wafer on which the silicon layer is to be formed, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then for the active layer A method for manufacturing a semiconductor substrate, comprising removing all oxide films from the wafer, bonding the active layer wafer and the support substrate wafer together, and then separating the wafer at the ion implantation layer (fourth invention).

(5)前記活性層用ウェーハと支持基板用ウェーハとの貼り合わせに先立ち、プラズマ処理を行うことを特徴とする上記(1)ないし(4)のいずれかに記載の半導体基板の製造方法。 (5) The method for manufacturing a semiconductor substrate according to any one of (1) to (4), wherein plasma processing is performed prior to bonding of the active layer wafer and the support substrate wafer.

ここで、酸化膜の製品厚みとは、最終的に作製された半導体基板における埋め込み酸化膜の厚みである。   Here, the product thickness of the oxide film is the thickness of the buried oxide film in the finally produced semiconductor substrate.

本発明によれば、従来に比して酸化膜の厚みが50nm以下と薄い、あるいは酸化膜を介さずにシリコン同士を直接貼り合せた、半導体基板を、ボイドまたはブリスタと呼ばれる欠陥を発生することなしに、すなわち安定した品質の下に製造することができる。   According to the present invention, the thickness of an oxide film is 50 nm or less as compared with the prior art, or a semiconductor substrate in which silicon is directly bonded without using an oxide film generates defects called voids or blisters. Can be produced without, i.e., under stable quality.

次に、本発明の方法について、図面を参照して詳しく説明する。
本発明は、従来に比して酸化膜の製品厚みが50nm以下と薄い、あるいは酸化膜を介さずにシリコン同士を直接貼り合せて、半導体基板を製造する際に、酸化膜を50nm以下の製品厚みに比して厚い状態にて水素イオンを注入することによって、酸化膜中の酸素をはじき出し、活性層に必要とする酸素を注入するところに特徴があり、その具体的手法を以下で個別に説明する。
Next, the method of the present invention will be described in detail with reference to the drawings.
The present invention is a product having an oxide film thickness of 50 nm or less as compared with the prior art, or a product having an oxide film of 50 nm or less when a semiconductor substrate is manufactured by directly bonding silicon without using an oxide film. By implanting hydrogen ions in a state that is thicker than the thickness, the oxygen in the oxide film is ejected and the oxygen required for the active layer is implanted. Specific methods are individually described below. explain.

図3に示す第1発明に従う手法は、予め活性層用ウェーハ1と支持基板用ウェーハ2とを準備し(工程(a))、まず活性層用ウェーハ1に酸化膜3を形成し(工程(b))、その後活性層用ウェーハ1に水素イオンを注入して活性層用ウェーハ1の内部にイオン注入層4を形成する(工程(c))。   In the method according to the first invention shown in FIG. 3, an active layer wafer 1 and a support substrate wafer 2 are prepared in advance (step (a)), and an oxide film 3 is first formed on the active layer wafer 1 (step (step (a) b)) After that, hydrogen ions are implanted into the active layer wafer 1 to form the ion implanted layer 4 inside the active layer wafer 1 (step (c)).

ここで、活性層用ウェーハ1に熱酸化処理を施して酸化膜3を形成するに当り、該酸化膜3の厚みを50nm超500nm以下に調整すること、より好ましくは100nm以上300nm以下の範囲に調整することが肝要である。なぜなら、酸化膜の厚みが50nm以下では、水素イオンにより活性層に注入される酸素量が少なくなって、剥離時のブリスタが発生しやすくなり、一方酸化膜厚が500nmを超えると、ダメージ層除去後に必要な活性層厚を得るために、水素イオン注入時の注入エネルギーを高くする必要があり、注入時に活性層へ導入されるダメージ量が増加することになる。   Here, when the active layer wafer 1 is subjected to thermal oxidation to form the oxide film 3, the thickness of the oxide film 3 is adjusted to more than 50 nm and not more than 500 nm, more preferably in the range of not less than 100 nm and not more than 300 nm. It is important to adjust. This is because when the thickness of the oxide film is 50 nm or less, the amount of oxygen injected into the active layer by hydrogen ions is reduced, and blisters are easily generated during peeling, while when the oxide film thickness exceeds 500 nm, the damaged layer is removed. In order to obtain a necessary active layer thickness later, it is necessary to increase the implantation energy at the time of hydrogen ion implantation, and the amount of damage introduced into the active layer at the time of implantation increases.

次いで、活性層用ウェーハ1の酸化膜3を製品厚み、具体的には50nm以下まで低減する(工程(d))。ここでは、酸化膜3を減厚するには、例えばフッ酸を主成分とするエッチング液による化学研磨処理(以下、HF処理という)を用いることができる。
その後、イオン注入側の減厚後の酸化膜3を介して支持基板用ウェーハ2と貼り合わせ(工程(e))、剥離熱処理を施してイオン注入層4を劈開面(剥離面)として活性層用ウェーハ1を部分的に剥離し(工程(f))、その後再度酸化処理を施して(工程(g))から、この酸化膜を除去する工程(h)を経たのち、平坦化処理を施して(工程(i))、埋め込み酸化膜5上にシリコン層6が形成された半導体基板7が製造される。
Next, the oxide film 3 of the active layer wafer 1 is reduced to a product thickness, specifically 50 nm or less (step (d)). Here, in order to reduce the thickness of the oxide film 3, for example, a chemical polishing process (hereinafter referred to as HF process) using an etchant containing hydrofluoric acid as a main component can be used.
Thereafter, the substrate is bonded to the support substrate wafer 2 through the oxide film 3 after the thickness reduction on the ion implantation side (step (e)), and an exfoliation heat treatment is performed to use the ion implantation layer 4 as a cleavage surface (peeling surface). The wafer 1 is partially peeled off (step (f)), and then oxidized again (step (g)), followed by a step (h) for removing the oxide film, and then a planarization treatment is performed. (Step (i)), the semiconductor substrate 7 having the silicon layer 6 formed on the buried oxide film 5 is manufactured.

ここで、平坦化処理として、ArまたはH雰囲気において1100℃以上の高温で熱処理を施すことが好ましい。 Here, as the planarization treatment, it is preferable to perform a heat treatment at a high temperature of 1100 ° C. or higher in an Ar or H 2 atmosphere.

以上の手法では、特に工程(b)において必要厚みの酸化膜3を形成し、そのまま工程(c)において水素イオンの注入を行うことによって、ここではじき出された十分な酸素に起因して、工程(f)の剥離熱処理時に水素の貼り合わせ界面への拡散が抑制されるため、ボイドやブリスタの発生が抑制される結果、酸化膜厚の薄い半導体基板が得られる。   In the above method, the oxide film 3 having a necessary thickness is formed particularly in the step (b), and hydrogen ions are implanted in the step (c) as it is. Since diffusion of hydrogen to the bonding interface is suppressed during the peeling heat treatment of (f), generation of voids and blisters is suppressed, and as a result, a semiconductor substrate having a thin oxide film thickness is obtained.

次に、図4に示す第2発明に従う手法は、予め活性層用ウェーハ1と支持基板用ウェーハ2とを準備し(工程(a))、まず活性層用ウェーハ1に酸化膜3を形成し(工程(b))、その後活性層用ウェーハ1に水素イオンを注入して活性層用ウェーハ1の内部にイオン注入層4を形成する(工程(c))。
ここで、活性層用ウェーハ1に熱酸化処理を施して酸化膜3を形成するに当り、該酸化膜3の厚みを適正に調整することは、図3に示した方法と同様である。
Next, in the method according to the second invention shown in FIG. 4, an active layer wafer 1 and a support substrate wafer 2 are prepared in advance (step (a)), and an oxide film 3 is first formed on the active layer wafer 1. (Step (b)), and then hydrogen ions are implanted into the active layer wafer 1 to form the ion implanted layer 4 inside the active layer wafer 1 (step (c)).
Here, when the active layer wafer 1 is subjected to the thermal oxidation treatment to form the oxide film 3, the thickness of the oxide film 3 is appropriately adjusted as in the method shown in FIG.

次いで、活性層用ウェーハ1の酸化膜3を例えばHF処理にて全て取り除いて(工程(d))から、再度製品厚み、具体的には50nm以下の厚みの酸化膜を形成する(工程(e))。その後、イオン注入側に形成した新たな酸化膜3´を介して支持基板用ウェーハ2と貼り合わせ(工程(f))、剥離熱処理を施してイオン注入層4を劈開面(剥離面)として活性層用ウェーハ1を部分的に剥離し(工程(g))た後、再度酸化処理を施して(工程(h))から、この酸化膜を除去する工程(i)を経たのち、平坦化処理を施して(工程(j))、埋め込み酸化膜5上にシリコン層6が形成された半導体基板7が製造される。   Next, all the oxide film 3 of the active layer wafer 1 is removed, for example, by HF treatment (step (d)), and then an oxide film having a thickness of 50 nm or less is formed again (step (e). )). Thereafter, the substrate is bonded to the support substrate wafer 2 through a new oxide film 3 ′ formed on the ion implantation side (step (f)), and a heat treatment is performed to activate the ion implantation layer 4 as a cleavage surface (peeling surface). After the layer wafer 1 is partially peeled off (step (g)), it is oxidized again (step (h)), followed by the step (i) for removing the oxide film, and then the planarization treatment. (Step (j)), the semiconductor substrate 7 having the silicon layer 6 formed on the buried oxide film 5 is manufactured.

以上の手法においては、特に工程(b)において必要厚みの酸化膜3を形成し、そのまま工程(c)において水素イオンの注入を行うことによって、ここではじき出された十分な酸素に起因して、工程(g)の剥離熱処理時に水素の貼り合わせ界面への拡散が抑制されるため、ボイドやブリスタの発生が抑制される結果、酸化膜厚の薄い半導体基板が得られる。   In the above method, the oxide film 3 having a required thickness is formed particularly in the step (b), and hydrogen ions are implanted as it is in the step (c). Since diffusion of hydrogen to the bonding interface is suppressed during the peeling heat treatment in the step (g), generation of voids and blisters is suppressed, so that a semiconductor substrate having a thin oxide film thickness is obtained.

また、図5に示す第3発明に従う手法は、予め活性層用ウェーハ1と支持基板用ウェーハ2とを準備し(工程(a))、まず活性層用ウェーハ1に酸化膜3を形成し(工程(b))、その後活性層用ウェーハ1に水素イオンを注入して活性層用ウェーハ1の内部にイオン注入層4を形成する(工程(c))。
ここで、活性層用ウェーハ1に熱酸化処理を施して酸化膜3を形成するに当り、該酸化膜3の厚みを適正に調整することは、図3に示した方法と同様である。
Further, in the method according to the third invention shown in FIG. 5, an active layer wafer 1 and a support substrate wafer 2 are prepared in advance (step (a)), and an oxide film 3 is first formed on the active layer wafer 1 ( Step (b)), then, hydrogen ions are implanted into the active layer wafer 1 to form the ion implanted layer 4 inside the active layer wafer 1 (step (c)).
Here, when the active layer wafer 1 is subjected to the thermal oxidation treatment to form the oxide film 3, the thickness of the oxide film 3 is appropriately adjusted as in the method shown in FIG.

次いで、活性層用ウェーハ1の酸化膜3を例えばHF処理にて全て取り除く(工程(d))一方、支持基板用ウェーハ2の表面に製品厚み、具体的には50nm以下の厚みの酸化膜3を形成する(工程(e))。その後、支持基板用ウェーハ2に形成した酸化膜3を介して支持基板用ウェーハ2と活性層用ウェーハ1とを貼り合わせ(工程(f))、剥離熱処理を施してイオン注入層4を劈開面(剥離面)として活性層用ウェーハ1を部分的に剥離し(工程(g))た後、再度酸化処理を施して(工程(h))から、この酸化膜を除去する工程(i)を経たのち、平坦化処理を施して(工程(j))、埋め込み酸化膜5上にシリコン層6が形成された半導体基板7が製造される。   Next, all the oxide film 3 of the active layer wafer 1 is removed by, for example, HF treatment (step (d)), while the product thickness, specifically, the oxide film 3 having a thickness of 50 nm or less is formed on the surface of the support substrate wafer 2. Is formed (step (e)). Thereafter, the support substrate wafer 2 and the active layer wafer 1 are bonded to each other through the oxide film 3 formed on the support substrate wafer 2 (step (f)), and a heat treatment for separation is performed to cleave the ion implantation layer 4. After partially peeling off the active layer wafer 1 (step (g)) as a (peeling surface), the step (i) of removing the oxide film is performed after the oxidation treatment is again performed (step (h)). After that, a planarization process is performed (step (j)), and the semiconductor substrate 7 in which the silicon layer 6 is formed on the buried oxide film 5 is manufactured.

以上の手法においては、特に工程(b)において必要厚みの酸化膜3を形成し、そのまま工程(c)において水素イオンの注入を行うことによって、ここではじき出された十分な酸素に起因して、工程(g)の剥離熱処理時に水素の貼り合わせ界面への拡散が抑制されるため、ボイドやブリスタの発生が抑制される結果、酸化膜厚の薄い半導体基板が得られる。   In the above method, the oxide film 3 having a required thickness is formed particularly in the step (b), and hydrogen ions are implanted as it is in the step (c). Since diffusion of hydrogen to the bonding interface is suppressed during the peeling heat treatment in the step (g), generation of voids and blisters is suppressed, so that a semiconductor substrate having a thin oxide film thickness is obtained.

さらに、図6に示す第4発明に従う手法は、予め活性層用ウェーハ1と支持基板用ウェーハ2とを準備し(工程(a))、まず活性層用ウェーハ1に酸化膜3を形成し(工程(b))、その後活性層用ウェーハ1に水素イオンを注入して活性層用ウェーハ1の内部にイオン注入層4を形成する(工程(c))。
ここで、活性層用ウェーハ1に熱酸化処理を施して酸化膜3を形成するに当り、該酸化膜3の厚みを適正に調整することは、図3に示した方法と同様である。
Further, in the method according to the fourth invention shown in FIG. 6, an active layer wafer 1 and a support substrate wafer 2 are prepared in advance (step (a)), and an oxide film 3 is first formed on the active layer wafer 1 ( Step (b)), then, hydrogen ions are implanted into the active layer wafer 1 to form the ion implanted layer 4 inside the active layer wafer 1 (step (c)).
Here, when the active layer wafer 1 is subjected to the thermal oxidation treatment to form the oxide film 3, the thickness of the oxide film 3 is appropriately adjusted as in the method shown in FIG.

次いで、活性層用ウェーハ1の酸化膜3を例えばHF処理にて全て取り除いて(工程(d))から、活性層用ウェーハ1と支持基板用ウェーハ2とを貼り合わせ(工程(e))、剥離熱処理を施してイオン注入層4を劈開面(剥離面)として活性層用ウェーハ1を部分的に剥離し(工程(f))た後、再度酸化処理を施して(工程(g))から、この酸化膜を除去する工程(h)を経たのち、平坦化処理を施して(工程(i))、支持基板用ウェーハ2上にシリコン層6が形成された半導体基板7が製造される。   Next, all the oxide film 3 of the active layer wafer 1 is removed by, for example, HF treatment (step (d)), and then the active layer wafer 1 and the support substrate wafer 2 are bonded together (step (e)). After exfoliating heat treatment, the active layer wafer 1 is partially exfoliated using the ion-implanted layer 4 as a cleavage surface (exfoliation surface) (step (f)), and then subjected to oxidation treatment again (step (g)). After the step (h) of removing the oxide film, a planarization process is performed (step (i)), and the semiconductor substrate 7 in which the silicon layer 6 is formed on the support substrate wafer 2 is manufactured.

以上の手法においては、特に工程(b)において必要厚みの酸化膜3を形成し、そのまま工程(c)において水素イオンの注入を行うことによって、ここではじき出された十分な酸素に起因して、工程(f)の剥離熱処理時に水素の貼り合わせ界面への拡散が抑制されるため、ボイドやブリスタの発生が抑制される結果、酸化膜のない半導体基板が得られる。   In the above method, the oxide film 3 having a required thickness is formed particularly in the step (b), and hydrogen ions are implanted as it is in the step (c). Since diffusion of hydrogen to the bonding interface is suppressed during the peeling heat treatment in the step (f), generation of voids and blisters is suppressed. As a result, a semiconductor substrate having no oxide film is obtained.

なお、図3ないし図6に示したいずれの手法においても、活性層用ウェーハ1と支持基板用ウェーハ2との貼り合わせに先立ち、貼り合わせ界面の接着強度を上げるために、プラズマ処理を行うことが好ましい。すなわち、プラズマ処理は、貼り合わせ表面の活性化および、表面に付着した有機物を除去する効果があり、その結果、貼り合わせ界面の接着強度が改善され、ボイドやブリスターの低減につながる。
また、このプラズマ処理条件に関しては、特に限定するものではなく、一般的に酸素、窒素または水素等のガス雰囲気中にて数十秒間にわたり処理することにより同様の効果が期待できる。
In any of the methods shown in FIGS. 3 to 6, plasma treatment is performed to increase the bonding strength at the bonding interface prior to bonding of the active layer wafer 1 and the support substrate wafer 2. Is preferred. That is, the plasma treatment has an effect of activating the bonding surface and removing organic substances adhering to the surface. As a result, the adhesive strength at the bonding interface is improved, leading to a reduction in voids and blisters.
Further, the plasma processing conditions are not particularly limited, and the same effect can be expected by processing for several tens of seconds in a gas atmosphere such as oxygen, nitrogen or hydrogen.

[比較例1]
図1に示すところに従って、活性層用ウェーハの表面に150nmの厚みで酸化膜を形成し、活性層用ウェーハの表面から500 nmの深さ位置に注入量のピーク(イオン注入層)がくるように水素イオンを注入した後、活性層用ウェーハと支持基板用ウェーハとを貼り合わせ、剥離熱処理を行い、活性層用ウェーハを水素イオン注入ピーク領域(イオン注入層)から剥離し、その後、酸化処理を施してから酸化膜を除去し、平坦化処理を行って貼り合わせ半導体基板を作製した。
[Comparative Example 1]
As shown in FIG. 1, an oxide film having a thickness of 150 nm is formed on the surface of the active layer wafer so that the peak of the implantation amount (ion implantation layer) is at a depth of 500 nm from the surface of the active layer wafer. After hydrogen ions are implanted into the active layer wafer, the active layer wafer and the support substrate wafer are bonded to each other and subjected to a separation heat treatment to delaminate the active layer wafer from the hydrogen ion implantation peak region (ion implantation layer), and then an oxidation treatment. Then, the oxide film was removed and a planarization process was performed to produce a bonded semiconductor substrate.

[比較例2]
図1に示すところに従って、活性層用ウェーハの表面に20 nmの厚みで酸化膜を形成し、活性層用ウェーハの表面から500 nmの位置に注入量のピーク(イオン注入層)がくるように水素イオンを注入した後、活性層用ウェーハと支持基板用ウェーハとを貼り合わせ、剥離熱処理を行い、活性層用ウェーハを水素イオン注入ピーク領域(イオン注入層)から剥離し、その後、酸化処理を施してから酸化膜を除去し、平坦化処理を行って貼り合わせ半導体基板を作製した。
[Comparative Example 2]
As shown in FIG. 1, an oxide film is formed with a thickness of 20 nm on the surface of the active layer wafer so that the peak of the implantation amount (ion implantation layer) is at a position of 500 nm from the surface of the active layer wafer. After the hydrogen ions are implanted, the active layer wafer and the support substrate wafer are bonded together, and a release heat treatment is performed to separate the active layer wafer from the hydrogen ion implantation peak region (ion implantation layer), and then an oxidation treatment is performed. Then, the oxide film was removed, and a planarization process was performed to manufacture a bonded semiconductor substrate.

[比較例3]
図1に示すところに従って、活性層用ウェーハの表面に20 nmの厚みで酸化膜を形成し、活性層用ウェーハの表面から500 nmの位置に注入量のピーク(イオン注入層)がくるように水素イオンを注入した後、ここで、さらに活性層用ウェーハと支持基板用ウェーハとの表面を酸素プラズマで処理してから、活性層用ウェーハと支持基板用ウェーハとを貼り合わせ、剥離熱処理を行い、活性層用ウェーハを水素イオン注入ピーク領域(イオン注入層)から剥離し、その後、酸化処理を施してから酸化膜を除去し、平坦化処理を行って貼り合わせ半導体基板を作製した。
[Comparative Example 3]
As shown in FIG. 1, an oxide film is formed with a thickness of 20 nm on the surface of the active layer wafer so that the peak of the implantation amount (ion implantation layer) is at a position of 500 nm from the surface of the active layer wafer. After the hydrogen ions are implanted, the surfaces of the active layer wafer and the support substrate wafer are further treated with oxygen plasma, and then the active layer wafer and the support substrate wafer are bonded to each other and subjected to a peeling heat treatment. Then, the active layer wafer was peeled off from the hydrogen ion implantation peak region (ion implantation layer), and then an oxidation treatment was performed, the oxide film was removed, and a planarization treatment was performed to produce a bonded semiconductor substrate.

[発明例1(第1発明)]
図3に示すところに従って、活性層用ウェーハの表面に150 nmの厚みで酸化膜を形成し、活性層用ウェーハの表面から500 nmの位置に注入量のピーク(イオン注入層)がくるように水素イオンを注入した後、HF処理にて酸化膜を20 nmの厚さになるまで薄くした後、活性層用ウェーハと支持基板用ウェーハとを貼り合わせ、剥離熱処理を行い、活性層用ウェーハを水素イオン注入ピーク領域(イオン注入層)から剥離し、その後、酸化処理を施してから酸化膜を除去し、平坦化処理を行って貼り合わせ半導体基板を作製した。
[Invention Example 1 (first invention)]
As shown in FIG. 3, an oxide film is formed with a thickness of 150 nm on the surface of the active layer wafer so that the peak of the implantation amount (ion implantation layer) is at a position of 500 nm from the surface of the active layer wafer. After implanting hydrogen ions, the oxide film was thinned to a thickness of 20 nm by HF treatment, and then the active layer wafer and the support substrate wafer were bonded together and subjected to a delamination heat treatment to obtain the active layer wafer. After peeling from the hydrogen ion implantation peak region (ion implantation layer), after performing an oxidation treatment, the oxide film was removed, and a planarization treatment was performed to produce a bonded semiconductor substrate.

[発明例2(第2発明)]
図4に示すところに従って、活性層用ウェーハの表面に150 nmの厚みで酸化膜を形成し、活性層用ウェーハの表面から500 nmの位置に注入量のピーク(イオン注入層)がくるように水素イオンを注入した後、HF処理にて酸化膜を全て取り除いた後、この活性層用ウェーハを400℃以下の低温で酸化して厚さ20 nmの酸化膜を形成し、次いで活性層用ウェーハと支持基板用ウェーハとを貼り合わせ、剥離熱処理を行い、活性層用ウェーハを水素イオン注入ピーク領域(イオン注入層)から剥離し、その後、酸化処理を施してから酸化膜を除去し、平坦化処理を行って貼り合わせ半導体基板を作製した。
[Invention Example 2 (second invention)]
As shown in FIG. 4, an oxide film having a thickness of 150 nm is formed on the surface of the active layer wafer so that a peak (ion implantation layer) of the implantation amount comes at a position of 500 nm from the surface of the active layer wafer. After implanting hydrogen ions, all the oxide film is removed by HF treatment, and then the active layer wafer is oxidized at a low temperature of 400 ° C. or lower to form an oxide film having a thickness of 20 nm, and then the active layer wafer. And support substrate wafer are bonded together, and a release heat treatment is performed to release the active layer wafer from the hydrogen ion implantation peak region (ion implantation layer), and then an oxidation treatment is performed to remove the oxide film and planarize. Processing was performed to manufacture a bonded semiconductor substrate.

[発明例3(第3発明)]
図5に示すところに従って、活性層用ウェーハの表面に150 nmの厚みで酸化膜を形成し、活性層用ウェーハの表面から500 nmの位置に注入量のピーク(イオン注入層)がくるように水素イオンを注入した後、HF処理にて酸化膜を全て取り除いた活性層用ウェーハと、表面を酸化して厚さ20 nmの酸化膜を形成した支持基板用ウェーハとを貼り合わせ、剥離熱処理を行い、活性層用ウェーハを水素イオン注入ピーク領域(イオン注入層)から剥離し、その後、酸化処理を施してから酸化膜を除去し、平坦化処理を行って貼り合わせ半導体基板を作製した。
[Invention Example 3 (third invention)]
As shown in FIG. 5, an oxide film having a thickness of 150 nm is formed on the surface of the active layer wafer so that a peak (ion implantation layer) of the implantation amount comes at a position of 500 nm from the surface of the active layer wafer. After implanting hydrogen ions, the active layer wafer from which all oxide film has been removed by HF treatment is bonded to the support substrate wafer that has been oxidized on the surface to form a 20 nm thick oxide film. Then, the active layer wafer was peeled off from the hydrogen ion implantation peak region (ion implantation layer), and after the oxidation treatment, the oxide film was removed and the planarization treatment was performed to produce a bonded semiconductor substrate.

[発明例4(第4発明)]
図6に示すところに従って、活性層用ウェーハの表面に150 nmの厚みで酸化膜を形成し、活性層用ウェーハの表面から500 nmの位置に注入量のピーク(イオン注入層)がくるように水素イオンを注入した後、HF処理にて酸化膜を全て取り除いた後、活性層用ウェーハと支持基板用ウェーハとを貼り合わせ、剥離熱処理を行い、活性層用ウェーハを水素イオン注入ピーク領域(イオン注入層)から剥離し、その後、酸化処理を施してから酸化膜を除去し、平坦化処理を行って貼り合わせ半導体基板を作製した。
[Invention Example 4 (fourth invention)]
As shown in FIG. 6, an oxide film having a thickness of 150 nm is formed on the surface of the active layer wafer so that the peak of the implantation amount (ion implantation layer) comes to a position of 500 nm from the surface of the active layer wafer. After implanting hydrogen ions, the oxide film is completely removed by HF treatment, and then the active layer wafer and the support substrate wafer are bonded together and subjected to a peeling heat treatment, and the active layer wafer is subjected to a hydrogen ion implantation peak region (ion Then, the oxide film was removed after performing an oxidation treatment, and a planarization treatment was performed to produce a bonded semiconductor substrate.

[発明例5〜8]
発明例1〜4において、活性層用ウェーハと支持基板用ウェーハとを貼り合わせるに先立ち、活性層用ウェーハと支持基板用ウェーハとの表面を酸素プラズマ処理してから貼り合せた。なお、プラズマ処理は、酸素ガスで置換されたチャンバー内を真空状態にした後、20秒間保持する条件にて行った。
[Invention Examples 5 to 8]
In Invention Examples 1 to 4, prior to bonding the active layer wafer and the support substrate wafer, the surfaces of the active layer wafer and the support substrate wafer were bonded together after oxygen plasma treatment. Note that the plasma treatment was performed under the condition that the inside of the chamber replaced with oxygen gas was evacuated and then held for 20 seconds.

以上の各手法で得られた半導体基板について、高輝度集光灯下及び蛍光灯下での目視によって、欠陥数を計測した。その調査結果を表1に示すように、本発明に従って得られた半導体基板は、埋め込み酸化膜が薄くまたは酸化膜がない場合にあっても欠陥の発生が抑制されていることがわかる。   About the semiconductor substrate obtained by each of the above methods, the number of defects was measured by visual observation under a high-intensity condenser lamp and a fluorescent lamp. As shown in Table 1, it can be seen that the semiconductor substrate obtained in accordance with the present invention suppresses the occurrence of defects even when the buried oxide film is thin or no oxide film is present.

Figure 0005135713
Figure 0005135713

従来の貼り合わせ法による半導体基板の製造手順を示す工程図である。It is process drawing which shows the manufacturing procedure of the semiconductor substrate by the conventional bonding method. 良製品を得るための水素ドーズ量および酸化膜厚の範囲を示す図である。It is a figure which shows the range of the hydrogen dose amount and oxide film thickness for obtaining a good product. 本発明に従う半導体基板の製造手順を示す工程図である。It is process drawing which shows the manufacture procedure of the semiconductor substrate according to this invention. 本発明に従う半導体基板の製造手順を示す工程図である。It is process drawing which shows the manufacture procedure of the semiconductor substrate according to this invention. 本発明に従う半導体基板の製造手順を示す工程図である。It is process drawing which shows the manufacture procedure of the semiconductor substrate according to this invention. 本発明に従う半導体基板の製造手順を示す工程図である。It is process drawing which shows the manufacture procedure of the semiconductor substrate according to this invention.

符号の説明Explanation of symbols

1 活性層用ウェーハ
2 支持基板用ウェーハ
3 酸化膜
4 イオン注入層
5 埋め込み酸化膜
6 シリコン層
7 半導体基板

DESCRIPTION OF SYMBOLS 1 Active layer wafer 2 Support substrate wafer 3 Oxide film 4 Ion implantation layer 5 Embedded oxide film 6 Silicon layer 7 Semiconductor substrate

Claims (5)

シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで酸化膜を50nm以下の厚みに調整した後、該酸化膜を介して活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離し、
前記水素イオンの注入は、該水素イオンの注入によって活性層に導入される酸素である、水素拡散を抑制する効果をもたらす因子の総数(N )が、N >4.2×10 14 atoms/cm を満足して行うことを特徴とする半導体基板の製造方法。
After forming an oxide film having a thickness of more than 50 nm and a thickness of 500 nm or less on the active layer wafer for forming the silicon layer, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then the oxide film is formed to a thickness of 50 nm or less. After adjusting the thickness, after bonding the active layer wafer and the support substrate wafer through the oxide film, peeled off in the ion implantation layer ,
In the implantation of hydrogen ions, the total number (N D ) of factors that have the effect of suppressing hydrogen diffusion, which is oxygen introduced into the active layer by the implantation of hydrogen ions, is N D > 4.2 × 10 14 atoms. / Cm < 2 > is performed , The manufacturing method of the semiconductor substrate characterized by the above-mentioned.
シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで活性層用ウェーハの酸化膜を全て取り除いてから再度50nm以下の厚みの酸化膜を形成し、該酸化膜を介して活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離し、
前記水素イオンの注入は、該水素イオンの注入によって活性層に導入される酸素である、水素拡散を抑制する効果をもたらす因子の総数(N )が、N >4.2×10 14 atoms/cm を満足して行うことを特徴とする半導体基板の製造方法。
After forming an oxide film having a thickness of more than 50 nm and less than 500 nm on the active layer wafer for forming the silicon layer, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then the oxidation of the active layer wafer is performed. After removing all the film, again form an oxide film with a thickness of 50 nm or less, and after bonding the active layer wafer and the support substrate wafer through the oxide film, peel off in the ion implantation layer ,
In the implantation of hydrogen ions, the total number (N D ) of factors that have the effect of suppressing hydrogen diffusion, which is oxygen introduced into the active layer by the implantation of hydrogen ions, is N D > 4.2 × 10 14 atoms. / Cm < 2 > is performed , The manufacturing method of the semiconductor substrate characterized by the above-mentioned.
シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで活性層用ウェーハの酸化膜を全て取り除く一方、支持基板用ウェーハの表面に50nm以下の厚みの酸化膜を形成し、該酸化膜を介して活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離し、
前記水素イオンの注入は、該水素イオンの注入によって活性層に導入される酸素である、水素拡散を抑制する効果をもたらす因子の総数(N )が、N >4.2×10 14 atoms/cm を満足して行うことを特徴とする半導体基板の製造方法。
After forming an oxide film having a thickness of more than 50 nm and less than 500 nm on the active layer wafer for forming the silicon layer, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then the oxidation of the active layer wafer is performed. While removing all of the film, an oxide film having a thickness of 50 nm or less is formed on the surface of the support substrate wafer, and after bonding the active layer wafer and the support substrate wafer through the oxide film, the ion implantation layer Peeled off at
In the implantation of hydrogen ions, the total number (N D ) of factors that have the effect of suppressing hydrogen diffusion, which is oxygen introduced into the active layer by the implantation of hydrogen ions, is N D > 4.2 × 10 14 atoms. / Cm < 2 > is performed , The manufacturing method of the semiconductor substrate characterized by the above-mentioned.
シリコン層を形成する活性層用ウェーハに50nm超500nm以下の厚みの酸化膜を形成した後、該活性層用ウェーハに水素イオンを注入してイオン注入層を形成し、次いで活性層用ウェーハの酸化膜を全て取り除いてから、活性層用ウェーハと支持基板用ウェーハとを貼り合わせた後、前記イオン注入層にて剥離し、
前記水素イオンの注入は、該水素イオンの注入によって活性層に導入される酸素である、水素拡散を抑制する効果をもたらす因子の総数(N )が、N >4.2×10 14 atoms/cm を満足して行うことを特徴とする半導体基板の製造方法。
After forming an oxide film having a thickness of more than 50 nm and less than 500 nm on the active layer wafer for forming the silicon layer, hydrogen ions are implanted into the active layer wafer to form an ion implantation layer, and then the oxidation of the active layer wafer is performed. After removing all the films, after bonding the active layer wafer and the support substrate wafer, peel off in the ion implantation layer ,
In the implantation of hydrogen ions, the total number (N D ) of factors that have the effect of suppressing hydrogen diffusion, which is oxygen introduced into the active layer by the implantation of hydrogen ions, is N D > 4.2 × 10 14 atoms. / Cm < 2 > is performed , The manufacturing method of the semiconductor substrate characterized by the above-mentioned.
前記活性層用ウェーハと支持基板用ウェーハとの貼り合わせに先立ち、プラズマ処理を行うことを特徴とする請求項1ないし4のいずれかに記載の半導体基板の製造方法。

5. The method of manufacturing a semiconductor substrate according to claim 1, wherein plasma processing is performed prior to bonding of the active layer wafer and the support substrate wafer. 6.

JP2006145599A 2006-05-25 2006-05-25 Manufacturing method of semiconductor substrate Active JP5135713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145599A JP5135713B2 (en) 2006-05-25 2006-05-25 Manufacturing method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145599A JP5135713B2 (en) 2006-05-25 2006-05-25 Manufacturing method of semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2007317867A JP2007317867A (en) 2007-12-06
JP5135713B2 true JP5135713B2 (en) 2013-02-06

Family

ID=38851469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145599A Active JP5135713B2 (en) 2006-05-25 2006-05-25 Manufacturing method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP5135713B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038932A (en) * 2010-08-06 2012-02-23 Sumco Corp Semiconductor wafer thinning method and bonded wafer manufacturing method
JP5736296B2 (en) * 2011-10-03 2015-06-17 セイコーインスツル株式会社 Manufacturing method of semiconductor device
JP6487454B2 (en) * 2014-02-07 2019-03-20 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Method for manufacturing layered semiconductor structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197379A (en) * 1997-07-25 1999-04-09 Denso Corp Semiconductor substrate and its manufacture
JP2004128389A (en) * 2002-10-07 2004-04-22 Shin Etsu Handotai Co Ltd Manufacturing method of laminated soi wafer
JP2003318200A (en) * 2003-06-04 2003-11-07 Mitsubishi Electric Corp Thin-film transistor and its manufacturing method
FR2855908B1 (en) * 2003-06-06 2005-08-26 Soitec Silicon On Insulator METHOD FOR OBTAINING A STRUCTURE COMPRISING AT LEAST ONE SUBSTRATE AND AN ULTRAMINO LAYER
WO2005022610A1 (en) * 2003-09-01 2005-03-10 Sumco Corporation Method for manufacturing bonded wafer

Also Published As

Publication number Publication date
JP2007317867A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4407127B2 (en) Manufacturing method of SOI wafer
JP4934966B2 (en) Manufacturing method of SOI substrate
KR101905788B1 (en) Method for finishing a substrate of the semiconductor-on-insulator type
US7091107B2 (en) Method for producing SOI wafer and SOI wafer
EP2270839B1 (en) Method for manufacturing bonded substrate
JP5082299B2 (en) Manufacturing method of semiconductor substrate
KR101229760B1 (en) SOI Wafer Manufacturing Method and SOI Wafer Manufactured by Same
WO2013102968A1 (en) Method for manufacturing bonded silicon-on-insulator (soi) wafer
JP5109287B2 (en) Manufacturing method of semiconductor substrate
WO2015141121A1 (en) Method for manufacturing laminated wafer
WO2016203677A1 (en) Method of manufacturing soi wafer
JP4987470B2 (en) Method for producing ultrathin layer thinned by inducing self-supporting
JP2008004821A (en) Method for manufacturing laminated wafer
JP5135713B2 (en) Manufacturing method of semiconductor substrate
WO2016059748A1 (en) Method for manufacturing bonded wafer
CN110739214A (en) method for preparing SOI by reducing implantation damage
KR102317552B1 (en) Method of manufacturing bonded SOI wafer
JP5368000B2 (en) Manufacturing method of SOI substrate
JP5364345B2 (en) Method for manufacturing SOI substrate
KR20160052551A (en) Bonded wafer manufacturing method
JP2009252948A (en) Method of manufacturing stuck wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090511

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5135713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250