JP5133765B2 - Internal magnet type motor and design method thereof - Google Patents

Internal magnet type motor and design method thereof Download PDF

Info

Publication number
JP5133765B2
JP5133765B2 JP2008108006A JP2008108006A JP5133765B2 JP 5133765 B2 JP5133765 B2 JP 5133765B2 JP 2008108006 A JP2008108006 A JP 2008108006A JP 2008108006 A JP2008108006 A JP 2008108006A JP 5133765 B2 JP5133765 B2 JP 5133765B2
Authority
JP
Japan
Prior art keywords
magnet
radial
disposed
rotor
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008108006A
Other languages
Japanese (ja)
Other versions
JP2009261154A (en
Inventor
博高 伊藤
孝博 中山
義之 ▲高▼部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2008108006A priority Critical patent/JP5133765B2/en
Priority to US12/277,572 priority patent/US7800272B2/en
Priority to DE200810044127 priority patent/DE102008044127A1/en
Priority to CN201210187106.8A priority patent/CN102738929B/en
Priority to CN201210187108.7A priority patent/CN102738930B/en
Priority to CN201210187181.4A priority patent/CN102738931B/en
Priority to CN200810178386XA priority patent/CN101447705B/en
Publication of JP2009261154A publication Critical patent/JP2009261154A/en
Priority to US12/861,311 priority patent/US7868503B1/en
Priority to US12/962,292 priority patent/US8080915B2/en
Priority to US13/296,720 priority patent/US8232703B2/en
Application granted granted Critical
Publication of JP5133765B2 publication Critical patent/JP5133765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Brushless Motors (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、埋込磁石型モータ及びその設計方法に関するものである。   The present invention relates to an interior magnet type motor and a design method thereof.

従来、埋込磁石型モータは、ロータコアに軸方向に貫通する収容孔が周方向に複数形成されその各収容孔にそれぞれ磁石が配設されたロータを備える。
そして、このような埋込磁石型モータとしては、例えば、特許文献1に開示されたものがある。この埋込磁石型モータにおけるロータコアの収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、磁極数がP極に対して、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなる。又、磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設される。そして、この埋込磁石型モータでは、径方向収容孔内に配設される磁石と、その周方向の一方に隣り合う磁石収容部内に配設される磁石とで1つの磁極が構成されるとともに、径方向収容孔内に配設される磁石と、その周方向の他方に隣り合う磁石収容部内に配設される磁石とで異なる1つの磁極が構成されるようになっている。
特開2007−195391号公報
2. Description of the Related Art Conventionally, an embedded magnet type motor includes a rotor in which a plurality of housing holes penetrating in the axial direction are formed in the rotor core in the circumferential direction, and a magnet is disposed in each housing hole.
An example of such an embedded magnet type motor is disclosed in Patent Document 1. The housing hole of the rotor core in this embedded magnet type motor has a radial housing hole extending substantially in the radial direction and a substantially V-shaped housing hole protruding outward in the radial direction. Thus, P / 2 pieces are formed, and they are alternately formed in the circumferential direction. The magnets are arranged in the radial accommodation holes and in the magnet accommodation portions corresponding to the straight lines forming the V-shape of the V-shaped accommodation holes. In this embedded magnet type motor, one magnet is constituted by a magnet disposed in the radial accommodation hole and a magnet disposed in the magnet accommodation portion adjacent to one of the circumferential directions. A different magnetic pole is constituted by the magnet disposed in the radial accommodation hole and the magnet disposed in the magnet accommodation portion adjacent to the other in the circumferential direction.
JP 2007-195391 A

ところで、上記した埋込磁石型モータ(特許文献1参照)等では、ステータに最適な回転磁界を発生させてロータを良好に回転駆動制御するために、ロータの回転位置(角度)を高精度に検出する必要があり、例えば、レゾルバを備えたものがある。しかしながら、レゾルバは構成が複雑であって高価であるとともに、ロータの回転位置(角度)を高精度に検出するためにロータと一体回転させるセンサロータの周方向の位置決めに高精度を要するという問題がある。又、例えば、レゾルバに換えて、ロータと一体回転するセンサ磁石と該センサ磁石の磁束を検出する磁気センサとを用いるものでも、ロータの回転位置(角度)を高精度に検出するためにロータと一体回転させるセンサ磁石の周方向の位置決めに高精度を要する等、レゾルバと同様の問題がある。   By the way, in the above-described embedded magnet type motor (see Patent Document 1) and the like, the rotational position (angle) of the rotor is set with high accuracy in order to generate an optimal rotating magnetic field in the stator and to control the rotor to rotate favorably. There is a need to detect, for example, one with a resolver. However, the resolver has a complicated structure and is expensive, and also requires a high accuracy for positioning the sensor rotor in the circumferential direction to rotate integrally with the rotor in order to detect the rotational position (angle) of the rotor with a high accuracy. is there. Further, for example, a sensor magnet that rotates integrally with the rotor and a magnetic sensor that detects the magnetic flux of the sensor magnet instead of the resolver may be used to detect the rotational position (angle) of the rotor with high accuracy. There is a problem similar to that of the resolver, for example, high accuracy is required for the circumferential positioning of the sensor magnet that rotates integrally.

本発明は、上記問題点を解決するためになされたものであって、その目的は、簡単な構成で高精度にロータの回転位置を検出することができる埋込磁石型モータ及びその設計方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an embedded magnet type motor capable of detecting the rotational position of the rotor with high accuracy with a simple configuration and a design method thereof. It is to provide.

請求項1に記載の発明では、軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備え、前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成される埋込磁石型モータであって、前記ロータの軸方向の漏れ磁束を検出する回転検出用の磁気センサを、前記ロータの軸方向端面に対向して配置するとともに、前記V字収容孔を構成する一対の磁石収容部内の前記磁石間で検出する磁束の極が1回のみ反転する径方向外側領域に配置し、その径方向外側領域は磁気飽和領域であるAccording to the first aspect of the present invention, the rotor includes a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and a magnet is disposed in the housing hole so that the number of magnetic poles is P. Each of the housing holes is formed by forming P / 2 of a radial housing hole extending in a substantially radial direction and a substantially V-shaped housing hole projecting outward in the radial direction. The magnets are alternately formed in the circumferential direction, and the magnets are disposed in the radial accommodating holes and are disposed in the magnet accommodating portions corresponding to the straight lines forming the V-shapes of the V-shaped accommodating holes. And the magnet disposed in the radial accommodation hole and the magnet disposed in the magnet accommodation portion adjacent to one of the circumferential directions constitute one magnetic pole, and the diameter Adjacent to the magnet disposed in the direction accommodation hole and the other in the circumferential direction An embedded magnet type motor in which one magnetic pole different from the magnet disposed in the magnet housing portion is configured, and a magnetic sensor for detecting rotation that detects a leakage magnetic flux in an axial direction of the rotor, It is arranged opposite to the axial end surface of the rotor, and is arranged in a radially outer region in which the magnetic pole detected between the magnets in the pair of magnet housing portions constituting the V-shaped housing hole is reversed only once . The radially outer region is a magnetic saturation region .

同構成によれば、回転検出用の磁気センサは、ロータの軸方向端面に対向して配置されるとともに、V字収容孔を構成する一対の磁石収容部内の磁石間で検出する磁束の極が1回のみ反転(ゼロクロス)する径方向外側領域に配置されるため、レゾルバやセンサ磁石を用いることなく、簡単な構成で高精度にロータの回転位置を検出することができる。   According to this configuration, the magnetic sensor for detecting rotation is disposed opposite to the end surface in the axial direction of the rotor, and the magnetic poles detected between the magnets in the pair of magnet housing portions constituting the V-shaped housing hole are provided. Since it is disposed in the radially outer region that is reversed only once (zero cross), the rotational position of the rotor can be detected with high accuracy with a simple configuration without using a resolver or a sensor magnet.

詳しくは、構成が複雑で高価なレゾルバを用いず、またロータの磁極を構成する磁石の磁束を用いて別途センサ磁石を用いないため、部品点数低減や小型化が可能となり、その構成が簡単となる。また、レゾルバのセンサロータやセンサ磁石をロータに対して高精度に位置決めする必要もないため、その位置決め作業等も含めて構成が簡単となる。そして、ロータの軸方向の漏れ磁束を検出する磁気センサは、V字収容孔を構成する一対の磁石収容部内の磁石間で検出する磁束の極が1回のみ反転する径方向外側領域に配置されるため、ロータの磁極毎に検出する磁束の極が反転(ゼロクロス)し、高精度にロータの回転位置を検出することができる。言い換えると、磁気センサが、前記一対の磁石収容部内の磁石間で検出する磁束の極が2回以上反転してしまう領域(前記径方向外側領域より径方向内側の領域(図4及び図5の実験結果参照))に配置されると、ロータの磁極の変わり目以外でも検出する磁束の極が反転(ゼロクロス)してしまうことになり、ロータの回転位置を検出することが困難となるが、これを回避でき、容易且つ高精度にロータの回転位置を検出することができる。よって、ステータに最適な回転磁界を発生させることができ、ロータを良好に回転駆動制御することができる。   Specifically, the configuration is complicated and expensive, and no separate sensor magnet is used with the magnetic flux of the magnets that make up the magnetic poles of the rotor, so the number of parts can be reduced and the configuration can be simplified. Become. Further, since it is not necessary to position the sensor rotor or sensor magnet of the resolver with high accuracy with respect to the rotor, the configuration including the positioning operation and the like becomes simple. The magnetic sensor for detecting the leakage magnetic flux in the axial direction of the rotor is disposed in the radially outer region where the magnetic pole detected between the magnets in the pair of magnet housing portions constituting the V-shaped housing hole is reversed only once. Therefore, the magnetic pole detected for each magnetic pole of the rotor is reversed (zero cross), and the rotational position of the rotor can be detected with high accuracy. In other words, the magnetic sensor detects a region in which the magnetic pole detected between the magnets in the pair of magnet housing portions is inverted twice or more (a region radially inward from the radially outer region (see FIGS. 4 and 5). If it is arranged in the experimental results)), the magnetic pole of the magnetic flux to be detected will be reversed (zero cross) other than at the transition of the magnetic pole of the rotor, making it difficult to detect the rotational position of the rotor. Thus, the rotational position of the rotor can be detected easily and with high accuracy. Therefore, an optimal rotating magnetic field can be generated in the stator, and the rotor can be driven and controlled satisfactorily.

請求項2に記載の発明では、軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備え、前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成される埋込磁石型モータの設計方法であって、前記ロータの軸方向の漏れ磁束を検出可能な回転検出用の磁気センサを、前記ロータの軸方向端面に対向して配置するとともに、その径方向位置を変更してその径方向位置毎の特性を測定する測定工程と、前記測定工程の結果に基づいて、前記V字収容孔を構成する一対の磁石収容部内の前記磁石間で検出する磁束の極が1回のみ反転する径方向外側領域に前記磁気センサの位置を決定する位置決定工程とを備え、前記径方向外側領域は磁気飽和領域であるAccording to a second aspect of the present invention, the rotor has a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and a magnet is disposed in the housing hole so that the number of magnetic poles becomes P poles. Each of the housing holes is formed by forming P / 2 of a radial housing hole extending in a substantially radial direction and a substantially V-shaped housing hole projecting outward in the radial direction. The magnets are alternately formed in the circumferential direction, and the magnets are disposed in the radial accommodating holes and are disposed in the magnet accommodating portions corresponding to the straight lines forming the V-shapes of the V-shaped accommodating holes. And the magnet disposed in the radial accommodation hole and the magnet disposed in the magnet accommodation portion adjacent to one of the circumferential directions constitute one magnetic pole, and the diameter Adjacent to the magnet disposed in the direction accommodation hole and the other in the circumferential direction A method for designing an embedded magnet type motor in which one magnetic pole different from the magnet disposed in the magnet housing portion is configured, and a rotation detecting magnetism capable of detecting a leakage magnetic flux in an axial direction of the rotor A sensor is disposed opposite to the axial end face of the rotor, and a measurement step for changing the radial position and measuring a characteristic for each radial position, and a result of the measurement step, the V and a position determination step of the magnetic flux of the poles detected between the magnets in the pair of magnet containing portion constituting a shape accommodating holes to determine the position of the magnetic sensor in the radial direction outer region which inverts only once, the radial The outer region is a magnetic saturation region .

同発明によれば、測定工程にて、ロータの軸方向の漏れ磁束を検出可能な回転検出用の磁気センサが、ロータの軸方向端面に対向して配置されるとともに、その径方向位置が変更されてその径方向位置毎の特性が測定される。そして、位置決定工程にて、前記測定工程の結果に基づいて、V字収容孔を構成する一対の磁石収容部内の磁石間で検出する磁束の極が1回のみ反転する径方向外側領域に磁気センサの位置が決定される。よって、容易に請求項1に記載の埋込磁石型モータを設計することができる。   According to the invention, in the measurement process, the rotation detecting magnetic sensor capable of detecting the leakage magnetic flux in the axial direction of the rotor is arranged to face the axial end surface of the rotor, and the radial position thereof is changed. Then, the characteristic for each radial position is measured. Then, in the position determination step, based on the result of the measurement step, the magnetic poles detected between the magnets in the pair of magnet housing portions constituting the V-shaped housing hole are magnetized in the radially outer region where the magnetic pole is reversed only once The position of the sensor is determined. Therefore, the interior magnet type motor according to claim 1 can be easily designed.

本発明によれば、簡単な構成で高精度にロータの回転位置を検出することができる埋込磁石型モータ及びその設計方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the interior magnet type motor which can detect the rotation position of a rotor with a simple structure with high precision, and its design method can be provided.

以下、本発明を具体化した一実施の形態を図1〜図6に従って説明する。
図1に示すように、埋込磁石型モータのモータケース1は、有底筒状に形成されたヨーク2と、該ヨーク2の開口部を閉塞するエンドプレート3とからなる。ヨーク2の内周面にはステータ4が固定されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, a motor case 1 of an embedded magnet type motor includes a yoke 2 formed in a bottomed cylindrical shape, and an end plate 3 that closes an opening of the yoke 2. A stator 4 is fixed to the inner peripheral surface of the yoke 2.

ステータ4は、図2に示すように、全体的に略円筒状に形成され、外形を形成する円筒部5の内周面から周方向等角度間隔で軸中心に向かって延びるように形成された複数のティース6を有したステータコア7と、各ティース6にインシュレータ(図2中、図示略)を介して集中巻にて巻回された巻線8(図2中、一部のみ2点鎖線で図示)とを備える。尚、本実施の形態では、ティース6は、12個形成されている。   As shown in FIG. 2, the stator 4 is formed in a substantially cylindrical shape as a whole, and is formed so as to extend from the inner peripheral surface of the cylindrical portion 5 forming the outer shape toward the axial center at equal circumferential intervals. A stator core 7 having a plurality of teeth 6 and a winding 8 wound around each tooth 6 by concentrated winding via an insulator (not shown in FIG. 2) (in FIG. 2, only a part is indicated by a two-dot chain line) As shown). In the present embodiment, twelve teeth 6 are formed.

そして、ステータ4の内側には、ロータ11が配設されている。ロータ11は回転軸12を有し、回転軸12は、図1に示すように、ヨーク2の底部及びエンドプレート3に設けられた軸受け13,14により回転可能に支持されている。又、ロータ11は、図2に示すように、前記回転軸12に対して固定(外嵌)されるロータコア15と、ロータコア15に形成された収容孔(径方向収容孔15a及びV字収容孔15b)内に配設される磁石16,17とを備える。尚、ロータ11における磁極数はP極であって本実施の形態では8極に設定されている。   A rotor 11 is disposed inside the stator 4. The rotor 11 has a rotating shaft 12, and the rotating shaft 12 is rotatably supported by bearings 13 and 14 provided on the bottom of the yoke 2 and the end plate 3, as shown in FIG. As shown in FIG. 2, the rotor 11 includes a rotor core 15 that is fixed (externally fitted) to the rotating shaft 12, and accommodation holes (radial accommodation holes 15 a and V-shaped accommodation holes) formed in the rotor core 15. 15b) and magnets 16 and 17 disposed therein. Note that the number of magnetic poles in the rotor 11 is P pole, and in this embodiment, it is set to 8 poles.

ロータコア15は、略円盤状のコアシートが軸方向に積層されることで略円筒状に形成され、各コアシートに形成された軸方向に貫通する締結用孔18(図2参照)を貫通する締結部材としてのリベット19によって締結固定されている。又、ロータコア15において磁石16,17を内部に収容すべく軸方向に貫通する収容孔は、径方向に延びる径方向収容孔15aと、径方向外側に凸となる略V字形状のV字収容孔15bとが、それぞれP/2個であって本実施の形態では(8/2=)4個ずつ形成されてなるとともにそれらが周方向に交互であって等角度間隔に形成されてなる。   The rotor core 15 is formed in a substantially cylindrical shape by laminating a substantially disk-shaped core sheet in the axial direction, and penetrates the fastening hole 18 (see FIG. 2) penetrating in the axial direction formed in each core sheet. It is fastened and fixed by a rivet 19 as a fastening member. In addition, the housing hole penetrating in the axial direction to accommodate the magnets 16 and 17 in the rotor core 15 includes a radial housing hole 15a extending in the radial direction and a substantially V-shaped V-shaped housing projecting radially outward. Each of the holes 15b is P / 2, and in the present embodiment, four (8/2 =) four holes are formed, and they are alternately formed in the circumferential direction at equal angular intervals.

径方向収容孔15aの径方向外側端部には、軸方向から見た(径方向の直交方向の)幅が他の部分(径方向収容孔15a内に配設される前記磁石16の幅)より大きく設定された大幅部15cが軸方向全体に(貫通するように)形成されている。又、径方向収容孔15aの径方向外側において大幅部15cの径方向内側には、磁石16の径方向外側への移動を規制すべく軸方向から見た(径方向の直交方向の)幅が他の部分より小さくなるように径方向の直交方向に突出した突出部15dが軸方向全体に形成されている。この突出部15dは、周方向両側から一対、同じ量だけ(多くとも互いに当接しない量だけ)突出して形成されている。   At the radially outer end of the radial accommodation hole 15a, the width seen in the axial direction (in the direction perpendicular to the radial direction) is another part (the width of the magnet 16 disposed in the radial accommodation hole 15a). A larger portion 15c set larger is formed in the entire axial direction (so as to penetrate). Further, on the radially inner side of the large portion 15c on the radially outer side of the radial housing hole 15a, the width viewed in the axial direction (in the direction orthogonal to the radial direction) is restricted to restrict the movement of the magnet 16 to the radially outer side. A protruding portion 15d that protrudes in a direction perpendicular to the radial direction so as to be smaller than other portions is formed in the entire axial direction. The protrusions 15d are formed as a pair protruding from both sides in the circumferential direction by the same amount (amount not contacting each other at most).

V字収容孔15bは、そのV字を形成する2つの直線に対応した一対の磁石収容部15eを備える。本実施の形態の一対の磁石収容部15eは、径方向外側ほど周方向の間隔が近くなるが径方向外側端部でも互いに連通しないようにそれぞれ独立した(軸方向に貫通する)孔として形成されている。又、V字収容孔15bの径方向外側端部、即ち各磁石収容部15eの径方向外側端部には、前記磁石17が配置されないV字側空隙15fが形成されている。本実施の形態のV字側空隙15fは、軸方向から見た幅が他の部分(磁石17を収容する部分)と略同じとなるように形成されている。又、磁石収容部15eの径方向外側においてV字側空隙15fの径方向内側には、磁石17の径方向外側(V字側空隙15f)への移動を規制すべく軸方向から見た幅が他の部分より小さくなるように突出したV字側突出部15gが形成されている。このV字側突出部15gは、一対の磁石収容部15eの対向する側からそれぞれ離間する側へ同じ量だけ突出して形成されている。   The V-shaped accommodation hole 15b includes a pair of magnet accommodation portions 15e corresponding to two straight lines forming the V-shape. The pair of magnet housing portions 15e of the present embodiment are formed as independent holes (through in the axial direction) so as not to communicate with each other even at the radially outer end, although the circumferential interval is closer toward the radially outer side. ing. Further, a V-shaped air gap 15f in which the magnet 17 is not disposed is formed at the radially outer end of the V-shaped receiving hole 15b, that is, at the radially outer end of each magnet receiving portion 15e. The V-shaped side gap 15f of the present embodiment is formed so that the width viewed from the axial direction is substantially the same as other portions (portions that accommodate the magnets 17). In addition, the width viewed from the axial direction to restrict the movement of the magnet 17 to the radially outer side (V-shaped side gap 15f) is located on the radially inner side of the V-shaped side gap 15f on the radially outer side of the magnet housing portion 15e. A V-shaped protruding portion 15g protruding so as to be smaller than other portions is formed. The V-shaped projecting portions 15g are formed so as to project the same amount from the opposing sides of the pair of magnet housing portions 15e to the sides away from each other.

又、本実施の形態における磁石収容部15eの径方向内側端部は、軸方向から見て、径方向収容孔15aの側部、詳しくは径方向収容孔15aの径方向内側において径方向の直交方向を向いた辺(内壁面)と対向するように形成されている。そして、径方向収容孔15aと磁石収容部15e間における径方向内側には内側ブリッジ部15hが形成されている。又、本実施の形態における内側ブリッジ部15hの軸方向から見た幅は径方向に沿って一定となるように形成されている。尚、これは、磁石収容部15eの径方向内側端部に軸方向から見て略三角形状の(磁石17が配置されない)延設部15iが延設されることで実現されている。又、上記形状のロータコア15には、径方向収容孔15aの径方向外側(大幅部15c)とロータコア15の外周面との間に外側ブリッジ部15jが形成され、V字収容孔15bにおける磁石収容部15eの径方向外側(V字側空隙15f)とロータコア15の外周面との間に外側ブリッジ部15kが形成されることになる。又、上記形状のロータコア15には、一対の磁石収容部15e間における径方向外側に径方向に延びる(前記外側ブリッジ部15kと繋がる)収容部間ブリッジ部15lが形成されることになる。   Also, the radially inner end of the magnet housing portion 15e in the present embodiment is orthogonal to the radial direction on the side of the radial housing hole 15a, more specifically, on the radially inner side of the radial housing hole 15a when viewed from the axial direction. It is formed to face the side (inner wall surface) that faces the direction. An inner bridge portion 15h is formed on the radially inner side between the radial accommodation hole 15a and the magnet accommodation portion 15e. In addition, the width of the inner bridge portion 15h in the present embodiment viewed from the axial direction is formed to be constant along the radial direction. In addition, this is implement | achieved by extending substantially triangular-shaped extension part 15i (the magnet 17 is not arrange | positioned) seeing from an axial direction at the radial direction inner side edge part of the magnet accommodating part 15e. Further, the rotor core 15 having the above-described shape has an outer bridge portion 15j formed between the radially outer side (large portion 15c) of the radial accommodation hole 15a and the outer peripheral surface of the rotor core 15, and the magnet accommodation in the V-shaped accommodation hole 15b. The outer bridge portion 15k is formed between the radially outer side of the portion 15e (V-shaped side gap 15f) and the outer peripheral surface of the rotor core 15. In addition, the rotor core 15 having the above shape is formed with an inter-accommodating portion bridge portion 15l extending radially outward (connected to the outer bridge portion 15k) between the pair of magnet accommodating portions 15e.

そして、前記径方向収容孔15a内と前記磁石収容部15e内には、それぞれ略直方体形状の磁石16,17が配設される。
上記のように構成されるロータ11では、径方向収容孔15a内に配設される磁石16と、その周方向の一方(図2中、時計回り方向)に隣り合う磁石収容部15e内に配設される磁石17とで1つの磁極(例えばS極)が構成されるとともに、径方向収容孔15a内に配設される磁石16と、その周方向の他方(図2中、反時計回り方向)に隣り合う磁石収容部15e内に配設される磁石17とで異なる1つの磁極(例えばN極)が構成されている。
Then, substantially rectangular parallelepiped magnets 16 and 17 are arranged in the radial accommodation hole 15a and the magnet accommodation portion 15e, respectively.
In the rotor 11 configured as described above, the magnet 16 disposed in the radial accommodation hole 15a and the magnet accommodation portion 15e adjacent in one of the circumferential directions (clockwise direction in FIG. 2) are arranged. The magnet 17 provided constitutes one magnetic pole (for example, S pole), the magnet 16 disposed in the radial accommodation hole 15a, and the other circumferential direction (counterclockwise direction in FIG. 2). ) Adjacent to the magnet 17 disposed in the magnet housing portion 15e, one magnetic pole (for example, N pole) is configured.

又、図1に示すように、前記エンドプレート3において、ロータ11の軸方向端面(図1中、左側端面)に対向する位置には、ロータ11の軸方向の漏れ磁束を検出するための回転検出用の磁気センサとしてのホールIC21が基板22を介して配設されている。このホールIC21は、ロータ11の回転位置(角度)を検出するためのものであって、ひいては、ステータ4に最適な回転磁界を発生させてロータ11を良好に回転駆動制御するためのものである。   Further, as shown in FIG. 1, in the end plate 3, the rotation for detecting the leakage magnetic flux in the axial direction of the rotor 11 is located at a position facing the axial end surface of the rotor 11 (left end surface in FIG. 1). A Hall IC 21 as a magnetic sensor for detection is disposed via a substrate 22. The Hall IC 21 is for detecting the rotational position (angle) of the rotor 11 and, as a result, for generating an optimum rotating magnetic field in the stator 4 and controlling the rotor 11 in a favorable rotational drive. .

ここで、ホールIC21は、図2及び図3に示すように、前記V字収容孔15bを構成する一対の磁石収容部15e内の前記磁石17間(周方向の間)で検出する磁束の極が1回のみ反転(ゼロクロス)する径方向外側領域H(図3参照)に配置されている。   Here, as shown in FIGS. 2 and 3, the Hall IC 21 is a magnetic pole detected between the magnets 17 (between the circumferential directions) in the pair of magnet accommodating portions 15e constituting the V-shaped accommodating hole 15b. Is disposed in the radially outer region H (see FIG. 3) that is reversed only once (zero crossing).

本実施の形態では、ホールIC21の径方向の位置は、以下に記載する埋込磁石型モータの設計方法にて決定されている。即ち、埋込磁石型モータの設計方法は、「測定工程」と「位置決定工程」とを備えている。   In the present embodiment, the radial position of the Hall IC 21 is determined by the method for designing an embedded magnet motor described below. That is, the method for designing an embedded magnet type motor includes a “measurement step” and a “position determination step”.

まず「測定工程」では、ホールIC21を、ロータ11の軸方向端面に対向して配置するとともに、その径方向位置を変更してその径方向位置毎の特性を測定する(図4〜図6参照)。詳しくは、本実施の形態では、図4に示すように、ホールIC21a〜21hの位置を、ロータ11の径方向内側から径方向外側まで順次変更するとともに、図5及び図6に示すように、その径方向位置(ホールIC21a〜21h)毎の回転角度−磁束密度特性Za〜Zhを測定する。   First, in the “measuring step”, the Hall IC 21 is disposed so as to oppose the axial end surface of the rotor 11, and the radial position is changed to measure the characteristics for each radial position (see FIGS. 4 to 6). ). Specifically, in the present embodiment, as shown in FIG. 4, the positions of the Hall ICs 21 a to 21 h are sequentially changed from the radially inner side to the radially outer side of the rotor 11, and as shown in FIGS. 5 and 6, The rotation angle-magnetic flux density characteristics Za to Zh for each radial position (Hall ICs 21a to 21h) are measured.

そして、「位置決定工程」では、前記「測定工程」の結果(図5及び図6参照)に基づいて、前記一対の磁石収容部15e内の磁石17間で検出する磁束の極が1回のみ反転(ゼロクロス)する径方向外側領域Hを特定し、その径方向外側領域HにホールIC21の位置を決定する。詳しくは、本実施の形態では、図6に示すように、回転角度−磁束密度特性Zf〜Zhが、前記磁石17間で検出する磁束の極が1回のみ反転(ゼロクロス)するため、図4に示すホールIC21fからホールIC21hまでの径方向位置を前記径方向外側領域Hとして特定し、図3に示すように、ホールIC21の位置を(回転角度−磁束密度特性Zgに対応した径方向外側領域Hの前記ホールIC21gの位置に)決定している。ホールIC21(21g)の位置を具体的に言うと、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17同士が最も近づく点同士を結ぶ線L(図4参照)の直ぐ径方向内側の位置であり、前記締結用孔18及び前記リベット19から大きく離間した位置である。尚、本実施の形態では、図5に示すように、回転角度−磁束密度特性Za〜Zeが、前記磁石17間で検出する磁束の極が2回以上反転(ゼロクロス)してしまうため、図4に示すホールIC21aからホールIC21eまでの径方向位置が前記径方向外側領域Hに含まれない径方向内側の領域として特定される。   In the “position determination step”, based on the result of the “measurement step” (see FIGS. 5 and 6), the magnetic pole detected between the magnets 17 in the pair of magnet housing portions 15e is only once. The radially outer region H to be reversed (zero cross) is specified, and the position of the Hall IC 21 is determined in the radially outer region H. Specifically, in the present embodiment, as shown in FIG. 6, the rotation angle-magnetic flux density characteristics Zf to Zh are reversed (zero crossing) only once for the magnetic pole detected between the magnets 17. The radial position from the Hall IC 21f to the Hall IC 21h is specified as the radial outer region H, and as shown in FIG. 3, the position of the Hall IC 21 (the radial outer region corresponding to the rotation angle-magnetic flux density characteristic Zg) is determined. H is determined at the position of the Hall IC 21g). Specifically speaking, the position of the Hall IC 21 (21g) is the diameter of the line L (see FIG. 4) that connects the points at which the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b are closest to each other. It is a position on the inner side in the direction, and is a position far away from the fastening hole 18 and the rivet 19. In the present embodiment, as shown in FIG. 5, the rotation angle-magnetic flux density characteristics Za to Ze cause the magnetic poles detected between the magnets 17 to be reversed (zero cross) twice or more. The radial position from the Hall IC 21a to the Hall IC 21e shown in 4 is specified as a radially inner region that is not included in the radially outer region H.

又、ここで、前記径方向外側領域Hは、V字収容孔15bを構成する一対の磁石収容部15e内の前記磁石17間において無通電時の磁束密度が高い(径方向外側の)領域であって磁気飽和する領域と対応している(図示しない実験結果より)。即ち、前記径方向外側領域Hは、言い換えると、無通電時高磁束密度領域であって磁気飽和領域と言える。   In addition, here, the radially outer region H is a region where the magnetic flux density at the time of non-energization is high (radially outside) between the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b. This corresponds to the magnetic saturation region (from experimental results not shown). That is, the radially outer region H is, in other words, a high magnetic flux density region when not energized and a magnetic saturation region.

又、前記径方向外側領域Hは、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17同士の対向する側を半分に分ける中心X(図3及び図4参照)より径方向外側の領域と対応している。   Further, the radially outer region H is a radial direction from the center X (see FIGS. 3 and 4) that divides the opposing sides of the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b in half. Corresponds to the outer area.

又、本実施の形態では、図3に示すように、前記締結用孔18及び前記リベット19が、前記径方向外側領域Hの径方向内側端部(前記中心Xを通る円(図3中、2点鎖線の円弧)のすぐ内側)に隣接して配置されている。   Further, in the present embodiment, as shown in FIG. 3, the fastening hole 18 and the rivet 19 are connected to the radially inner end of the radially outer region H (a circle passing through the center X (in FIG. 3, It is arranged adjacent to the inner side) of the arc of the two-dot chain line.

次に、上記実施の形態の特徴的な作用効果を以下に記載する。
(1)ホールIC21は、ロータ11の軸方向端面に対向して配置されるとともに、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17間で検出する磁束の極が1回のみ反転(ゼロクロス)する径方向外側領域Hに配置されるため、レゾルバやセンサ磁石を用いることなく、簡単な構成で高精度にロータ11の回転位置(角度)を検出することができる。
Next, characteristic effects of the above embodiment will be described below.
(1) The Hall IC 21 is disposed opposite to the end face in the axial direction of the rotor 11 and the magnetic pole detected between the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b is once. Therefore, the rotational position (angle) of the rotor 11 can be detected with high accuracy with a simple configuration without using a resolver or a sensor magnet.

詳しくは、構成が複雑で高価なレゾルバを用いず、またロータ11の磁極を構成する磁石16,17の磁束を用いて別途センサ磁石を用いないため、部品点数低減や小型化が可能となり、その構成が簡単となる。また、レゾルバのセンサロータやセンサ磁石をロータに対して高精度に位置決めする必要もないため、その位置決め作業等も含めて構成が簡単となる。そして、ロータ11の軸方向の漏れ磁束を検出するホールIC21は、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17間で検出する磁束の極が1回のみ反転(ゼロクロス)する径方向外側領域Hに配置されるため、ロータ11の磁極(N極、S極)毎に検出する磁束の極が反転(ゼロクロス)し、高精度にロータ11の回転位置(角度)を検出することができる。言い換えると、ホールIC21が、前記一対の磁石収容部15e内の磁石17間で検出する磁束の極が2回以上反転してしまう領域(前記径方向外側領域Hより径方向内側の領域(図4に示すホールIC21aからホールIC21eまで)に配置されると、ロータ11の磁極の変わり目以外でも検出する磁束の極が反転(ゼロクロス)してしまう(図5参照)ことになり、ロータ11の回転位置を検出することが困難となるが、これを回避でき、容易且つ高精度にロータ11の回転位置を検出することができる。よって、ステータ4に最適な回転磁界を発生させることができ、ロータ11を良好に回転駆動制御することができる。   Specifically, since a complicated and expensive resolver is not used, and since no separate sensor magnet is used using the magnetic fluxes of the magnets 16 and 17 constituting the magnetic poles of the rotor 11, the number of parts can be reduced and the size can be reduced. Configuration is simplified. Further, since it is not necessary to position the sensor rotor or sensor magnet of the resolver with high accuracy with respect to the rotor, the configuration including the positioning operation and the like becomes simple. In the Hall IC 21 that detects the leakage magnetic flux in the axial direction of the rotor 11, the magnetic pole detected between the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b is reversed only once (zero cross). Since the magnetic poles detected for each magnetic pole (N pole, S pole) of the rotor 11 are reversed (zero crossing), the rotational position (angle) of the rotor 11 is detected with high accuracy. can do. In other words, the Hall IC 21 is a region in which the poles of the magnetic flux detected between the magnets 17 in the pair of magnet housing portions 15e are reversed twice or more (a region radially inward from the radially outer region H (FIG. 4). Are arranged (from Hall IC 21a to Hall IC 21e) shown in FIG. 5, the pole of the magnetic flux to be detected is reversed (zero cross) other than at the transition of the magnetic pole of the rotor 11 (see FIG. 5). However, this can be avoided and the rotational position of the rotor 11 can be detected easily and with high accuracy, so that an optimal rotating magnetic field can be generated in the stator 4 and the rotor 11 can be detected. Can be controlled to be driven rotationally.

(2)前記径方向外側領域Hは無通電時の磁束密度が高い領域であって磁気飽和する領域と対応しており、この磁気飽和領域に締結用孔18及びリベット19を配置するとコギングトルクやトルクリップルに悪影響を及ぼす虞があるが、径方向外側領域H(磁気飽和領域)の径方向内側端部に隣接して配置したため、これが回避される。しかも、前記径方向外側領域Hの径方向内側端部に隣接して配置されることで、締結用孔18及びリベット19が(上記効果を得ながら)極力径方向外側に配置されることになり、ロータコア15の機械的強度を極力高くすることができる。   (2) The radially outer region H corresponds to a magnetic saturation region where the magnetic flux density is high when no current is applied. If the fastening hole 18 and the rivet 19 are disposed in the magnetic saturation region, cogging torque or Although there is a possibility of adversely affecting the torque ripple, this is avoided because it is disposed adjacent to the radially inner end of the radially outer region H (magnetic saturation region). Moreover, the fastening hole 18 and the rivet 19 are arranged on the radially outer side as much as possible (by obtaining the above effects) by being arranged adjacent to the radially inner end of the radially outer region H. The mechanical strength of the rotor core 15 can be increased as much as possible.

上記実施の形態は、以下のように変更してもよい。
・上記実施の形態では、ホールIC21の位置を、回転角度−磁束密度特性Zgに対応した位置であって、図4に示すホールIC21gの位置に決定して配置したが、前記径方向外側領域Hの他の位置(例えば、図4に示すホールIC21f,21hの位置)に変更してもよい。尚、ホールIC21fの位置を具体的に言うと、前記締結用孔18及び前記リベット19の直ぐ径方向外側の位置であり、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17同士が最も近づく点同士を結ぶ線L(図4参照)から大きく離間した位置である。又、ホールIC21hの位置を具体的に言うと、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17同士が最も近づく点同士を結ぶ線L(図4参照)の直ぐ径方向外側の位置である。
The above embodiment may be modified as follows.
In the above embodiment, the position of the Hall IC 21 is determined to be the position corresponding to the rotation angle-magnetic flux density characteristic Zg and the position of the Hall IC 21g shown in FIG. You may change into other positions (for example, position of Hall IC21f and 21h shown in FIG. 4). Specifically, the position of the Hall IC 21f is a position immediately outside in the radial direction of the fastening hole 18 and the rivet 19, and the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b. This is a position that is greatly separated from a line L (see FIG. 4) that connects points that are closest to each other. Further, specifically speaking, the position of the Hall IC 21h is the radial direction of the line L (see FIG. 4) that connects the points where the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b are closest to each other. The outer position.

又、ホールIC21f,21g,21h毎の回転角度−磁束密度特性Zf,Zg,Zhを図6から考察すると、ホールICが最も径方向外側に配置されたときの回転角度−磁束密度特性Zhが、磁束の極が反転(ゼロクロス)する付近で最も急激に変化する(傾斜が大きい)ため、磁極が明確に判別でき、回転位置の検出に最も適している。   Further, considering the rotation angle-magnetic flux density characteristics Zf, Zg, Zh for each of the Hall ICs 21f, 21g, 21h from FIG. 6, the rotation angle-magnetic flux density characteristic Zh when the Hall IC is arranged on the outermost radial direction is: Since the magnetic flux pole changes most rapidly (inclination is large) in the vicinity of the reversal (zero crossing), the magnetic pole can be clearly discriminated and is most suitable for detecting the rotational position.

・上記実施の形態では、締結用孔18及びリベット19を径方向外側領域H(磁気飽和領域)の径方向内側端部に隣接して配置したが、これに限定されず、他の位置に配置してもよい。又、リベット19は、勿論、ボルトとナット等の他の締結部材に変更してもよい。又、上記実施の形態では、ロータコア15は略円盤状のコアシートが軸方向に積層されることで略円筒状に形成されるものとしたが、コアシートを用いない、例えば、磁性粉体を焼結した焼結コアとしてもよく、この場合、コアシート同士を締結する締結部材は不要となる。   In the above embodiment, the fastening hole 18 and the rivet 19 are disposed adjacent to the radially inner end of the radially outer region H (magnetic saturation region). However, the present invention is not limited to this and is disposed at other positions. May be. Of course, the rivet 19 may be changed to other fastening members such as bolts and nuts. In the above embodiment, the rotor core 15 is formed in a substantially cylindrical shape by laminating a substantially disk-shaped core sheet in the axial direction. However, the core sheet is not used. A sintered sintered core may be used, and in this case, a fastening member for fastening the core sheets to each other is not necessary.

・上記実施の形態では、「測定工程」で、ホールIC21の径方向位置を変更してその径方向位置毎の特性を測定し、「位置決定工程」で、「測定工程」の結果(図5及び図6参照)に基づいて、前記径方向外側領域Hを特定し、その径方向外側領域HにホールIC21の位置を決定するとしたが、他の方法でホールIC21の位置を決定してもよい。   In the above embodiment, in the “measurement step”, the radial position of the Hall IC 21 is changed to measure the characteristics for each radial position, and the “position determination step” results in the “measurement step” (FIG. 5). And the position of the Hall IC 21 is determined in the radially outer region H. However, the position of the Hall IC 21 may be determined by other methods. .

例えば、前記径方向外側領域Hは、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17間において無通電時の磁束密度が高い(径方向外側の)領域であって磁気飽和する領域と対応していることから、上記実施の形態の「測定工程」等を行わずに、ホールIC21の位置を、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17間の無通電時高磁束密度領域又は磁気飽和領域に決定して、配置してもよい。   For example, the radially outer region H is a region having a high magnetic flux density (outside in the radial direction) when no current is applied between the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b. Therefore, the position of the Hall IC 21 is set between the magnets 17 in the pair of magnet accommodating portions 15e constituting the V-shaped accommodating hole 15b without performing the “measuring step” in the above embodiment. It may be determined and arranged in a high magnetic flux density region or a magnetic saturation region when no current is applied.

又、例えば、前記径方向外側領域Hは、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17同士の対向する側を半分に分ける中心X(図3及び図4参照)より径方向外側の領域と対応していることから、上記実施の形態の「測定工程」等を行わずに、ホールIC21の位置を、V字収容孔15bを構成する一対の磁石収容部15e内の磁石17同士の対向する側を半分に分ける中心X(図3及び図4参照)より径方向外側の領域に決定して、配置してもよい。   Further, for example, the radially outer region H is from a center X (see FIGS. 3 and 4) that divides the opposing sides of the magnets 17 in the pair of magnet housing portions 15e constituting the V-shaped housing hole 15b in half. Since it corresponds to the radially outer region, the position of the Hall IC 21 is set in the pair of magnet accommodating portions 15e constituting the V-shaped accommodating hole 15b without performing the “measuring step” or the like in the above embodiment. You may determine and arrange | position to the area | region outside a radial direction from the center X (refer FIG.3 and FIG.4) which divides the side which the magnets 17 oppose in half.

・上記実施の形態では、径方向収容孔15aの径方向外側端部に大幅部15cが形成されるとしたが、これに限定されず、大幅部15cが形成されていない径方向収容孔に変更し、その径方向収容孔の径方向外側端部まで磁石を設けてもよい。   In the above-described embodiment, the large portion 15c is formed at the radially outer end of the radial accommodation hole 15a. However, the present invention is not limited to this, and the radial housing hole is not formed with the large portion 15c. And you may provide a magnet to the radial direction outer side edge part of the radial direction accommodation hole.

・上記実施の形態では、V字収容孔15b(磁石収容部15e)の径方向外側端部にV字側空隙15fが形成されとしたが、これに限定されず、V字側空隙15fが形成されていないV字収容孔(磁石収容部)に変更し、そのV字収容孔(磁石収容部)の径方向外側端部まで磁石を設けてもよい。   In the above embodiment, the V-shaped air gap 15f is formed at the radially outer end portion of the V-shaped accommodating hole 15b (magnet accommodating portion 15e). However, the present invention is not limited to this, and the V-shaped air gap 15f is formed. It changes to the V-shaped accommodation hole (magnet accommodation part) which is not made, and you may provide a magnet to the radial direction outer end part of the V-shaped accommodation hole (magnet accommodation part).

・上記実施の形態では、V字収容孔15bを構成する一対の磁石収容部15eは、径方向外側端部が互いに連通しないようにそれぞれ独立した(軸方向に貫通する)孔として形成されるとしたが、これに限定されず、磁石収容部15eの径方向外側同士を連通する頂部を有するように(1つの繋がった孔として)形成してもよい。尚、この場合、前記収容部間ブリッジ部15lがなくなることになる。   -In said embodiment, when a pair of magnet accommodating part 15e which comprises the V-shaped accommodation hole 15b is each formed as an independent hole (passing in an axial direction) so that a radial direction outer side edge part may not mutually communicate. However, it is not limited to this, You may form so that it may have a top part which connects the radial direction outer sides of the magnet accommodating part 15e (as one connected hole). In this case, the inter-accommodating portion bridge portion 15l is eliminated.

・上記実施の形態では、磁石収容部15eの径方向内側と径方向収容孔15aとの間に形成される内側ブリッジ部15hの軸方向から見た幅が径方向に沿って一定とされるとしたが、これに限定されず、内側ブリッジ部15hの軸方向から見た幅が径方向に沿って変化するように変更してもよい。例えば、上記実施の形態の延設部15iを形成せず、内側ブリッジ部15hを磁石17の(径方向内側の)長手方向端部に当接するような軸方向から見て略三角形状のものとしてもよい。   In the above embodiment, when the width viewed from the axial direction of the inner bridge portion 15h formed between the radially inner side of the magnet housing portion 15e and the radial housing hole 15a is made constant along the radial direction. However, it is not limited to this, You may change so that the width | variety seen from the axial direction of the inner side bridge part 15h may change along a radial direction. For example, the extended portion 15i of the above embodiment is not formed, and the inner bridge portion 15h is substantially triangular when viewed from the axial direction such that the inner bridge portion 15h contacts the longitudinal end portion (inner side in the radial direction) of the magnet 17. Also good.

・上記実施の形態では、ロータコア15は、大幅部15cや突出部15dが軸方向全体に形成されるとしたが、これに限定されず、軸方向の一部のみに大幅部15cや突出部15dが形成されたロータコアに変更してもよい。   In the above embodiment, the rotor core 15 has the large portion 15c and the protruding portion 15d formed in the entire axial direction. However, the present invention is not limited to this, and the large portion 15c and the protruding portion 15d are only partly in the axial direction. It may be changed to a rotor core in which is formed.

・上記実施の形態では、磁石収容部15eは、軸方向から見て直線状であってその幅が一定とされ、磁石収容部15e内に配設される磁石17は、略直方体形状とされるとしたが、これに限定されず、磁石収容部及び磁石の軸方向から見た形状や幅等を変更してもよい。即ち、V字収容孔の略V字形状とは、V字を形成する各直線(一対の直線)がそれぞれ湾曲しているものや、直線の幅が一定ではないもの等を含む形状であって、V字収容孔のV字を形成する各直線に対応した各磁石収容部は、前記直線に対して湾曲しているものや、幅が一定とされていないものを含む。   -In above-mentioned embodiment, the magnet accommodating part 15e is linear shape seeing from an axial direction, the width | variety is made constant, and the magnet 17 arrange | positioned in the magnet accommodating part 15e is made into a substantially rectangular parallelepiped shape. However, the present invention is not limited to this, and the shape, width, and the like of the magnet housing portion and the magnet viewed from the axial direction may be changed. That is, the substantially V-shape of the V-shaped accommodation hole is a shape including those in which each straight line (a pair of straight lines) forming the V-shape is curved, or the width of the straight line is not constant. The magnet housing portions corresponding to the straight lines forming the V-shape of the V-shaped housing holes include those that are curved with respect to the straight lines and those that are not constant in width.

・上記実施の形態の磁石16,17及びロータコア15を軸方向に分割し、それらを周方向にずらして配設してもよい。このようにすると、ステータ4とロータ11間での急激な磁束の流れ(変化)を低減することができコギングトルク及びトルクリップルを低減することができる。   The magnets 16 and 17 and the rotor core 15 of the above embodiment may be divided in the axial direction and arranged so as to be shifted in the circumferential direction. If it does in this way, the flow (change) of the abrupt magnetic flux between the stator 4 and the rotor 11 can be reduced, and cogging torque and torque ripple can be reduced.

・上記実施の形態のティース6の数や磁極数(磁石16,17)の数等は、他の数に変更してもよい。
上記各実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
The number of teeth 6 and the number of magnetic poles (magnets 16 and 17) in the above embodiment may be changed to other numbers.
The technical idea that can be grasped from the above embodiments will be described below together with the effects thereof.

(イ)請求項1に記載の埋込磁石型モータにおいて、前記ロータコアは、複数のコアシートが軸方向に積層されてなるとともに、前記コアシートに形成された軸方向に貫通する締結用孔を貫通する締結部材によって締結固定されたものであって、前記締結用孔及び前記締結部材は、前記径方向外側領域の径方向内側端部に隣接して配置されたことを特徴とする埋込磁石型モータ。   (A) In the embedded magnet type motor according to claim 1, the rotor core includes a plurality of core sheets stacked in an axial direction, and a fastening hole penetrating in the axial direction formed in the core sheet. An embedded magnet, which is fastened and fixed by a penetrating fastening member, wherein the fastening hole and the fastening member are disposed adjacent to a radially inner end of the radially outer region. Type motor.

同構成によれば、前記径方向外側領域は無通電時の磁束密度が高い(径方向外側の)領域であって磁気飽和する領域と対応しており、この磁気飽和領域に締結用孔及び締結部材を配置するとコギングトルクやトルクリップルに悪影響を及ぼす虞があるが、径方向外側領域(磁気飽和領域)の径方向内側端部に隣接して配置されるため、これが回避される。しかも、前記径方向外側領域の径方向内側端部に隣接して配置されることで、締結用孔及び締結部材が(上記効果を得ながら)極力径方向外側に配置されることになり、ロータコアの機械的強度を極力高くすることができる。   According to this configuration, the radially outer region corresponds to a region where the magnetic flux density is high when no current is applied (outside in the radial direction) and magnetically saturates. If the member is disposed, the cogging torque and the torque ripple may be adversely affected, but this is avoided because the member is disposed adjacent to the radially inner end of the radially outer region (magnetic saturation region). In addition, by being disposed adjacent to the radially inner end of the radially outer region, the fastening hole and the fastening member are disposed on the radially outer side as much as possible (while obtaining the above effects), and the rotor core The mechanical strength of can be increased as much as possible.

(ロ)前記ロータの軸方向の漏れ磁束を検出する回転検出用の磁気センサを、前記ロータの軸方向端面に対向して配置するとともに、前記V字収容孔を構成する一対の前記磁石収容部内の前記磁石間の無通電時高磁束密度領域又は磁気飽和領域に配置したことを特徴とする埋込磁石型モータ。   (B) A rotation detecting magnetic sensor for detecting the leakage magnetic flux in the axial direction of the rotor is arranged opposite to the axial end surface of the rotor, and in the pair of magnet housing portions constituting the V-shaped housing hole. An embedded magnet type motor characterized by being disposed in a high magnetic flux density region or a magnetic saturation region when no current is applied between the magnets.

同構成によれば、前記無通電時高磁束密度領域及び前記磁気飽和領域は、前記径方向外側領域と対応している(実験結果より)ため、請求項1に記載の発明の効果と同様の効果を得ることができる。   According to the same configuration, the high magnetic flux density region and the magnetic saturation region during non-energization correspond to the radially outer region (from experimental results), and thus have the same effect as the invention according to claim 1. An effect can be obtained.

(ハ)前記ロータの軸方向の漏れ磁束を検出する回転検出用の磁気センサを、前記ロータの軸方向端面に対向して配置するとともに、前記V字収容孔を構成する一対の前記磁石収容部内の磁石同士の対向する側を半分に分ける中心より径方向外側の領域に配置したことを特徴とする埋込磁石型モータ。   (C) A rotation-detecting magnetic sensor for detecting a leakage magnetic flux in the axial direction of the rotor is disposed opposite to the end surface in the axial direction of the rotor, and in the pair of magnet accommodating portions constituting the V-shaped accommodating hole. An embedded magnet type motor characterized in that the magnet is disposed in a region radially outward from the center where the opposing sides of the magnets are divided in half.

同構成によれば、前記V字収容孔を構成する一対の前記磁石収容部内の磁石同士の対向する側を半分に分ける中心より径方向外側の領域は、前記径方向外側領域と対応している(実験結果より)ため、請求項1に記載の発明の効果と同様の効果を得ることができる。   According to this configuration, the radially outer region from the center that divides the opposing sides of the magnets in the pair of magnet housing portions constituting the V-shaped housing hole in half corresponds to the radially outer region. Therefore, the same effect as that of the invention described in claim 1 can be obtained.

本実施の形態における埋込磁石型モータの一部断面図。FIG. 3 is a partial cross-sectional view of an embedded magnet type motor in the present embodiment. 本実施の形態における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in this Embodiment. 本実施の形態におけるロータの一部拡大平面図。FIG. 3 is a partially enlarged plan view of a rotor in the present embodiment. 本実施の形態における測定工程を説明するための説明図。Explanatory drawing for demonstrating the measurement process in this Embodiment. 本実施の形態における測定工程で得た回転角度−磁束密度特性図。The rotation angle-magnetic-flux-density characteristic figure obtained at the measurement process in this Embodiment. 本実施の形態における測定工程で得た回転角度−磁束密度特性図。The rotation angle-magnetic-flux-density characteristic figure obtained at the measurement process in this Embodiment.

符号の説明Explanation of symbols

11…ロータ、15…ロータコア、15a…径方向収容孔、15b…V字収容孔、15e…磁石収容部、16,17……磁石、21…ホールIC(磁気センサ)、H…径方向外側領域。   DESCRIPTION OF SYMBOLS 11 ... Rotor, 15 ... Rotor core, 15a ... Radial accommodation hole, 15b ... V-shaped accommodation hole, 15e ... Magnet accommodation part, 16, 17 ... Magnet, 21 ... Hall IC (magnetic sensor), H ... Radial direction outside area .

Claims (2)

軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備え、
前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、
前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、
前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成される埋込磁石型モータであって、
前記ロータの軸方向の漏れ磁束を検出する回転検出用の磁気センサを、前記ロータの軸方向端面に対向して配置するとともに、前記V字収容孔を構成する一対の磁石収容部内の前記磁石間で検出する磁束の極が1回のみ反転する径方向外側領域に配置し、その径方向外側領域は磁気飽和領域であることを特徴とする埋込磁石型モータ。
It has a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and includes a rotor in which a magnet is disposed in the housing hole so that the number of magnetic poles becomes P poles,
The housing hole is formed by forming P / 2 radial housing holes extending in a substantially radial direction and substantially V-shaped housing holes protruding outward in the radial direction. Formed alternately,
The magnets are disposed in the radial accommodating holes and are disposed in the respective magnet accommodating portions corresponding to the respective straight lines forming the V shape of the V-shaped accommodating holes,
The magnet arranged in the radial accommodation hole and the magnet arranged in the magnet accommodation part adjacent to one of the circumferential directions constitute one magnetic pole, and the radial accommodation hole An embedded magnet type motor in which one magnetic pole is different between the magnet disposed in the magnet and the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction;
A magnetic sensor for detecting rotation that detects leakage magnetic flux in the axial direction of the rotor is disposed opposite to the end surface in the axial direction of the rotor, and between the magnets in the pair of magnet accommodating portions constituting the V-shaped accommodating hole. The embedded magnet type motor is characterized in that the pole of the magnetic flux detected in step 1 is disposed in a radially outer region where the magnetic pole is reversed only once , and the radially outer region is a magnetic saturation region .
軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備え、
前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、
前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、
前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成される埋込磁石型モータの設計方法であって、
前記ロータの軸方向の漏れ磁束を検出可能な回転検出用の磁気センサを、前記ロータの軸方向端面に対向して配置するとともに、その径方向位置を変更してその径方向位置毎の特性を測定する測定工程と、
前記測定工程の結果に基づいて、前記V字収容孔を構成する一対の磁石収容部内の前記磁石間で検出する磁束の極が1回のみ反転する径方向外側領域に前記磁気センサの位置を決定する位置決定工程とを備え
前記径方向外側領域は磁気飽和領域であることを特徴とする埋込磁石型モータの設計方法。
It has a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and includes a rotor in which a magnet is disposed in the housing hole so that the number of magnetic poles becomes P poles,
The housing hole is formed by forming P / 2 radial housing holes extending in a substantially radial direction and substantially V-shaped housing holes protruding outward in the radial direction. Formed alternately,
The magnets are disposed in the radial accommodating holes and are disposed in the respective magnet accommodating portions corresponding to the respective straight lines forming the V shape of the V-shaped accommodating holes,
The magnet arranged in the radial accommodation hole and the magnet arranged in the magnet accommodation part adjacent to one of the circumferential directions constitute one magnetic pole, and the radial accommodation hole A design method of an embedded magnet type motor in which one magnetic pole is different between the magnet disposed in the magnet and the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction. ,
A rotation detecting magnetic sensor capable of detecting the leakage magnetic flux in the axial direction of the rotor is disposed opposite to the axial end surface of the rotor, and the radial position is changed so that the characteristics for each radial position are changed. Measuring process to measure,
Based on the result of the measuring step, the position of the magnetic sensor is determined in the radially outer region where the magnetic pole detected between the magnets in the pair of magnet housing portions constituting the V-shaped housing hole is reversed only once. and a position determination step of,
The method of designing an embedded magnet type motor, wherein the radially outer region is a magnetic saturation region .
JP2008108006A 2007-11-28 2008-04-17 Internal magnet type motor and design method thereof Expired - Fee Related JP5133765B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008108006A JP5133765B2 (en) 2008-04-17 2008-04-17 Internal magnet type motor and design method thereof
US12/277,572 US7800272B2 (en) 2007-11-28 2008-11-25 Embedded magnet motor and manufacturing method of the same
DE200810044127 DE102008044127A1 (en) 2007-11-28 2008-11-27 Embedded magnet type motor has protrusion which is formed in accommodation hole of core sheet and is protruded from anticlockwise rotating side along radial direction of magnet
CN201210187108.7A CN102738930B (en) 2007-11-28 2008-11-28 embedded magnet type motor
CN201210187181.4A CN102738931B (en) 2007-11-28 2008-11-28 Magnet-embedding type motor
CN200810178386XA CN101447705B (en) 2007-11-28 2008-11-28 Magnet-embedding type motor and manufacture method thereof
CN201210187106.8A CN102738929B (en) 2007-11-28 2008-11-28 Magnet-embedding type motor
US12/861,311 US7868503B1 (en) 2007-11-28 2010-08-23 Embedded magnet motor and manufacturing method of the same
US12/962,292 US8080915B2 (en) 2007-11-28 2010-12-07 Embedded magnet motor and manufacturing method of the same
US13/296,720 US8232703B2 (en) 2007-11-28 2011-11-15 Embedded magnet motor and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108006A JP5133765B2 (en) 2008-04-17 2008-04-17 Internal magnet type motor and design method thereof

Publications (2)

Publication Number Publication Date
JP2009261154A JP2009261154A (en) 2009-11-05
JP5133765B2 true JP5133765B2 (en) 2013-01-30

Family

ID=41387850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108006A Expired - Fee Related JP5133765B2 (en) 2007-11-28 2008-04-17 Internal magnet type motor and design method thereof

Country Status (1)

Country Link
JP (1) JP5133765B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011002402U1 (en) * 2011-02-04 2012-05-07 Dr. Fritz Faulhaber Gmbh & Co. Kg Electric micromotor
KR101848918B1 (en) * 2011-04-13 2018-05-28 엘지이노텍 주식회사 Traction motor
JP5996443B2 (en) * 2013-01-24 2016-09-21 アスモ株式会社 Brushless motor
US9577496B2 (en) 2012-11-13 2017-02-21 Asmo Co., Ltd. Rotor and brushless motor with rotation position detection
DE102013018737A1 (en) 2012-11-13 2014-05-15 Asmo Co., Ltd. BRUSHLESS MOTOR AND ROTOR
JPWO2021199419A1 (en) * 2020-04-03 2021-10-07
JP2023057734A (en) * 2021-10-12 2023-04-24 株式会社デンソー Rotary electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364348A (en) * 1991-06-11 1992-12-16 Nippondenso Co Ltd Dc brushless motor
SG52509A1 (en) * 1992-07-09 1998-09-28 Seiko Epson Corp Brushless motor
JP4777822B2 (en) * 2005-12-22 2011-09-21 アスモ株式会社 Embedded magnet type motor

Also Published As

Publication number Publication date
JP2009261154A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5133765B2 (en) Internal magnet type motor and design method thereof
JP5551408B2 (en) Rotation angle detector
WO2006067878A1 (en) Method for magnetizing ring magnet and magnetic encoder
JP2006158030A (en) Axial gap electric motor
JP5672507B2 (en) Rotating electric machine
JP2014103721A (en) Brushless motor
JP5827904B2 (en) Magnetization method of motor and rotor magnet
JP2006230125A (en) Rotary electric machine
JP5869306B2 (en) Rotor and motor
EP3626970A1 (en) Vacuum pump, magnetic bearing device for use with vacuum pump, and annularly-arranged electromagnets
US11973456B2 (en) Motor
JP2012217250A (en) Rotor and permanent magnet motor
JP2005057855A (en) Brushless motor
JP6052994B2 (en) Rotor and brushless motor
WO2020195003A1 (en) Motor
JP2008043071A (en) Stepping motor and manufacturing method therefor
JP2007221877A (en) Magnet rotor
JP2008286285A (en) Electromagnetic clutch
JP6001428B2 (en) Rotor and brushless motor
JP2008058027A (en) Rotation sensor
JP5973370B2 (en) Rotor and brushless motor
JP7495873B2 (en) Rotating Electric Machine
US20230221147A1 (en) Rotation angle detector
JP6046515B2 (en) Rotor and motor
WO2020195006A1 (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees