JP5133030B2 - Prediction method of saturation swelling amount by two-component resin solution of resin - Google Patents

Prediction method of saturation swelling amount by two-component resin solution of resin Download PDF

Info

Publication number
JP5133030B2
JP5133030B2 JP2007288035A JP2007288035A JP5133030B2 JP 5133030 B2 JP5133030 B2 JP 5133030B2 JP 2007288035 A JP2007288035 A JP 2007288035A JP 2007288035 A JP2007288035 A JP 2007288035A JP 5133030 B2 JP5133030 B2 JP 5133030B2
Authority
JP
Japan
Prior art keywords
resin
component
chemical solution
swelling amount
mixed chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007288035A
Other languages
Japanese (ja)
Other versions
JP2009057533A (en
Inventor
藤井  靖久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2007288035A priority Critical patent/JP5133030B2/en
Priority to CN 200810134939 priority patent/CN101363834B/en
Publication of JP2009057533A publication Critical patent/JP2009057533A/en
Application granted granted Critical
Publication of JP5133030B2 publication Critical patent/JP5133030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂の2成分混合薬液による飽和膨潤量を予測する方法に関する。   The present invention relates to a method for predicting the saturation swelling amount of a resin two-component mixed chemical.

樹脂の1成分薬液による飽和膨潤量の予測については、Floryの著書(非特許文献1)に記されているが、2成分混合薬液における飽和膨潤量の予測は殆ど行われてはいない。
Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953
The prediction of the saturation swelling amount of a resin by a one-component chemical solution is described in Flory's book (Non-patent Document 1), but the saturation swelling amount in a two-component mixed chemical solution is hardly predicted.
Flory, PJ Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953

飽和膨潤量は、耐薬品性試験の必須項目であり、樹脂部品の製品設計において極めて重要である。特に、結晶性樹脂は耐薬品性が求められる箇所に多く用いられることから、結晶性樹脂の飽和膨潤量が必要とされる場合が多い。2成分混合薬液による飽和膨潤量は、単純に、それぞれの薬液1成分での飽和膨潤量にそれぞれの混合比を乗じて合算した値で推定しようとしても、実際の飽和膨潤量から著しく外れ、どの混合比の場合に飽和膨潤量が最大になるかを予測することはできない。そのため、実際に混合比の異なる混合薬液で浸漬試験を繰り返し実施する必要があり、多大の時間と手間を必要とすることから、効率的な予測手段が求められている。   The saturation swelling amount is an essential item for chemical resistance tests, and is extremely important in the product design of resin parts. In particular, since a crystalline resin is often used in a place where chemical resistance is required, a saturation swelling amount of the crystalline resin is often required. The amount of saturation swelling due to a two-component chemical solution is simply different from the actual saturation swelling amount even if it is estimated by simply multiplying the saturation swelling amount of each chemical component by the mixing ratio. In the case of the mixing ratio, it cannot be predicted whether the saturation swelling amount will be maximized. Therefore, it is necessary to repeatedly perform the immersion test with mixed chemical solutions having different mixing ratios, and a great amount of time and labor are required, so an efficient prediction means is required.

樹脂を任意比率で混合された2成分からなる混合薬液に浸漬したときの飽和膨潤量は、式(1),(2),(3)から計算的に求めることができる。
また、結晶性樹脂においては、結合点間のモノマー単位数を、ラメラ晶に挟まれた非晶部の平均厚みを結晶格子における分子鎖軸方向でのモノマー単位の長さで除したものとすることにより、結合点となる主鎖分岐点が殆ど無いかもしくは僅かな樹脂においても計算式を応用することができる。
The saturated swelling amount when the resin is immersed in a mixed chemical solution composed of two components mixed at an arbitrary ratio can be calculated from equations (1), (2), and (3).
In the crystalline resin, the number of monomer units between bonding points is obtained by dividing the average thickness of the amorphous part sandwiched between lamella crystals by the length of the monomer unit in the molecular chain axis direction in the crystal lattice. Therefore, the calculation formula can be applied even to a resin having few or few main chain branch points as bonding points.

1成分薬液による飽和膨潤量の式を拡張することで導いた、次の式(1),(2),(3)を用いることにより、2成分混合薬液による飽和膨潤量を計算で求めることができる。ここで、飽和膨潤量とは、薬液に浸漬した樹脂へ浸透した薬液の飽和重量のことであり、浸漬前の樹脂重量に対して百分率で表すことができる
3成分以上の混合薬液においても、それぞれの薬液1成分での飽和膨潤量が1番多い成分と2番目に多い成分に対して本発明を実施することにより、近似的に飽和膨潤量を予測することができる。
By using the following formulas (1), (2), and (3) derived by expanding the formula for the amount of saturated swelling due to a one-component chemical, the amount of saturation swelling due to a two-component mixed chemical can be calculated. it can. Here, the saturated swelling amount refers to a saturated weight of the chemical liquid has penetrated into the resin soaked in the chemical, it is table Succoth a percentage relative to the resin weight before immersion.
Even in a mixed chemical solution of three or more components, the saturated swelling amount is approximately predicted by carrying out the present invention for the component having the largest saturated swelling amount and the second largest component in each chemical solution component. be able to.

Figure 0005133030
Figure 0005133030

ここで、ν1,ν2,ν3は膨潤した樹脂における体積分率を表し、
ν1は混合薬液の第一成分の飽和膨潤体積分率、
ν2は混合薬液の第二成分の飽和膨潤体積分率、
ν3は樹脂の飽和膨潤体積分率である。
χ12,χ13,χ23はFlory-Huggins相互作用パラメータを表し、
χ12は混合薬液の第一成分と第二成分との相互作用パラメータ、
χ13は混合薬液の第一成分と樹脂との相互作用パラメータ、
χ23は混合薬液の第二成分と樹脂との相互作用パラメータである。
nは結合点間のモノマー単位数である。
1は混合薬液における第一成分の体積分率である。
Here, ν 1 , ν 2 , and ν 3 represent volume fractions in the swollen resin,
ν 1 is the saturation swelling volume fraction of the first component of the mixed chemical solution,
ν 2 is the saturation swelling volume fraction of the second component of the mixed chemical solution,
ν 3 is the saturated swelling volume fraction of the resin.
χ 12 , χ 13 , χ 23 represent Flory-Huggins interaction parameters,
χ 12 is the interaction parameter between the first and second components of the mixed drug solution,
χ 13 is the interaction parameter between the first component of the mixed chemical and the resin,
χ 23 is an interaction parameter between the second component of the mixed chemical solution and the resin.
n is the number of monomer units between the bonding points.
u 1 is the volume fraction of the first component in the mixed chemical solution.

また、χ13及びχ23は、樹脂を第一成分だけの薬液及び第二成分だけの薬液にそれぞれ浸漬したときの飽和膨潤量を実際に測定することで、式(4)及び(5)からそれぞれ計算的に求めることができる。 Further, χ 13 and χ 23 are obtained from the equations (4) and (5) by actually measuring the saturation swelling amount when the resin is immersed in the chemical solution containing only the first component and the chemical solution containing only the second component, respectively. Each can be calculated computationally.

Figure 0005133030
Figure 0005133030

χ12は蒸気圧測定から求めることができる。また、これらの値は既に文献に示されている値を用いてもかまわない。
また、樹脂を第一成分だけの薬液及び第二成分だけの薬液にそれぞれ浸漬したときの飽和膨潤量に加えて、任意のある一つの混合比率u1で混合した二成分混合薬液に浸漬したときの飽和膨潤量を実測することで、式(4)及び(5)からそれぞれ求めたχ13及びχ23の値を用いて、式(1)、(2)、(3)からχ12を計算的に求めることができる。
χ 12 can be obtained from vapor pressure measurement. Also, these values may be values already shown in the literature.
Moreover, in addition to the saturated swelling amount when the resin is immersed in the chemical solution of only the first component and the chemical solution of only the second component, when the resin is immersed in a two-component mixed chemical solution mixed at any one mixing ratio u 1 Using the values of χ 13 and χ 23 obtained from equations (4) and (5), respectively, calculate χ 12 from equations (1), (2), and (3) Can be obtained.

結晶性樹脂は結晶部と非晶部の積層構造から成るが、結晶部を形成するラメラ晶は相互にタイモレキュールで結ばれており、ラメラ晶に挟まれた部分(タイモレキュールを含む)が非晶部である。そこで、結晶部を、架橋構造を持つ非晶性樹脂における高分子の結合点と同等とみなすことで、結晶性樹脂についても、結合点間のモノマー単位数nを決めることができ、飽和膨潤量を予測することができる。   The crystalline resin is composed of a laminated structure of crystal and amorphous parts, but the lamellar crystals that form the crystal part are connected to each other by thyme liqueur, and the part sandwiched between lamella crystals (including thymolecule) Is an amorphous part. Therefore, by regarding the crystal part to be equivalent to the bonding point of the polymer in the amorphous resin having a cross-linked structure, the number n of monomer units between the bonding points can be determined for the crystalline resin, and the saturation swelling amount Can be predicted.

結晶性樹脂においては、樹脂の非晶部のみが2成分の薬液によって膨潤するので、非晶部の割合を求める必要がある。例えば、密度法で結晶化度を測定することで、非晶部の割合を求めることができる。
ラメラ晶と非晶部で形成される積層構造における非晶部の平均厚みは、例えば小角X線散乱から求めることができる。
ほとんどの樹脂の結晶構造は解析され、文献に結晶格子の長さとモノマー数が示されており、分子鎖軸方向でのモノマー単位の長さを知ることができる。
非晶部の厚みを結晶格子における分子鎖軸方向でのモノマー単位の長さで除することにより、両端が結晶部に組み込まれた非晶部中の部分鎖のモノマー単位数nを決めることができる。
In the crystalline resin, only the amorphous part of the resin is swollen by the two-component chemical solution, so it is necessary to determine the ratio of the amorphous part. For example, the ratio of the amorphous part can be obtained by measuring the crystallinity by the density method.
The average thickness of the amorphous part in the laminated structure formed by the lamellar crystal and the amorphous part can be obtained from small angle X-ray scattering, for example.
The crystal structure of most resins has been analyzed, and the literature shows the length of the crystal lattice and the number of monomers, so that the length of the monomer unit in the molecular chain axis direction can be known.
By dividing the thickness of the amorphous part by the length of the monomer unit in the molecular chain axis direction in the crystal lattice, the number n of monomer units of the partial chain in the amorphous part in which both ends are incorporated in the crystal part can be determined. it can.

上述のパラメータを用いて、樹脂の非晶部における各成分の体積分率を式(1),(2),(3)から計算的に求めることにより、2成分からなる混合薬液に浸漬したときの飽和膨潤量が求まる。   When the volume fraction of each component in the amorphous part of the resin is calculated from the equations (1), (2), and (3) using the above parameters, and when immersed in a mixed chemical solution consisting of two components Is obtained.

以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。
実施例1
ポリフェニレンサルファイド(PPS)樹脂での60℃におけるトルエン(Toluene)/エタノール(Ethanol)混合薬液における飽和膨潤量を計算で求め、実際の測定値と比較した(PPS樹脂における各種パラメータ)
・結晶化度;30%(密度測定から、一般的な方法で決定した。)
・非晶部の厚み;6.6nm(小角X散乱測定から、一般的な方法で決定した。)
・結晶格子における分子鎖軸方向でのモノマー単位の長さ;1.026/2=0.513 nm
PPSの結晶格子c軸(分子鎖軸方向)長さ;1.026nm
PPSの結晶格子を形成するモノマー数;2
・結合点間のモノマー単位数;n=6.6/0.513=12.9
次に、薬液1をToluene(密度0.87160g/cm3)とし、飽和膨潤量(60℃)を実験により求めた。
飽和膨潤量は、浸漬前の試験片重量と浸漬平衡後の試験片重量の差から得る。
PPS(密度1.35g/cm3)100gに対して7.27g
結晶化度から非晶分率は0.70であり、樹脂の密度は1.35なので、
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1
Saturated swelling amount in toluene (Ethanol) mixed chemical solution at 60 ° C in polyphenylene sulfide (PPS) resin was calculated and compared with actual measured values (various parameters in PPS resin)
Crystallinity: 30% (determined by a general method from density measurement)
Amorphous part thickness: 6.6 nm (determined by a general method from small angle X scattering measurement)
-Length of monomer unit in the direction of the molecular chain axis in the crystal lattice; 1.026 / 2 = 0.513 nm
Crystal lattice c-axis (molecular chain axis direction) length of PPS; 1.026 nm
Number of monomers forming the crystal lattice of PPS; 2
・ Number of monomer units between bonding points; n = 6.6 / 0.513 = 12.9
Next, the chemical solution 1 was Toluene (density 0.87160 g / cm 3 ), and the saturation swelling amount (60 ° C.) was obtained by experiments.
The saturation swelling amount is obtained from the difference between the weight of the test piece before immersion and the weight of the test piece after immersion equilibrium.
7.27 g for 100 g of PPS (density 1.35 g / cm 3 )
From the crystallinity, the amorphous fraction is 0.70 and the resin density is 1.35.

Figure 0005133030
Figure 0005133030

となる。
これらの結果を前記式(4)に代入し計算すると、
混合薬液の第一成分と樹脂との相互作用パラメータ:χ13=1.45となる。
薬液2をEthanol(密度0.7893g/cm3)とし、飽和膨潤量(60℃)を実験により求めた。
PPS(密度1.35g/cm3)100gに対して0.85g
であり、上記と同様の計算からν3=0.980となる。
これらの結果を前記式(5)に代入し計算すると、
混合薬液の第二成分と樹脂との相互作用パラメータ:χ23=3.01
となる。
薬液1−2間の相互作用パラメータ(60℃)は、
χ12=1.75(文献中間値)
であり、薬液混合比u1=0.75とした場合、式(1),(2),(3)は次のようになる。
It becomes.
Substituting these results into the equation (4) and calculating,
The interaction parameter between the first component of the mixed chemical and the resin is χ 13 = 1.45.
The chemical solution 2 was Ethanol (density 0.7893 g / cm 3 ), and the saturation swelling amount (60 ° C.) was determined by experiment.
0.85 g for 100 g of PPS (density 1.35 g / cm 3 )
From the same calculation as above, ν 3 = 0.980.
Substituting these results into the equation (5) and calculating,
Interaction parameter between the second component of the mixed chemical and the resin: χ 23 = 3.01
It becomes.
The interaction parameter (60 ° C) between the chemicals 1-2 is
χ 12 = 1.75 (intermediate reference value)
When the chemical solution mixing ratio u 1 = 0.75, the equations (1), (2), and (3) are as follows.

Figure 0005133030
Figure 0005133030

その解は、
ν1=0.110、ν2=0.020、ν3=0.870となる。
次の連立方程式から、PPS(密度1.35g/cm 3 )100gに対する高分子ゲルの膨潤平衡時の薬液1(Toluene),薬液2(Ethanol)の重量(それぞれw1,w2 する)が算出される。
The solution is
ν 1 = 0.110, ν 2 = 0.020, and ν 3 = 0.870.
Calculated from the following simultaneous equations, PPS (density 1.35 g / cm 3) chemical 1 during swelling equilibrium polymer gel for 100g (Toluene), (a, respectively w 1, w 2) by weight of the drug solution 2 (Ethanol) is Is done.

Figure 0005133030
Figure 0005133030

w1=5.718、w2=0.9405
w1+w2=6.66
これから、飽和膨潤量を重量変化率で表すと、6.66%となる。
薬液混合比u1=0.50の場合も同様に計算される。
w1+w2=6.05
同じく重量変化率は、6.05%となる。
薬液混合比u1=0.25の場合も同様に計算される。
w1+w2=4.51
同じく重量変化率は、4.51%となる。
w 1 = 5.718, w 2 = 0.9405
w 1 + w 2 = 6.66
From this, the saturation swelling amount is 6.66% when expressed in terms of weight change rate.
The same calculation is performed when the chemical mixture ratio u 1 = 0.50.
w 1 + w 2 = 6.05
Likewise, the rate of change in weight is 6.05%.
The same calculation is performed when the chemical solution mixing ratio u 1 = 0.25.
w 1 + w 2 = 4.51
Similarly, the weight change rate is 4.51%.

(参考例)
実施例1と同じ成分で同じ割合の混合薬液を用いて、60℃におけるPPS100 gあたりの飽和膨潤量を実験により求めた。
薬液混合比u1=0.75における飽和膨潤量は、w1+w2=6.59であった。
即ち、重量変化率は6.59%となる。
薬液混合比u1=0.50における飽和膨潤量は、w1+w2=6.08であった。
即ち、重量変化率は6.08%となる。
薬液混合比u1=0.25における飽和膨潤量は、w1+w2=4.30であった。
即ち、重量変化率は4.30%となる。
(Reference example)
Using a mixed chemical solution having the same components and the same proportion as in Example 1, the saturation swelling amount per 100 g of PPS at 60 ° C. was determined by experiment.
The saturation swelling amount at the chemical liquid mixing ratio u 1 = 0.75 was w 1 + w 2 = 6.59.
That is, the weight change rate is 6.59%.
The saturation swelling amount at the chemical liquid mixing ratio u 1 = 0.50 was w 1 + w 2 = 6.08.
That is, the weight change rate is 6.08%.
The saturation swelling amount at the chemical liquid mixing ratio u 1 = 0.25 was w 1 + w 2 = 4.30.
That is, the weight change rate is 4.30%.

参考の実験値と実施例1の計算で求めた予測値をプロットした図である。It is the figure which plotted the experimental value of reference, and the predicted value calculated | required by calculation of Example 1. FIG.

Claims (2)

結晶性樹脂を2成分混合薬液に浸漬したときの飽和膨潤量の予測方法であって、
nを、ラメラ晶に挟まれた非晶部の平均厚みを結晶格子における分子鎖軸方向でのモノマー単位の長さで除したものとして、式(1),(2),(3)からν 1 ,ν 2 ,ν 3 を計算的に求めた後、結晶性樹脂の非晶部のみが膨潤するとして飽和膨潤量を計算的に求める飽和膨潤量予測方法。
Figure 0005133030
ここで、ν1,ν2,ν3は膨潤した樹脂における体積分率を表し、
ν1は混合薬液の第一成分の飽和膨潤体積分率、
ν2は混合薬液の第二成分の飽和膨潤体積分率、
ν3は樹脂の飽和膨潤体積分率である。
χ12,χ13,χ23はFlory-Huggins相互作用パラメータを表し、
χ12は混合薬液の第一成分と第二成分との相互作用パラメータ、
χ13は混合薬液の第一成分と樹脂との相互作用パラメータ、
χ23は混合薬液の第二成分と樹脂との相互作用パラメータである。
nは結合点間のモノマー単位数である。
1は混合薬液における第一成分の体積分率である。
A method for predicting a saturated swelling amount when a crystalline resin is immersed in a two-component mixed chemical solution ,
n, the average thickness of the amorphous portion sandwiched between the lamellae as divided by the length of the monomer units in the molecular chain axis direction of the crystal lattice, the formula (1), from (2), (3) [nu A saturated swelling amount prediction method in which, after 1 , 2 , ν 2 and ν 3 are calculated computationally, the saturated swelling amount is calculated by assuming that only the amorphous part of the crystalline resin swells.
Figure 0005133030
Here, ν 1 , ν 2 , and ν 3 represent volume fractions in the swollen resin,
ν 1 is the saturation swelling volume fraction of the first component of the mixed chemical solution,
ν 2 is the saturation swelling volume fraction of the second component of the mixed chemical solution,
ν 3 is the saturated swelling volume fraction of the resin.
χ 12 , χ 13 , χ 23 represent Flory-Huggins interaction parameters,
χ 12 is the interaction parameter between the first and second components of the mixed drug solution,
χ 13 is the interaction parameter between the first component of the mixed chemical and the resin,
χ 23 is an interaction parameter between the second component of the mixed chemical solution and the resin.
n is the number of monomer units between the bonding points.
u 1 is the volume fraction of the first component in the mixed chemical solution.
結晶性樹脂がポリフェニレンサルファイドである請求項記載の飽和膨潤量予測方法。 Saturated swelling amount prediction method according to claim 1, wherein the crystalline resin is a polyphenylene sulfide.
JP2007288035A 2007-08-07 2007-11-06 Prediction method of saturation swelling amount by two-component resin solution of resin Active JP5133030B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007288035A JP5133030B2 (en) 2007-08-07 2007-11-06 Prediction method of saturation swelling amount by two-component resin solution of resin
CN 200810134939 CN101363834B (en) 2007-08-07 2008-08-07 Prediction method of equilibrium swelling quantity for two-componnet mixed physic liquor of resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007204895 2007-08-07
JP2007204895 2007-08-07
JP2007288035A JP5133030B2 (en) 2007-08-07 2007-11-06 Prediction method of saturation swelling amount by two-component resin solution of resin

Publications (2)

Publication Number Publication Date
JP2009057533A JP2009057533A (en) 2009-03-19
JP5133030B2 true JP5133030B2 (en) 2013-01-30

Family

ID=40390317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288035A Active JP5133030B2 (en) 2007-08-07 2007-11-06 Prediction method of saturation swelling amount by two-component resin solution of resin

Country Status (2)

Country Link
JP (1) JP5133030B2 (en)
CN (1) CN101363834B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170037365A (en) 2015-09-25 2017-04-04 주식회사 엘지화학 Method for estimating polymer swelling amounts to solvent and estimating system usung the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679714B1 (en) * 2013-09-02 2016-11-25 주식회사 엘지화학 Method for calculating the solvent-polymer swelling parameter and system using the same
KR101851429B1 (en) 2015-02-13 2018-04-23 주식회사 엘지화학 Secondary battery
KR102421114B1 (en) 2018-08-10 2022-07-13 주식회사 엘지화학 Method for screening a solvent and method for preparing a composition using the same
WO2020180109A1 (en) 2019-03-07 2020-09-10 주식회사 엘지화학 Composition for optical film, optical film and display apparatus comprising the same
KR102242549B1 (en) 2019-03-07 2021-04-20 주식회사 엘지화학 Composition for optical film, optical film and display apparatus comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2909902C3 (en) * 1979-03-14 1981-10-01 Chemische Werke Hüls AG, 4370 Marl Method for examining the grain structure of plastic powders
FR2585130B1 (en) * 1985-07-18 1987-10-09 Solvay APPARATUS FOR RAPID DETERMINATION OF RHEOLOGICAL PROPERTIES OF THERMOPLASTIC MATERIALS
CN2124471U (en) * 1991-12-27 1992-12-09 南开大学 Swelling capacity tester
JP2005274313A (en) * 2004-03-24 2005-10-06 Yokohama Rubber Co Ltd:The Method of predicting solubility of cross-linked polymer molecule in solvent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170037365A (en) 2015-09-25 2017-04-04 주식회사 엘지화학 Method for estimating polymer swelling amounts to solvent and estimating system usung the same

Also Published As

Publication number Publication date
CN101363834B (en) 2013-07-10
JP2009057533A (en) 2009-03-19
CN101363834A (en) 2009-02-11

Similar Documents

Publication Publication Date Title
JP5133030B2 (en) Prediction method of saturation swelling amount by two-component resin solution of resin
Widin et al. Unexpected consequences of block polydispersity on the self-assembly of ABA triblock copolymers
Nakajima et al. Characterization of internal fracture process of double network hydrogels under uniaxial elongation
Abbas et al. Monte Carlo simulations of salt solutions: exploring the validity of primitive models
Chantawansri et al. Entangled triblock copolymer gel: Morphological and mechanical properties
Sharma et al. An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts
Sliozberg et al. Effect of polymer solvent on the mechanical properties of entangled polymer gels: Coarse-grained molecular simulation
Postel et al. Solvent dependent solute solubility governs retention in silicone based organic solvent nanofiltration
Salahshoori et al. A deep insight of solubility behavior, mechanical quantum, thermodynamic, and mechanical properties of Pebax-1657 polymer blends with various types of vinyl polymers: a mechanical quantum and molecular dynamics simulation study
Zhu et al. Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents
Zafarani-Moattar et al. Effect of temperature on volumetric and transport properties of ternary poly ethylene glycol di-methyl ether 2000+ poly ethylene glycol 400+ water and the corresponding binary aqueous solutions: Measurement and correlation
Samras et al. An analysis of coupled extensional-torsional oscillations in wire rope
Tugui et al. Bimodal silicone interpenetrating networks sequentially built as electroactive dielectric elastomers
Ivanov et al. Orientational ordering transitions of semiflexible polymers in thin films: A Monte Carlo simulation
Goodson et al. Nanostructure stability and swelling of ternary block copolymer/homopolymer blends: A direct comparison between dissipative particle dynamics and experiment
Qavi et al. Elasticity and yielding of mesophases of block copolymers in water–oil mixtures
Watanabe et al. Rheological and dielectric behavior of dipole-inverted (SIS) p-type multiblock copolymers: estimates of bridge/loop fractions for respective I blocks and effect of loops on high extensibility of bridges
Anton et al. Dilatational rheology of a gel point network formed by nonionic soluble surfactants at the oil–water interface
Osipov et al. Molecular theory of liquid-crystal ordering in rod-coil diblock copolymers
Liu et al. Influence of strain amplification near crack tip on the fracture resistance of carbon black–filled SBR
EP1862913A3 (en) Spectrum interpolation method, spectrum interpolation apparatus, and spectrum interpolation program storage medium
Kato et al. Surface dilational moduli of poly (ethylene oxide), poly (methyl methacrylate), and their blend films
Solar et al. Chain relaxation in thin polymer films: turning a dielectric type-B polymer into a type-A′ one
Lei et al. Membrane rigidity induced by grafted polymer brush
Dogu et al. Collapse of acrylamide‐based polyampholyte hydrogels in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5133030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250