JP5132436B2 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
JP5132436B2
JP5132436B2 JP2008160229A JP2008160229A JP5132436B2 JP 5132436 B2 JP5132436 B2 JP 5132436B2 JP 2008160229 A JP2008160229 A JP 2008160229A JP 2008160229 A JP2008160229 A JP 2008160229A JP 5132436 B2 JP5132436 B2 JP 5132436B2
Authority
JP
Japan
Prior art keywords
refrigerant
sealed container
refrigerating machine
discharge
machine oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008160229A
Other languages
Japanese (ja)
Other versions
JP2010001775A (en
Inventor
太郎 加藤
稔 石井
英明 前山
毅 伏木
文彦 石園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008160229A priority Critical patent/JP5132436B2/en
Publication of JP2010001775A publication Critical patent/JP2010001775A/en
Application granted granted Critical
Publication of JP5132436B2 publication Critical patent/JP5132436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、冷媒を圧縮する冷媒圧縮機に関する。   The present invention relates to a refrigerant compressor that compresses a refrigerant.

カーエアコンの分野では、低GWP(地球温暖化係数)冷媒として、現状HFO−1234yf(CFCF=CH)が有力視されている。 In the field of car air conditioners, the current status is HFO-1234yf (CF 3 CF = CH 2 ) as a low GWP (global warming potential) refrigerant.

定置式の空気調和機では、HFC冷媒の代替策が見えないのが現状ではあるが、炭素の二重結合を有する炭化水素やHFCをベースにして不燃化したもの(例えば二重結合を有する化合物や臭素やヨウ素や酸素などを組み合わせたもの)等が提案されている。   In the stationary air conditioner, the alternative to HFC refrigerant is not visible at present, but hydrocarbons having carbon double bonds and those incombustible based on HFC (for example, compounds having double bonds) Or a combination of bromine, iodine, oxygen, and the like).

密閉容器内に、塩素とフッ素を含まない炭化水素系化合物の冷媒を圧縮する圧縮機およびこの圧縮機を駆動する電動機と、この冷媒と相溶性を有する冷凍機油とを収容する密閉型冷媒圧縮機において、5wt%以内の内部離型剤を含有し、あるいは射出成形もしくは押し出し成形時の成形型に離型剤を塗布して製造された直鎖型のPPS樹脂、レゾール型のフェノール樹脂、フッ素樹脂(PTFE、ETFE、FEP、PFA)、PA樹脂、PI樹脂、PBT樹脂、PET樹脂、の群から選択される少なくとも1種類よりなる絶縁用構成部材および摺動部材の少なくとも一方を具備し、炭化水素系化合物の冷媒は、R170(エタン)、R290(プロパン)、R600(n−ブタン)、R600a(I−ブタン)、R1150(エチレン)、R1270(プロピレン)の群から選択される1種類以上の冷媒からなる密閉形電動圧縮機が提案されている(例えば、特許文献1参照)。   A hermetic refrigerant compressor containing a compressor that compresses a refrigerant of a hydrocarbon compound that does not contain chlorine and fluorine, an electric motor that drives the compressor, and a refrigerating machine oil that is compatible with the refrigerant in a hermetic container , A linear PPS resin, a resol type phenolic resin, a fluororesin that contains an internal mold release agent of 5 wt% or less, or is manufactured by applying a mold release agent to a mold during injection molding or extrusion molding (PTFE, ETFE, FEP, PFA), at least one of an insulating structural member selected from the group of PA resin, PI resin, PBT resin, and PET resin and a sliding member, and a hydrocarbon R170 (ethane), R290 (propane), R600 (n-butane), R600a (I-butane), R1150 (ethylene) R1270 consisting of one or more refrigerants selected from the group of (propylene) sealed electric compressor has been proposed (e.g., see Patent Document 1).

また、圧縮機をGWP150以下の低GWP冷媒に適合させることにより、地球温暖化への影響を十分抑制するために、軟質基材に硬質粒子が分散している材料で摺動部材を構成するとともに、摺動部材の表層部に傾斜層を設けて表面を軟質基材リッチにしたことにより、油膜形成能力が高くなり、GWPが150以下でR134aより極性が高い冷媒雰囲気における摺動部材の摩耗を十分抑制することができるので、低GWP冷媒用の圧縮機が得られる。また、冷媒としては、R134aより極性が高くかつGWPが150以下であればよく、HFCをベースにして不燃化したもの、例えば二重結合を有する化合物や臭素やヨウ素や酸素などを組み合わせたものでもよい。また、混合冷媒で、少なくとも一つがR134aより極性が高いものを含むものであってもよいということが提案されている(例えば、特許文献2参照)。
特開2000−274360号公報 特開2008−2368号公報
In addition, in order to sufficiently suppress the influence on global warming by adapting the compressor to a low GWP refrigerant of GWP 150 or less, the sliding member is made of a material in which hard particles are dispersed in a soft base material. By providing an inclined layer on the surface layer portion of the sliding member to make the surface rich with a soft base material, the oil film forming ability is increased, and the sliding member wears in a refrigerant atmosphere having a GWP of 150 or less and a polarity higher than R134a. Since it can suppress enough, the compressor for low GWP refrigerant | coolants is obtained. The refrigerant may be higher in polarity than R134a and GWP is 150 or less, and may be incombustible based on HFC, such as a compound having a double bond, bromine, iodine, oxygen, or the like. Good. Further, it has been proposed that at least one of the mixed refrigerants may have a higher polarity than R134a (see, for example, Patent Document 2).
JP 2000-274360 A JP 2008-2368 A

炭素の二重結合を有する物質は、安定性に課題があり、分解及び重合の可能性がある。また、炭素の二重結合を有する物質は、液冷媒の表面張力が大きいことが知られている。   A substance having a carbon double bond has a problem in stability, and there is a possibility of decomposition and polymerization. Further, it is known that a substance having a carbon double bond has a large surface tension of the liquid refrigerant.

圧縮機が長時間の停止で低温となった状態からの起動においては、冷凍機油温度が冷媒ガスの飽和温度を上回るまでは、圧縮された冷媒ガスが容器内で凝縮し、密閉容器内に冷凍機油と共に貯留する現象(寝込み現象)が知られている。   When starting from a state where the compressor has been cooled for a long time, the compressed refrigerant gas condenses in the container and is frozen in the sealed container until the refrigerator oil temperature exceeds the saturation temperature of the refrigerant gas. A phenomenon of storing together with machine oil (sleeping phenomenon) is known.

密閉容器内での冷凍機油の加熱は、主として圧縮要素や密閉容器内の冷媒ガスからの熱伝達に頼っている。そのため、冷凍機油温度が冷媒ガスの飽和温度を上回るまでには、長時間を要することがある。   The heating of the refrigeration oil in the sealed container mainly relies on heat transfer from the compression element and the refrigerant gas in the sealed container. Therefore, it may take a long time for the refrigerator oil temperature to exceed the saturation temperature of the refrigerant gas.

冷凍機油温度が冷媒ガスの飽和温度を上回らない状態では、特に液冷媒の表面張力が大きい冷媒であると、冷凍機油中の液冷媒による液滴が大きい液塊に成長する。冷媒純度の高い液塊が圧縮要素の給油経路に供給されると、潤滑不良により故障する恐れがある。   In a state where the refrigerator oil temperature does not exceed the saturation temperature of the refrigerant gas, the liquid refrigerant in the refrigerator oil grows into a large liquid mass especially when the refrigerant has a high surface tension. If a liquid mass with high refrigerant purity is supplied to the oil supply path of the compression element, there is a risk of failure due to poor lubrication.

炭素の二重結合を有する物質は、液冷媒の表面張力が大きく、理論上の吐出温度が低い冷媒の場合、上記現象が顕著になる。従って、炭素の二重結合を有する物質を冷媒に使用する場合、冷凍機油中の液冷媒による液滴が大きい液塊に成長し、冷媒純度の高い液塊が圧縮要素の給油経路に供給されて潤滑不良となる点の対策が必要である。   In the case of a substance having a carbon double bond, the above phenomenon becomes remarkable in the case of a refrigerant having a large surface tension of the liquid refrigerant and a low theoretical discharge temperature. Therefore, when a substance having a carbon double bond is used as a refrigerant, the liquid refrigerant droplets in the refrigeration oil grow into a large liquid mass, and the liquid mass with high refrigerant purity is supplied to the oil supply path of the compression element. It is necessary to take measures to prevent poor lubrication.

上記特許文献1、2では、この点に関する言及は見当たらない。   In the above Patent Documents 1 and 2, there is no mention of this point.

この発明は、上記のような課題を解決するためになされたもので、吐出ガスによる攪拌で液塊を細分化することで、冷凍機油温度が冷媒ガスの飽和温度を上回るまでの間の液塊による潤滑阻害を抑制すると共に、冷凍機油を吐出ガスにより直接的に加熱することにより、冷凍機油温度が冷媒ガスの飽和温度を上回るまでの時間を短縮し、液冷媒を解消することで圧縮要素の潤滑性を改善できる冷媒圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems. By subdividing the liquid mass by stirring with the discharge gas, the liquid mass until the temperature of the refrigerator oil exceeds the saturation temperature of the refrigerant gas. In addition to suppressing the lubrication hindrance by heating and directly heating the refrigerating machine oil with the discharge gas, the time until the refrigerating machine oil temperature exceeds the saturation temperature of the refrigerant gas is shortened, and by eliminating the liquid refrigerant, the compression element It aims at providing the refrigerant compressor which can improve lubricity.

この発明に係る冷媒圧縮機は、密閉容器と、前記密閉容器内に設けられ、冷媒を圧縮し圧縮された冷媒ガスを吐出する圧縮要素と、前記密閉容器内に貯留され、前記圧縮要素の潤滑を行う冷凍機油とを備え、前記圧縮要素から吐出される前記圧縮された冷媒ガスの少なくとも一部が前記冷凍機油中に直接放出されることを特徴とする。   The refrigerant compressor according to the present invention includes a sealed container, a compression element that is provided in the sealed container, compresses the refrigerant, and discharges the compressed refrigerant gas, and is stored in the sealed container, and lubricates the compression element. And at least a part of the compressed refrigerant gas discharged from the compression element is directly discharged into the refrigerating machine oil.

この発明に係る冷媒圧縮機は、圧縮要素から吐出される圧縮された冷媒ガスの少なくとも一部が冷凍機油中に直接放出される構成にしたので、冷媒圧縮機が長時間の停止で低温となった状態からの起動において、吐出ガス流による攪拌により冷凍機油中の液冷媒が大きい液塊に成長することを抑制し、液塊による潤滑阻害を抑制することができる。   In the refrigerant compressor according to the present invention, at least a part of the compressed refrigerant gas discharged from the compression element is directly discharged into the refrigeration oil, so that the refrigerant compressor becomes a low temperature when stopped for a long time. In the start-up from this state, it is possible to suppress the liquid refrigerant in the refrigeration oil from growing into a large liquid mass by agitation by the discharge gas flow, and to suppress the lubrication inhibition by the liquid mass.

また、冷凍機油を吐出ガスにより直接的に加熱することにより、冷凍機油温度が冷媒ガスの飽和温度を上回るまでの時間を短縮し、液冷媒を解消することで圧縮要素の潤滑性を改善することができる。   Also, by directly heating the refrigerating machine oil with the discharge gas, the time until the refrigerating machine oil temperature exceeds the saturation temperature of the refrigerant gas is shortened, and the lubricity of the compression element is improved by eliminating the liquid refrigerant. Can do.

その結果、液冷媒の表面張力が大きく、理論上の吐出温度が低い冷媒でも信頼性を損なうことなく使用することが可能となり、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物等の地球温暖化係数の低い冷媒の使用が可能となる。   As a result, it is possible to use a liquid refrigerant having a large surface tension and a low theoretical discharge temperature without impairing reliability, and a halogenated hydrocarbon having a carbon double bond in the composition. Global warming such as hydrocarbons having a carbon double bond in the composition, halogenated hydrocarbons having a carbon double bond in the composition, or mixtures containing at least one of hydrocarbons having a carbon double bond in the composition A refrigerant with a low coefficient can be used.

実施の形態1.
図1乃至図5は実施の形態1を示す図で、図1は冷凍サイクル装置に使用される冷媒圧縮機100の縦断面図、図2は図1のC−C断面図、図3は図1のD−D断面図、図4は油分離板50付近の拡大断面図、図5は油分離板の斜視図である。
Embodiment 1 FIG.
1 to 5 show the first embodiment. FIG. 1 is a longitudinal sectional view of a refrigerant compressor 100 used in the refrigeration cycle apparatus, FIG. 2 is a sectional view taken along the line CC in FIG. 1, and FIG. 4 is an enlarged cross-sectional view of the vicinity of the oil separation plate 50, and FIG. 5 is a perspective view of the oil separation plate.

図1〜図3により、冷媒圧縮機100の構成を説明する。冷媒圧縮機100の一例として、縦形のロータリ圧縮機を用いて説明する。但し、冷媒圧縮機100はロータリ圧縮機に限定されない。さらに、以下、1シリンダのロータリ圧縮機を用いて説明するが、2シリンダ以上のロータリ圧縮機にも、本実施の形態は適用可能である。ロータリ圧縮機は、密閉容器1内が高圧のものである。密閉容器1内の上部に電動要素2が設けられる。密閉容器1内の下部で電動要素2の下方に、電動要素2で駆動される圧縮要素3が設けられる。   The configuration of the refrigerant compressor 100 will be described with reference to FIGS. As an example of the refrigerant compressor 100, a vertical rotary compressor will be used. However, the refrigerant compressor 100 is not limited to a rotary compressor. Furthermore, although it demonstrates using a 1-cylinder rotary compressor below, this Embodiment is applicable also to a 2 or more-cylinder rotary compressor. The rotary compressor has a high pressure inside the sealed container 1. The electric element 2 is provided in the upper part in the sealed container 1. A compression element 3 driven by the electric element 2 is provided below the electric element 2 in the lower part of the hermetic container 1.

密閉容器1内の底部に、圧縮要素3を潤滑する冷凍機油5(潤滑油)が封入されている。   Refrigerating machine oil 5 (lubricating oil) that lubricates the compression element 3 is sealed at the bottom of the sealed container 1.

密閉容器1の上面に、両端が開口した吐出管15が嵌挿されている。圧縮要素3から吐出される吐出ガスは、密閉容器1内から吐出管15を通って外部の冷凍サイクルへ吐出される。   A discharge pipe 15 having both ends opened is inserted into the upper surface of the sealed container 1. The discharge gas discharged from the compression element 3 is discharged from the sealed container 1 through the discharge pipe 15 to the external refrigeration cycle.

外部の冷凍サイクルから冷媒圧縮機100へ戻る低圧の冷媒は、吸入マフラ54に入り、ここで冷媒と冷凍機油5とが分離され、冷媒は吸入管26から圧縮要素3に流入する。   The low-pressure refrigerant returning from the external refrigeration cycle to the refrigerant compressor 100 enters the suction muffler 54 where the refrigerant and the refrigeration oil 5 are separated, and the refrigerant flows into the compression element 3 from the suction pipe 26.

密閉容器1には、電力の供給源である電源に接続する端子23(ガラス端子という)が、溶接により固定されている。図1の例では、密閉容器1の上面に端子23が設けられる。端子23には、電動要素2からのリード線44(口出線ともいう)が接続される。   A terminal 23 (referred to as a glass terminal) connected to a power source that is a power supply source is fixed to the sealed container 1 by welding. In the example of FIG. 1, a terminal 23 is provided on the upper surface of the sealed container 1. A lead wire 44 (also referred to as a lead wire) from the electric element 2 is connected to the terminal 23.

先ず、電動要素2の構成から説明する。但し、本実施の形態は、圧縮要素3、特に下吐出マフラ12等の構成に特徴があるので、電動要素2については簡単に説明する。   First, the configuration of the electric element 2 will be described. However, since the present embodiment is characterized by the configuration of the compression element 3, particularly the lower discharge muffler 12, etc., the electric element 2 will be briefly described.

電動要素2は、例えば回転子2bに永久磁石を使用するブラシレスDCモータである。但し、誘導電動機等の他のモータでもよい。   The electric element 2 is, for example, a brushless DC motor that uses a permanent magnet for the rotor 2b. However, other motors such as an induction motor may be used.

電動要素2は、固定子2aと回転子2bとを備える。固定子2aは密閉容器1の内周面に嵌合し、固定子2aの内側に空隙を介して回転子2bが配置される。   The electric element 2 includes a stator 2a and a rotor 2b. The stator 2a is fitted to the inner peripheral surface of the hermetic container 1, and the rotor 2b is disposed inside the stator 2a via a gap.

固定子2aは、板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜き、所定枚数軸方向に積層し、カシメや溶接等により固定して製作される固定子鉄心2a−1と、固定子鉄心2a−1の複数のティース部2a−2(図3参照)に集中巻線方式で巻回される三相の巻線16aとを備える。巻線16aは、絶縁部材16bを介してティース部2a−2に巻回される。そして、巻線16aを収納している部分をスロット2a−3(図3参照)と呼ぶ。   The stator 2a is a stator core 2a-1 manufactured by punching electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, laminating them in the axial direction, and fixing them by caulking or welding. And a three-phase winding 16a wound around the plurality of teeth 2a-2 (see FIG. 3) of the stator core 2a-1 by a concentrated winding method. Winding 16a is wound around teeth part 2a-2 via insulating member 16b. And the part which accommodates the coil | winding 16a is called slot 2a-3 (refer FIG. 3).

巻線16aは、固定子鉄心2a−1の軸方向両端(図1では軸方向両端)から、一部が突出している。この突出している部分を、コイルエンドという。図1で符号(16a)が指している部分が、巻線16aの一方のコイルエンドである。巻線16aと、絶縁部材16bとで構成される部分を、固定子巻線部16とする。リード線44は、絶縁部材16bに取り付けられる端子(図示せず)に接続される。   Part of the winding 16a protrudes from both axial ends of the stator core 2a-1 (both axial ends in FIG. 1). This protruding portion is called a coil end. The portion indicated by reference numeral (16a) in FIG. 1 is one coil end of the winding 16a. A portion constituted by the winding 16 a and the insulating member 16 b is referred to as a stator winding portion 16. The lead wire 44 is connected to a terminal (not shown) attached to the insulating member 16b.

固定子鉄心2a−1の外周には、略等間隔に配置された、略楔状の切欠き30(図3参照)が複数箇所(図3では9箇所)に設けられている。但し、切欠き30は、ティース部2a−2の外周に夫々形成されている。切欠き30を設けることにより、固定子鉄心2a−1の磁路(固定子鉄心2a−1の外側をコアバックというが、このコアバックの周方向の断面積)が狭くなるが、ティース部2a−2の外周に設けるのが最も影響が少ない。スロット2a−3の外周に、切欠き30を設けるとその部分のコアバック断面積が小さくなり、磁気飽和の状態になりかねない。尚、切欠き30の形状は、楔状でなくてもよく形状は問わない。また、固定子鉄心2a−1の外周面ではなく、外周面に近い鉄心部分に軸方向に貫通する形で設けてもよい。   On the outer periphery of the stator core 2a-1, substantially wedge-shaped notches 30 (see FIG. 3) are provided at a plurality of locations (9 locations in FIG. 3) arranged at substantially equal intervals. However, the notch 30 is formed in the outer periphery of the teeth part 2a-2, respectively. By providing the notch 30, the magnetic path of the stator core 2 a-1 (the outer side of the stator core 2 a-1 is called the core back, but the cross-sectional area in the circumferential direction of the core back) is narrowed, but the teeth portion 2 a -2 has the least influence. If the notch 30 is provided in the outer periphery of the slot 2a-3, the core back cross-sectional area of the part will become small and may be in a magnetic saturation state. In addition, the shape of the notch 30 may not be a wedge shape, and a shape does not matter. Moreover, you may provide not in the outer peripheral surface of the stator core 2a-1, but in the form penetrated to the core part near an outer peripheral surface in an axial direction.

固定子2aの内側に空隙31(図3参照、0.3〜0.5mm程度)を介して配置される回転子2bは、固定子鉄心2a−1と同様、板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜き、所定枚数軸方向に積層し、カシメや溶接等により固定して製作される回転子鉄心2b−1と、回転子鉄心2b−1に形成される永久磁石挿入孔に挿入される永久磁石2b−2とを備える。永久磁石2b−2の数は、ブラシレスDCモータの極数と同じ数である。図3に示す例は、6極であるから6個の永久磁石2b−2を使用している。   The rotor 2b disposed inside the stator 2a via the gap 31 (see FIG. 3, about 0.3 to 0.5 mm) has a plate thickness of 0.1 to 1 like the stator core 2a-1. A rotor core 2b-1 manufactured by punching out a 5 mm electrical steel sheet into a predetermined shape, laminating a predetermined number of axes in the axial direction, and fixing by caulking, welding, or the like, and a permanent formed on the rotor core 2b-1 And a permanent magnet 2b-2 to be inserted into the magnet insertion hole. The number of permanent magnets 2b-2 is the same as the number of poles of the brushless DC motor. Since the example shown in FIG. 3 has six poles, six permanent magnets 2b-2 are used.

永久磁石挿入孔に挿入される永久磁石2b−2が軸方向に抜けないようにするために、回転子2bの軸方向両端(図1では軸方向上下端部)に端板が設けられる。回転子2bの軸方向上端部に上端板22、回転子2bの軸方向下端部に下端板21が設けられる。   In order to prevent the permanent magnet 2b-2 inserted into the permanent magnet insertion hole from coming off in the axial direction, end plates are provided at both axial ends of the rotor 2b (upper and lower ends in the axial direction in FIG. 1). An upper end plate 22 is provided at the upper end of the rotor 2b in the axial direction, and a lower end plate 21 is provided at the lower end of the rotor 2b in the axial direction.

上端板22と下端板21は、回転バランサーを兼ねる。上端板22と下端板21は、複数の固定用リベット27(図3では3本)にて一体にかしめて固定されている。   The upper end plate 22 and the lower end plate 21 also serve as a rotation balancer. The upper end plate 22 and the lower end plate 21 are fixed by caulking together with a plurality of fixing rivets 27 (three in FIG. 3).

回転子鉄心2b−1には、吐出ガスのガス流路となる略軸方向に貫通する貫通孔20(ガス流路の一例)が複数開けられている。   The rotor core 2b-1 is provided with a plurality of through holes 20 (an example of gas flow paths) penetrating in the substantially axial direction serving as a gas flow path for the discharge gas.

次に、圧縮要素3の構成について説明する。圧縮要素3は、略ドーナツ状のシリンダ4を備える。シリンダ4の外周部は、密閉容器1の内周面に嵌合する。   Next, the configuration of the compression element 3 will be described. The compression element 3 includes a substantially donut-shaped cylinder 4. The outer peripheral portion of the cylinder 4 is fitted to the inner peripheral surface of the sealed container 1.

シリンダ4は、円柱状の内部空間であるシリンダ室4aを備える。シリンダ室4aに、電動要素2側から延びる駆動軸6の偏心軸部6aに嵌合して偏心回転するローリングピストン7を内装している。図2の矢印Eは、駆動軸6の回転方向を示す。   The cylinder 4 includes a cylinder chamber 4a that is a cylindrical inner space. The cylinder chamber 4a is provided with a rolling piston 7 that is fitted into an eccentric shaft portion 6a of the drive shaft 6 extending from the electric element 2 side and rotates eccentrically. An arrow E in FIG. 2 indicates the rotation direction of the drive shaft 6.

シリンダ4は、シリンダ室4aに開口するべーン摺動溝4dを有する。このべーン摺動溝4dに、先端がローリングピストン7の外周面に常時接触するべーン8を往復自在に設けている。   The cylinder 4 has a vane sliding groove 4d that opens into the cylinder chamber 4a. A vane 8 whose tip is always in contact with the outer peripheral surface of the rolling piston 7 is reciprocally provided in the vane sliding groove 4d.

べーン8により、シリンダ室4a内を吸入ポート4bに連通する低圧域4fと、吐出ポート4cに連通する高圧域4gとに区画する。   The vane 8 divides the inside of the cylinder chamber 4a into a low pressure region 4f communicating with the suction port 4b and a high pressure region 4g communicating with the discharge port 4c.

べーン摺動溝4dの背面側(外側)に、密閉容器1内に開口する背圧室4eを設けている。背圧室4eは、べーン摺動溝4dに連通している。そして、背圧室4eには、べーン8を付勢するべーンスプリング8aが設けられる。   A back pressure chamber 4e that opens into the sealed container 1 is provided on the back side (outside) of the vane sliding groove 4d. The back pressure chamber 4e communicates with the vane sliding groove 4d. The back pressure chamber 4e is provided with a vane spring 8a that biases the vane 8.

密閉容器1内は常時高圧であるから、べーン8の後端にはこの高圧と、べーンスプリング8aの弾性力とが常時作用し、この合成力がべーン8先端に加わるシリンダ室4a内の圧力による力よりも大きいため、べーン8の先端は常にローリングピストン7の外周面に押し付けられて、低圧域4fと高圧域4gとに区画している。   Since the inside of the sealed container 1 is constantly at a high pressure, the high pressure and the elastic force of the vane spring 8a always act on the rear end of the vane 8, and the combined force is applied to the tip of the vane 8 in the cylinder chamber 4a. Since the force is greater than the pressure due to the internal pressure, the tip of the vane 8 is always pressed against the outer peripheral surface of the rolling piston 7 and divided into a low pressure region 4f and a high pressure region 4g.

シリンダ4のシリンダ室4aの軸方向両端面(図1では軸方向上下端面)は開口しているが、電動要素2側の開口部は上軸受9の端板部9bで、反対側の開口部は下軸受10の端板部10bで閉塞されている。   Both end surfaces in the axial direction of the cylinder chamber 4a of the cylinder 4 (the upper and lower end surfaces in the axial direction in FIG. 1) are open, but the opening on the electric element 2 side is the end plate portion 9b of the upper bearing 9 and the opening on the opposite side. Is closed by the end plate portion 10 b of the lower bearing 10.

上軸受9には、駆動軸6が回転自在に嵌挿される軸受部9aが、端板部9bに一体に形成されている。   In the upper bearing 9, a bearing portion 9a into which the drive shaft 6 is rotatably inserted is formed integrally with the end plate portion 9b.

下軸受10には、駆動軸6が回転自在に嵌挿される軸受部10aが、端板部10bに一体に形成されている。   In the lower bearing 10, a bearing portion 10a into which the drive shaft 6 is rotatably inserted is formed integrally with the end plate portion 10b.

上軸受9は、端板部9bと軸受部9aの一部とが上吐出マフラ11で覆われている。   In the upper bearing 9, the end plate portion 9 b and a part of the bearing portion 9 a are covered with an upper discharge muffler 11.

同様に、下軸受10は、端板部10bと軸受部10aの一部とが下吐出マフラ12で覆われている。   Similarly, in the lower bearing 10, the end plate portion 10 b and a part of the bearing portion 10 a are covered with the lower discharge muffler 12.

上軸受9は、シリンダ4の電動要素2側端面のネジ孔25に複数のボルト40で固定される。また、上吐出マフラ11は、上軸受9と一緒にシリンダ4の電動要素2側端面のネジ孔25に複数のボルト41で固定される。   The upper bearing 9 is fixed to the screw hole 25 on the end face on the electric element 2 side of the cylinder 4 with a plurality of bolts 40. The upper discharge muffler 11 is fixed together with the upper bearing 9 to the screw holes 25 on the end face of the cylinder 4 on the electric element 2 side by a plurality of bolts 41.

下軸受10は、シリンダ4の反電動要素2側端面のネジ孔25に複数のボルト42で固定される。また、下吐出マフラ12は、下軸受10と一緒にシリンダ4の反電動要素2側端面のネジ孔25に複数のボルト43で固定される。   The lower bearing 10 is fixed to the screw hole 25 on the end surface of the cylinder 4 on the side opposite to the electric element 2 with a plurality of bolts 42. The lower discharge muffler 12 is fixed together with the lower bearing 10 to the screw hole 25 on the end surface of the cylinder 4 on the side opposite to the electric element 2 with a plurality of bolts 43.

上軸受9には、バルブ(図示せず)を備えた吐出ポート(図示せず)があり、このバルブを備えた吐出ポートから、高温・高圧の吐出ガス(圧縮された冷媒ガス)が上吐出マフラ11内へ吐出される。上吐出マフラ11内へ吐出された高温・高圧の吐出ガスは、上吐出マフラ11の吐出口11aから密閉容器1内(電動要素2と圧縮要素3との間の空間)へ放出される。   The upper bearing 9 has a discharge port (not shown) provided with a valve (not shown), and high-temperature and high-pressure discharge gas (compressed refrigerant gas) is discharged from the discharge port provided with this valve. It is discharged into the muffler 11. The high-temperature and high-pressure discharge gas discharged into the upper discharge muffler 11 is discharged from the discharge port 11a of the upper discharge muffler 11 into the sealed container 1 (the space between the electric element 2 and the compression element 3).

下軸受10には、バルブ(図示せず)を備えた吐出ポート(図示せず)があり、このバルブを備えた吐出ポートから、高温・高圧の吐出ガスが下吐出マフラ12内へ吐出される。下吐出マフラ12内へ吐出された高温・高圧の吐出ガスの一部は、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出される。   The lower bearing 10 has a discharge port (not shown) provided with a valve (not shown), and high-temperature and high-pressure discharge gas is discharged into the lower discharge muffler 12 from the discharge port provided with this valve. . A part of the high-temperature and high-pressure discharge gas discharged into the lower discharge muffler 12 is released from the discharge port 12a of the lower discharge muffler 12 into the refrigerating machine oil 5 in the sealed container 1.

また、下吐出マフラ12内へ吐出された残りの高温・高圧の吐出ガスは、シリンダ4のシリンダ室4aの外側に設けられる、軸方向に貫通する複数個の貫通穴24(図2参照、図2では2個)を通って上吐出マフラ11内へ入り、上軸受9のバルブを備えた吐出ポートから吐出される高温・高圧の吐出ガスと合流する。そして、上吐出マフラ11の吐出口11aから密閉容器1内(電動要素2と圧縮要素3との間の空間)へ放出される。   The remaining high-temperature and high-pressure discharge gas discharged into the lower discharge muffler 12 is provided on the outside of the cylinder chamber 4a of the cylinder 4 and has a plurality of through holes 24 (see FIG. 2, see FIG. 2). 2 enters two into the upper discharge muffler 11 and merges with the high-temperature and high-pressure discharge gas discharged from the discharge port provided with the valve of the upper bearing 9. And it discharge | releases from the discharge outlet 11a of the upper discharge muffler 11 in the airtight container 1 (space between the electric element 2 and the compression element 3).

本実施の形態では、下軸受10のバルブを備えた吐出ポートから、下吐出マフラ12内へ吐出された高温・高圧の吐出ガスが、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出される点が必須である。   In the present embodiment, high-temperature and high-pressure discharge gas discharged from the discharge port provided with the valve of the lower bearing 10 into the lower discharge muffler 12 is refrigerated in the sealed container 1 from the discharge port 12 a of the lower discharge muffler 12. The point discharged into the machine oil 5 is essential.

それにより、冷媒圧縮機100が長時間の停止で低温となった状態からの起動において、下吐出マフラ12の吐出口12aからの吐出ガス流による攪拌により冷凍機油5中の液冷媒が大きい液塊に成長することを抑制し、液塊による潤滑阻害を抑制することができる。   As a result, when the refrigerant compressor 100 is started from a state where the refrigerant compressor 100 is at a low temperature after being stopped for a long time, the liquid refrigerant in the refrigerating machine oil 5 is large due to the stirring by the discharge gas flow from the discharge port 12a of the lower discharge muffler 12. It is possible to suppress the growth of water and to inhibit the inhibition of lubrication due to the liquid mass.

また、冷凍機油5を下吐出マフラ12の吐出口12aからの吐出ガスにより直接的に加熱することにより、冷凍機油5の温度が冷媒ガスの飽和温度を上回るまでの時間を短縮し、液冷媒を解消することで圧縮要素3の潤滑性を改善することができる。   Further, by directly heating the refrigerating machine oil 5 with the discharge gas from the discharge port 12a of the lower discharge muffler 12, the time until the temperature of the refrigerating machine oil 5 exceeds the saturation temperature of the refrigerant gas is shortened, and the liquid refrigerant is reduced. By eliminating, the lubricity of the compression element 3 can be improved.

その結果、液冷媒の表面張力が大きく、理論上の吐出温度が低い冷媒でも信頼性を損なうことなく使用することが可能となり、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物等、例えば、HFO−1234yf(CFCF=CH)単体又はその混合冷媒等の地球温暖化係数の低い冷媒の使用が可能となる。 As a result, it is possible to use a liquid refrigerant having a large surface tension and a low theoretical discharge temperature without impairing reliability, and a halogenated hydrocarbon having a carbon double bond in the composition. A hydrocarbon having at least one of a hydrocarbon having a carbon double bond in its composition, a halogenated hydrocarbon having a carbon double bond in its composition, or a hydrocarbon having a carbon double bond in its composition, such as HFO It becomes possible to use a refrigerant having a low global warming potential, such as −1234yf (CF 3 CF═CH 2 ) alone or a mixed refrigerant thereof.

本実施の形態では、下軸受10のバルブを備えた吐出ポートから、下吐出マフラ12内へ吐出された高温・高圧の吐出ガスが、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出される点が必須であるから、下軸受10のバルブを備えた吐出ポートから、下吐出マフラ12内へ吐出された高温・高圧の吐出ガスの全部が下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出されようにしてもよい。この場合は、シリンダ4のシリンダ室4aの外側に設けられる、軸方向に貫通する複数個の貫通穴24は設けない。   In the present embodiment, high-temperature and high-pressure discharge gas discharged from the discharge port provided with the valve of the lower bearing 10 into the lower discharge muffler 12 is refrigerated in the sealed container 1 from the discharge port 12 a of the lower discharge muffler 12. Since the point discharged into the machine oil 5 is essential, all the high-temperature and high-pressure discharge gas discharged into the lower discharge muffler 12 from the discharge port provided with the valve of the lower bearing 10 is discharged from the lower discharge muffler 12. You may make it discharge | release into the refrigerating machine oil 5 in the airtight container 1 from the exit 12a. In this case, a plurality of through holes 24 provided outside the cylinder chamber 4a of the cylinder 4 and penetrating in the axial direction are not provided.

また、上軸受9のバルブを備えた吐出ポートを省き、且つ上吐出マフラ11も省く形態、即ちシリンダ4のシリンダ室4aの高圧域からの吐出ガスの全てが、下軸受10のバルブを備えた吐出ポートから下吐出マフラ12内へ吐出され、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出されるようにしてもよい。   Further, the discharge port provided with the valve of the upper bearing 9 is omitted, and the upper discharge muffler 11 is also omitted, that is, all the discharge gas from the high pressure region of the cylinder chamber 4a of the cylinder 4 is provided with the valve of the lower bearing 10. It may be discharged from the discharge port into the lower discharge muffler 12 and discharged from the discharge port 12 a of the lower discharge muffler 12 into the refrigerating machine oil 5 in the sealed container 1.

次に、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出される方向について言及する。   Next, the direction discharged from the discharge port 12a of the lower discharge muffler 12 into the refrigerating machine oil 5 in the sealed container 1 will be described.

下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出される方向は、どの方向でもよい。しかし、好ましい形態は、電動要素2の回転方向又は反回転方向に、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出される形態である。   The direction discharged from the discharge port 12a of the lower discharge muffler 12 into the refrigerating machine oil 5 in the sealed container 1 may be any direction. However, a preferable mode is a mode in which the electric element 2 is discharged into the refrigerating machine oil 5 in the sealed container 1 from the discharge port 12a of the lower discharge muffler 12 in the rotation direction or the counter-rotation direction.

その形態により、冷媒圧縮機100が長時間の停止で低温となった状態からの起動において、下吐出マフラ12の吐出口12aからの吐出ガス流による攪拌により冷凍機油5中の液冷媒が大きい液塊に成長することを一層抑制し、液塊による潤滑阻害をさらに抑制することができる。   According to the configuration, when the refrigerant compressor 100 is started from a low temperature after being stopped for a long time, the liquid refrigerant in the refrigerating machine oil 5 is large due to stirring by the discharge gas flow from the discharge port 12a of the lower discharge muffler 12. It is possible to further suppress the growth to a lump and further suppress the lubrication inhibition by the liquid lump.

尚、冷媒圧縮機100が長時間の停止で低温となった状態からの起動において、下吐出マフラ12の吐出口12aからの吐出ガス流による攪拌により冷凍機油5中の液冷媒が大きい液塊に成長することを抑制するのが目的であるから、起動後冷凍機油5の温度が冷媒ガスの飽和温度を上回るようになれば、下吐出マフラ12の吐出口12aから吐出ガスを冷凍機油5中に放出する必要はなくなる。よって、図示はしないが、下吐出マフラ12の吐出口12aに、冷凍機油5の温度が冷媒ガスの飽和温度より低い低温では開となり、冷凍機油5の温度が冷媒ガスの飽和温度より高い高温では閉となる開閉弁を設けるのも効果的である。この場合、下吐出マフラ12内へ吐出された高温・高圧の吐出ガスは、シリンダ4のシリンダ室4aの外側に設けられる、軸方向に貫通する複数個の貫通穴24(図2参照、図2では2個)を通って上吐出マフラ11内へ入り、上軸受9のバルブを備えた吐出ポートから吐出される高温・高圧の吐出ガスと合流する。   When the refrigerant compressor 100 is started from a low temperature after being stopped for a long time, the liquid refrigerant in the refrigerating machine oil 5 is changed into a large liquid mass by stirring by the discharge gas flow from the discharge port 12a of the lower discharge muffler 12. Since the purpose is to suppress the growth, if the temperature of the refrigerating machine oil 5 after startup exceeds the saturation temperature of the refrigerant gas, the discharge gas is introduced into the refrigerating machine oil 5 from the discharge port 12a of the lower discharge muffler 12. There is no need to release. Therefore, although not shown, the discharge port 12a of the lower discharge muffler 12 is opened at a low temperature where the temperature of the refrigerating machine oil 5 is lower than the saturation temperature of the refrigerant gas, and at a high temperature where the temperature of the refrigerating machine oil 5 is higher than the saturation temperature of the refrigerant gas. It is also effective to provide an on-off valve that closes. In this case, the high-temperature and high-pressure discharge gas discharged into the lower discharge muffler 12 is provided on the outside of the cylinder chamber 4a of the cylinder 4 with a plurality of through holes 24 (see FIG. 2, FIG. 2) penetrating in the axial direction. 2) and enters the upper discharge muffler 11 and merges with the high-temperature and high-pressure discharge gas discharged from the discharge port provided with the valve of the upper bearing 9.

下吐出マフラ12の吐出口12aに、上記のような開閉弁を設けることにより、次のような効果がある。即ち、冷凍機油5の温度が冷媒ガスの飽和温度より高い通常の運転時に、下吐出マフラ12の吐出口12aから吐出ガスを冷凍機油5中に放出されると、その吐出ガスとともに冷凍機油5の一部が密閉容器1内の上部(電動要素2の上部)に上がり、密閉容器1の底部に貯留する冷凍機油5が圧縮要素3の摺動部(例えば、べーン8とローリングピストン7との摺動部、駆動軸6と上軸受9の軸受部9a又は下軸受10の軸受部10aとの摺動部、駆動軸6の偏心軸部6aとローリングピストン7との摺動部、駆動軸6の偏心軸部6aの軸方向端面と下軸受10の端板部10bのシリンダ4側端面との摺動部等)を潤滑不足にする恐れがある。   Providing the above opening / closing valve at the discharge port 12a of the lower discharge muffler 12 has the following effects. That is, when the discharge gas is discharged into the refrigerating machine oil 5 from the discharge port 12a of the lower discharge muffler 12 during normal operation in which the temperature of the refrigerating machine oil 5 is higher than the saturation temperature of the refrigerant gas, the refrigerating machine oil 5 is discharged together with the discharged gas. A part of the oil rises in the upper part of the sealed container 1 (upper part of the electric element 2), and the refrigerating machine oil 5 stored in the bottom part of the sealed container 1 becomes a sliding part (for example, the vane 8 and the rolling piston 7) of the compression element 3. Sliding portion, sliding portion between the driving shaft 6 and the bearing portion 9a of the upper bearing 9 or the bearing portion 10a of the lower bearing 10, sliding portion between the eccentric shaft portion 6a of the driving shaft 6 and the rolling piston 7, driving shaft 6) and the sliding end portion of the end plate portion 10b of the lower bearing 10 on the side of the cylinder 4 may be insufficiently lubricated.

しかし、冷凍機油5の温度が冷媒ガスの飽和温度より高い高温では閉となる開閉弁を下吐出マフラ12の吐出口12aに設けることにより、下吐出マフラ12内へ吐出された高温・高圧の吐出ガスは、シリンダ4のシリンダ室4aの外側に設けられる、軸方向に貫通する複数個の貫通穴24(図2参照)を通って上吐出マフラ11内へ入り、上軸受9のバルブを備えた吐出ポートから吐出される高温・高圧の吐出ガスと合流し、その後上吐出マフラ11の吐出口11aから密閉容器1内(電動要素2と圧縮要素3との間の空間)へ放出される。そのため、密閉容器1の底部に貯留する冷凍機油5が不足して圧縮要素3の摺動部の潤滑不足にする恐れが少ない。   However, by providing an opening / closing valve at the discharge port 12a of the lower discharge muffler 12 that closes when the temperature of the refrigerating machine oil 5 is higher than the saturation temperature of the refrigerant gas, the high temperature / high pressure discharge discharged into the lower discharge muffler 12 is provided. Gas enters the upper discharge muffler 11 through a plurality of axially penetrating through holes 24 (see FIG. 2) provided outside the cylinder chamber 4 a of the cylinder 4, and includes a valve for the upper bearing 9. The high-temperature and high-pressure discharge gas discharged from the discharge port is merged, and then discharged from the discharge port 11a of the upper discharge muffler 11 into the sealed container 1 (the space between the electric element 2 and the compression element 3). Therefore, there is little possibility that the refrigerating machine oil 5 stored in the bottom of the sealed container 1 is insufficient and the sliding portion of the compression element 3 is insufficiently lubricated.

次に、下軸受10のバルブを備えた吐出ポートから、下吐出マフラ12内へ吐出された高温・高圧の吐出ガスが、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出された後の流れについて説明する。   Next, the high-temperature and high-pressure discharge gas discharged from the discharge port provided with the valve of the lower bearing 10 into the lower discharge muffler 12 passes through the discharge port 12a of the lower discharge muffler 12 in the refrigerating machine oil 5 in the sealed container 1. The flow after being released to will be described.

下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出された後、吐出ガスは冷凍機油5を攪拌する。攪拌することにより、冷凍機油5中の液冷媒が大きい液塊に成長することを抑制し、且つ冷凍機油5を下吐出マフラ12の吐出口12aからの吐出ガスにより直接的に加熱した後、シリンダ4の外周部近くに形成されるシリンダ4を軸方向に貫通する長孔32を通って冷媒ガス案内部14に至る。   After being discharged from the discharge port 12a of the lower discharge muffler 12 into the refrigerating machine oil 5 in the sealed container 1, the discharge gas agitates the refrigerating machine oil 5. By stirring, the liquid refrigerant in the refrigerating machine oil 5 is prevented from growing into a large liquid mass, and the refrigerating machine oil 5 is directly heated by the discharge gas from the discharge port 12a of the lower discharge muffler 12, and then the cylinder 4 reaches the refrigerant gas guide 14 through a long hole 32 that penetrates the cylinder 4 formed in the vicinity of the outer periphery of the cylinder 4 in the axial direction.

冷媒ガス案内部14は、外径が密閉容器1の内径と略等しい板金製のドーナツ状であり、固定子巻線部16の外周より内側に、冷凍機油5中に直接放出される吐出ガス(圧縮された冷媒ガス)の流路を開口させたものである。冷媒ガス案内部14に、電動要素2側から落下する冷凍機油5を密閉容器1底部に戻す開口部(図示せず)を設けるようにしてもよい。その開口部の面積は、冷凍機油5を含んだ吐出ガスを電動要素2の回転子2b方向へ向かう作用を妨げない大きさとする。   The refrigerant gas guide part 14 is a sheet metal donut shape whose outer diameter is substantially equal to the inner diameter of the sealed container 1, and is a discharge gas (directly discharged into the refrigerating machine oil 5 inside the outer periphery of the stator winding part 16. The flow path of the compressed refrigerant gas) is opened. The refrigerant gas guide 14 may be provided with an opening (not shown) for returning the refrigeration oil 5 falling from the electric element 2 side to the bottom of the sealed container 1. The area of the opening is set to a size that does not hinder the action of the discharge gas containing the refrigerating machine oil 5 toward the rotor 2b of the electric element 2.

冷媒ガス案内部14は、例えば、シリンダ4の電動要素2側の軸方向端面にネジ等を用いて固定される。   The refrigerant gas guide 14 is fixed to the axial end surface of the cylinder 4 on the electric element 2 side using screws or the like, for example.

但し、冷媒ガス案内部14の取付位置は、シリンダ4の電動要素2側の軸方向端面に限定されない。電動要素2の下方で、且つ下吐出マフラ12の吐出口12a(圧縮された冷媒ガスが冷凍機油5中に直接放出される圧縮要素の部分の例)より上方であればどこでもよい。   However, the mounting position of the refrigerant gas guide 14 is not limited to the axial end surface of the cylinder 4 on the electric element 2 side. It may be anywhere below the electric element 2 and above the discharge port 12a of the lower discharge muffler 12 (an example of the portion of the compression element in which the compressed refrigerant gas is directly discharged into the refrigerating machine oil 5).

冷媒ガス案内部14の開口部(内径)の径をA、固定子巻線部16の外径をBとすると、B>Aを満たすことが好ましい。   If the diameter of the opening (inner diameter) of the refrigerant gas guiding portion 14 is A and the outer diameter of the stator winding portion 16 is B, it is preferable that B> A is satisfied.

上記関係を満たすことにより、冷凍機油5を含んだ吐出ガスは、電動要素2の回転子2b方向へ向かうようになる。電動要素2の回転子2b方向へ向かう冷凍機油5を含んだ吐出ガスは、回転子2bの貫通孔20や固定子鉄心2a−1のスロットオープニング2a−4(図3参照、スロット開口部ともいう)含む空隙31を通り回転子2bの上に出る。   By satisfying the above relationship, the discharge gas containing the refrigerating machine oil 5 is directed toward the rotor 2 b of the electric element 2. The discharge gas containing the refrigerating machine oil 5 directed toward the rotor 2b of the electric element 2 is passed through the through hole 20 of the rotor 2b or the slot opening 2a-4 of the stator core 2a-1 (see FIG. 3, also referred to as slot opening). ) Passes through the air gap 31 and exits on the rotor 2b.

固定子鉄心2a−1の外周に略等間隔に配置された、略楔状の切欠き30からも冷凍機油5を含んだ吐出ガスが下(圧縮要素3側)から上(吐出管15側)に通るが、冷媒ガス案内部14で冷凍機油5を含んだ吐出ガスが回転子2b方向に案内されることと、切欠き30の面積が小さいためその通過量は、回転子2bの貫通孔20や固定子鉄心2a−1のスロットオープニング2a−4(図3参照)を含む空隙31に比べれば少ない。   Discharge gas containing the refrigerating machine oil 5 from the substantially wedge-shaped notch 30 arranged on the outer periphery of the stator core 2a-1 from the lower side (compression element 3 side) to the upper side (discharge pipe 15 side). Although the refrigerant gas guide section 14 guides the discharge gas containing the refrigerating machine oil 5 in the direction of the rotor 2b, and the area of the notch 30 is small, the amount of passage is such that the through hole 20 of the rotor 2b It is less than the gap 31 including the slot opening 2a-4 (see FIG. 3) of the stator core 2a-1.

主に、貫通孔20や固定子鉄心2a−1のスロットオープニング2a−4を含む空隙31を通過した冷凍機油5を含んだ吐出ガスは、回転子2bの上に出た後、油分離板50に吹き付けられる。   The discharge gas containing the refrigerating machine oil 5 that has passed through the gap 31 including the slot opening 2a-4 of the through hole 20 and the stator core 2a-1 mainly comes out on the rotor 2b, and then the oil separation plate 50 Is sprayed on.

油分離板50は、回転子2bの外径より外径が小さい円板状で、駆動軸6の上端部付近に保持され、回転子2bと共に回転する。   The oil separation plate 50 has a disk shape whose outer diameter is smaller than the outer diameter of the rotor 2b, is held near the upper end of the drive shaft 6, and rotates together with the rotor 2b.

図4、図5により、油分離板50の構成を説明する。油分離板50は、円板部50aより駆動軸6の軸方向に一体に延出して円板部50aに直角に立設している円筒壁50bを有する中抜き穴50cを有している。円筒壁50bの内径は駆動軸6より小さく形成されており、駆動軸6は円筒壁50b内径に圧入もしくは焼嵌め等により締まり嵌めにて嵌挿され、中抜き穴50cを閉塞しつつ、油分離板50を回転子2bの貫通孔20上端から所定の間隔Hを隔てて保持している。このとき所定の間隔Hは、回転子2bの貫通孔20全体の等価半径に対し±50%の範囲内に定められている。   The configuration of the oil separation plate 50 will be described with reference to FIGS. The oil separation plate 50 has a hollow hole 50c having a cylindrical wall 50b extending integrally from the disk portion 50a in the axial direction of the drive shaft 6 and standing upright at a right angle to the disk portion 50a. The cylindrical wall 50b has an inner diameter that is smaller than that of the drive shaft 6. The drive shaft 6 is inserted into the inner diameter of the cylindrical wall 50b by press-fitting or shrink fitting to close the hollow hole 50c and separate oil. The plate 50 is held at a predetermined interval H from the upper end of the through hole 20 of the rotor 2b. At this time, the predetermined interval H is set within a range of ± 50% with respect to the equivalent radius of the entire through hole 20 of the rotor 2b.

また、油分離板50の外径D1は、回転子2bの外径D2より小、かつ回転子2bの複数の貫通孔20の外接円(すなわち、すべての貫通孔20を含む円)の直径D3より大に設定されている。   Further, the outer diameter D1 of the oil separation plate 50 is smaller than the outer diameter D2 of the rotor 2b, and the diameter D3 of a circumscribed circle (that is, a circle including all the through holes 20) of the plurality of through holes 20 of the rotor 2b. It is set larger.

特に回転子2bの上下両端を軸方向に連通する複数の貫通孔20を通過した冷凍機油5を含む吐出ガスは、直後に保持されている油分離板に吹きつけられる。このとき一部の冷凍機油5は油分離板50に付着し、油分離板50の回転に伴って外周方向へ弾き飛ばされることにより、冷媒ガスから分離される。   In particular, the discharge gas containing the refrigerating machine oil 5 that has passed through the plurality of through holes 20 that communicate with the upper and lower ends of the rotor 2b in the axial direction is blown onto the oil separation plate that is held immediately thereafter. At this time, a part of the refrigerating machine oil 5 adheres to the oil separation plate 50 and is separated from the refrigerant gas by being blown off in the outer peripheral direction as the oil separation plate 50 rotates.

その後冷媒ガスは、油分離板50には孔がない為に、全て油分離板50の外周を回り込みつつ吐出口15aへと向かう。その過程において、冷凍機油5を含む吐出ガスには油分離板50の回転に伴い回転運動が与えられ、吐出ガスに残存する冷凍機油5は比重の差により遠心力で分離される。   Thereafter, since the oil separation plate 50 has no holes, all the refrigerant gas travels around the outer periphery of the oil separation plate 50 toward the discharge port 15a. In the process, the discharge gas containing the refrigerating machine oil 5 is given a rotational motion as the oil separation plate 50 rotates, and the refrigerating machine oil 5 remaining in the discharge gas is separated by centrifugal force due to the difference in specific gravity.

以上により、吐出口15aへは冷凍機油5の混在率が低い冷媒ガスのみが到達することになり、密閉容器1から冷凍サイクルへと放出される冷媒ガスの油循環率が低く抑えられる。   Thus, only the refrigerant gas having a low mixing ratio of the refrigerating machine oil 5 reaches the discharge port 15a, and the oil circulation rate of the refrigerant gas released from the sealed container 1 to the refrigeration cycle is kept low.

一方、油分離板50で分離された冷凍機油5は、上方への冷媒ガス流が微小である固定子2aの切欠き30から、密閉容器1下方の圧縮要素3へと滴下する。   On the other hand, the refrigerating machine oil 5 separated by the oil separation plate 50 is dropped from the notch 30 of the stator 2a where the upward refrigerant gas flow is minute to the compression element 3 below the hermetic container 1.

さらに、密閉容器1下方の圧縮要素3へと滴下した冷凍機油5は、シリンダ4の外周部近くに形成されるシリンダ4を軸方向に貫通する長孔32から密閉容器1底部に戻る。   Further, the refrigerating machine oil 5 dripped onto the compression element 3 below the sealed container 1 returns to the bottom of the sealed container 1 from a long hole 32 that penetrates the cylinder 4 formed near the outer periphery of the cylinder 4 in the axial direction.

冷媒としては、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物が対象となる。   As the refrigerant, a halogenated hydrocarbon having a carbon double bond in the composition, a hydrocarbon having a carbon double bond in the composition, a halogenated hydrocarbon having a carbon double bond in the composition or in the composition A mixture containing at least one of hydrocarbons having a carbon double bond is a target.

ハロゲン化炭化水素とは、炭化水素の水素を塩素のようなハロゲンで置き換えた化合物のことである。   A halogenated hydrocarbon is a compound in which hydrocarbon hydrogen is replaced with halogen such as chlorine.

組成中に炭素の二重結合を有するハロゲン化炭化水素の一例は、HFO−1234yf(CFCF=CH)である。 An example of a halogenated hydrocarbon having a carbon double bond in the composition is HFO-1234yf (CF 3 CF═CH 2 ).

組成中に炭素の二重結合を有するハロゲン化炭化水素を含む混合物の一例は、R32とHFO−1234yfの混合冷媒である。この混合冷媒は、地球温暖化係数150以下の低GWP冷媒である。   An example of a mixture containing a halogenated hydrocarbon having a carbon double bond in the composition is a mixed refrigerant of R32 and HFO-1234yf. This mixed refrigerant is a low GWP refrigerant having a global warming potential of 150 or less.

以上のように、この実施の形態によれば、下軸受10のバルブを備えた吐出ポートから、下吐出マフラ12内へ吐出された高温・高圧の吐出ガスが、下吐出マフラ12の吐出口12aから密閉容器1内の冷凍機油5中へ放出される点を必須とすることにより、冷媒圧縮機100が長時間の停止で低温となった状態からの起動において、下吐出マフラ12の吐出口12aからの吐出ガス流による攪拌により冷凍機油5中の液冷媒が大きい液塊に成長することを抑制し、液塊による潤滑阻害を抑制することができる。   As described above, according to this embodiment, the high-temperature and high-pressure discharge gas discharged into the lower discharge muffler 12 from the discharge port including the valve of the lower bearing 10 is discharged to the discharge port 12a of the lower discharge muffler 12. By making the point that the refrigerant compressor 100 is released into the refrigerating machine oil 5 in the sealed container 1 essential, the discharge port 12a of the lower discharge muffler 12 is activated when the refrigerant compressor 100 starts from a low temperature after being stopped for a long time. It is possible to suppress the liquid refrigerant in the refrigerating machine oil 5 from growing into a large liquid mass by agitation by the discharge gas flow from, and to suppress the inhibition of lubrication by the liquid mass.

また、冷凍機油5を下吐出マフラ12の吐出口12aからの吐出ガスにより直接的に加熱することにより、冷凍機油5の温度が冷媒ガスの飽和温度を上回るまでの時間を短縮し、液冷媒を解消することで圧縮要素3の潤滑性を改善することができる。   Further, by directly heating the refrigerating machine oil 5 with the discharge gas from the discharge port 12a of the lower discharge muffler 12, the time until the temperature of the refrigerating machine oil 5 exceeds the saturation temperature of the refrigerant gas is shortened, and the liquid refrigerant is reduced. By eliminating, the lubricity of the compression element 3 can be improved.

その結果、液冷媒の表面張力が大きく、理論上の吐出温度が低い冷媒でも信頼性を損なうことなく使用することが可能となり、例えば、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物等の地球温暖化係数の低い冷媒の使用が可能となる。   As a result, it is possible to use a liquid refrigerant having a large surface tension and having a low theoretical discharge temperature without impairing reliability. For example, a halogenated hydrocarbon having a carbon double bond in the composition, The earth such as a hydrocarbon containing at least one of a hydrocarbon having a carbon double bond in its composition, a halogenated hydrocarbon having a carbon double bond in its composition, or a hydrocarbon having a carbon double bond in its composition It is possible to use a refrigerant with a low global warming potential.

以上の説明では、冷媒ガス案内部14により、冷凍機油5を含んだ吐出ガスを電動要素2の回転子2b方向へ向かうように案内する例を説明したが、冷媒ガス案内部14は必須ではない。   In the above description, the example in which the refrigerant gas guide unit 14 guides the discharge gas including the refrigerating machine oil 5 toward the rotor 2b of the electric element 2 has been described. However, the refrigerant gas guide unit 14 is not essential. .

冷媒ガス案内部14がない場合、冷凍機油5を含んだ吐出ガスは電動要素2の全体に向かう。しかし、固定子鉄心2a−1の外周に略等間隔に配置された、略楔状の切欠き30の下(圧縮要素3側)から上(吐出管15側)に冷凍機油5を含んだ吐出ガスが通るが、切欠き30の面積が小さいためその通過量は、回転子2bの貫通孔20や固定子鉄心2a−1のスロットオープニング2a−4(図3参照)を含む空隙31に比べれば少ない。   When there is no refrigerant gas guide part 14, the discharge gas containing the refrigerator oil 5 goes to the whole electric element 2. However, the discharge gas containing the refrigerating machine oil 5 from below the substantially wedge-shaped notch 30 (on the compression element 3 side) to above (on the discharge pipe 15 side), which are arranged at substantially equal intervals on the outer periphery of the stator core 2a-1. However, since the area of the notch 30 is small, the amount of passage is small compared to the gap 31 including the through hole 20 of the rotor 2b and the slot opening 2a-4 (see FIG. 3) of the stator core 2a-1. .

冷凍機油5を含んだ吐出ガスは、主に回転子2bの貫通孔20や固定子鉄心2a−1のスロットオープニング2a−4(図3参照)を含む空隙31を通って、回転子2bの上に出た後、油分離板50に吹き付けられる。   The discharge gas containing the refrigerating machine oil 5 mainly passes through the air gap 31 including the through hole 20 of the rotor 2b and the slot opening 2a-4 (see FIG. 3) of the stator core 2a-1, and then over the rotor 2b. After that, the oil separation plate 50 is sprayed.

また、回転子2bの外径より外径が小さい円板状で、駆動軸6の上端部付近に保持され、回転子2bと共に回転する油分離板50も必須ではない。   Further, the oil separation plate 50 which is in the shape of a disk whose outer diameter is smaller than the outer diameter of the rotor 2b and which is held near the upper end of the drive shaft 6 and rotates together with the rotor 2b is not essential.

油分離板50がない場合、主に回転子2bの貫通孔20や固定子鉄心2a−1のスロットオープニング2a−4(図3参照)を含む空隙31を通って、回転子2bの上に出た冷凍機油5を含んだ吐出ガスは、電動要素2の上の密閉容器1内の空間の軸方向の断面積が回転子2bの貫通孔20や固定子鉄心2a−1のスロットオープニング2a−4(図3参照)を含む空隙31よりもはるかに大きいため、流速が低下する。   When there is no oil separation plate 50, the oil separation plate 50 passes through the air gap 31 including the through-hole 20 of the rotor 2b and the slot opening 2a-4 (see FIG. 3) of the stator core 2a-1 and exits over the rotor 2b. The discharge gas containing the refrigerating machine oil 5 has a sectional area in the axial direction of the space in the sealed container 1 above the electric element 2 and the slot opening 2a-4 of the through hole 20 of the rotor 2b and the stator core 2a-1. Since it is much larger than the space | gap 31 containing (refer FIG. 3), the flow rate falls.

そのため、比重が吐出ガス(冷媒ガス)よりも大きい冷凍機油5は、重力で吐出ガスから分離して、電動要素2に落下し、固定子鉄心2a−1の外周に略等間隔に配置された略楔状の切欠き30から下方へ向かい、密閉容器1底部に戻る。   Therefore, the refrigerating machine oil 5 whose specific gravity is larger than that of the discharge gas (refrigerant gas) is separated from the discharge gas by gravity, falls on the electric element 2, and is arranged at substantially equal intervals on the outer periphery of the stator core 2a-1. It goes downward from the substantially wedge-shaped notch 30 and returns to the bottom of the sealed container 1.

実施の形態1を示す図で、冷凍サイクル装置に使用される冷媒圧縮機100の縦断面図。Fig. 5 shows the first embodiment, and is a longitudinal sectional view of a refrigerant compressor 100 used in the refrigeration cycle apparatus. 実施の形態1を示す図で、図1のC−C断面図。FIG. 3 shows the first embodiment and is a cross-sectional view taken along the line CC of FIG. 実施の形態1を示す図で、図1のD−D断面図。FIG. 2 shows the first embodiment, and is a cross-sectional view along the line DD in FIG. 実施の形態1を示す図で、油分離板50付近の拡大断面図。FIG. 5 shows the first embodiment, and is an enlarged cross-sectional view in the vicinity of an oil separation plate 50. 実施の形態1を示す図で、油分離板の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of an oil separation plate.

符号の説明Explanation of symbols

1 密閉容器、2 電動要素、2a 固定子、2a−1 固定子鉄心、2a−2 ティース部、2a−3 スロット、2a−4 スロットオープニング、2b 回転子、2b−1 回転子鉄心、2b−2 永久磁石、3 圧縮要素、4 シリンダ、4a シリンダ室、4b 吸入ポート、4c 吐出ポート、4d べーン摺動溝、4e 背圧室、4f 低圧域、4g 高圧域、5 冷凍機油、6 駆動軸、6a 偏心軸部、7 ローリングピストン、8 べーン、8a べーンスプリング、9 上軸受、9a 軸受部、9b 端板部、10 下軸受、10a 軸受部、10b 端板部、11 上吐出マフラ、11a 吐出口、12 下吐出マフラ、12a 吐出口、14 冷媒ガス案内部、15 吐出管、15a 吐出口、16 固定子巻線部、16a 巻線、16b 絶縁部材、20 貫通孔、21 下端板、22 上端板、23 端子、24 貫通穴、25 ネジ孔、26 吸入管、27 固定用リベット、30 切欠き、31 空隙、32 長孔、40 ボルト、41 ボルト、42 ボルト、43 ボルト、44 リード線、50 油分離板、50a 円板部、50b 円筒壁、50c 中抜き穴、54 吸入マフラ、100 冷媒圧縮機。   DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric element, 2a Stator, 2a-1 Stator core, 2a-2 Teeth part, 2a-3 slot, 2a-4 Slot opening, 2b Rotor, 2b-1 Rotor core, 2b-2 Permanent magnet, 3 compression element, 4 cylinder, 4a cylinder chamber, 4b suction port, 4c discharge port, 4d vane sliding groove, 4e back pressure chamber, 4f low pressure range, 4g high pressure range, 5 refrigerating machine oil, 6 drive shaft 6a eccentric shaft part, 7 rolling piston, 8 vane, 8a vane spring, 9 upper bearing, 9a bearing part, 9b end plate part, 10 lower bearing, 10a bearing part, 10b end plate part, 11 upper discharge muffler, 11a Discharge port, 12 Lower discharge muffler, 12a Discharge port, 14 Refrigerant gas guide, 15 Discharge pipe, 15a Discharge port, 16 Stator winding, 16a Wind, 16b Edge member, 20 through hole, 21 lower end plate, 22 upper end plate, 23 terminal, 24 through hole, 25 screw hole, 26 suction pipe, 27 fixing rivet, 30 notch, 31 gap, 32 long hole, 40 bolt, 41 Bolt, 42 bolt, 43 bolt, 44 lead wire, 50 oil separation plate, 50a disc portion, 50b cylindrical wall, 50c hollow, 54 suction muffler, 100 refrigerant compressor.

Claims (4)

密閉容器と、
前記密閉容器内に設けられ、冷媒を圧縮し圧縮された冷媒ガスを吐出する圧縮要素と、
前記密閉容器内に貯留され、前記圧縮要素の潤滑を行う冷凍機油とを備え、
前記圧縮要素から吐出される前記圧縮された冷媒ガスの少なくとも一部が前記冷凍機油中に直接放出され
前記密閉容器内の前記圧縮要素の上部に設けられ、前記圧縮要素を駆動する電動要素と、
前記電動要素に設けられ、電力が供給される固定子巻線部を有し、外周部が前記密閉容器内周面に嵌合するとともに、前記外周部と前記密閉容器内周面との間に隙間を有する固定子と、
前記固定子の内側に設けられ、略軸方向に貫通するガス流路を有する回転子と、
前記電動要素の下方で、且つ前記圧縮された冷媒ガスが前記冷凍機油中に直接放出される前記圧縮要素の部分より上方に設けられ、外径が前記密閉容器の内径と略等しいドーナツ状であり、前記固定子巻線部の外周より内側に、前記冷凍機油中に直接放出される前記圧縮された冷媒ガスの流路を開口させた冷媒ガス案内部とを備えたことを特徴とする冷媒圧縮機。
A sealed container;
A compression element that is provided in the sealed container and that compresses the refrigerant and discharges the compressed refrigerant gas;
Refrigerating machine oil stored in the sealed container and lubricating the compression element,
At least a portion of the compressed refrigerant gas discharged from the compression element is released directly into the refrigerator oil ;
An electric element that is provided on the compression element in the sealed container and that drives the compression element;
A stator winding portion provided in the electric element, to which power is supplied, has an outer peripheral portion fitted into the inner peripheral surface of the sealed container, and between the outer peripheral portion and the inner peripheral surface of the sealed container. A stator having a gap;
A rotor provided inside the stator and having a gas flow path penetrating in a substantially axial direction;
A donut shape is provided below the electric element and above the portion of the compression element where the compressed refrigerant gas is directly discharged into the refrigerating machine oil, and the outer diameter is substantially equal to the inner diameter of the sealed container. A refrigerant gas guide provided inside the outer periphery of the stator winding portion, and having a refrigerant gas guide opening the flow path of the compressed refrigerant gas discharged directly into the refrigerating machine oil. Machine.
前記回転子に嵌挿される駆動軸を設け、前記回転子の前記ガス流路の上端から所定の間隔を隔てて前記駆動軸に保持され前記回転子と共に回転する略円板形状の油分離板を備えたことを特徴とする請求項1記載の冷媒圧縮機。 A drive shaft fitted into the rotor is provided, and a substantially disc-shaped oil separation plate that is held by the drive shaft at a predetermined interval from the upper end of the gas flow path of the rotor and rotates together with the rotor. refrigerant compressor of claim 1 Symbol mounting characterized by comprising. 前記冷凍機油中に直接放出される前記圧縮された冷媒ガスは、前記圧縮要素から前記電動要素の略回転方向又は略反回転方向に放出されることを特徴とする請求項1または2に記載の冷媒圧縮機。 Wherein the compressed refrigerant gas is discharged directly into the refrigerator oil according to claim 1 or 2, characterized in that it is released from the compression element in a substantially rotational direction or a substantially reverse rotation direction of the motor element Refrigerant compressor. 前記冷媒に、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物のいずれかを用いることを特徴とする請求項1〜3のいずれかに記載の冷媒圧縮機。 In the refrigerant, a halogenated hydrocarbon having a carbon double bond in the composition, a hydrocarbon having a carbon double bond in the composition, a halogenated hydrocarbon having a carbon double bond in the composition, or in the composition The refrigerant compressor according to any one of claims 1 to 3 , wherein any one of a mixture containing at least one of hydrocarbons having a carbon double bond is used.
JP2008160229A 2008-06-19 2008-06-19 Refrigerant compressor Active JP5132436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160229A JP5132436B2 (en) 2008-06-19 2008-06-19 Refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160229A JP5132436B2 (en) 2008-06-19 2008-06-19 Refrigerant compressor

Publications (2)

Publication Number Publication Date
JP2010001775A JP2010001775A (en) 2010-01-07
JP5132436B2 true JP5132436B2 (en) 2013-01-30

Family

ID=41583694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160229A Active JP5132436B2 (en) 2008-06-19 2008-06-19 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JP5132436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014123A (en) * 2016-01-28 2017-08-04 珠海格力电器股份有限公司 The preheating control method of compressor, device and system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567171B (en) * 2010-01-27 2019-02-26 大金工业株式会社 Refrigerant composition containing difluoromethane (HFC32) and 2,3,3,3- tetrafluoropropene (HFO1234YF)
EP2565459B1 (en) * 2010-04-28 2016-09-21 Panasonic Corporation Rotary compressor
EP2565460B1 (en) * 2010-04-28 2019-06-26 Panasonic Corporation Rotary compressor
CN102933848B (en) * 2010-06-07 2015-08-26 松下电器产业株式会社 Hermetic type compressor
JP5575033B2 (en) * 2011-03-28 2014-08-20 三菱電機株式会社 Rotary compressor and heat pump device
CN103867450B (en) * 2014-03-26 2017-03-29 安徽美芝精密制造有限公司 Rotary compressor
CN106461279B (en) 2014-05-12 2019-01-18 松下知识产权经营株式会社 Refrigerating circulatory device
JP7429890B2 (en) * 2020-06-24 2024-02-09 パナソニックIpマネジメント株式会社 compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015214Y1 (en) * 1970-01-08 1975-05-13
JPS59145391A (en) * 1983-02-07 1984-08-20 Matsushita Electric Ind Co Ltd Closed-type electric-motor compressor
JPS61192872A (en) * 1985-02-20 1986-08-27 Matsushita Electric Ind Co Ltd Enclosed compressor
JPS646389U (en) * 1987-06-30 1989-01-13
JP2007315663A (en) * 2006-05-25 2007-12-06 Sanden Corp Refrigeration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014123A (en) * 2016-01-28 2017-08-04 珠海格力电器股份有限公司 The preheating control method of compressor, device and system
CN107014123B (en) * 2016-01-28 2019-08-06 珠海格力电器股份有限公司 The preheating control method of compressor, device and system

Also Published As

Publication number Publication date
JP2010001775A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5132436B2 (en) Refrigerant compressor
JP6089912B2 (en) Refrigerant compressor
KR101216276B1 (en) rotary compressor
WO2016059698A1 (en) Refrigeration cycle device
JP6775542B2 (en) Refrigeration cycle equipment
CN107076466B (en) Refrigeration cycle device
EP2949933B1 (en) Hermetic compressor and refrigerator
JP2014211093A (en) Refrigerant compressor
CN107614880B (en) Compressor and refrigeration cycle device
WO2015136980A1 (en) Refrigeration cycle device
JP4932793B2 (en) Refrigeration cycle equipment
JP2010121448A (en) Hermetic compressor
JP2010002099A (en) Refrigerating cycle device
JP2007327497A (en) Compressor
WO2017006454A1 (en) Compressor and refrigeration cycle device
JP2010133317A (en) Hermetic compressor
JP6556342B2 (en) Stator, motor, compressor and refrigeration cycle equipment
JP6878443B2 (en) Rotary compressor and refrigeration cycle equipment
JP7350195B2 (en) Compressors, refrigeration cycle equipment, and air conditioners
JP2009150249A (en) Hermetic compressor
JP2012007883A (en) Refrigerating cycle device and method for manufacturing the same
JP2009074452A (en) Sealed motor-driven compressor
JP2009281222A (en) Multistage type compressor
JP2010180839A (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250