JP5132104B2 - Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell - Google Patents

Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell Download PDF

Info

Publication number
JP5132104B2
JP5132104B2 JP2006232483A JP2006232483A JP5132104B2 JP 5132104 B2 JP5132104 B2 JP 5132104B2 JP 2006232483 A JP2006232483 A JP 2006232483A JP 2006232483 A JP2006232483 A JP 2006232483A JP 5132104 B2 JP5132104 B2 JP 5132104B2
Authority
JP
Japan
Prior art keywords
fuel cell
layer
heat
current collecting
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006232483A
Other languages
Japanese (ja)
Other versions
JP2008059797A (en
Inventor
昌彦 東
則光 深水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006232483A priority Critical patent/JP5132104B2/en
Publication of JP2008059797A publication Critical patent/JP2008059797A/en
Application granted granted Critical
Publication of JP5132104B2 publication Critical patent/JP5132104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Fuel Cell (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、Crを含有する合金板の表面をCr拡散防止層により被覆してなる耐熱性合金部材及び燃料電池用集電部材並びに燃料電池セルスタック、燃料電池に関する。   The present invention relates to a heat-resistant alloy member, a current collecting member for a fuel cell, a fuel cell stack, and a fuel cell formed by coating the surface of an alloy plate containing Cr with a Cr diffusion preventing layer.

次世代エネルギーとして、近年、例えば、燃料電池セルのスタックを収納容器内に収容した燃料電池が種々提案されている。固体電解質形燃料電池は、複数の燃料電池セルを電気的に接続した燃料電池セルスタックを収納容器内に収容して構成され、燃料電池セルの燃料極側に燃料ガス(水素)を流し、空気極(酸素極ともいう)側に空気(酸素)を流して600〜900℃の高温で発電する。燃料電池セル間を電気的に接続するためには、従来からフェルト状や板状の燃料電池用集電部材(以下、特に断らない限り集電部材ともいう)が用いられている。   In recent years, for example, various fuel cells in which a stack of fuel cells is accommodated in a storage container have been proposed as next-generation energy. A solid oxide fuel cell is configured by storing a fuel cell stack in which a plurality of fuel cells are electrically connected in a storage container, and flowing a fuel gas (hydrogen) to the fuel electrode side of the fuel cell, and air Electric power is generated at a high temperature of 600 to 900 ° C. by flowing air (oxygen) to the electrode (also referred to as oxygen electrode) side. In order to electrically connect the fuel cells, a felt-shaped or plate-shaped current collecting member for a fuel cell (hereinafter also referred to as a current collecting member unless otherwise specified) has been used.

このような集電部材としては導電率の高い合金が採用され、さらに高温下で使用されることから、耐熱性合金が望ましく採用され、このような導電率の高い耐熱性合金として、Crを10〜30質量%含有する合金が一般的に用いられる。しかしながら、Crを含有する合金からなる集電部材を燃料電池セル間に介装し、複数の燃料電池セルを電気的に接続した場合、燃料電池を長期間発電させると、集電部材中のCrが集電部材の外部に拡散してしまい、拡散したCrは空気極と固体電解質との界面に達し、活性を劣化させてしまう。この現象は、いわゆるCr被毒といわれ、燃料電池セルの発電能力の低下をまねくこととなる。   As such a current collecting member, an alloy having a high conductivity is adopted, and since it is used at a high temperature, a heat-resistant alloy is preferably adopted. As such a heat-resistant alloy having a high conductivity, 10% of Cr is used. An alloy containing -30% by mass is generally used. However, when a current collecting member made of an alloy containing Cr is interposed between the fuel cells and a plurality of fuel cells are electrically connected, if the fuel cell generates power for a long time, Cr in the current collecting member Diffuses to the outside of the current collector, and the diffused Cr reaches the interface between the air electrode and the solid electrolyte and degrades the activity. This phenomenon is referred to as so-called Cr poisoning and leads to a decrease in the power generation capacity of the fuel cell.

このようなCr被毒を防止するため、従来、Crを含有する合金板の表面をMn、Fe、Co、Niで被覆することが行われている(特許文献1参照)。
特表平11−501764号公報
In order to prevent such Cr poisoning, conventionally, the surface of an alloy plate containing Cr is coated with Mn, Fe, Co, and Ni (see Patent Document 1).
Japanese National Patent Publication No. 11-501764

しかしながら、Crの拡散を防止するため、上記特許文献1に記載されているようにCr含有の合金板の表面をMn、Fe、Co、NiからなるCr拡散防止層で隙間なく被覆して集電部材を構成した場合、合金板中のCrが外部に拡散することをある程度抑制することができるものの、Crは特に大気に接する割合の高い集電部材の角部から拡散し、完全には防止できなかった。   However, in order to prevent the diffusion of Cr, as described in Patent Document 1, the surface of the Cr-containing alloy plate is covered with a Cr diffusion prevention layer made of Mn, Fe, Co, and Ni without any gap, thereby collecting current. When the member is configured, it is possible to prevent the Cr in the alloy plate from diffusing to the outside to some extent, but Cr diffuses from the corner of the current collecting member that is particularly in contact with the atmosphere and can be completely prevented. There wasn't.

即ち、合金板をMn、Fe、Co、Niを含有する浸漬溶液中に浸漬し、焼き付けてCr拡散防止層を形成した場合、通常、Cr拡散防止層の厚みは角部が平坦部よりも薄くなり、この角部に電流集中が生じ、高温となってCr拡散防止層が破損し易く、これによりCrが拡散し易いという問題があった。また、スパッタ法により被覆することも可能ではあるが、角部を十分に被覆することができず、角部から拡散し易いという問題があった。   That is, when an alloy plate is immersed in an immersion solution containing Mn, Fe, Co, Ni and baked to form a Cr diffusion prevention layer, the corner of the Cr diffusion prevention layer is usually thinner than the flat part. As a result, current concentration occurs in the corner portion, and the Cr diffusion preventing layer is easily damaged at a high temperature, thereby causing a problem that Cr is easily diffused. Further, although it is possible to cover by the sputtering method, there is a problem that the corner portion cannot be sufficiently covered and is easily diffused from the corner portion.

さらに、集電部材の作製上、必然的に角部が存在し、この角部にはバリが残り易く、その角部における被覆が不十分となり、そこからCrが拡散し易いという問題もある。   Further, in the production of the current collecting member, there is a problem that corners are inevitably present, and burrs are likely to remain at the corners, so that the coating at the corners is insufficient, and Cr easily diffuses therefrom.

本発明は、角部からのCrの拡散を防止できる耐熱性合金部材及び燃料電池用集電部材並びに燃料電池セルスタック、燃料電池を提供することを目的とする。   It is an object of the present invention to provide a heat-resistant alloy member, a fuel cell current collecting member, a fuel cell stack, and a fuel cell that can prevent Cr from diffusing from corners.

本発明の耐熱性合金部材は、Crを含有する合金板の表面をMnとZnとを含有する
化物からなる緻密なCr拡散防止層で被覆し、該Cr拡散防止層の表面を酸化物からなり550〜900℃で1Scm −1 以上の導電率を有する被覆層で被覆してなるとともに、該被覆層の厚みが前記合金板の平面部よりも角部の方で厚いことを特徴とする。本発明の耐熱性合金部材では、Cr拡散防止層によりCrの拡散を防止できるとともに、Cr拡散が発生しやすい角部の被覆層の厚みを他の平面部の厚みより厚くしたので、角部の被覆層に電流集中が生じることがなくなり、これにより角部の異常発熱を防止し、Cr拡散防止層の破損を防止でき、角部からのCrの拡散を防止できる。
The heat resistant alloy member of the present invention covers the surface of an alloy plate containing Cr with a dense Cr diffusion prevention layer made of an oxide containing Mn and Zn, and the surface of the Cr diffusion prevention layer. together with formed by coating with a coating layer having a 1Scm -1 or more conductivity at 550 to 900 ° C. Do Ri oxide, the thickness of the coating layer is thicker than towards the corner than the planar portion of the alloy plate It is characterized by. In the heat resistant alloy member of the present invention, the Cr diffusion preventing layer can prevent the diffusion of Cr, and the thickness of the covering layer at the corner where Cr diffusion is likely to occur is made thicker than the thickness of the other flat portion. Current concentration does not occur in the coating layer, thereby preventing abnormal heat generation at the corners, preventing damage to the Cr diffusion preventing layer, and preventing diffusion of Cr from the corners.

また、本発明の耐熱性合金部材は、前記合金板の表面に、メッキ法又は静電塗装法により形成された金属層を熱処理して前記合金板の表面に前記Cr拡散防止層が形成され、該Cr拡散防止層の表面に被覆層が形成されていることを特徴とする。このような耐熱性合金部材では、合金板の角部における導電性の被覆層の厚みを平面部よりも厚く形成することができ、これにより、合金板の角部での異常発熱を防止でき、角部からのCrの拡散を防止できる。   Further, the heat resistant alloy member of the present invention, the Cr diffusion prevention layer is formed on the surface of the alloy plate by heat-treating a metal layer formed by plating or electrostatic coating method on the surface of the alloy plate, A coating layer is formed on the surface of the Cr diffusion preventing layer. In such a heat-resistant alloy member, the thickness of the conductive coating layer at the corner of the alloy plate can be formed thicker than the plane portion, thereby preventing abnormal heat generation at the corner of the alloy plate, The diffusion of Cr from the corner can be prevented.

さらに、本発明の耐熱性合金部材は、前記合金板の表面に、下地層をメッキ法で形成し、その上面に金属層をメッキ法で形成し、これを熱処理して、前記合金板の表面に酸化物からなる下地層を介して前記Cr拡散防止層が形成され、該Cr拡散防止層の表面に被覆層が形成されていることを特徴とする。   Furthermore, the heat-resistant alloy member of the present invention is formed by forming a base layer on the surface of the alloy plate by a plating method, forming a metal layer on the upper surface thereof by a plating method, and heat-treating the surface to the surface of the alloy plate. The Cr diffusion prevention layer is formed through an underlayer made of oxide, and a coating layer is formed on the surface of the Cr diffusion prevention layer.

このような耐熱性合金部材では、合金板に、濡れ性の良好な下地層をメッキ法で形成し、この上にCr拡散防止層となる金属層をメッキ法で形成し、熱処理したので、合金板に酸化された下地層が形成され、この下地層の表面に、メッキ法でCr拡散防止層、平面部よりも角部が厚い被覆層を確実に形成できる。下地層は、Fe、Co、Ni及びCuのうち少なくとも一種から形成することが望ましい。   In such a heat-resistant alloy member, a base layer having good wettability is formed on the alloy plate by a plating method, and a metal layer serving as a Cr diffusion preventing layer is formed on the alloy plate by a plating method and heat-treated. An oxidized base layer is formed on the plate, and on the surface of the base layer, a Cr diffusion preventing layer and a coating layer whose corners are thicker than the flat part can be reliably formed by plating. The underlayer is preferably formed from at least one of Fe, Co, Ni, and Cu.

また、本発明の耐熱性合金部材は、前記合金板中にMnを含有するとともに、前記被覆層がZnを含有することを特徴とする。このような耐熱性合金部材では、被覆層がZnを含有することにより、高温での導電性が良好となる。
Further, the heat resistant alloy member of the present invention is to contain Mn in the alloy plate in front Symbol coating layer is characterized by containing Zn. In such a heat-resistant alloy member, by which the covering layer contains Zn, the conductivity of the high temperature becomes good.

本発明の燃料電池用集電部材は、燃料電池セルからの集電を行う集電部材が、上記耐熱性合金部材からなることを特徴とする。また、本発明の燃料電池セルスタックは、複数の燃料電池セルの間に、上記燃料電池用集電部材を介装してなる燃料電池セルスタックであって、前記燃料電池セルと前記燃料電池用集電部材とが、導電性接着材により接合されていることを特徴とする。本発明の燃料電池は、上記燃料電池セルスタックを、収納容器内に収納してなることを特徴とする。   The current collecting member for a fuel cell according to the present invention is characterized in that the current collecting member for collecting current from the fuel cell is composed of the above heat-resistant alloy member. The fuel cell stack of the present invention is a fuel cell stack in which the fuel cell current collecting member is interposed between a plurality of fuel cells, and the fuel cell and the fuel cell The current collecting member is joined by a conductive adhesive. The fuel cell of the present invention is characterized in that the fuel cell stack is stored in a storage container.

このような燃料電池用集電部材では、Crの拡散を十分に防止できるため、燃料電池セルの、いわゆるCr被毒を防止でき、燃料電池セルの発電能力を高く維持できる。このような燃料電池用集電部材を用いた燃料電池セルスタック、燃料電池では、発電性能を高く維持できる。   In such a fuel cell current collector, Cr diffusion can be sufficiently prevented, so-called Cr poisoning of the fuel cell can be prevented, and the power generation capacity of the fuel cell can be maintained high. In the fuel cell stack and the fuel cell using such a current collecting member for a fuel cell, the power generation performance can be maintained high.

本発明の耐熱性合金部材は、合金板に、平面部よりも角部の方が厚い導電性の被覆層を形成したので、角部における電流集中が防止され、異常発熱によるCr拡散防止層の破損を防止でき、これにより合金板角部からのCrの拡散を防止できる。   In the heat resistant alloy member of the present invention, a conductive coating layer having a thicker corner than a flat surface is formed on the alloy plate, so that current concentration at the corner is prevented and the Cr diffusion preventing layer due to abnormal heat generation is prevented. Breakage can be prevented, thereby preventing diffusion of Cr from the corners of the alloy plate.

図1は本発明の燃料電池用集電部材を示す斜視図であり、図2及び図3は図1に示す燃料電池用集電部材20のCr拡散防止層202、被覆層203の被覆状態を示す説明図である。図2は図1に示すA−A線断面図であり、図3は図1に示すB−B線断面図である。燃料電池用集電部材20は、図1に示すように、例えば耐熱性合金板を櫛刃状に加工し、隣り合う刃を交互に反対側に折り曲げて構成される。   FIG. 1 is a perspective view showing a fuel cell current collecting member according to the present invention. FIGS. 2 and 3 show the covering state of the Cr diffusion preventing layer 202 and the coating layer 203 of the fuel cell current collecting member 20 shown in FIG. It is explanatory drawing shown. 2 is a cross-sectional view taken along line AA shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB shown in FIG. As shown in FIG. 1, the fuel cell current collecting member 20 is formed, for example, by processing a heat-resistant alloy plate into a comb blade shape and alternately bending adjacent blades to the opposite side.

この集電部材20は、Crを含有する合金からなる耐熱性合金板(以下、集電基材という。)201の表面を、酸化物(例えばセラミックス等、以下同じ)からなる緻密なCr拡散防止層202、導電性の被覆層203が被覆している。尚、図2,図3においては、Cr拡散防止層202を太線で記載した。Cr拡散防止層202は、集電基材201の全周面を隙間なく被覆している。なお、本発明の燃料電池用集電部材20は、図1に示すような形状のものに限定されるものではなく、例えば、円筒状、メッシュ状のものであってもよい。   This current collecting member 20 has a dense Cr diffusion prevention made of an oxide (for example, ceramic, etc., hereinafter the same) on the surface of a heat resistant alloy plate (hereinafter referred to as current collecting base material) 201 made of an alloy containing Cr. The layer 202 and the conductive coating layer 203 are covered. 2 and 3, the Cr diffusion preventing layer 202 is indicated by a bold line. The Cr diffusion preventing layer 202 covers the entire circumferential surface of the current collecting base material 201 without any gaps. The fuel cell current collecting member 20 of the present invention is not limited to the shape shown in FIG. 1, and may be, for example, a cylindrical shape or a mesh shape.

ここで集電基材201の材料としては、導電性および耐熱性の高いCrを10〜30質量%含有する合金、例えばFe−Cr系合金、Ni−Cr系合金等を用いることができる。   Here, as a material of the current collecting base material 201, an alloy containing 10 to 30% by mass of Cr having high conductivity and heat resistance, for example, Fe—Cr alloy, Ni—Cr alloy, or the like can be used.

そして、この集電基材201の表面には、酸化物からなるCr拡散防止層202、酸化物からなる導電性の被覆層203が被覆されている。Cr拡散防止層202は、MnとZnを含有する酸化物からなることが好ましい。 The surface of the current collecting base 201 is covered with a Cr diffusion preventing layer 202 made of an oxide and a conductive coating layer 203 made of an oxide. The Cr diffusion preventing layer 202 is preferably made of an oxide containing Mn and Zn.

上述したように、Cr拡散防止層202は、集電基材201に含有されるCrが拡散することを有効に防止するため、例えば、スピネル構造を有する金属酸化物により形成される。ここで、Crの拡散を防止する上で、Cr拡散防止層202は、特に、Zn系スピネルからなるものであるのが好ましく、例えばZn−Mn系スピネルからなるのがより好ましい。Zn−Mn系スピネルにおいては、Fe、Cr等の元素を含有してもよい。具体的には、Zn−Mn系スピネル、例えば、(Zn,Mn)Mnからなる、ZnとMnを含む金属酸化物は、Crを固溶しにくいために、Crの拡散を抑制する効果を有している。 As described above, the Cr diffusion preventing layer 202 is formed of, for example, a metal oxide having a spinel structure in order to effectively prevent Cr contained in the current collector base material 201 from diffusing. Here, in order to prevent Cr from diffusing, the Cr diffusion preventing layer 202 is particularly preferably made of Zn-based spinel, and more preferably made of, for example, Zn-Mn spinel. The Zn—Mn spinel may contain elements such as Fe and Cr. Specifically, a metal oxide containing Zn and Mn made of a Zn—Mn-based spinel, for example, (Zn, Mn) Mn 2 O 4 , suppresses Cr diffusion because it is difficult to dissolve Cr. Has an effect.

このZn−Mn系スピネルは、例えば、Mnを含有する集電基材201に、Znをメッキし、熱処理することにより、Mnが集電基材201から拡散し、集電基材201表面をZn−Mn系スピネルからなるCr拡散防止層202で被覆される。さらに、このCr拡散防止層202の表面には、Mnが拡散していない、ZnOからなる被覆層203が形成されることになる。   In this Zn—Mn-based spinel, for example, Zn is plated on a current collecting base material 201 containing Mn and heat-treated, so that Mn diffuses from the current collecting base material 201, and the surface of the current collecting base material 201 becomes Zn. Covered with a Cr diffusion preventing layer 202 made of -Mn spinel. Furthermore, a coating layer 203 made of ZnO in which Mn is not diffused is formed on the surface of the Cr diffusion preventing layer 202.

Cr拡散防止層202の厚みは、2μm以下、特には1μm以下であれば、ある程度絶縁性であっても集電部材としての導電性に影響を与えることがない。   If the thickness of the Cr diffusion preventing layer 202 is 2 μm or less, particularly 1 μm or less, the conductivity as a current collecting member is not affected even if it is insulative to some extent.

そして、導電性の被覆層203の厚みは、図4(a)に示すように、集電基材201の平面部の被覆層203bよりも角部の被覆層203aの方が厚く形成されている。   As shown in FIG. 4A, the conductive coating layer 203 is formed such that the corner coating layer 203 a is thicker than the planar coating layer 203 b of the current collecting base material 201. .

このような被覆層203は、集電基材201に、メッキ法又は静電塗装法により形成された金属層を熱処理することにより、集電基材201の表面にCr拡散防止層202を形成し、該Cr拡散防止層202の表面に被覆層203を形成することができる。   Such a covering layer 203 forms a Cr diffusion preventing layer 202 on the surface of the current collecting base material 201 by heat-treating a metal layer formed on the current collecting base material 201 by a plating method or an electrostatic coating method. The coating layer 203 can be formed on the surface of the Cr diffusion preventing layer 202.

Cr拡散防止層202、被覆層203を形成するための金属層は、例えば、電解メッキにより、容易に形成することができる。電解メッキでは集電基材201と電解液との電位差により被覆するものであるが、特に角部は外部に晒されている割合が大きいため、電解液中では平面部より厚く被覆することができる。同じ理由で、静電塗装法による被覆でも、角部の被覆層203aを厚く被覆することができる。   The metal layer for forming the Cr diffusion preventing layer 202 and the covering layer 203 can be easily formed by, for example, electrolytic plating. In electrolytic plating, coating is performed by the potential difference between the current collecting base material 201 and the electrolytic solution. However, since the corner portion is exposed to the outside in particular, the electrolytic solution can be coated thicker than the flat portion. . For the same reason, the coating layer 203a at the corners can be thickly coated by the electrostatic coating method.

従来、ディップ法などにより角部の被覆層203aの厚みを十分に厚くしようとすると、それ以上に平面部の被覆層203bが厚くなり、集電基材201との熱膨張差の違いにより被覆層にクラックなどが発生し、このクラックに沿って、Crが拡散しやすくなるが、本発明では、平面部の被覆層203bの厚みを必要以上に厚くすることなく、角部の被覆層203aの厚みを十分に厚くできるため、熱膨張差によるクラックの発生も防ぐことができる。   Conventionally, when it is attempted to sufficiently increase the thickness of the covering layer 203a at the corners by the dipping method or the like, the covering layer 203b at the flat portion becomes thicker than that, and the coating layer is different due to a difference in thermal expansion from the current collector base 201. In the present invention, the thickness of the corner coating layer 203a is increased without increasing the thickness of the planar coating layer 203b more than necessary. Can be made sufficiently thick to prevent cracking due to thermal expansion differences.

被覆層203の厚みは、ZnOからなる場合には、導電性を有するという点から、3μm以下であることが望ましい。また、後述するように、ZnOにFeが固溶した導電性の被覆層の場合には、集電基材201との熱膨張係数差を小さくするという点から、50μm以下であることが望ましい。   The thickness of the coating layer 203 is desirably 3 μm or less from the viewpoint of having conductivity when made of ZnO. As will be described later, in the case of a conductive coating layer in which Fe is dissolved in ZnO, the thickness is preferably 50 μm or less from the viewpoint of reducing the difference in thermal expansion coefficient from the current collecting base material 201.

電解メッキで、Zn−Mn系スピネルからなるCr拡散防止層202を形成するには、亜鉛イオンを10〜600g/l含む浴に、Mnを含有する集電基材201を陰極として挿入し、電流密度15〜400A/mの電流を印加することにより、集電基材201にZnからなる金属層が形成され、この金属層を1000〜1100℃で熱処理することにより、集電基材201表面にZn−Mn系スピネルからなるCr拡散防止層202を形成し、その表面にZnOからなる被覆層203を形成することができる。メッキ法の場合、急激に高温とするとZnが気化するという理由から、一度、例えば350℃で熱処理し、酸化亜鉛にした後、1000〜1100℃で再度、熱処理することが望ましい。 In order to form the Cr diffusion preventing layer 202 made of Zn—Mn spinel by electrolytic plating, a current collecting base material 201 containing Mn is inserted as a cathode into a bath containing 10 to 600 g / l of zinc ions, By applying a current having a density of 15 to 400 A / m 2, a metal layer made of Zn is formed on the current collecting base material 201, and by heat-treating this metal layer at 1000 to 1100 ° C., the surface of the current collecting base material 201 A Cr diffusion preventing layer 202 made of Zn-Mn spinel can be formed on the surface, and a coating layer 203 made of ZnO can be formed on the surface thereof. In the case of the plating method, it is desirable to heat-treat once at, for example, 350 ° C. to make zinc oxide, and then heat-treat again at 1000 to 1100 ° C. because Zn vaporizes when the temperature is rapidly increased.

集電基材201には直接Znメッキしにくいため、Fe、Co、Ni及びCuのうち少なくとも一種の下地層をメッキ法で形成し、その上面にZnをメッキ法で形成し、これを大気中にて熱処理することが望ましい。尚、Fe、Co、Ni及びCuは、Crの拡散を防止する機能も有するため、さらにCrの拡散が防止できる。さらに、Feを下地層として用いる場合には、このFeが被覆層203を形成するZnOに固溶し、導電性を有することができるため、望ましい。   Since the current collecting base material 201 is difficult to be directly plated with Zn, at least one underlayer of Fe, Co, Ni, and Cu is formed by a plating method, and Zn is formed on the upper surface thereof by a plating method. It is desirable to heat-treat with. In addition, since Fe, Co, Ni, and Cu also have a function of preventing the diffusion of Cr, the diffusion of Cr can be further prevented. Further, when Fe is used as the underlayer, it is desirable because this Fe can be dissolved in ZnO forming the covering layer 203 and have conductivity.

尚、集電基材201にFeを含有する場合には、Feが熱処理時に拡散して、被覆層203を形成するZnOに固溶し、導電性を有することができる。被覆層203は、高温中で導電性を有するものであるが、550〜900℃で1Scm−1以上の導電率を有することが望ましい。この導電率は、550〜900℃に加熱した被覆層203に、電流を印加し電圧を測定することにより測定することができる。 When Fe is contained in the current collecting base material 201, Fe diffuses during the heat treatment and can be dissolved in ZnO forming the coating layer 203 to have conductivity. The covering layer 203 has conductivity at a high temperature, but desirably has a conductivity of 1 Scm −1 or more at 550 to 900 ° C. This conductivity can be measured by applying a current to the coating layer 203 heated to 550 to 900 ° C. and measuring the voltage.

また、静電塗装法によりCr拡散防止層を形成するには、集電基材201から0.1〜0.5m離れた位置に帯電塗装ガンを設置し、塗装ガン印加電圧−40〜−100kV、吐出量50〜150g/分、吐出圧0.5〜2.5×10N/m、エアー流量3〜6m/hで、Zn粉末を吐出し、集電基材201表面に塗装し、1000〜1100℃で熱処理することにより、集電基材201表面にZn−Mn系スピネルからなるCr拡散防止層202を形成し、その表面にZnOからなる被覆層203を形成することができる。静電塗装法の場合には、Zn粉末のみならず、Zn粉末とFe粉末を吐出できる。 Further, in order to form the Cr diffusion preventing layer by the electrostatic coating method, a charged coating gun is installed at a position 0.1 to 0.5 m away from the current collecting base material 201, and a coating gun applied voltage of -40 to -100 kV. The Zn powder is discharged at a discharge amount of 50 to 150 g / min, a discharge pressure of 0.5 to 2.5 × 10 5 N / m 2 , and an air flow rate of 3 to 6 m 3 / h, and the surface of the current collecting substrate 201 is coated. Then, by performing heat treatment at 1000 to 1100 ° C., the Cr diffusion preventing layer 202 made of Zn—Mn spinel can be formed on the surface of the current collecting base material 201, and the coating layer 203 made of ZnO can be formed on the surface. . In the case of the electrostatic coating method, not only Zn powder but also Zn powder and Fe powder can be discharged.

尚、図4(b)は、従来のディップ法によりCr拡散防止層202、被覆層203を形成した場合であり、この場合には、被覆層203は角部の被覆層203aが平面部の被覆層203bより薄く形成され、角部での電流集中により、異常発熱が生じ、Cr拡散防止層202が破損し易いことが判る。   FIG. 4B shows the case where the Cr diffusion preventing layer 202 and the covering layer 203 are formed by the conventional dipping method. In this case, the covering layer 203 is formed by covering the corner portion covering layer 203a with the flat portion. It can be seen that the layer 203b is thinner than the layer 203b, and abnormal heat generation occurs due to current concentration at the corners, and the Cr diffusion preventing layer 202 is easily damaged.

以上のように構成された燃料電池用集電部材では、Cr拡散防止層202によりCrの拡散を防止できるとともに、Cr拡散が発生しやすい角部の被覆層203aの厚みを他の平面部の厚みより厚くしたので、角部の被覆層203aに電流集中が生じることがなくなり、これにより角部の被覆層203aの異常発熱を防止し、Cr拡散防止層202の破損を防止でき、角部からのCrの拡散を防止できる。   In the fuel cell current collector configured as described above, Cr diffusion can be prevented by the Cr diffusion prevention layer 202, and the thickness of the covering layer 203a at the corner portion where Cr diffusion is likely to occur is made the thickness of the other flat portion. Since it is thicker, current concentration does not occur in the corner covering layer 203a, thereby preventing abnormal heating of the corner covering layer 203a and preventing the Cr diffusion prevention layer 202 from being damaged. Cr diffusion can be prevented.

図5は本発明の燃料電池セルの斜視図であり、図6は燃料電池セルを集電部材により電気的に接続してなるセルスタックを示す断面図である。本発明によるセルスタックは、図6に示すように、燃料電池用集電部材20が、図5に示す中空平板形の燃料電池セル1間に配置されて複数の燃料電池セル1を電気的に接続する構成を有する。   FIG. 5 is a perspective view of the fuel battery cell of the present invention, and FIG. 6 is a cross-sectional view showing a cell stack in which the fuel battery cells are electrically connected by a current collecting member. In the cell stack according to the present invention, as shown in FIG. 6, a fuel cell current collecting member 20 is disposed between the hollow flat plate fuel cells 1 shown in FIG. It has a configuration to connect.

燃料電池セル1は、図5に示すように、平板状の支持基板10と、平板状の支持基板10の周囲に設けられた多孔質の燃料極層2、緻密な固体電解質層3、多孔質の酸素極層4、緻密なインターコネクタ5、及び酸素極材料層14とを備え、支持基板10は、さらに内部に、燃料電池セル1の積層方向に交わる方向(セル長さ方向)に伸びた複数の燃料ガス通路16を有している。   As shown in FIG. 5, the fuel battery cell 1 includes a flat support substrate 10, a porous fuel electrode layer 2 provided around the flat support substrate 10, a dense solid electrolyte layer 3, a porous The oxygen electrode layer 4, the dense interconnector 5, and the oxygen electrode material layer 14, and the support substrate 10 further extends in the direction intersecting the stacking direction of the fuel cells 1 (cell length direction). A plurality of fuel gas passages 16 are provided.

支持基板10は、例えば、多孔質かつ導電性の材料からなり、図5に示すように横断面が平坦部と平坦部の両端の弧状部とからなっている。平坦部の対向する面の一方とその両端の弧状部を覆うように多孔質の燃料極層2が設けられており、この燃料極層2を覆うように、緻密質な固体電解質層3が積層されており、さらに、この固体電解質層3の上には、燃料極層2に対向するように、多孔質の導電性セラミックからなる酸素極層4が積層されている。また、支持基板10の電極層2、4が設けられた面に対向する面には、緻密なインターコネクタ5が形成されている。このインターコネクタ5の表面には、酸素極材料からなる酸素極材料層14が形成されている。ここで、酸素極材料は、例えばペロブスカイト構造のLaFeO系やLaMnO系等(例えば、La(Fe,Mn)O、(La,Sr)(Co,Fe)O等)の酸化物(導電性セラミックス)からなる。ただし、この酸素極材料層14については、必ずしも形成する必要はない。図5に示すように、燃料極層2及び固体電解質層3は、インターコネクタ5の両サイドまで延び、支持基板10の表面が外部に露出しないように構成されている。 The support substrate 10 is made of, for example, a porous and conductive material, and has a flat cross section and arcuate portions at both ends of the flat portion as shown in FIG. A porous fuel electrode layer 2 is provided so as to cover one of the opposing surfaces of the flat portion and arc-shaped portions at both ends thereof, and a dense solid electrolyte layer 3 is laminated so as to cover the fuel electrode layer 2. Further, an oxygen electrode layer 4 made of a porous conductive ceramic is laminated on the solid electrolyte layer 3 so as to face the fuel electrode layer 2. A dense interconnector 5 is formed on the surface of the support substrate 10 that faces the surface on which the electrode layers 2 and 4 are provided. An oxygen electrode material layer 14 made of an oxygen electrode material is formed on the surface of the interconnector 5. Here, the oxygen electrode material is an oxide (for example, La (Fe, Mn) O 3 , (La, Sr) (Co, Fe) O 3, etc.) having a perovskite structure such as LaFeO 3 or LaMnO 3. Conductive ceramic). However, the oxygen electrode material layer 14 is not necessarily formed. As shown in FIG. 5, the fuel electrode layer 2 and the solid electrolyte layer 3 extend to both sides of the interconnector 5 and are configured so that the surface of the support substrate 10 is not exposed to the outside.

このような構造の燃料電池セル1は、燃料極層2の酸素極層4と対面している部分が燃料極として作動して発電する。即ち、酸素極層4の外側に空気等の酸素含有ガスを流し、且つ支持基板10内のガス通路16に燃料ガス(水素)を流し、所定の作動温度まで加熱することにより、酸素極層4で下記の式(1)の電極反応が生じ、また燃料極層2の燃料極となる部分では例えば下記の式(2)の電極反応が生じることによって発電する。   In the fuel cell 1 having such a structure, the portion of the fuel electrode layer 2 facing the oxygen electrode layer 4 operates as a fuel electrode to generate electric power. That is, an oxygen-containing gas such as air is allowed to flow outside the oxygen electrode layer 4 and a fuel gas (hydrogen) is supplied to the gas passage 16 in the support substrate 10 and heated to a predetermined operating temperature. Then, an electrode reaction of the following formula (1) occurs, and power is generated by, for example, an electrode reaction of the following formula (2) occurring in the portion that becomes the fuel electrode of the fuel electrode layer 2.

酸素極: 1/2O+2e → O (固体電解質) (1)
燃料極: O (固体電解質)+ H → HO+2e (2)
かかる電極反応によって発生した電流は、支持基板10に取り付けられているインターコネクタ5を介して集電される。
Oxygen electrode: 1 / 2O 2 + 2e → O 2 (solid electrolyte) (1)
Fuel electrode: O 2 (solid electrolyte) + H 2 → H 2 O + 2e (2)
The current generated by the electrode reaction is collected through the interconnector 5 attached to the support substrate 10.

このような複数の燃料電池セルの間には、図6に示すように、集電部材20が介装されて電気的に接続され、これによりセルスタックが構成されている。即ち、集電部材20が、一方の燃料電池セル1の酸素極層4に多孔質の導電性セラミック等の導電性接着材25により接合されると共に、隣設する他方の燃料電池セル1の酸素極材料層14に導電性接着材25により接合され、これにより、複数の燃料電池セル1が電気的に直列に接続され、セルスタックが構成されている。   As shown in FIG. 6, a current collecting member 20 is interposed and electrically connected between the plurality of fuel cells as described above, thereby forming a cell stack. That is, the current collecting member 20 is joined to the oxygen electrode layer 4 of one fuel battery cell 1 by a conductive adhesive 25 such as a porous conductive ceramic, and the oxygen of the other fuel battery cell 1 adjacent thereto is joined. The electrode material layer 14 is joined by a conductive adhesive 25, whereby the plurality of fuel cells 1 are electrically connected in series to form a cell stack.

セルスタックの製造は、燃料電池セル1と集電部材20を交互に積層することによって行われる。   The cell stack is manufactured by alternately stacking the fuel cells 1 and the current collecting members 20.

初めに、導電性接着材25をスクリーン印刷法により燃料電池セル1の電極部(酸素極層4、酸素極材料層14)に塗布する。次に燃料電池セル1の電極部に燃料電池用集電部材20を載置し、さらにその上に次の燃料電池セル1を載置する。これを必要数繰り返して、燃料電池セル1と燃料電池用集電部材20の積層体を作製する。   First, the conductive adhesive 25 is applied to the electrode portions (the oxygen electrode layer 4 and the oxygen electrode material layer 14) of the fuel cell 1 by screen printing. Next, the fuel cell current collecting member 20 is placed on the electrode portion of the fuel cell 1, and the next fuel cell 1 is placed thereon. This is repeated as many times as necessary to produce a laminate of the fuel cell 1 and the fuel cell current collecting member 20.

次に、該積層体を900℃〜1100℃の温度に加熱して、導電性接着材25を燃料電池セル1の電極部と燃料電池用集電部材20に焼き付け、セルスタックを作製する。 Next, the laminated body is heated to a temperature of 900 ° C. to 1100 ° C., and the conductive adhesive 25 is baked on the electrode part of the fuel cell 1 and the current collecting member 20 for the fuel cell to produce a cell stack.

なお、導電性接着材25としては、酸素極材料、又は酸素極材料とCr拡散防止層202の材料を含有する材料が用いられる。尚、酸素極材料層14を形成しない場合にはインターコネクタに接合される。   As the conductive adhesive 25, an oxygen electrode material or a material containing the oxygen electrode material and the material of the Cr diffusion preventing layer 202 is used. When the oxygen electrode material layer 14 is not formed, it is joined to the interconnector.

尚、図5において、燃料電池セル1は中空平板型の燃料電池セル1を示したが、例えば円筒形等の燃料電池セルを用いることもできる。ただし、本発明においては、燃料電池セル1と燃料電池用集電部材20との剥離を防止するため、両者を面と面とで接合することが好ましい。なお、面と面とで接合するとは、燃料電池セル1と燃料電池用集電部材20との対向する面同士が、導電性接着材等により接合される状態を意味する。これにより、燃料電池セル1と燃料電池用集電部材20とが、十分な接合面積にて接合されることとなる。   In FIG. 5, the fuel battery cell 1 is a hollow plate type fuel battery cell 1. However, for example, a cylindrical fuel battery cell may be used. However, in the present invention, in order to prevent the fuel cell 1 and the fuel cell current collecting member 20 from being peeled off, it is preferable to join both of them face to face. In addition, joining with a surface means the state by which the surfaces where the fuel cell 1 and the current collecting member 20 for fuel cells oppose are joined by a conductive adhesive or the like. Thereby, the fuel cell 1 and the fuel cell current collecting member 20 are joined with a sufficient joining area.

本発明の燃料電池は、上記のセルスタックを収納容器内に収容し、この収納容器に、都市ガス等の燃料ガスを供給する燃料ガス導入管及び空気を供給するための空気導入管を配設することにより構成される。このようなセルスタック及び燃料電池により、電圧低下の少ない長期信頼性に優れた燃料電池を得ることができる。   The fuel cell of the present invention accommodates the cell stack in a storage container, and a fuel gas introduction pipe for supplying fuel gas such as city gas and an air introduction pipe for supplying air are disposed in the storage container. It is constituted by doing. With such a cell stack and fuel cell, it is possible to obtain a fuel cell with little voltage drop and excellent long-term reliability.

尚、上記形態では、本発明の耐熱性合金部材を燃料電池用集電部材20として用いた場合について説明したが、収納容器内に収容される他の耐熱性合金からなる部品、例えば、マニホールド用として、また改質器用として、さらには収納容器を形成する壁部材として用いることができる。   In the above embodiment, the case where the heat-resistant alloy member of the present invention is used as the fuel cell current collecting member 20 has been described. However, for example, a component made of another heat-resistant alloy housed in the housing container, for example, for a manifold In addition, it can be used for a reformer, and further as a wall member for forming a storage container.

また、上記形態では、本発明の耐熱性合金部材を燃料電池用集電部材20として用いた場合について説明したが、本発明の耐熱性合金部材を燃料電池以外のものに用いても良い。例えば、酸素センサのリード部等の高温雰囲気で導電性を有するもの、具体的には、従来高温雰囲気で導電性を示すものとして使用されていたPtの代用として使用することができる。因みに、酸素センサ等のリード部では、高温で導電性を確保するため、Pt等の貴金属を用いており、高価であったが、本発明の耐熱性導電部材を用いることにより、安価とすることができる。   Moreover, although the said form demonstrated the case where the heat resistant alloy member of this invention was used as the current collection member 20 for fuel cells, you may use the heat resistant alloy member of this invention for things other than a fuel cell. For example, it can be used as a substitute for Pt that has conductivity in a high temperature atmosphere such as a lead portion of an oxygen sensor, specifically, Pt that has been conventionally used to exhibit conductivity in a high temperature atmosphere. By the way, lead parts such as oxygen sensors use precious metals such as Pt in order to ensure conductivity at high temperatures, and are expensive. However, by using the heat-resistant conductive member of the present invention, the lead parts should be made inexpensive. Can do.

厚さ0.4mm、幅20mm、長さ120mmのFe−Cr系耐熱性合金板(Fe75質量%含有、残部Cr、Mn、Ni含有)からなる集電基材のアルカリ脱脂を行った後、水洗し、表面を活性化させるために、硝酸で酸洗いを行った。その後再度水洗し、下地にニッケルメッキを電界メッキにて1μm施し、その後水洗をした。   After performing alkaline degreasing of a current collecting base material comprising a Fe—Cr heat-resistant alloy plate (containing 75% by mass of Fe, containing the remaining Cr, Mn, and Ni) having a thickness of 0.4 mm, a width of 20 mm, and a length of 120 mm, then washing with water In order to activate the surface, pickling with nitric acid was performed. Thereafter, it was washed again with water, and nickel plating was applied to the base by 1 μm by electroplating, followed by washing with water.

次に亜鉛イオンを200g/l含む亜鉛浴を用意し、その中に集電基材を浸漬した。この集電基材を陰極とするように、電流を電流密度が150A/mとなるように、印加した。印加時間は7分とした。この後、350℃の炉に10時間入れ、酸化亜鉛を形成した。さらにその後に1000℃の炉に2時間入れることで酸化亜鉛と集電基材とを反応させ、Zn−Mn系スピネルからなるCr拡散防止層、ZnOにFeが固溶した被覆層を形成した。Cr拡散防止層の厚みは1μmであり、被覆層の厚みは平面部で3μm、角部で5μmであった。 Next, a zinc bath containing 200 g / l of zinc ions was prepared, and the current collecting substrate was immersed therein. A current was applied so that the current density was 150 A / m 2 so that the current collecting substrate was a cathode. The application time was 7 minutes. Thereafter, it was placed in a furnace at 350 ° C. for 10 hours to form zinc oxide. Furthermore, after putting in a 1000 degreeC furnace for 2 hours, the zinc oxide and the current collection base material were made to react, and the Cr diffusion prevention layer which consists of Zn-Mn spinel, and the coating layer which Fe dissolved in ZnO were formed. The thickness of the Cr diffusion preventing layer was 1 μm, and the thickness of the coating layer was 3 μm at the flat portion and 5 μm at the corner.

次に、平均粒径0.5μmのLa0.6Sr0.4Co0.2Fe0.8粉末(LSCF)と、アクリル系バインダーと、グリコール系溶剤とを添加して得られたスラリー中に、被覆層が形成された集電部材を浸漬し、1000℃で2時間の焼付け処理を行い、被覆層表面に厚さ20μmのLSCF膜を形成し、テストピースとした。このテストピースを850℃の炉に3000hr投入した後、断面を切り出しEPMAによる半定量分析を行った。EPMA分析には、日本電子製のJXA−8100を用いた。測定条件として、加速電圧15kV、プローブ電流2.0×10−7A、分析エリア50μm×50μm、分光結晶にLIFを用いた。その結果、Cr拡散防止層の外側のLSCFではCrの拡散量が検出限界の0.5質量%以下であった。尚、LSCF膜はCrと容易に反応して反応生成物を形成するため、被覆層から外部にCrが拡散した場合でも、LSCF膜で必ずCrの反応生成物を形成し、外部に拡散することはない。 Next, it was obtained by adding La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder (LSCF) having an average particle size of 0.5 μm, an acrylic binder, and a glycol solvent. The current collecting member on which the coating layer was formed was immersed in the slurry and subjected to a baking treatment at 1000 ° C. for 2 hours to form a LSCF film having a thickness of 20 μm on the surface of the coating layer to obtain a test piece. After putting this test piece into a furnace at 850 ° C. for 3000 hours, a cross section was cut out and semi-quantitative analysis by EPMA was performed. For the EPMA analysis, JXA-8100 manufactured by JEOL Ltd. was used. As measurement conditions, an acceleration voltage of 15 kV, a probe current of 2.0 × 10 −7 A, an analysis area of 50 μm × 50 μm, and LIF were used for the spectroscopic crystal. As a result, in the LSCF outside the Cr diffusion preventing layer, the Cr diffusion amount was 0.5% by mass or less of the detection limit. Since the LSCF film easily reacts with Cr to form a reaction product, even when Cr diffuses from the coating layer to the outside, the LSCF film always forms a Cr reaction product and diffuses to the outside. There is no.

また、電流密度が200A/mとする以外は上記と同様にして、厚みが1μmのCr拡散防止層、平面部の厚みが5μm、角部の厚みが7μmの被覆層を形成した。さらに、電流の印加時間を14分とする以外は上記と同様にして、厚みが1μmのCr拡散防止層、平面部の厚みが5μm、角部の厚みが7μmの被覆層を形成した。これらについても、上記と同様にして、被覆層表面に厚さ20μmのLSCF膜を形成し、850℃の炉に3000hr投入した後、断面を切り出しEPMAによる半定量分析を上記と同様にして行った結果、Cr拡散防止層の外側のLSCFではCrの拡散量が検出限界の0.5質量%以下であった。 In addition, a Cr diffusion preventing layer having a thickness of 1 μm, a covering layer having a thickness of 5 μm on a flat surface, and a thickness of 7 μm on a corner were formed in the same manner as described above except that the current density was 200 A / m 2 . Further, a Cr diffusion preventing layer having a thickness of 1 μm, a covering layer having a planar portion having a thickness of 5 μm, and a corner portion having a thickness of 7 μm were formed in the same manner as described above except that the current application time was 14 minutes. In these cases, a LSCF film having a thickness of 20 μm was formed on the surface of the coating layer in the same manner as described above, and after 3,000 hours of charging in a furnace at 850 ° C., a cross section was cut out and semiquantitative analysis by EPMA was performed in the same manner as described above. As a result, in the LSCF outside the Cr diffusion preventing layer, the Cr diffusion amount was 0.5% by mass or less of the detection limit.

上記実施例1と同様、集電基材の脱脂を行った後、乾燥を行った。その後集電基材を塗装ガンより300mm離れた位置に配置し、塗装ガン印加電圧−75kV、亜鉛の吐出量を100g/分、吐出圧1.1×10N/m、エアー流量4.3m/hの条件で被覆を行った。この後、350℃の炉に10時間入れ、酸化亜鉛を形成した。さらにその後に1000℃の炉に2時間入れることで酸化亜鉛と集電基材とを反応させ、Zn−Mn系スピネルからなるCr拡散防止層、ZnOにFeが固溶した被覆層を形成した。Cr拡散防止層の厚みは1μmであり、被覆層の厚みは平面部で14μm、角部で20μmであった。 Similar to Example 1, the current collecting base material was degreased and then dried. Thereafter, the current collecting base material is disposed at a position 300 mm away from the coating gun, the coating gun applied voltage is -75 kV, the discharge amount of zinc is 100 g / min, the discharge pressure is 1.1 × 10 5 N / m 2 , and the air flow rate is 4. The coating was performed under the condition of 3 m 3 / h. Thereafter, it was placed in a furnace at 350 ° C. for 10 hours to form zinc oxide. Furthermore, after putting in a 1000 degreeC furnace for 2 hours, the zinc oxide and the current collection base material were made to react, and the Cr diffusion prevention layer which consists of Zn-Mn type | system | group spinel, and the coating layer which Fe dissolved in ZnO were formed. The thickness of the Cr diffusion preventing layer was 1 μm, and the thickness of the coating layer was 14 μm at the flat part and 20 μm at the corner part.

次に、上記実施例1と同様にして、被覆層表面に厚さ20μmのLSCF膜を形成し、テストピースとした。このテストピースを850℃の炉に3000hr投入した後、断面を切り出しEPMAによる半定量分析を実施例1と同様にして行った。その結果、Cr拡散防止層の外側のLSCFではCrの拡散量が検出限界の0.5質量%以下であった。   Next, in the same manner as in Example 1, a LSCF film having a thickness of 20 μm was formed on the surface of the coating layer to obtain a test piece. After putting this test piece into a furnace at 850 ° C. for 3000 hr, a cross section was cut out and semi-quantitative analysis by EPMA was performed in the same manner as in Example 1. As a result, in the LSCF outside the Cr diffusion preventing layer, the Cr diffusion amount was 0.5% by mass or less of the detection limit.

比較例として、上記実施例1と同様、集電基材の脱脂を行った集電基材を亜鉛:溶剤:バインダー:分散剤が100:72:15:2の重量割合のディップ液の中に浸漬した。その後130℃で乾燥させた後に350℃の炉に10時間入れ、酸化亜鉛を形成した。さらにその後に1000℃の炉に2時間入れることで酸化亜鉛と集電基材とを反応させ、Zn−Mn系スピネルからなるCr拡散防止層、ZnOにFeが固溶した被覆層を形成した。Cr拡散防止層の厚みは1μmであり、被覆層の厚みは平面部で14μm、角部で2μmであった。   As a comparative example, in the same manner as in Example 1, the current collecting base material that had been degreased was placed in a dip solution having a weight ratio of zinc: solvent: binder: dispersant of 100: 72: 15: 2. Soaked. Then, after drying at 130 ° C., it was placed in a 350 ° C. oven for 10 hours to form zinc oxide. Furthermore, after putting in a 1000 degreeC furnace for 2 hours, the zinc oxide and the current collection base material were made to react, and the Cr diffusion prevention layer which consists of Zn-Mn type | system | group spinel, and the coating layer which Fe dissolved in ZnO were formed. The thickness of the Cr diffusion preventing layer was 1 μm, and the thickness of the coating layer was 14 μm at the flat portion and 2 μm at the corner portion.

次に、上記実施例1と同様にして、被覆層表面に厚さ20μmのLSCF膜を形成し、テストピースとした。このテストピースを850℃の炉に3000hr投入した後、断面を切り出しEPMAによる半定量分析を実施例1と同様にして行った。その結果、Cr拡散防止層の外側のLSCFでは、角部における被覆層でCrの拡散量が3.8質量%であった。   Next, in the same manner as in Example 1, a LSCF film having a thickness of 20 μm was formed on the surface of the coating layer to obtain a test piece. After putting this test piece into a furnace at 850 ° C. for 3000 hr, a cross section was cut out and semi-quantitative analysis by EPMA was performed in the same manner as in Example 1. As a result, in the LSCF outside the Cr diffusion preventing layer, the Cr diffusion amount in the coating layer at the corner was 3.8% by mass.

本発明の燃料電池用集電部材の一例を示す斜視図である。It is a perspective view which shows an example of the current collection member for fuel cells of this invention. 図1に示すA−A線に沿った燃料電池用集電部材の断面図である。It is sectional drawing of the current collection member for fuel cells along the AA line shown in FIG. 図1に示すB−B線に沿った燃料電池用集電部材の断面図である。It is sectional drawing of the current collection member for fuel cells along the BB line shown in FIG. 集電部材の断面を拡大して示すもので、(a)は本発明の集電部材の断面図、(b)は従来の集電部材の断面図である。The cross section of a current collection member is expanded and shown, (a) is a sectional view of the current collection member of the present invention, and (b) is a sectional view of the conventional current collection member. 燃料電池セルの断面斜視図である。It is a cross-sectional perspective view of a fuel battery cell. 本発明の燃料電池セルスタックの縦断面図である。It is a longitudinal cross-sectional view of the fuel cell stack of the present invention.

符号の説明Explanation of symbols

1 燃料電池セル
20 燃料電池用集電部材
201 集電基材
202 Cr拡散防止層
203 被覆層
203a 角部の被覆層
203b 平面部の被覆層
DESCRIPTION OF SYMBOLS 1 Fuel cell 20 Current collecting member 201 for fuel cells Current collecting base material 202 Cr diffusion preventing layer 203 Coating layer 203a Corner coating layer 203b Plane coating layer

Claims (7)

Crを含有する合金板の表面をMnとZnとを含有する酸化物からなる緻密なCr拡散防止層で被覆し、該Cr拡散防止層の表面を酸化物からなり550〜900℃で1Scm −1 以上の導電率を有する被覆層で被覆してなるとともに、該被覆層の厚みが前記合金板の平面部よりも角部の方で厚いことを特徴とする耐熱性合金部材。 The surface of the alloy plate containing Cr was coated with a dense Cr diffusion preventing layer made of oxide containing Mn and Zn, 1Scm the surface of the Cr diffusion preventing layer at 550 to 900 ° C. Do Ri oxide - A heat-resistant alloy member, wherein the heat-resistant alloy member is coated with a coating layer having an electrical conductivity of 1 or more , and the thickness of the coating layer is thicker at the corner portion than at the flat portion of the alloy plate. 前記合金板の表面に、メッキ法又は静電塗装法により形成された金属層を大気中にて熱処理して形成されていることを特徴とする請求項1記載の耐熱性合金部材。   2. The heat resistant alloy member according to claim 1, wherein a metal layer formed by plating or electrostatic coating is heat-treated in the atmosphere on the surface of the alloy plate. 前記合金板の表面に、下地層をメッキ法で形成し、その上面に金属層をメッキ法で形成し、これを大気中にて熱処理して形成されていることを特徴とする請求項1記載の耐熱性合金部材。   2. A base layer is formed on the surface of the alloy plate by a plating method, and a metal layer is formed on the upper surface of the alloy plate by a plating method, which is formed by heat treatment in the atmosphere. Heat-resistant alloy member. 前記合金板中にMnを含有するとともに、前記被覆層がZnを含有することを特徴とする請求項1乃至3のうちいずれかに記載の耐熱性合金部材。 With containing Mn in the alloy plate during the heat-resistant alloy member according to any one of claims 1 to 3 before Symbol coating layer is characterized by containing Zn. 燃料電池セルからの集電を行う集電部材が、請求項1乃至4のうちいずれかに記載の耐熱性合金部材からなることを特徴とする燃料電池用集電部材。   A current collector for a fuel cell, wherein the current collector for collecting current from the fuel cell comprises the heat resistant alloy member according to any one of claims 1 to 4. 複数の燃料電池セルの間に、請求項5記載の燃料電池用集電部材を介装してなる燃料電池セルスタックであって、前記燃料電池セルと前記燃料電池用集電部材とが、導電性接着材により接合されていることを特徴とする燃料電池セルスタック。   6. A fuel cell stack comprising the fuel cell current collecting member according to claim 5 interposed between a plurality of fuel cells, wherein the fuel cell and the fuel cell current collecting member are electrically conductive. The fuel cell stack is characterized by being bonded by an adhesive material. 請求項6記載の燃料電池セルスタックを、収納容器内に収納してなることを特徴とする燃料電池。   7. A fuel cell comprising the fuel cell stack according to claim 6 housed in a housing container.
JP2006232483A 2006-08-29 2006-08-29 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell Active JP5132104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232483A JP5132104B2 (en) 2006-08-29 2006-08-29 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232483A JP5132104B2 (en) 2006-08-29 2006-08-29 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell

Publications (2)

Publication Number Publication Date
JP2008059797A JP2008059797A (en) 2008-03-13
JP5132104B2 true JP5132104B2 (en) 2013-01-30

Family

ID=39242301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232483A Active JP5132104B2 (en) 2006-08-29 2006-08-29 Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell

Country Status (1)

Country Link
JP (1) JP5132104B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2811564T3 (en) 2012-01-30 2017-08-28 Ngk Spark Plug Co fuel Battery
JP2018170117A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Cell stack device, module and module housing device
JP7280991B1 (en) 2022-03-15 2023-05-24 日本碍子株式会社 electrochemical cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878040A (en) * 1994-09-01 1996-03-22 Mitsubishi Heavy Ind Ltd Connecting structure of solid electrolyte fuel cell
AUPN173595A0 (en) * 1995-03-15 1995-04-06 Ceramic Fuel Cells Limited Fuel cell interconnect device
JP3361799B2 (en) * 2001-02-22 2003-01-07 松下電器産業株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2006092837A (en) * 2004-09-22 2006-04-06 Kyocera Corp Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell

Also Published As

Publication number Publication date
JP2008059797A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5607903B2 (en) Barrier coating for interconnect, related apparatus and forming method
JP5110816B2 (en) Current collecting member for fuel cell, fuel cell stack, and fuel cell
JP5072305B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
CN101454932B (en) Interconnector for a fuel cell stack, and method for production
JP5283323B2 (en) Fuel cell interconnector and cell stack
JP5080749B2 (en) Current collecting member for fuel cell, cell stack, and fuel cell
JP5013750B2 (en) Cell stack and fuel cell
KR20160132387A (en) Porous current collector, fuel cell and method for producing porous current collector
US6228522B1 (en) Perowskite for a coating of interconnectors
JP5132104B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP5170815B2 (en) Solid oxide fuel cell unit and stack
JP2006092837A (en) Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP4932307B2 (en) Heat-resistant alloy member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, and fuel cell
JP4234597B2 (en) Manufacturing method of fuel cell separator
US6153324A (en) Current-carrying component for a fused carbonate fuel cell with anticorrosive coating
JP5017857B2 (en) Separator for fuel cell and solid oxide fuel cell
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP4931423B2 (en) Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell
JP5215443B2 (en) Solid oxide fuel cell
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP4512944B2 (en) Solid oxide fuel cell separator
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP2015122303A (en) Metal member for solid oxide type fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150