JP5131965B2 - Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same - Google Patents

Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same Download PDF

Info

Publication number
JP5131965B2
JP5131965B2 JP2007241957A JP2007241957A JP5131965B2 JP 5131965 B2 JP5131965 B2 JP 5131965B2 JP 2007241957 A JP2007241957 A JP 2007241957A JP 2007241957 A JP2007241957 A JP 2007241957A JP 5131965 B2 JP5131965 B2 JP 5131965B2
Authority
JP
Japan
Prior art keywords
iron
sintered material
based sintered
electrodeposition coating
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007241957A
Other languages
Japanese (ja)
Other versions
JP2009074113A (en
Inventor
祐司 山西
唯之 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2007241957A priority Critical patent/JP5131965B2/en
Priority to DE102008047823A priority patent/DE102008047823A1/en
Publication of JP2009074113A publication Critical patent/JP2009074113A/en
Application granted granted Critical
Publication of JP5131965B2 publication Critical patent/JP5131965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)

Description

本発明は各種機械要素や機構部品として用いられる鉄系焼結材料およびその製造方法、特に、耐食性に優れる鉄系焼結材およびその表面処理技術に係り、屋外に設置されて耐食性を要求されるシリンダー錠装置用固定ケースとして好適な鉄系焼結材料およびその製造方法に関する。   The present invention relates to an iron-based sintered material used as various machine elements and mechanism parts and a method for producing the same, and more particularly to an iron-based sintered material having excellent corrosion resistance and its surface treatment technology, and is required to have corrosion resistance when installed outdoors. The present invention relates to a ferrous sintered material suitable as a fixing case for a cylinder lock device and a method for producing the same.

電着塗装により鉄系材料の表面に樹脂を被覆して耐食性に優れた機械要素などを製造する技術については、従来から種々の提案がなされている。また、特許文献1に開示されているように、鉄系金属粉の圧粉体を焼結した焼結部品本体の表面の空隙へカチオン電着塗装用の樹脂塗料を侵入させてコーティング層を形成することを特徴とした焼結部品などが知られている。   Conventionally, various proposals have been made on a technique for manufacturing a machine element having excellent corrosion resistance by coating a resin on the surface of an iron-based material by electrodeposition coating. In addition, as disclosed in Patent Document 1, a coating layer is formed by injecting a resin paint for cationic electrodeposition coating into the voids on the surface of a sintered part body obtained by sintering a green compact of iron-based metal powder. Sintered parts and the like characterized by the above are known.

しかしながら、10%以上の気孔を有する焼結材料に前記電着塗装を施すと、粗大な気孔部分にピンホール等の欠陥が発生し易く、屋外に設置されるシリンダー錠装置等の高い耐食性が要求される用途に適用する場合、耐食性が不充分である。   However, if the electrodeposition coating is applied to a sintered material having 10% or more pores, defects such as pinholes are likely to occur in coarse pores, and high corrosion resistance such as cylinder lock devices installed outdoors is required. Corrosion resistance is insufficient when applied to the intended use.

特開2004−190105号公報JP 2004-190105 A

本発明の目的は、気孔を有する鉄系焼結材料の表面に、密着性に優れかつ欠陥の無い電着塗装被膜が形成された耐食性に優れる鉄系焼結材料およびその製造方法、特に、耐食性に優れる鉄系焼結部品により構成されるシリンダー錠装置およびその製造方法を提供することである。   An object of the present invention is to provide an iron-based sintered material excellent in corrosion resistance in which an electrodeposited coating film having excellent adhesion and no defects is formed on the surface of an iron-based sintered material having pores, and a manufacturing method thereof, in particular, corrosion resistance It is providing the cylinder locking device comprised with the iron-type sintered component which is excellent in and its manufacturing method.

本発明では、鉄系焼結材料の表面にショットピーニング加工により凹凸を形成し、かつ表面粗さをRaで0.5〜40μmとするとともに表層部を密度比90%以上に緻密化し、前記表面を電着塗装被膜で被覆したことを特徴とする。ここで表層部とは表面から1〜200μmの深さの範囲である。緻密化部分が1μm未満であると電着塗装工程で用いる処理液が内部の気孔まで浸透し、ピンホール等の塗膜の欠陥が発生しやすく、また200μmを超えるものは緻密化加工が困難である。なおRaはJIS B0601−1994に定義される算術平均粗さである。   In the present invention, irregularities are formed on the surface of the iron-based sintered material by shot peening, the surface roughness is 0.5 to 40 μm in Ra, and the surface layer portion is densified to a density ratio of 90% or more. Is coated with an electrodeposition coating film. Here, the surface layer portion is a range of a depth of 1 to 200 μm from the surface. When the densified part is less than 1 μm, the treatment liquid used in the electrodeposition coating process penetrates into the internal pores, and coating film defects such as pinholes are likely to occur, and those exceeding 200 μm are difficult to densify. is there. Ra is an arithmetic average roughness defined in JIS B0601-1994.

表面粗さがRaで0.5μmよりも小さいと、電着塗装被膜の密着性が低くなる。また、Raで40μmよりも大きいと、凹部において電着塗装被膜に欠陥が発生し易くなる。
また、表層部が密度比90%よりも低密度であると、焼結材料表面の気孔の露出量が多く、気孔部において電着塗装被膜にピンホール等の欠陥が発生し易くなる。
When the surface roughness Ra is less than 0.5 μm, the adhesion of the electrodeposition coating film is lowered. On the other hand, when Ra is larger than 40 μm, defects are likely to occur in the electrodeposition coating film in the recesses.
Further, when the surface layer portion has a density lower than 90%, the amount of exposed pores on the surface of the sintered material is large, and defects such as pinholes are likely to occur in the electrodeposition coating film in the pore portions.

電着塗装には、被塗装物を陽極とするアニオン電着塗装方式と、陰極とするカチオン電着塗装方式があるが、鉄系材料へのアニオン電着塗装には、被塗装物からの電気化学的な溶出等の問題があるため、カチオン電着塗装方式が好ましい。   There are two types of electrodeposition coating: the anion electrodeposition coating method with the workpiece as the anode and the cationic electrodeposition coating method with the cathode as the anode. Cationic electrodeposition coating is preferred because of problems such as chemical dissolution.

カチオン塗料には、エポキシ系樹脂塗料、アクリル系樹脂塗料等があるが、特に高い耐食性が要求される用途にはエポキシ系樹脂塗料とすることが好ましく、耐候性が要求される用途にはアクリル系樹脂塗料とすることが好ましい。   Cationic paints include epoxy resin paints and acrylic resin paints. Epoxy resin paints are preferred for applications that require particularly high corrosion resistance, and acrylic resins are used for applications that require weather resistance. It is preferable to use a resin paint.

鉄系焼結材料の表面にショットピーニング加工により凹凸を形成し、かつ表面粗さをRaで0.5〜40μmとして、電着塗装を施すと、表面の微小な凹凸に塗料が入り込み、密着性の良好な被膜を形成することができる。また、表層部を密度比90%以上に緻密化することによって、ピンホール等の欠陥の無い電着塗装被膜を形成することができる。なお、鉄系焼結材料の表面にショットピーニング加工を施すことにより、凹凸の形成と表層部の緻密化を同時に行うことができる。図2に表面に緻密化層2を設けた焼結体1aの模式図を示す。図1に示すような表面に緻密化層を設けていない焼結体1bと比べ、焼結体1aは気孔3の量が減少した緻密化層2を有するとともに、表面に微小な凹凸が形成されている。
電着塗装において、塗料粒子は電気泳動によって陰極である鉄系焼結材料の表面に移動して析出するが、この際に表面がショットピーニング加工により緻密化しているため、空隙によるピンホール等の塗膜の欠陥がなく、かつ微小な凹凸に塗料粒子が入り込むため、密着性に優れる樹脂被膜が形成される。
When irregularities are formed on the surface of an iron-based sintered material by shot peening and the surface roughness is 0.5 to 40 μm Ra, the coating enters the minute irregularities on the surface and adheres. A good film can be formed. Further, by densifying the surface layer portion to a density ratio of 90% or more, an electrodeposition coating film free from defects such as pinholes can be formed. In addition, by performing shot peening on the surface of the iron-based sintered material, it is possible to simultaneously form irregularities and densify the surface layer portion. FIG. 2 shows a schematic diagram of a sintered body 1a having a densified layer 2 on the surface. Compared with the sintered body 1b in which the densified layer is not provided on the surface as shown in FIG. 1, the sintered body 1a has the densified layer 2 in which the amount of pores 3 is reduced, and minute irregularities are formed on the surface. ing.
In electrodeposition coating, the paint particles move to the surface of the iron-based sintered material, which is the cathode, by electrophoresis and are deposited. At this time, the surface is densified by shot peening. Since there are no defects in the coating film and the paint particles enter into minute irregularities, a resin coating having excellent adhesion is formed.

上記の方法で作製した鉄系焼結材料は耐食性に優れ各種機械要素や機構部品材料として用いられるが、特にシリンダー錠装置用固定ケースに用いることにより、屋外等の苛酷な環境で使用するために要求される高い耐食性が得られ好適である。   The iron-based sintered material produced by the above method has excellent corrosion resistance and is used as a material for various machine elements and mechanical parts. Especially, it can be used in a harsh environment such as outdoors by using it as a fixing case for a cylinder lock device. The required high corrosion resistance is obtained and suitable.

以下に、実施例により本発明をさらに説明する。   The following examples further illustrate the present invention.

鉄基合金粉末に、0.6質量%の黒鉛粉末および成形潤滑剤として0.8質量%のステアリン酸亜鉛粉末を混合した原料粉末を成形用金型に充填し、成形圧力400MPaで圧縮成形し、得られた圧粉体を分解アンモニアガス雰囲気中で焼結して鉄系焼結材料を得た。なお、前記鉄基合金粉末は、0.5質量%のNi、0.5質量%のMoおよび残部が鉄からなるアトマイズ鉄基合金粉末とした。
上記の鉄系焼結材料の表面にショットピーニング加工を施し、微小な凹凸を形成して表面粗さをRaで0.5、5、10、20および40μmとするとともに表層部の最表面から少なくとも5μmの深さまで密度比90%に緻密化した。
更に、その表面にカチオン電着によりエポキシ系樹脂塗料を被覆した。このカチオン電着の工程は、以下の通りである。
第一工程として鉄系焼結材料の脱脂と水洗を行い、第二工程として化成被膜処理と水洗を行った。次に第三工程としてカチオン電着塗装による鉄系焼結材料の表面へエポキシ系樹脂塗料の付着と水洗を行った。さらに第四工程として190〜230℃で焼き付け、乾燥を行った。
[比較例1]
A raw material powder obtained by mixing iron-based alloy powder with 0.6% by mass of graphite powder and 0.8% by mass of zinc stearate powder as a molding lubricant is filled in a molding die and compression molded at a molding pressure of 400 MPa. The obtained green compact was sintered in a decomposed ammonia gas atmosphere to obtain an iron-based sintered material. The iron-based alloy powder was an atomized iron-based alloy powder made of 0.5 mass% Ni, 0.5 mass% Mo, and the balance being iron.
The surface of the iron-based sintered material is subjected to shot peening processing to form minute irregularities so that the surface roughness is 0.5, 5, 10, 20, and 40 μm in Ra and at least from the outermost surface of the surface layer portion Densification to 90% density to a depth of 5 μm.
Further, an epoxy resin coating was applied to the surface by cationic electrodeposition. This cationic electrodeposition process is as follows.
As the first step, the iron-based sintered material was degreased and washed with water, and as the second step, a chemical conversion coating treatment and washed with water were performed. Next, as a third step, the epoxy resin coating was adhered to the surface of the iron-based sintered material by cationic electrodeposition coating and washed with water. Furthermore, it baked at 190-230 degreeC as a 4th process, and performed drying.
[Comparative Example 1]

比較例1ではショットピーニング加工により凹凸を形成して表面粗さをRaで50μmとしたことを除き、実施例1と同じ製法で試料を作製した。
[比較例2]
In Comparative Example 1, a sample was produced by the same manufacturing method as in Example 1 except that irregularities were formed by shot peening and the surface roughness was Ra of 50 μm.
[Comparative Example 2]

比較例2ではショットピーニング加工により表面から5μmまでの表層部を密度比88%としたことを除き、実施例1と同じ製法で試料を作製した。なお、表面粗さはRaで5μmとした。   In Comparative Example 2, a sample was produced by the same manufacturing method as Example 1 except that the surface layer portion from the surface to 5 μm was made into a density ratio of 88% by shot peening. The surface roughness Ra was 5 μm.

(耐食性評価)
作製した試料につき、キャス試験(JIS H8502等)による耐食性評価を行った結果を表1に示す。試験時間は96時間とした。なお、表1に示した試料No.1〜5が実施例1、No.6が比較例1、No.7が比較例2に関するものである。比較例1および2の試料には赤錆の発生が認められたのに対し、本発明の鉄系焼結材料には赤錆の発生が全く無く、優れた耐食性を示すことが確認された。
(Corrosion resistance evaluation)
Table 1 shows the results of the corrosion resistance evaluation by the cast test (JIS H8502 etc.) for the prepared samples. The test time was 96 hours. In addition, the sample No. shown in Table 1 was used. 1 to 5 are those of Example 1, No. 1; 6 is Comparative Example 1, No. 6; Reference numeral 7 relates to Comparative Example 2. While generation of red rust was observed in the samples of Comparative Examples 1 and 2, it was confirmed that the iron-based sintered material of the present invention had no red rust and exhibited excellent corrosion resistance.

Figure 0005131965
Figure 0005131965

図3に示すようなシリンダー錠装置の固定ケース本体4用の成形体を、銅粉末1.5質量%、黒鉛粉末0.8質量%、ステアリン酸亜鉛粉末0.75質量%および残部の鉄粉末からなる混合粉末を、粉末成形用金型を用いて600MPaの成形圧力で圧縮成形して作製した。
固定ケースの前面部の防護板5用の成形体を、Cr、Mo、WおよびVを含有する鉄基合金粉末、鉄−リン合金粉末および鉄粉末を、全体組成が、Cr:4.0質量%、Mo:0.5質量%、W:0.5質量%、V:0.3質量%、P:0.5質量%およびFe:残部となるように混合し、この混合粉末に黒鉛粉末1.5質量%、ステアリン酸亜鉛粉末0.75質量%を添加混合した粉末を、粉末成形用金型を用いて600MPaの成形圧力で圧縮成形して作製した。
固定ケース本体4用の成形体には防護板5を接合する面に環状の凹部6を設けた。前記凹部6に防護板用の成形体を嵌合し、防護板を上側にしてセラミックス板に載置し、分解アンモニアガス雰囲気中、1140℃で焼結すると同時に接合した。接合した焼結素材を図4に示すような形状に切削加工した。
加工した素材を浸炭性ガス雰囲気中、850℃で1時間保持した後、油中で急冷して焼き入れし、180℃で1時間保持して焼き戻しを行った。次にショットピーニング加工により、表面から少なくとも5μmの深さまで密度比90%以上に緻密化し、その表面粗さをRaで0.5〜40μmとした。さらにカチオン電着塗装によりエポキシ系樹脂塗料を被覆した。このカチオン電着は、実施例1と同様の処理を施した。
上記の方法で作製した固定ケース4を用い、図5に示す構造のシリンダー錠装置7を組み立てた。
The molded product for the fixed case body 4 of the cylinder lock device as shown in FIG. 3 is made of 1.5% by mass of copper powder, 0.8% by mass of graphite powder, 0.75% by mass of zinc stearate powder, and the remaining iron powder. The mixed powder made of was produced by compression molding at a molding pressure of 600 MPa using a powder molding die.
The molded body for the protective plate 5 on the front surface of the fixed case is made of iron-based alloy powder, iron-phosphorus alloy powder and iron powder containing Cr, Mo, W and V, and the total composition is Cr: 4.0 mass. %, Mo: 0.5% by mass, W: 0.5% by mass, V: 0.3% by mass, P: 0.5% by mass, and Fe: remaining to be mixed. A powder prepared by adding 1.5% by mass and 0.75% by mass of zinc stearate powder was compression-molded at a molding pressure of 600 MPa using a powder molding die.
The molded body for the fixed case body 4 was provided with an annular recess 6 on the surface where the protective plate 5 was joined. A molded body for a protective plate was fitted into the concave portion 6 and placed on the ceramic plate with the protective plate facing upward, and sintered at 1140 ° C. in a decomposed ammonia gas atmosphere and simultaneously joined. The joined sintered material was cut into a shape as shown in FIG.
The processed material was held in a carburizing gas atmosphere at 850 ° C. for 1 hour, then quenched in oil and quenched, and held at 180 ° C. for 1 hour for tempering. Next, it was densified to a density ratio of 90% or more from the surface to a depth of at least 5 μm by shot peening, and its surface roughness was Ra to 0.5 to 40 μm. Furthermore, an epoxy resin coating was applied by cationic electrodeposition coating. This cationic electrodeposition was performed in the same manner as in Example 1.
A cylinder lock device 7 having the structure shown in FIG. 5 was assembled using the fixed case 4 produced by the above method.

上記シリンダー錠装置につき、キャス試験による耐食性評価を行った。この耐食性評価の結果、本発明のシリンダー錠装置用固定ケースを用いたシリンダー錠装置には、いずれも赤錆の発生が全く無く、本発明のシリンダー錠装置用固定ケースを用いることにより、優れた耐食性を示すシリンダー錠装置が得られることが確認された。   The cylinder lock device was evaluated for corrosion resistance by a cast test. As a result of this corrosion resistance evaluation, none of the cylinder lock devices using the cylinder lock device fixing case of the present invention has red rust, and by using the cylinder lock device fixing case of the present invention, excellent corrosion resistance is obtained. It was confirmed that a cylinder locking device showing

本発明は、気孔を有する鉄系焼結材料の表面に、密着性に優れかつ欠陥の無い電着塗装被膜が形成された耐食性に優れる鉄系焼結材料およびその製造方法、特に、耐食性に優れる鉄系焼結部品により構成されるシリンダー錠装置およびその製造方法を提供する。   The present invention provides an iron-based sintered material excellent in corrosion resistance in which an electrodeposited coating film having excellent adhesion and a defect is formed on the surface of an iron-based sintered material having pores, and a manufacturing method thereof, and in particular, excellent in corrosion resistance. Provided are a cylinder locking device composed of iron-based sintered parts and a method for manufacturing the same.

緻密化層のない焼結体断面の模式図。The schematic diagram of the sintered compact cross section without a densification layer. 緻密化した表面層を設けた焼結体断面を示す模式図。The schematic diagram which shows the sintered compact cross section which provided the densified surface layer. シリンダー錠装置用固定ケースおよび防護板の切削加工前の縦断面図。The longitudinal cross-sectional view before the cutting process of the fixing case for cylinder locking devices, and a guard plate. シリンダー錠装置用固定ケースの縦断面図。The longitudinal cross-sectional view of the fixing case for cylinder lock apparatuses. 本発明のシリンダー錠装置用固定ケースを用いたシリンダー錠の縦断面図。The longitudinal cross-sectional view of the cylinder lock using the fixing case for cylinder lock apparatuses of this invention.

符号の説明Explanation of symbols

1a 焼結体(表面緻密化後)
1b 焼結体(表面緻密化前)
2 緻密化層
3 気孔
4 固定ケース
5 防護板
6 環状凹部
7 シリンダー錠装置
1a Sintered body (after surface densification)
1b Sintered body (before surface densification)
2 Densified layer 3 Pore 4 Fixed case 5 Guard plate 6 Annular recess 7 Cylinder locking device

Claims (10)

ショットピーニング加工により表面に凹凸を形成し、かつ表面粗さをRaで0.5〜40μmとするとともに、表面から1〜200μmの深さの表層部を密度比90%以上に緻密化し、かつ前記表面を電着塗装被膜で被覆したことを特徴とする鉄系焼結材料。 Irregularities formed on the surface by shot peening, and surface roughness as well as the 0.5~40μm at Ra, surface or al 1-200 densified to a density ratio of 90% or more of the surface layer portion of a depth of [mu] m, An iron-based sintered material, wherein the surface is coated with an electrodeposition coating film. 前記電着塗装がカチオン電着塗装であることを特徴とする請求項1に記載の鉄系焼結材料。   The iron-based sintered material according to claim 1, wherein the electrodeposition coating is a cationic electrodeposition coating. 前記カチオン電着塗装に用いる塗料がエポキシ系樹脂塗料であることを特徴とする請求項2に記載の鉄系焼結材料。   The iron-based sintered material according to claim 2, wherein the paint used for the cationic electrodeposition coating is an epoxy resin paint. 前記カチオン電着塗装に用いる塗料がアクリル系樹脂塗料であることを特徴とする請求項2に記載の鉄系焼結材料。   The iron-based sintered material according to claim 2, wherein the paint used for the cationic electrodeposition coating is an acrylic resin paint. 請求項1から4の何れかに記載の鉄系焼結材料により構成されることを特徴とするシリンダー錠装置用固定ケース。   A fixing case for a cylinder lock device, comprising the iron-based sintered material according to any one of claims 1 to 4. ショットピーニング加工により表面に凹凸を形成し、かつ表面粗さをRaで0.5〜40μmとするとともに、表面から1〜200μmの深さの表層部を密度比90%以上に緻密化し、次いで前記表面を電着塗装被膜で被覆することを特徴とする鉄系焼結材料の製造方法。 Irregularities formed on the surface by shot peening, and surface roughness as well as the 0.5~40μm at Ra, surface or al 1-200 densified to a density ratio of 90% or more of the surface layer portion of a depth of [mu] m, Next, a method for producing an iron-based sintered material, wherein the surface is coated with an electrodeposition coating film. 前記電着塗装がカチオン電着塗装であることを特徴とする請求項6に記載の鉄系焼結材料の製造方法。   The method for producing an iron-based sintered material according to claim 6, wherein the electrodeposition coating is a cationic electrodeposition coating. 前記カチオン電着塗装に用いる塗料をエポキシ系樹脂塗料とすることを特徴とする請求項7に記載の鉄系焼結材料の製造方法。   The method for producing an iron-based sintered material according to claim 7, wherein the paint used for the cationic electrodeposition coating is an epoxy resin paint. 前記カチオン電着塗装に用いる塗料をアクリル系樹脂塗料とすることを特徴とする請求項7に記載の鉄系焼結材料の製造方法。   The method for producing an iron-based sintered material according to claim 7, wherein the paint used for the cationic electrodeposition coating is an acrylic resin paint. 請求項6から9の何れかに記載の製造方法により作製される鉄系焼結材料により構成することを特徴とするシリンダー錠装置用固定ケースの製造方法。
A method for producing a fixed case for a cylinder lock device, comprising an iron-based sintered material produced by the production method according to claim 6.
JP2007241957A 2007-09-19 2007-09-19 Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same Expired - Fee Related JP5131965B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007241957A JP5131965B2 (en) 2007-09-19 2007-09-19 Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same
DE102008047823A DE102008047823A1 (en) 2007-09-19 2008-09-18 An iron-based sintered material superior in corrosion resistance, a cylinder lock device mounting housing made thereof and a manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241957A JP5131965B2 (en) 2007-09-19 2007-09-19 Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009074113A JP2009074113A (en) 2009-04-09
JP5131965B2 true JP5131965B2 (en) 2013-01-30

Family

ID=40418359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241957A Expired - Fee Related JP5131965B2 (en) 2007-09-19 2007-09-19 Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same

Country Status (2)

Country Link
JP (1) JP5131965B2 (en)
DE (1) DE102008047823A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087042B2 (en) * 2010-09-30 2017-03-01 日立化成株式会社 Method for manufacturing sintered member
FR2978687B1 (en) * 2011-08-05 2013-08-02 Snecma PROCESS FOR FINISHING PARTS PRODUCED IN METALLURGY OF POWDERS BY DEPOSITION OF A COATING

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598312A (en) * 1991-10-03 1993-04-20 Sumitomo Electric Ind Ltd Surface treatment of sintered stainless steel part
SE9602376D0 (en) * 1996-06-14 1996-06-14 Hoeganaes Ab Compact body
JP2004190105A (en) * 2002-12-12 2004-07-08 Mitsubishi Materials Corp Sintered part for engine and manufacturing method therefor

Also Published As

Publication number Publication date
DE102008047823A1 (en) 2009-04-09
JP2009074113A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP4115826B2 (en) Iron-based sintered body excellent in aluminum alloy castability and manufacturing method thereof
CN106584758B (en) A kind of preparation method of the encapsulated sprocket wheel of powder metallurgy
EP3795280A1 (en) Iron-based sintered alloy valve seat for internal combustion engine
EP2233534A1 (en) Method for producing a protective coating for a component of a turbomachine, the component itself and the respective machine
JP5131965B2 (en) Iron-based sintered material with excellent corrosion resistance, fixing case for cylinder lock device, and method for producing the same
CN110241412B (en) Laminated coating self-lubricating bearing and preparation method thereof
EP2339045B1 (en) Wear resistant device and process therefor
JP5843291B2 (en) Composite sprayed coating
Tay et al. Laser sintered rapid tools with improved surface finish and strength using plating technology
CN113574208B (en) Object comprising a chromium-based coating on a substrate
JP2009074114A (en) Iron-based sintered material superior in corrosion resistance, fixing case for cylinder lock device made from the material, and method for manufacturing them
JPH10298607A (en) Production of ferrous sintered alloy, ferrous sintered alloy produced thereby and bearing cap
TW200424364A (en) Iron based part and production method for the same
US11680499B2 (en) Sliding member
JP2005310975A (en) Sintered neodymium magnet, its manufacturing method and rotary machine
JPS6410561B2 (en)
CN104451657A (en) Preparation method of ternary boride ceramic/iron-based surface composite material
CN114318202A (en) Nickel-based alloy surface wear-resistant coating and preparation method thereof
CA2371439C (en) H-bn modified p/m stainless steels
RU2401720C1 (en) Method of producing article from multilayer solid alloy based on tungsten carbide
JPWO2018193982A1 (en) Thermal spray coating, laminated tube, and method of manufacturing thermal spray coating
JP2004190105A (en) Sintered part for engine and manufacturing method therefor
JP2023118127A (en) Pore sealing treatment agent, cured object, spray coated article, and manufacturing method of spray coated article
JP2005060720A (en) Aluminum-based member, its production method, and surface treatment method for aluminum-based member
JP2006000952A (en) Method of machining sintered magnetic substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees