JP5131285B2 - Silicon single crystal growth apparatus and quartz crucible - Google Patents

Silicon single crystal growth apparatus and quartz crucible Download PDF

Info

Publication number
JP5131285B2
JP5131285B2 JP2009554292A JP2009554292A JP5131285B2 JP 5131285 B2 JP5131285 B2 JP 5131285B2 JP 2009554292 A JP2009554292 A JP 2009554292A JP 2009554292 A JP2009554292 A JP 2009554292A JP 5131285 B2 JP5131285 B2 JP 5131285B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
quartz crucible
diameter
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009554292A
Other languages
Japanese (ja)
Other versions
JPWO2009104533A1 (en
Inventor
俊幸 藤原
健彦 細井
中村  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009554292A priority Critical patent/JP5131285B2/en
Publication of JPWO2009104533A1 publication Critical patent/JPWO2009104533A1/en
Application granted granted Critical
Publication of JP5131285B2 publication Critical patent/JP5131285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

この発明はシリコン単結晶成長装置および石英ルツボ、詳しくは直径が450mmのシリコンウェーハ用のシリコン単結晶を成長可能なシリコン単結晶成長装置および石英ルツボに関する。   The present invention relates to a silicon single crystal growth apparatus and a quartz crucible, and more particularly to a silicon single crystal growth apparatus and a quartz crucible capable of growing a silicon single crystal for a silicon wafer having a diameter of 450 mm.

チョクラルスキー法(CZ法)によりシリコン単結晶を製造する装置としては、例えば特許文献1、非特許文献1に記載されたものが知られている。すなわち、石英ルツボ内で固体の結晶用シリコン原料を加熱溶融して溶融液(シリコン融液)を形成し、その後、この溶融液に種結晶を浸してこれを回転させながら引き上げ、種結晶の下方にシリコン単結晶を成長させる装置である。
一般的なシリコン単結晶成長装置による結晶成長方法では、まずネック部を経て種結晶の直径より大きい所定径までシリコン単結晶を増径(増径部)させる。その後、増径部に連続して、ほぼ一定径の直胴部(ボディ部)を所定長さだけ形成する。次に、直胴部に連続して減径部を形成し、溶融液からシリコン単結晶を切り離す。なお、ネック部とは、種結晶を溶融液に浸した時などに導入される転位を除去する部分である。また、減径部とは、成長中のシリコン単結晶が溶融液から切り離れる際の急激な温度変化による転位を防ぐ部分である。以上の工程を経て、シリコン単結晶が製造される。
得られたシリコン単結晶の直胴部に対しては、外周研削、ブロック切断、スライス、研磨が順次施され、多数枚のシリコンウェーハとなる。その後、必要により熱処理、エピタキシャル成長などが施され、半導体装置の材料であるシリコンウェーハが作製される。
As an apparatus for producing a silicon single crystal by the Czochralski method (CZ method), for example, those described in Patent Document 1 and Non-Patent Document 1 are known. That is, a solid crystal silicon raw material is heated and melted in a quartz crucible to form a melt (silicon melt), and then the seed crystal is immersed in the melt and pulled up while rotating, and below the seed crystal. This is a device for growing a silicon single crystal.
In a crystal growth method using a general silicon single crystal growth apparatus, first, the silicon single crystal is increased in diameter (increased portion) to a predetermined diameter larger than the diameter of the seed crystal through the neck portion. Thereafter, a straight body portion (body portion) having a substantially constant diameter is formed by a predetermined length continuously with the increased diameter portion. Next, a reduced diameter part is formed continuously to the straight body part, and the silicon single crystal is separated from the melt. The neck portion is a portion for removing dislocations introduced when the seed crystal is immersed in the melt. The diameter-reduced portion is a portion that prevents dislocation due to a rapid temperature change when the growing silicon single crystal is separated from the melt. A silicon single crystal is manufactured through the above steps.
The straight body portion of the obtained silicon single crystal is subjected to peripheral grinding, block cutting, slicing, and polishing in sequence to obtain a large number of silicon wafers. Thereafter, heat treatment, epitaxial growth, and the like are performed as necessary, and a silicon wafer that is a material of the semiconductor device is manufactured.

ところで、石英ルツボ内に投入された結晶用シリコン原料のうち、シリコン単結晶の不要部分(増径部、減径部および外周研削時に除かれた部分)と、石英ルツボ内に残存した溶融液とが、シリコンブロックとして利用できなかった原料部分となる。
シリコン単結晶をチョクラルスキー法で成長させる場合、同じ直径の直胴部であれば、外周研削によって除かれた部分の量は、直胴部の長さに比例する。しかしながら、増径部、減径部の大きさは、直胴部の長さによらず、ほぼ一定に成長可能である。また、石英ルツボ内に少量残る溶融液の量も、直胴部の長さ(石英ルツボ内に最初に形成される溶融液量)に関係なく、ほぼ一定にすることができる。
そのため、結晶用シリコン原料に対するシリコンブロックの重量比を歩留まりとした場合、石英ルツボ内に最初に形成される溶融液の量を増やし、直胴部が長いシリコン単結晶を成長させれば、歩留まりは高まる。
近年、シリコン単結晶の大口径化が推進されており、直径300mmのシリコンウェーハ用のシリコン単結晶が製造され、また直径450mmのシリコンウェーハ用のシリコン単結晶の製造も行われようとしている(非特許文献1)。
By the way, among the silicon raw material for crystal put in the quartz crucible, unnecessary portions of the silicon single crystal (the portions removed during the increased diameter portion, the reduced diameter portion and the outer periphery grinding), and the melt remaining in the quartz crucible, However, this is a raw material portion that could not be used as a silicon block.
When a silicon single crystal is grown by the Czochralski method, if it is a straight body portion having the same diameter, the amount of the portion removed by the outer peripheral grinding is proportional to the length of the straight body portion. However, the size of the increased diameter portion and the decreased diameter portion can be grown substantially constant regardless of the length of the straight body portion. Also, the amount of the melt remaining in the quartz crucible in a small amount can be made substantially constant regardless of the length of the straight body portion (the amount of melt formed first in the quartz crucible).
Therefore, when the weight ratio of the silicon block to the silicon raw material for crystal is taken as the yield, the yield can be increased by increasing the amount of the melt first formed in the quartz crucible and growing the silicon single crystal having a long straight body. Rise.
In recent years, an increase in the diameter of a silicon single crystal has been promoted, and a silicon single crystal for a silicon wafer having a diameter of 300 mm has been manufactured, and a silicon single crystal for a silicon wafer having a diameter of 450 mm has also been manufactured (non- Patent Document 1).

日本国特開平11−278993号公報Japanese Unexamined Patent Publication No. 11-278993 文献名:−先端LSIが要求するウェーハ技術の現状− 最新 シリコンデバイスと結晶技術、発行:日本国リアライズ理工センター/リアライズAT株式会社、発行日2005年12月29日、第3章結晶技術、1.5 450mm径を想定した結晶技術課題(243頁、244頁)Name of Literature:-Current Status of Wafer Technology Required by Advanced LSI-Latest Silicon Devices and Crystal Technology, Issued: Realize Science Center, Japan / Realize AT Co., Ltd., issued December 29, 2005, Chapter 3, Crystal Technology, 1.5 Crystal technology issues assuming a 450mm diameter (pages 243, 244)

このように、引き上げる直胴部の直径が大きくなれば、増径部および減径部の各寸法、各重量も増大する。そのため、同じ石英ルツボを使用し、同一量の溶融液からシリコン単結晶を成長させたときの歩留まりは、直胴部の直径の増大に伴って低下する。ここで、増径部および減径部の形状が直径に対して相似である場合における、直胴部の直径に対する歩留まりの変化を図4のグラフに示す。   As described above, when the diameter of the straight body portion to be pulled up is increased, each dimension and each weight of the increased diameter portion and the decreased diameter portion are also increased. Therefore, the yield when silicon single crystals are grown from the same amount of melt using the same quartz crucible decreases as the diameter of the straight body increases. Here, the graph of FIG. 4 shows a change in yield with respect to the diameter of the straight body portion when the shapes of the increased diameter portion and the reduced diameter portion are similar to the diameter.

チョクラルスキー法では、シリコン単結晶の直胴部の増大に伴い、直径および高さ(深さ)が比例して増大した石英ルツボの使用が可能であれば、直胴部の直径にかかわらず、ほぼ同じ歩留まりでシリコン単結晶を成長させることができる。従来、チョクラルスキー法で用いられる石英ルツボは、シリコン単結晶の直胴部の直径に対して、周壁部の外径が2.5〜3倍程度であった。石英ルツボの深さ(高さ)および内径は、石英ルツボの外径に比例する。
直胴部の直径が300mm以下のシリコンウェーハ用のシリコン単結晶の成長では、石英ルツボのサイズは、上述のように相似形状のものを使用することができる。しかしながら、直胴部の直径が450mmを超えるシリコン単結晶をチョクラルスキー法で製造する場合、使用(製造)可能な石英ルツボの直径は45インチ以下である。すなわち、45インチを超える石英ルツボは大型であるので、従来のルツボ製造装置では石英粉の溶融に必要な熱量を十分与えることができない。そのため、直径300mm以下のシリコンウェーハ用のシリコン単結晶の成長で使用する石英ルツボの場合と比較し、ルツボ品質が劣ったものしか製造できない。その結果、45インチを超える石英ルツボは得られ難い。これにより、シリコン単結晶の直径の2.5倍以下の外径を有する石英ルツボを利用せざるを得なかった。また、仮に大型の石英ルツボが製造可能であっても、シリコン単結晶成長装置が極端に大型化するので、製造法として限界を超えるという懸念や、シリコン単結晶成長中に大型の石英ルツボの方が従来サイズの石英ルツボより高温となるので、石英ルツボが軟化して変形し、シリコン単結晶成長が途中で不可能になるおそれもあった。
In the Czochralski method, a quartz crucible whose diameter and height (depth) increase proportionally with the increase in the straight body of a silicon single crystal can be used regardless of the diameter of the straight body. A silicon single crystal can be grown with substantially the same yield. Conventionally, the quartz crucible used in the Czochralski method has an outer diameter of about 2.5 to 3 times the diameter of the straight body of the silicon single crystal. The depth (height) and inner diameter of the quartz crucible are proportional to the outer diameter of the quartz crucible.
In the growth of a silicon single crystal for a silicon wafer having a diameter of the straight body portion of 300 mm or less, a quartz crucible having a similar shape as described above can be used. However, when a silicon single crystal having a diameter of the straight body part exceeding 450 mm is manufactured by the Czochralski method, the diameter of a quartz crucible that can be used (manufactured) is 45 inches or less. That is, since the quartz crucible exceeding 45 inches is large, the conventional crucible manufacturing apparatus cannot provide a sufficient amount of heat necessary for melting the quartz powder. Therefore, only those having inferior crucible quality can be manufactured as compared with the case of a quartz crucible used for growing a silicon single crystal for a silicon wafer having a diameter of 300 mm or less. As a result, it is difficult to obtain a quartz crucible exceeding 45 inches. As a result, a quartz crucible having an outer diameter not more than 2.5 times the diameter of the silicon single crystal has to be used. In addition, even if a large quartz crucible can be manufactured, the silicon single crystal growth apparatus becomes extremely large, and there is a concern that the manufacturing method will be exceeded. However, since the temperature of the quartz crucible becomes higher than that of the conventional quartz crucible, the quartz crucible is softened and deformed, and there is a possibility that the silicon single crystal growth becomes impossible in the middle.

このような状況下で、直径300mm以下のシリコンウェーハ用のシリコン単結晶の製造と同程度の歩留まりを得る対策として、石英ルツボの深さを深くし、最初に形成する溶融液の量を増やすことが考えられる。
石英ルツボの深さは、チョクラルスキー法によるシリコン単結晶の各製造工程において、次の2つの点で大きな影響を与える。
Under such circumstances, as a measure to obtain the same yield as the production of a silicon single crystal for a silicon wafer having a diameter of 300 mm or less, the depth of the quartz crucible is increased and the amount of the first melt formed is increased. Can be considered.
The depth of the quartz crucible has a great influence on the following two points in each production process of a silicon single crystal by the Czochralski method.

(1)シリコン単結晶の成長では、シリコン単結晶の直径と引き上げ速度とを予め設定されたプロファイルにしたがって制御することで、シリコン単結晶の直径が測定される。測定法としては、ロードセルなどでシリコン単結晶の重量を測定し、このときの重量変化からシリコン単結晶の直径を算出する方法が知られている。その他、CCDカメラなどにより光学的にシリコン単結晶の直径を測定する方法も知られている。直径450mmを超えるシリコン単結晶は大重量となる。その結果、ロードセルなどでの計量値からシリコン単結晶の直径を算出する方法では、十分な計測精度が得られない。したがって、前記光学的な測定が必須となる。
しかしながら、450mmウェーハ用のシリコン単結晶の直胴部の直径をCCDカメラにより安定的に測定するには、シリコン単結晶の引き上げ中心線(引き上げ軸の軸線)に対して、CCDカメラの角度位置を20°以上傾ける必要があった。ところが、装置内には、石英ルツボの周壁部、その外側のヒータや保温筒からシリコン単結晶へ向かう輻射熱を防ぐ遮蔽体が設置されている。そのため、石英ルツボの深さが深ければ高い遮蔽体の設置が必要となる。その結果、遮蔽体が障害となり、CCDカメラの角度の設定に支障をきたしていた。
(1) In the growth of a silicon single crystal, the diameter of the silicon single crystal is controlled by controlling the diameter and pulling speed of the silicon single crystal according to a preset profile. As a measurement method, a method is known in which the weight of a silicon single crystal is measured with a load cell or the like, and the diameter of the silicon single crystal is calculated from the change in weight at this time. In addition, a method for optically measuring the diameter of a silicon single crystal with a CCD camera or the like is also known. A silicon single crystal having a diameter of 450 mm or more is heavy. As a result, sufficient measurement accuracy cannot be obtained by the method of calculating the diameter of the silicon single crystal from the measured value in a load cell or the like. Therefore, the optical measurement is essential.
However, in order to stably measure the diameter of the straight body of a silicon single crystal for a 450 mm wafer with a CCD camera, the angular position of the CCD camera is set with respect to the pulling center line (the axis of the pulling axis) of the silicon single crystal. It was necessary to incline 20 ° or more. However, in the apparatus, there are installed a shielding body for preventing radiant heat from the peripheral wall portion of the quartz crucible, the heater on the outside thereof, and the heat insulating cylinder toward the silicon single crystal. Therefore, if the quartz crucible is deep, it is necessary to install a high shield. As a result, the shield becomes an obstacle, and the setting of the angle of the CCD camera is hindered.

(2)また、チョクラルスキー法では、格子間シリコンおよび空孔などの点欠陥、石英ルツボから溶融液中に溶出した酸素などが、シリコン単結晶の成長(凝固)界面から、この単結晶中に取り込まれる。これらの点欠陥および酸素は、成長に伴うシリコン単結晶の冷却時に、拡散や凝縮などで結晶欠陥を形成したり、欠陥の核を形成することが知られている。そこで、欠陥のサイズおよび欠陥の密度を制御するため、予めシミュレーション(事前実験)を行い、炉内の構成(ホットゾーン設計)を決定し、シリコン単結晶の引き上げ中の冷却パターンの設定がなされている。すなわち、結晶欠陥および欠陥核を制御し、生産性を高めるには、シリコン単結晶の冷却パターンを、できるだけ急冷のパターンとすることが望ましい。
ところが、シリコン単結晶を取り囲む空間には、輻射熱の遮蔽体が設置されている。遮蔽体は、引き上げ中のシリコン単結晶をより急冷し、また、長さ方向の冷却パターンの変化を小さくする筒体である。前述のように石英ルツボの深さが深くなれば、引き上げ時に上昇する石英ルツボのスペースを覆うため、高い遮蔽体を設置することになる。しかしながら、この方法によれば高い遮蔽体によりシリコン単結晶を取り囲むので、シリコン単結晶自身の熱輻射により、シリコン単結晶は急冷ではなく徐冷となる。これにより、欠陥および欠陥核について、各所望のサイズや各所望の密度を得ることができない。
(2) Also, in the Czochralski method, point defects such as interstitial silicon and vacancies, oxygen eluted from the quartz crucible into the melt, and so on from the growth (solidification) interface of the silicon single crystal Is taken in. These point defects and oxygen are known to form crystal defects or form defect nuclei by diffusion or condensation during cooling of the silicon single crystal accompanying growth. Therefore, in order to control the defect size and defect density, a simulation (preliminary experiment) is performed in advance, the furnace configuration (hot zone design) is determined, and the cooling pattern during the pulling of the silicon single crystal is set. Yes. That is, in order to control crystal defects and defect nuclei and increase productivity, it is desirable that the cooling pattern of the silicon single crystal be as rapid as possible.
However, a radiant heat shield is provided in the space surrounding the silicon single crystal. The shield is a cylinder that cools the silicon single crystal being pulled up more rapidly and reduces the change in the cooling pattern in the length direction. As described above, when the depth of the quartz crucible becomes deep, a high shield is installed to cover the space of the quartz crucible that rises when the quartz crucible is pulled up. However, according to this method, since the silicon single crystal is surrounded by the high shield, the silicon single crystal is not cooled rapidly but gradually cooled by the thermal radiation of the silicon single crystal itself. Thereby, each desired size and each desired density cannot be obtained about a defect and a defect nucleus.

そこで、発明者は、鋭意研究の結果、石英ルツボの外径を直径450mmのシリコンウェーハを形成可能なシリコン単結晶の引き上げに適した36インチ以上とした上で、石英ルツボの直径に対する石英ルツボの深さの割合に着目した。すなわち、溶融液の液面において、シリコン単結晶が引き上げられる石英ルツボの中心線上の深さを、周壁部の外径の80%以下とすれば、CCDカメラによるシリコン単結晶の良好な撮像角度(引き上げ中心線(鉛直方向)から20°以上の傾斜角度)の確保が可能となることを知見した。しかも、上記80%以下の構成にすれば、この冷却パターンを、直径300mmのシリコンウェーハを形成可能なシリコン単結晶(直径302〜320mm)を引き上げる場合と同程度にすることができる。その結果、シリコン単結晶中の欠陥サイズおよび欠陥の密度を制御した高品質のシリコン単結晶が得られることを知見し、この発明を完成させた。   Accordingly, as a result of earnest research, the inventor has made the outer diameter of the quartz crucible to be 36 inches or more suitable for pulling up a silicon single crystal capable of forming a silicon wafer having a diameter of 450 mm, and the quartz crucible with respect to the diameter of the quartz crucible. We focused on the depth ratio. That is, if the depth on the center line of the quartz crucible where the silicon single crystal is pulled up is 80% or less of the outer diameter of the peripheral wall portion on the liquid surface of the melt, a good imaging angle of the silicon single crystal by the CCD camera ( It was found that a tilt angle of 20 ° or more from the pulling center line (vertical direction) can be secured. In addition, if the configuration is 80% or less, the cooling pattern can be made to the same level as when a silicon single crystal (diameter 302 to 320 mm) capable of forming a silicon wafer having a diameter of 300 mm is pulled up. As a result, it was found that a high-quality silicon single crystal in which the defect size and defect density in the silicon single crystal were controlled was obtained, and the present invention was completed.

この発明は、光学カメラによってシリコン単結晶の直径を計測する際、良好な撮像角度を確保することができる。しかも、引き上げ中の直径450mmのシリコンウェーハを形成可能なシリコン単結晶の冷却パターンを、直径300mmのシリコンウェーハを形成可能なシリコン単結晶の引き上げの場合と同程度とすることができる。これにより、シリコン単結晶中の欠陥サイズおよび欠陥の密度を制御した高品質のシリコン単結晶を得ることができる。この発明は、以上の効果を同時に満足させることができるシリコン単結晶成長装置および石英ルツボを提供することを目的としている。   The present invention can secure a good imaging angle when measuring the diameter of a silicon single crystal with an optical camera. In addition, the cooling pattern of the silicon single crystal capable of forming a silicon wafer having a diameter of 450 mm during the pulling can be set to the same level as in the case of pulling up the silicon single crystal capable of forming a silicon wafer having a diameter of 300 mm. Thereby, a high quality silicon single crystal in which the defect size and defect density in the silicon single crystal are controlled can be obtained. An object of the present invention is to provide a silicon single crystal growth apparatus and a quartz crucible that can simultaneously satisfy the above effects.

請求項1に記載の発明は、チャンバに収納された石英ルツボ内に結晶用シリコン原料を充填して溶融し、その溶融液に浸漬した種結晶を回転させながら引き上げることにより、該種結晶の下方にチョクラルスキー法によりシリコン単結晶を成長させるシリコン単結晶成長装置であって、前記シリコン単結晶は、直径450mmのシリコンウェーハを形成可能な直胴部を有し、前記チャンバの上部には、前記溶融液の液面付近における前記シリコン単結晶を撮像する光学カメラが設けられ、前記石英ルツボは、外径が全長にわたって一定の周壁部と、該周壁部の下側の開口部を塞ぐ底部とを有し、前記周壁部の外径は36インチ以上で、前記石英ルツボの中心線上の深さは、前記周壁部の外径の80%以下であるシリコン単結晶成長装置である。   In the first aspect of the present invention, a quartz crucible housed in a chamber is filled with a silicon raw material for crystal and melted, and the seed crystal immersed in the melt is pulled up while rotating, thereby lowering the seed crystal. A silicon single crystal growth apparatus for growing a silicon single crystal by the Czochralski method, wherein the silicon single crystal has a straight body portion capable of forming a silicon wafer having a diameter of 450 mm, and an upper portion of the chamber An optical camera for imaging the silicon single crystal in the vicinity of the liquid surface of the melt is provided, and the quartz crucible has a peripheral wall portion whose outer diameter is constant over the entire length, and a bottom portion that closes an opening below the peripheral wall portion. And the outer diameter of the peripheral wall portion is 36 inches or more, and the depth on the center line of the quartz crucible is 80% or less of the outer diameter of the peripheral wall portion.

請求項1に記載の発明によれば、直径450mmのシリコンウェーハ用のシリコン単結晶を引き上げる石英ルツボとして、周壁部の外径が36インチ以上で、かつ石英ルツボの中心線上の深さが周壁部の外径の80%以下のものを採用した。シリコン単結晶の引き上げの中心線は、石英ルツボの中心線と略重なる。そのため、周壁部の外径を36インチ(914.4mm)以上とすれば、シリコン単結晶の周囲には、石英ルツボの半径方向において、石英ルツボの厚みを除いても幅200mm以上の円筒形の空間が形成される。この大きさの円筒空間を得ることで、引き上げ中心線に対して20°以上の傾斜角度を確保することができる。この20°以上は、光学カメラによるシリコン単結晶の良好な撮像角度である。これにより、シリコン単結晶の成長に伴い、溶融液の液面が石英ルツボの底部の領域まで達したとき、シリコン単結晶をカメラ撮像してシリコン単結晶の直径を計測できなくなるおそれが解消される。   According to the first aspect of the present invention, as a quartz crucible for pulling up a silicon single crystal for a silicon wafer having a diameter of 450 mm, the outer diameter of the peripheral wall portion is 36 inches or more and the depth on the center line of the quartz crucible is the peripheral wall portion. The outer diameter was 80% or less. The center line for pulling up the silicon single crystal substantially overlaps the center line of the quartz crucible. Therefore, if the outer diameter of the peripheral wall portion is 36 inches (914.4 mm) or more, a cylindrical shape having a width of 200 mm or more is provided around the silicon single crystal in the radial direction of the quartz crucible, excluding the thickness of the quartz crucible. A space is formed. By obtaining a cylindrical space of this size, an inclination angle of 20 ° or more can be secured with respect to the pulling center line. This 20 ° or more is a good imaging angle of the silicon single crystal by the optical camera. This eliminates the possibility that, as the silicon single crystal grows, when the melt surface reaches the bottom region of the quartz crucible, the silicon single crystal cannot be measured by imaging the silicon single crystal with a camera. .

しかも、石英ルツボの中心線上の深さ(底部の内面の中央から、周壁部の開口した上面の中央までの高さ)を、周壁部の外径の80%以下と浅くしたので、溶融液の液面付近において、シリコン単結晶の引き上げ直後の部分の冷却効果が高まる。これにより、引き上げ中の450mmウェーハ用のシリコン単結晶の冷却パターンを、直径300mmのシリコンウェーハを形成可能なシリコン単結晶の引き上げの場合と同程度まで改善することができる。その結果、シリコン単結晶中の欠陥サイズおよび欠陥の密度を制御した高品質のシリコン単結晶を得ることができる。   In addition, the depth on the center line of the quartz crucible (height from the center of the inner surface of the bottom portion to the center of the upper surface where the peripheral wall portion is opened) is shallower than 80% of the outer diameter of the peripheral wall portion. In the vicinity of the liquid surface, the cooling effect of the portion immediately after pulling up the silicon single crystal is enhanced. As a result, the cooling pattern of the silicon single crystal for the 450 mm wafer being pulled can be improved to the same extent as in the case of pulling the silicon single crystal capable of forming a silicon wafer having a diameter of 300 mm. As a result, a high-quality silicon single crystal in which the defect size and defect density in the silicon single crystal are controlled can be obtained.

チャンバとしては、例えば、石英ルツボが収納されるメインチャンバ上に、メインチャンバより小径なプルチャンバが連通されたものなどを採用することができる。
結晶用シリコン原料としては、固体の多結晶シリコンなどを採用することができる。もちろん、溶融液にはボロン(B)、リン(P)などのドーパントを投入してもよい。
シリコン単結晶の形状としては、例えばネック部(絞り部)、増径部(上向きコーン部)、直胴部、減径部(下向きコーン部)を有するものを採用することができる。また、ネック部がほとんどないもの、減径部が存在しないものでもよい。
直径450mmのシリコンウェーハを形成可能な直胴部とは、直径がシリコンウェーハの直径と同じ450mmのものである必要はなく、それより大径な例えば直径451〜480mmの直胴部のものを含む。すなわち、シリコン単結晶の直胴部に対しては、ウェーハ加工工程で、ブロック切断後のシリコンブロックに対して0.5〜15mm程度の外周研削が施される。これを考慮し、直径450mmのシリコンウェーハを形成可能なシリコン単結晶の直胴部の直径は、451〜480mmに設定されている。
チョクラルスキー法としては、一般的なCZ法だけでなく、石英ルツボの周りに磁石が配設された磁場印加方式チョクラルスキー引き上げ法(MCZ法)を採用してもよい。
As the chamber, for example, a main chamber in which a quartz crucible is accommodated and a pull chamber having a smaller diameter than the main chamber can be used.
As the crystal silicon material, solid polycrystalline silicon or the like can be employed. Of course, a dopant such as boron (B) or phosphorus (P) may be added to the melt.
As the shape of the silicon single crystal, for example, one having a neck portion (drawing portion), an increased diameter portion (upward cone portion), a straight body portion, and a reduced diameter portion (downward cone portion) can be adopted. Moreover, the thing with almost no neck part and the thing without a reduced diameter part may be sufficient.
The straight body part capable of forming a silicon wafer having a diameter of 450 mm does not need to have a diameter of 450 mm which is the same as the diameter of the silicon wafer, and includes a straight body part having a larger diameter, for example, a diameter of 451 to 480 mm. . That is, for the straight body portion of the silicon single crystal, outer peripheral grinding of about 0.5 to 15 mm is performed on the silicon block after the block cutting in the wafer processing step. Considering this, the diameter of the straight body portion of the silicon single crystal capable of forming a silicon wafer having a diameter of 450 mm is set to 451 to 480 mm.
As the Czochralski method, not only a general CZ method but also a magnetic field application type Czochralski pulling method (MCZ method) in which a magnet is disposed around a quartz crucible may be employed.

石英ルツボとしては、外径が全長にわたって一定(水平な断面形状および断面積が一定)の円筒体の周壁部と、周壁部の下方に配置され、所定の膨出形状または平坦な形状の底部とを、外面の曲率半径が、底部の外面の曲率半径より小さい膨出形状のコーナー部により分離不能に連結した形状のものなどを採用することができる。他の石英ルツボとしては、コーナー部が存在せず、周壁部の下側の開口部に底部を直接連結したものでもよい。コーナー部および底部の各最大外径は、周壁部の外径より大きくてもかまわない。
「膨出形状」とは、石英ルツボの外方へ膨れた形状をいう。
石英ルツボの外径は36インチ以上である。例えば、36インチ、40インチ、44インチ、48インチでもよい。各サイズの石英ルツボ内で形成される溶融液の量に応じて、シリコン単結晶(直胴部)の引き上げ長さを変更することができる。
The quartz crucible includes a cylindrical peripheral wall portion whose outer diameter is constant over the entire length (a horizontal cross-sectional shape and a constant cross-sectional area), a bottom portion having a predetermined bulge shape or a flat shape, disposed below the peripheral wall portion. A shape in which the outer surface has a radius of curvature that is inseparably connected by a bulging corner portion that is smaller than the radius of curvature of the outer surface of the bottom can be employed. Another quartz crucible may be one in which the corner portion does not exist and the bottom portion is directly connected to the lower opening of the peripheral wall portion. Each maximum outer diameter of the corner portion and the bottom portion may be larger than the outer diameter of the peripheral wall portion.
The “bulging shape” refers to a shape bulging outward of the quartz crucible.
The outer diameter of the quartz crucible is 36 inches or more. For example, 36 inches, 40 inches, 44 inches, and 48 inches may be used. The pulling length of the silicon single crystal (straight barrel portion) can be changed according to the amount of the melt formed in each size quartz crucible.

石英ルツボの中心線上の深さは、周壁部の外径の80%以下である。80%を超えれば、シリコン単結晶への輻射熱の遮蔽体を設置して、光学カメラによるシリコン単結晶の撮像角度を20°以上とすることが困難となる。その結果、シリコン単結晶をカメラ撮像してシリコン単結晶の直径を計測できなくなるおそれがある。しかも、上記80%を超えれば、引き上げ中のシリコン単結晶の冷却パターンが、直径300mmのシリコンウェーハを形成可能なシリコン単結晶のものから逸脱してしまう。その結果、シリコン単結晶中の欠陥サイズおよび欠陥の密度の制御が困難になり、高品質のシリコン単結晶が得られなくなるおそれがある。
石英ルツボの好ましい高さは、石英ルツボの外径の50〜80%である。この範囲であれば、直径300mmのシリコンウェーハを形成可能なシリコン単結晶の冷却パターンより高冷却に設定したものにも対応可能というさらに好適な効果が得られる。
光学カメラとしては、例えばCCDカメラを採用することができる。光学カメラは、チャンバの外部空間の上部に配置され、チャンバに設置された覗き窓を通してシリコン単結晶を撮像する。シリコン単結晶の画像は、画像処理装置の直径計測手段(直径計測回路)に送られ、シリコン単結晶の引き上げ直後の部分(メニスカス付近)の直径が計測される。
The depth on the center line of the quartz crucible is 80% or less of the outer diameter of the peripheral wall portion. If it exceeds 80%, it becomes difficult to install a shielding member for radiant heat on the silicon single crystal and to set the imaging angle of the silicon single crystal by the optical camera to 20 ° or more. As a result, there is a possibility that the silicon single crystal cannot be measured by imaging the silicon single crystal with a camera. Moreover, if it exceeds 80%, the cooling pattern of the silicon single crystal being pulled will deviate from that of a silicon single crystal capable of forming a silicon wafer having a diameter of 300 mm. As a result, it becomes difficult to control the defect size and defect density in the silicon single crystal, and there is a possibility that a high-quality silicon single crystal cannot be obtained.
The preferred height of the quartz crucible is 50-80% of the outer diameter of the quartz crucible. If it is this range, the more suitable effect that it can respond also to what was set to the cooling higher than the cooling pattern of the silicon single crystal which can form a silicon wafer with a diameter of 300 mm will be acquired.
For example, a CCD camera can be used as the optical camera. The optical camera is disposed in the upper part of the external space of the chamber, and images the silicon single crystal through a viewing window installed in the chamber. The image of the silicon single crystal is sent to a diameter measuring means (diameter measuring circuit) of the image processing apparatus, and the diameter of the portion (near the meniscus) immediately after the silicon single crystal is pulled up is measured.

請求項2に記載の発明は、前記石英ルツボの中心線上の深さは、前記周壁部の外径の50〜80%である請求項1に記載のシリコン単結晶成長装置である。
石英ルツボの中心線上の深さが周壁部の外径の50%未満では、石英ルツボの深さが小さくなる。そのため、シリコン単結晶を形成できる溶融液の量が制限され、これを補うため、さらに大口径の石英ルツボを使用せざるを得なくなる。その結果、シリコン単結晶装置がさらに大型化する。また、80%を超えれば、光学カメラによるシリコン単結晶の撮像角度を20°以上とすることが困難となる。これにより、シリコン単結晶をカメラ撮像してシリコン単結晶の直径を計測できなくなるおそれがある。しかも、引き上げ中のシリコン単結晶の冷却パターンが、300mmウェーハ用のシリコン単結晶のものから逸脱する。そのため、シリコン単結晶中の欠陥サイズおよび欠陥の密度の制御が困難になり、高品質のシリコン単結晶が得られなくなる。
The invention according to claim 2 is the silicon single crystal growth apparatus according to claim 1, wherein the depth of the quartz crucible on the center line is 50 to 80% of the outer diameter of the peripheral wall portion.
When the depth on the center line of the quartz crucible is less than 50% of the outer diameter of the peripheral wall portion, the depth of the quartz crucible becomes small. Therefore, the amount of the melt that can form a silicon single crystal is limited, and in order to compensate for this, a quartz crucible having a larger diameter must be used. As a result, the silicon single crystal device is further increased in size. On the other hand, if it exceeds 80%, it becomes difficult to set the imaging angle of the silicon single crystal by the optical camera to 20 ° or more. Thereby, there is a possibility that the silicon single crystal cannot be measured by imaging the silicon single crystal with a camera. Moreover, the cooling pattern of the silicon single crystal being pulled deviates from that of the silicon single crystal for a 300 mm wafer. For this reason, it becomes difficult to control the defect size and defect density in the silicon single crystal, and a high-quality silicon single crystal cannot be obtained.

請求項3に記載の発明は、外径が全長にわたって一定の周壁部と、該周壁部の下側の開口部を塞ぐ底部とを有し、チョクラルスキー法により直径450mmのシリコンウェーハを形成可能な直胴部を有したシリコン単結晶を成長させる石英ルツボであって、前記周壁部の外径は36インチ以上で、前記石英ルツボの中心線上の深さは、前記周壁部の外径の80%以下である石英ルツボである。   The invention according to claim 3 has a peripheral wall portion whose outer diameter is constant over the entire length, and a bottom portion that closes the opening on the lower side of the peripheral wall portion, and can form a silicon wafer having a diameter of 450 mm by the Czochralski method. A quartz crucible for growing a silicon single crystal having a straight body portion, wherein the outer wall has an outer diameter of 36 inches or more, and the depth on the center line of the quartz crucible is 80 of the outer diameter of the peripheral wall. It is a quartz crucible that is less than or equal to%.

請求項4に記載の発明は、前記石英ルツボの中心線上の深さは、前記周壁部の外径の50〜80%である請求項3に記載の石英ルツボである。   The invention according to claim 4 is the quartz crucible according to claim 3, wherein the depth of the quartz crucible on the center line is 50 to 80% of the outer diameter of the peripheral wall portion.

請求項1および請求項3に記載の発明によれば、直径450mmのシリコンウェーハを形成可能な直胴部を有したシリコン単結晶をチョクラルスキー法により成長させる。このとき、石英ルツボの周壁部の外径を36インチ以上とし、石英ルツボの中心線上の深さを、周壁部の外径の80%以下とする。これにより、光学カメラを用いてシリコン単結晶の直径を計測する良好な撮像角度を確保することができる。しかも、引き上げ中の直径450mmのシリコンウェーハを形成可能なシリコン単結晶の冷却パターンを、直径300mmのシリコンウェーハを形成可能なシリコン単結晶を引き上げる場合と同程度とすることができる。その結果、シリコン単結晶の有転位化の発生頻度を低下させ、高品質のシリコン単結晶を得ることができる。   According to the first and third aspects of the invention, a silicon single crystal having a straight body portion capable of forming a silicon wafer having a diameter of 450 mm is grown by the Czochralski method. At this time, the outer diameter of the peripheral wall portion of the quartz crucible is 36 inches or more, and the depth on the center line of the quartz crucible is 80% or less of the outer diameter of the peripheral wall portion. Thereby, the favorable imaging angle which measures the diameter of a silicon single crystal using an optical camera is securable. Moreover, the cooling pattern of the silicon single crystal capable of forming a silicon wafer having a diameter of 450 mm during the pulling can be set to the same level as that of pulling up the silicon single crystal capable of forming a silicon wafer having a diameter of 300 mm. As a result, the occurrence frequency of dislocations in the silicon single crystal can be reduced, and a high quality silicon single crystal can be obtained.

請求項2および請求項4に記載の発明によれば、石英ルツボの中心線上の深さを、周壁部の外径の50〜80%としたので、直径300mmのシリコンウェーハを形成可能なシリコン単結晶の冷却パターンのより高冷却に設定したものにも対応することができる。   According to the second and fourth aspects of the invention, since the depth on the center line of the quartz crucible is set to 50 to 80% of the outer diameter of the peripheral wall portion, a silicon single unit capable of forming a silicon wafer having a diameter of 300 mm is obtained. It is possible to cope with a crystal cooling pattern set to a higher cooling.

この発明の実施例1に係るシリコン単結晶成長装置の構成図である。It is a block diagram of the silicon single crystal growth apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る石英ルツボの縦断面図である。It is a longitudinal cross-sectional view of the quartz crucible which concerns on Example 1 of this invention. 直胴部が直径300mmのシリコンウェーハを形成可能なシリコン単結晶と、直胴部が直径450mmのシリコンウェーハを形成可能なシリコン単結晶との冷却パターンを比較したグラフである。It is the graph which compared the cooling pattern of the silicon single crystal which can form a silicon wafer whose diameter of a straight body part is 300 mm, and the silicon single crystal which can form a silicon wafer whose diameter of a direct body part is 450 mm. 初期シリコン溶融液量とシリコン単結晶の歩留まりとの関係を示すグラフである。It is a graph which shows the relationship between the amount of initial stage silicon melts, and the yield of a silicon single crystal.

符号の説明Explanation of symbols

10 シリコン単結晶成長装置、
11 チャンバ、
16 石英ルツボ、
18 周壁部、
19 底部、
26 溶融液、
26a 液面、
30 CCDカメラ(光学カメラ)、
C 種結晶、
S シリコン単結晶、
S3 直胴部、
a 周壁部の外径、
b 石英ルツボの中心線上の深さ。
10 Silicon single crystal growth equipment,
11 chambers,
16 Quartz crucible,
18 perimeter wall,
19 Bottom,
26 melt,
26a liquid level,
30 CCD camera (optical camera),
C seed crystal,
S silicon single crystal,
S3 straight body,
a The outer diameter of the peripheral wall,
b Depth on the center line of the quartz crucible.

以下、この発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

図1において、10はこの発明の実施例1に係るシリコン単結晶成長装置(以下、結晶成長装置)で、この結晶成長装置10は、中空円筒形状のチャンバ11を備えている。チャンバ11は、メインチャンバ12と、メインチャンバ12上に連設固定され、メインチャンバ12より小径なプルチャンバ13とからなる。メインチャンバ12内の中心部には、ルツボ14が、回転および昇降が可能な支持軸(ペディスタル)15の上に固定されている。ルツボ14は、内側の石英ルツボ16と外側の黒鉛ルツボ17を組み合わせた二重構造である。このうち、石英ルツボ16は、全長にわたって外径aが一定した周壁部18と、周壁部18の下方に配置された膨出形状の底部19とを、底部19の外面に比べて曲率半径が小さい膨出形状の外面を有するコーナー部20によって分離不能に連結したものである(図2)。周壁部18の外径aは、36インチ(914.4mm)である。石英ルツボ16の中心軸上の深さbは、周壁部18の外径aの80%である。   In FIG. 1, reference numeral 10 denotes a silicon single crystal growth apparatus (hereinafter referred to as a crystal growth apparatus) according to Embodiment 1 of the present invention. This crystal growth apparatus 10 includes a hollow cylindrical chamber 11. The chamber 11 includes a main chamber 12 and a pull chamber 13 that is continuously fixed on the main chamber 12 and has a smaller diameter than the main chamber 12. In the center of the main chamber 12, a crucible 14 is fixed on a support shaft (pedestal) 15 that can rotate and move up and down. The crucible 14 has a double structure in which an inner quartz crucible 16 and an outer graphite crucible 17 are combined. Among these, the quartz crucible 16 has a radius of curvature smaller than that of the outer surface of the bottom portion 19, with the peripheral wall portion 18 having a constant outer diameter a and the bulging bottom portion 19 disposed below the peripheral wall portion 18. It is connected inseparably by a corner portion 20 having a bulging outer surface (FIG. 2). The outer diameter a of the peripheral wall portion 18 is 36 inches (914.4 mm). The depth b on the central axis of the quartz crucible 16 is 80% of the outer diameter a of the peripheral wall portion 18.

ルツボ14の外側には、抵抗加熱式のヒータ21が周壁部18と同心円状に配置されている。ヒータ21の外側には、円筒状の保温筒22がメインチャンバ12の内面に沿って配置されている。メインチャンバ12の底面上には、円形の保温板23が配置されている。メインチャンバ12の外側には、水平磁場を形成するため、一対の超電導磁石24が対向設置されている。
ルツボ14の中心線上には、支持軸15と同一軸心で回転および昇降が可能な引き上げ軸(ワイヤでも可能)25がプルチャンバ13を通って吊設されている。引き上げ軸25の下端には、種結晶Cが装着されている。
メインチャンバ12の外側には、溶融液26の液面26a付近におけるシリコン単結晶Sを、メインチャンバ12に形成された窓部を通して撮像するCCDカメラ(光学カメラ)30が吊設されている。
On the outside of the crucible 14, a resistance heating heater 21 is arranged concentrically with the peripheral wall 18. A cylindrical heat insulating cylinder 22 is disposed along the inner surface of the main chamber 12 outside the heater 21. A circular heat insulating plate 23 is disposed on the bottom surface of the main chamber 12. A pair of superconducting magnets 24 are opposed to each other outside the main chamber 12 in order to form a horizontal magnetic field.
On the center line of the crucible 14, a pulling shaft (which can be a wire) 25 that can rotate and move up and down with the same axis as the support shaft 15 is suspended through the pull chamber 13. A seed crystal C is attached to the lower end of the pulling shaft 25.
A CCD camera (optical camera) 30 that shoots the silicon single crystal S in the vicinity of the liquid level 26 a of the melt 26 through a window formed in the main chamber 12 is suspended from the outside of the main chamber 12.

次に、この結晶成長装置10を用いたシリコン単結晶成長方法を具体的に説明する。製造されるシリコン単結晶Sの直胴部S3の直径は、450mmのシリコンウェーハを形成可能な465mmである。
ルツボ14内に結晶用シリコン原料および不純物としてのボロンを投入する。チャンバ11内を50Torrに減圧し、不活性ガスとして200L/minのArガスを導入する。次に、ルツボ14内の投入物をヒータ21により溶解し、ルツボ14内に溶融液26を形成する。このとき(シリコン単結晶Sの成長開始時)の溶融液26の量は、その液面26aが、石英ルツボ16の周壁部18の領域に存在する量とする。
次に、引き上げ軸25の下端に装着された種結晶Cを溶融液26に浸漬し、ルツボ14および引き上げ軸25を互いに逆方向へ回転させつつ、引き上げ軸25を軸方向に引き上げ、種結晶Cの下方にシリコン単結晶Sを成長させる。このとき、引き上げ中のシリコン単結晶Sの液面付近をCCDカメラ30により常時撮像し、その撮像データに基づき、図示しない画像処理装置の直径計測手段によって、引き上げ直後のシリコン単結晶Sの直径が常時計測される。
Next, a silicon single crystal growth method using the crystal growth apparatus 10 will be specifically described. The diameter of the straight body portion S3 of the silicon single crystal S to be manufactured is 465 mm capable of forming a 450 mm silicon wafer.
Into the crucible 14, silicon raw material for crystal and boron as an impurity are charged. The pressure inside the chamber 11 is reduced to 50 Torr, and 200 L / min Ar gas is introduced as an inert gas. Next, the charge in the crucible 14 is melted by the heater 21 to form a melt 26 in the crucible 14. The amount of the melt 26 at this time (at the start of the growth of the silicon single crystal S) is such that the liquid surface 26 a exists in the region of the peripheral wall portion 18 of the quartz crucible 16.
Next, the seed crystal C attached to the lower end of the pulling shaft 25 is immersed in the melt 26, while the crucible 14 and the pulling shaft 25 are rotated in opposite directions, the pulling shaft 25 is pulled up in the axial direction, and the seed crystal C A silicon single crystal S is grown below the substrate. At this time, the vicinity of the liquid surface of the silicon single crystal S being pulled is always imaged by the CCD camera 30, and the diameter of the silicon single crystal S immediately after the pulling is determined by the diameter measuring means of an image processing apparatus (not shown) based on the image data. Always measured.

シリコン単結晶Sの成長過程では、まず絞り工程により転位が除去され、ネック部S1が形成される。絞り工程に続く増径工程により増径部S2が形成され、その増径停止により直胴部S3の形成が開始される。このとき、磁場印加の有無や製品となるシリコン単結晶Sの酸素濃度等の品質が所望のものになるように、印加磁場強度や引き上げ軸25の回転速度、ルツボ14の回転速度はそれぞれ設定、調整される。今回は、磁場を0.4テスラで印加、引き上げ軸25の回転速度を8rpm、ルツボ14の回転速度を0.1rpmという条件でネック部S1を作製後、ヒータ21の電力と引き上げ軸25の上昇速度を変化させて上向きコーン形状の増径部S2を形成する。増径部S2の直径が所定径(385mm)に達した時点で、さらにヒータ21の電力と引き上げ軸25の上昇速度を変化させ、次に直胴部S3へ移行し、同様にヒータ21の電力と引き上げ軸25の上昇速度を調整して直胴部S3を形成する。   In the growth process of the silicon single crystal S, first, the dislocation is removed by the drawing process, and the neck portion S1 is formed. The increased diameter portion S2 is formed by the diameter increasing step subsequent to the drawing step, and the formation of the straight body portion S3 is started by stopping the diameter increase. At this time, the applied magnetic field strength, the rotational speed of the pulling shaft 25, and the rotational speed of the crucible 14 are respectively set so that the quality such as the presence / absence of magnetic field application and the oxygen concentration of the silicon single crystal S as a product becomes desired. Adjusted. This time, after the neck portion S1 was produced under the condition that the magnetic field was applied at 0.4 Tesla, the rotation speed of the pulling shaft 25 was 8 rpm, and the rotation speed of the crucible 14 was 0.1 rpm, the power of the heater 21 and the lifting shaft 25 were raised. The upward cone-shaped increased diameter portion S2 is formed by changing the speed. When the diameter of the increased diameter portion S2 reaches a predetermined diameter (385 mm), the power of the heater 21 and the lifting speed of the pulling shaft 25 are further changed, and then the process proceeds to the straight body portion S3. Then, the straight barrel portion S3 is formed by adjusting the rising speed of the lifting shaft 25.

直胴部S3の引き上げ中、図示しない結晶Sの直径計測手段と位置検知器から計算で求めた結晶重量もしくはその重量を換算した直胴長が、あらかじめ設定した重量もしくはあらかじめ設定した直胴長に達した時点で、ヒータ21の電力を調整する。これにより、下向きコーン形状の減径部が除々に形成され、最終的には下向きコーンの頂点で、シリコン単結晶Sの成長が終了する。   While pulling up the straight body portion S3, the crystal weight obtained by calculation from the diameter measuring means and the position detector of the crystal S (not shown) or the straight body length converted from the weight is set to a preset weight or a preset straight body length. At that time, the power of the heater 21 is adjusted. Thereby, the diameter-decreasing portion of the downward cone shape is gradually formed, and finally the growth of the silicon single crystal S is completed at the apex of the downward cone.

このように、直径450mmのシリコンウェーハを形成可能な直胴部S3を有するシリコン単結晶S用の石英ルツボ16として、周壁部18の外径aが36インチで、石英ルツボ16の中心線上の深さbが外径aの80%のものを採用したので、CCDカメラ30によりシリコン単結晶Sの直径を計測する際の良好な撮像角度を確保することができる。しかも、引き上げ中の直径450mmのシリコンウェーハを形成可能なシリコン単結晶Sの冷却パターンを、直径300mmのシリコンウェーハを形成可能なシリコン単結晶Sを引き上げる場合と同程度とし、シリコン単結晶S中の欠陥サイズおよび欠陥の密度が制御された高品質のシリコン単結晶Sを得ることができる。   As described above, as the quartz crucible 16 for the silicon single crystal S having the straight body portion S3 capable of forming a silicon wafer having a diameter of 450 mm, the outer wall a has an outer diameter a of 36 inches and a depth on the center line of the quartz crucible 16. Since the thickness b is 80% of the outer diameter a, a good imaging angle when measuring the diameter of the silicon single crystal S by the CCD camera 30 can be secured. In addition, the cooling pattern of the silicon single crystal S capable of forming a silicon wafer having a diameter of 450 mm during pulling is set to the same level as that of pulling up the silicon single crystal S capable of forming a silicon wafer having a diameter of 300 mm. A high-quality silicon single crystal S having a controlled defect size and defect density can be obtained.

シリコン単結晶Sの引き上げの中心線は、石英ルツボ16の中心線と略重なる。そのため、周壁部18の外径aを36インチ(914.4mm)とすれば、シリコン単結晶Sの周囲には、石英ルツボ16の半径方向に、幅200mm以上の円筒形の空間が形成される。このサイズの円筒空間を得ることで、シリコン単結晶Sへの輻射熱の遮蔽体50を設置し、CCDカメラ30によるシリコン単結晶Sの良好な撮像角度である、引き上げ中心線に対して20°以上(21.5°)の傾斜角度を確保することができる。その結果、シリコン単結晶Sをカメラ撮像してシリコン単結晶Sの直径を計測できなくなるおそれが解消される。   The pulling center line of the silicon single crystal S substantially overlaps the center line of the quartz crucible 16. Therefore, if the outer diameter a of the peripheral wall portion 18 is 36 inches (914.4 mm), a cylindrical space having a width of 200 mm or more is formed around the silicon single crystal S in the radial direction of the quartz crucible 16. . By obtaining a cylindrical space of this size, a shield 50 for radiant heat on the silicon single crystal S is installed, and a good imaging angle of the silicon single crystal S by the CCD camera 30 is 20 ° or more with respect to the pulling center line. An inclination angle of (21.5 °) can be ensured. As a result, the possibility that the silicon single crystal S cannot be measured by imaging the silicon single crystal S with a camera is solved.

しかも、石英ルツボ18の中心線上の深さbを、周壁部18の外径aの80%と浅くしたので、溶融液26の液面26a付近において、シリコン単結晶Sの引き上げ直後の部分の冷却効果が高まる。これにより、引き上げ中の直径450mmのシリコンウェーハを形成可能なシリコン単結晶Sの冷却パターンを、直径300mmのシリコンウェーハを形成可能なシリコン単結晶の引き上げの場合と同程度まで改善することができる。
以下、これを図3のグラフを参照して説明する。図3のグラフは、石英ルツボとして、周壁部の外径が36インチで、石英ルツボの中心線上の深さが周壁部の外径に対して50〜90%のものを使用した場合のシリコン単結晶の冷却パターンを予めシミュレーションで求めたものである。直径300mmのシリコンウェーハを引き上げ可能なシリコン単結晶の引き上げ中の冷却パターンと対比し、両冷却パターンが略同じになった条件で、直径450mmのシリコンウェーハを形成可能なシリコン単結晶の引き上げを行った。これにより、シリコン単結晶中の欠陥サイズおよび欠陥の密度を所望のものとした、高品質のシリコン単結晶が得られた。
In addition, since the depth b on the center line of the quartz crucible 18 is as shallow as 80% of the outer diameter a of the peripheral wall 18, the portion immediately after the silicon single crystal S is pulled up is cooled in the vicinity of the liquid surface 26 a of the melt 26. Increases effectiveness. As a result, the cooling pattern of the silicon single crystal S capable of forming a silicon wafer having a diameter of 450 mm during pulling can be improved to the same extent as in the case of pulling up the silicon single crystal capable of forming a silicon wafer having a diameter of 300 mm.
This will be described below with reference to the graph of FIG. The graph of FIG. 3 shows that a silicon crucible is used when the outer diameter of the peripheral wall portion is 36 inches and the depth on the center line of the quartz crucible is 50 to 90% with respect to the outer diameter of the peripheral wall portion. The cooling pattern of the crystal is obtained in advance by simulation. The silicon single crystal capable of forming a 450 mm diameter silicon wafer is lifted under the condition that both cooling patterns are substantially the same as the cooling pattern during pulling of the silicon single crystal capable of pulling the silicon wafer having a diameter of 300 mm. It was. As a result, a high-quality silicon single crystal having desired defect size and defect density in the silicon single crystal was obtained.

この発明は、MPU等のプロセッサー、DRAMやFlash Memory等のメモリーデバイス、IGBT等のパワーデバイスの基板となる直径450mmのシリコンウェーハを、CZ法により引き上げることが可能なシリコン単結晶成長装置および石英ルツボに有用である。   The present invention relates to a silicon single crystal growth apparatus and a quartz crucible capable of pulling up a silicon wafer having a diameter of 450 mm as a substrate for a processor such as an MPU, a memory device such as a DRAM or a flash memory, and a power device such as an IGBT by the CZ method. Useful for.

Claims (4)

チャンバに収納された石英ルツボ内に結晶用シリコン原料を充填して溶融し、その溶融液に浸漬した種結晶を回転させながら引き上げることにより、該種結晶の下方にチョクラルスキー法によりシリコン単結晶を成長させるシリコン単結晶成長装置であって、
前記シリコン単結晶は、直径450mmのシリコンウェーハを形成可能な直胴部を有し、
前記チャンバの上部には、前記溶融液の液面付近における前記シリコン単結晶を撮像する光学カメラが設けられ、
前記石英ルツボは、外径が全長にわたって一定の周壁部と、該周壁部の下側の開口部を塞ぐ底部とを有し、
前記周壁部の外径は36インチ以上で、
前記石英ルツボの中心線上の深さは、前記周壁部の外径の80%以下であるシリコン単結晶成長装置。
A silicon crucible housed in a chamber is filled with a silicon raw material for crystallization and melted, and a seed crystal immersed in the melt is pulled up while rotating. A silicon single crystal growth apparatus for growing
The silicon single crystal has a straight body part capable of forming a silicon wafer having a diameter of 450 mm,
An optical camera for imaging the silicon single crystal in the vicinity of the liquid surface of the melt is provided at the top of the chamber,
The quartz crucible has a peripheral wall portion whose outer diameter is constant over the entire length, and a bottom portion that closes an opening on the lower side of the peripheral wall portion,
The outer diameter of the peripheral wall is 36 inches or more,
A silicon single crystal growth apparatus in which a depth on a center line of the quartz crucible is 80% or less of an outer diameter of the peripheral wall portion.
前記石英ルツボの中心線上の深さは、前記周壁部の外径の50〜80%である請求項1に記載のシリコン単結晶成長装置。  2. The silicon single crystal growth apparatus according to claim 1, wherein a depth on a center line of the quartz crucible is 50 to 80% of an outer diameter of the peripheral wall portion. 外径が全長にわたって一定の周壁部と、該周壁部の下側の開口部を塞ぐ底部とを有し、チョクラルスキー法により直径450mmのシリコンウェーハを形成可能な直胴部を有したシリコン単結晶を成長させる石英ルツボであって、
前記周壁部の外径は36インチ以上で、
前記石英ルツボの中心線上の深さは、前記周壁部の外径の80%以下である石英ルツボ。
A silicon single unit having a peripheral wall portion whose outer diameter is constant over the entire length and a bottom portion that closes an opening on the lower side of the peripheral wall portion, and having a straight body portion capable of forming a silicon wafer having a diameter of 450 mm by the Czochralski method. A quartz crucible for growing crystals,
The outer diameter of the peripheral wall is 36 inches or more,
The quartz crucible whose depth on the center line of the quartz crucible is 80% or less of the outer diameter of the peripheral wall portion.
前記石英ルツボの中心線上の深さは、前記周壁部の外径の50〜80%である請求項3に記載の石英ルツボ。  The quartz crucible according to claim 3, wherein a depth on a center line of the quartz crucible is 50 to 80% of an outer diameter of the peripheral wall portion.
JP2009554292A 2008-02-18 2009-02-16 Silicon single crystal growth apparatus and quartz crucible Active JP5131285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554292A JP5131285B2 (en) 2008-02-18 2009-02-16 Silicon single crystal growth apparatus and quartz crucible

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008036678 2008-02-18
JP2008036678 2008-02-18
JP2009554292A JP5131285B2 (en) 2008-02-18 2009-02-16 Silicon single crystal growth apparatus and quartz crucible
PCT/JP2009/052485 WO2009104533A1 (en) 2008-02-18 2009-02-16 Silicon single crystal growing device and quartz crucible

Publications (2)

Publication Number Publication Date
JPWO2009104533A1 JPWO2009104533A1 (en) 2011-06-23
JP5131285B2 true JP5131285B2 (en) 2013-01-30

Family

ID=40985414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009554292A Active JP5131285B2 (en) 2008-02-18 2009-02-16 Silicon single crystal growth apparatus and quartz crucible

Country Status (3)

Country Link
JP (1) JP5131285B2 (en)
DE (1) DE112009000239B4 (en)
WO (1) WO2009104533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911659A (en) * 2014-04-15 2014-07-09 宁夏大学 Method for increasing crystal pulling stability of large-diameter monocrystalline silicon with diameter of over 400 mm

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2380555T3 (en) 2007-11-05 2012-05-16 St. Jude Medical, Inc. Foldable / expandable prosthetic heart valves with non-expandable stent brackets and recovery features
CN107945180A (en) * 2017-12-26 2018-04-20 浙江大学台州研究院 Come from the visible detection method of the shallow cut in quartz wafer surface of polishing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169016A (en) * 2004-12-14 2006-06-29 Sumco Corp Method for producing silicon single crystal
JP2007001819A (en) * 2005-06-24 2007-01-11 Sumco Corp Silicon single crystal and method for manufacturing silicon single crystal
JP2007223879A (en) * 2006-02-27 2007-09-06 Sumco Techxiv株式会社 Position measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013324B2 (en) 1998-03-31 2007-11-28 株式会社Sumco Single crystal growth method
JP4277681B2 (en) * 2003-12-26 2009-06-10 株式会社Sumco Melt surface position detection device for single crystal pulling device and single crystal pulling device
JP4701738B2 (en) * 2005-02-17 2011-06-15 株式会社Sumco Single crystal pulling method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169016A (en) * 2004-12-14 2006-06-29 Sumco Corp Method for producing silicon single crystal
JP2007001819A (en) * 2005-06-24 2007-01-11 Sumco Corp Silicon single crystal and method for manufacturing silicon single crystal
JP2007223879A (en) * 2006-02-27 2007-09-06 Sumco Techxiv株式会社 Position measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911659A (en) * 2014-04-15 2014-07-09 宁夏大学 Method for increasing crystal pulling stability of large-diameter monocrystalline silicon with diameter of over 400 mm

Also Published As

Publication number Publication date
WO2009104533A1 (en) 2009-08-27
DE112009000239B4 (en) 2021-01-28
DE112009000239T5 (en) 2011-06-22
JPWO2009104533A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP4814207B2 (en) Method and apparatus for manufacturing a silicon semiconductor wafer
US7524371B2 (en) Method for manufacturing defect-free silicon single crystal
KR101105950B1 (en) Manufacturing device for crystal ingot
JP2010100474A (en) Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
TWI632257B (en) Single crystal silicon manufacturing method
WO2009104532A1 (en) Silicon monocrystal growth method
KR101048831B1 (en) Graphite heater for producing single crystal, single crystal manufacturing device and single crystal manufacturing method
CN107407003A (en) Apparatus and method for methods for growing monocrystalline silicon ingots
KR102253607B1 (en) Heat shield member, single crystal pulling device, and single crystal silicon ingot manufacturing method
JP5131285B2 (en) Silicon single crystal growth apparatus and quartz crucible
JP5145721B2 (en) Method and apparatus for producing silicon single crystal
JP5417965B2 (en) Single crystal growth method
JP5415052B2 (en) Ultra-low defect semiconductor single crystal manufacturing method and manufacturing apparatus thereof
JP6107308B2 (en) Silicon single crystal manufacturing method
TWI427197B (en) Single crystal cooler and single crystal grower including the same
JP6597857B1 (en) Heat shielding member, single crystal pulling apparatus and single crystal manufacturing method
JP2007284324A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP7066857B2 (en) Silicon single crystal growth method and equipment
WO1999037833A1 (en) Single crystal pull-up apparatus
JP2008189523A (en) Method for manufacturing single crystal
JP2005145742A (en) Method for manufacturing single crystal, graphite heater, and single crystal manufacturing apparatus
JP2009280428A (en) Epitaxial silicon wafer
WO2009133720A1 (en) Epitaxial silicon wafer
JP4148060B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250