JP5130562B2 - Method for producing methacrolein and / or methacrylic acid - Google Patents

Method for producing methacrolein and / or methacrylic acid Download PDF

Info

Publication number
JP5130562B2
JP5130562B2 JP2007288469A JP2007288469A JP5130562B2 JP 5130562 B2 JP5130562 B2 JP 5130562B2 JP 2007288469 A JP2007288469 A JP 2007288469A JP 2007288469 A JP2007288469 A JP 2007288469A JP 5130562 B2 JP5130562 B2 JP 5130562B2
Authority
JP
Japan
Prior art keywords
methacrylic acid
catalyst
raw material
oxidation catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007288469A
Other languages
Japanese (ja)
Other versions
JP2009114119A (en
Inventor
竜彦 倉上
渥 須藤
利丈 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2007288469A priority Critical patent/JP5130562B2/en
Priority to PCT/JP2008/068846 priority patent/WO2009060704A1/en
Priority to KR1020107008636A priority patent/KR101558941B1/en
Priority to CN2008801146268A priority patent/CN101848883B/en
Publication of JP2009114119A publication Critical patent/JP2009114119A/en
Application granted granted Critical
Publication of JP5130562B2 publication Critical patent/JP5130562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein

Description

本発明は、メタクロレイン及び/又はメタクリル酸の製造方法に関する。   The present invention relates to a method for producing methacrolein and / or methacrylic acid.

ターシャリーブタノール及び/またはイソブチレンを原料とし、固定床接触酸化反応により分子状酸素の存在下でメタクロレイン及び/又はメタクリル酸を製造する方法は既によく知られており、種々提案されている。   Methods for producing methacrolein and / or methacrylic acid using tertiary butanol and / or isobutylene as raw materials in the presence of molecular oxygen by a fixed bed catalytic oxidation reaction are already well known and various proposals have been made.

特許文献1(特開平4−217932)には反応管内での占有容積が、ガス流れ方向にむかって小さくなるように触媒を充填し、メタクロレイン及び/またはメタクリル酸を製造する方法が記載されている。
特許文献2(特開平6−192144)には、不活性担体に触媒活性成分を担持してなる触媒を、ガス流れ方向に沿って触媒の担持量が高くなるように充填し、メタクロレイン及び/またはメタクリル酸を製造する方法が記載されている。
特許文献3(特許第2934267号)には触媒成分のうちの、アルカリ金属およびタリウムの量を調節して触媒活性を制御し触媒を調製し、ガス流れ方向に向かって活性が高くなるように触媒を充填する方法が記載されている。
特許文献4(特開2002−212127)には触媒層内に反応浴温度との差が50℃を超える箇所が一つもなく、該差が15〜50℃となる高温域を2箇所以上設ける方法が記載されている。
特許文献5(特開2003−252820)には触媒層内の最大ピーク温度と最小ピーク温度の差が20℃以下になるようにする方法が記載されている。
Patent Document 1 (JP-A-4-217932) describes a method for producing methacrolein and / or methacrylic acid by filling the catalyst so that the occupied volume in the reaction tube decreases toward the gas flow direction. Yes.
In Patent Document 2 (Japanese Patent Laid-Open No. 6-192144), a catalyst obtained by supporting a catalytically active component on an inert carrier is packed so that the amount of the catalyst supported increases along the gas flow direction, and methacrolein and / or Alternatively, a method for producing methacrylic acid is described.
In Patent Document 3 (Patent No. 2934267), a catalyst is prepared by adjusting the amount of alkali metal and thallium among the catalyst components to control the catalyst activity, so that the activity increases in the gas flow direction. A method of filling is described.
Patent Document 4 (Japanese Patent Application Laid-Open No. 2002-212127) is a method in which there is no portion where the difference from the reaction bath temperature exceeds 50 ° C. in the catalyst layer, and two or more high temperature regions where the difference is 15 to 50 ° C. Is described.
Patent Document 5 (Japanese Patent Laid-Open No. 2003-252820) describes a method in which the difference between the maximum peak temperature and the minimum peak temperature in the catalyst layer is 20 ° C. or less.

特開平4−217932号公報JP-A-4-217932 特開平6−192144号公報JP-A-6-192144 特許第2934267号Patent No. 2934267 特開2002−212127号公報JP 2002-212127 A 特開2003−252820号公報JP 2003-252820 A

これらの発明は原料の酸化による発熱を抑制することによって、触媒寿命、反応収率などを改善するというものであり、触媒層内の最高温度に着目し、それを低減することで触媒寿命、反応収率を改善しようとしている。たしかに、ある程度の効果は得られるものの、同様の触媒によるプロピレンからのアクロレインおよび/またはアクリル酸の製造の収率に比べると、さらなる収率の改良が求められている。   These inventions improve catalyst life, reaction yield, etc. by suppressing heat generation due to oxidation of raw materials. Focusing on the maximum temperature in the catalyst layer and reducing it, it reduces catalyst life, reaction. Trying to improve the yield. Certainly, although a certain degree of effect can be obtained, there is a demand for further improvement in yield compared to the yield of production of acrolein and / or acrylic acid from propylene by the same catalyst.

本発明者らは、こうした実状のもと鋭意研究した結果、発熱ピークの間の温度の極小値を制御することで収率が著しく改良され、かつその収率が長期にわたって安定して得られることを見いだし、本発明を完成させるに至った。   As a result of intensive studies under these circumstances, the present inventors have found that the yield is remarkably improved by controlling the minimum value of the temperature between the exothermic peaks, and that the yield can be obtained stably over a long period of time. As a result, the present invention has been completed.

すなわち本発明は、
(1)ターシャリーブタノール及び/またはイソブチレンを原料とし、これを反応管ガス流れ方向に二つの発熱ピークを有するように酸化触媒を充填した反応管に供給し分子状酸素の存在下で原料を部分酸化することでメタクロレイン及び/またはメタクリル酸を製造する方法において、二つの酸化触媒層の発熱ピークの間の温度の極小値をTm、反応浴温度をTbとしたとき、Tm−Tb≧15℃とすることを特徴とするメタクロレイン及び/またはメタクリル酸の製造方法である。
(2)原料ガス入り口側の触媒層を不活性物質で希釈することにより二つの発熱ピークが得られるようにすることを特徴とするメタクロレイン及び/またはメタクリル酸の製造方法である。
That is, the present invention
(1) Tertiary butanol and / or isobutylene is used as a raw material, which is supplied to a reaction tube filled with an oxidation catalyst so as to have two exothermic peaks in the reaction tube gas flow direction, and the raw material is partially obtained in the presence of molecular oxygen. In the method of producing methacrolein and / or methacrylic acid by oxidation, Tm−Tb ≧ 15 ° C., where Tm is the minimum temperature between the exothermic peaks of the two oxidation catalyst layers and Tb is the reaction bath temperature. A process for producing methacrolein and / or methacrylic acid.
(2) A method for producing methacrolein and / or methacrylic acid, characterized in that two exothermic peaks are obtained by diluting the catalyst layer on the raw material gas inlet side with an inert substance.

本発明によればメタクロレイン及び/又はメタクリル酸が長期間にわたって高収率で得られる。   According to the present invention, methacrolein and / or methacrylic acid can be obtained in a high yield over a long period of time.

本発明で使用する酸化触媒は、ターシャリーブタノールやイソブチレンを気相接触酸化してメタクロレイン及び/又はメタクリル酸を得るために使用される触媒であればそれ自身公知の触媒が使用できる。
好ましい触媒としては下記一般式
MoBiFeCo
(式中Mo、Bi、Fe及びCoはモリブデン、ビスマス、鉄及びコバルトをそれぞれ表す。Xはアルカリ金属またはTlから選ばれる一種以上の元素、YはNi、Sn、Zn、W、Cr、Mn、Mg、Sb、CeまたはTiから選ばれる一種以上の元素を表す。また、元素記号右下の添字は各元素の原子比であり、a=13とした時、b=0.1−10、c=0.1−10、d=1−10、e=0.01−2、f=0−2、hは各々の元素の酸化状態によって定まる数値である。)で表される複合酸化物を触媒活性成分とする触媒が挙げられる。
ここでアルカリ金属としてはCsが特に好ましい。
この酸化触媒の調製方法及び原料については、特に制限はなく、この種の触媒の調製に一般的に使用されている方法及び原料を用いて調製することができる。必要に応じ、粉砕、焼成などの工程が含まれる。
As the oxidation catalyst used in the present invention, a catalyst known per se can be used as long as it is a catalyst used for vapor-phase catalytic oxidation of tertiary butanol or isobutylene to obtain methacrolein and / or methacrylic acid.
The following formula is preferred catalysts Mo a Bi b Fe c Co d X e Y f O h
(Wherein Mo, Bi, Fe and Co represent molybdenum, bismuth, iron and cobalt, respectively, X is one or more elements selected from alkali metals or Tl, Y is Ni, Sn, Zn, W, Cr, Mn, It represents one or more elements selected from Mg, Sb, Ce or Ti, and the subscript at the lower right of the element symbol is the atomic ratio of each element, and when a = 13, b = 0.1-10, c = 0.1-10, d = 1-10, e = 0.01-2, f = 0-2, h is a numerical value determined by the oxidation state of each element). Examples of the catalyst include a catalyst active component.
Here, Cs is particularly preferable as the alkali metal.
There is no restriction | limiting in particular about the preparation method and raw material of this oxidation catalyst, It can prepare using the method and raw material generally used for preparation of this kind of catalyst. Steps such as pulverization and firing are included as necessary.

酸化触媒の形状に特に制限はなく、例えば円柱状、打錠状、球状、リング状等の形状が運転条件を考慮して適宜選択可能であるが、球状担体、特にシリカやアルミナ等の不活性担体に触媒活性成分を担持した、粒径3〜6mmの担持触媒が好ましい。   The shape of the oxidation catalyst is not particularly limited, and for example, a cylindrical shape, a tablet shape, a spherical shape, a ring shape, or the like can be appropriately selected in consideration of operating conditions, but a spherical carrier, particularly an inert material such as silica or alumina. A supported catalyst having a particle diameter of 3 to 6 mm, in which a catalytically active component is supported on a carrier, is preferable.

本発明においては、異なった活性を持つ二種類の触媒を調製し、これらを混合することなく反応管内に別々に充填して、反応管ガス流れ方向に2つの酸化触媒層を形成する。これによって、反応管内の発熱ピークが、通常二つになる。一般的には原料ガス流れ方向に活性が高くなるように触媒を充填するのが好ましい。必要に応じ、原料ガス入り口側に予熱層を設置したり、ターシャリーブタノールを原料とした場合は脱水層を設置したりする。予熱層または脱水層に充填される物質は、シリカ、アルミナ、チタニア、あるいはシリカアルミナが好ましい。脱水層を設置することでターシャリーブタノールとイソブチレンの原料の差異を無視できる程度にすることができる。   In the present invention, two types of catalysts having different activities are prepared, and these are separately packed in the reaction tube without mixing, and two oxidation catalyst layers are formed in the reaction tube gas flow direction. This usually results in two exothermic peaks in the reaction tube. In general, it is preferable to fill the catalyst so as to increase the activity in the direction of flow of the raw material gas. If necessary, a preheating layer is installed on the raw material gas inlet side, or a dehydration layer is installed if tertiary butanol is used as a raw material. The material filled in the preheating layer or dehydration layer is preferably silica, alumina, titania, or silica alumina. By installing a dehydration layer, the difference between the raw materials of tertiary butanol and isobutylene can be neglected.

触媒活性の制御は、公知の方法で行うことが出来る。例えば触媒の焼成温度や、触媒組成を変更する方法、一方の触媒層(原料ガス入り口側)を、不活性物質で希釈する方法が挙げられるが、後者のほうが簡便で好ましい。なお、本発明において、不活性物質とは、酸化反応に使用する触媒の活性を100%とした場合に0から20%の活性を有する物質とする。   The catalyst activity can be controlled by a known method. For example, there are a method of changing the calcination temperature and catalyst composition of the catalyst, and a method of diluting one catalyst layer (raw material gas inlet side) with an inert substance. The latter is simpler and preferred. In the present invention, the inactive substance is a substance having an activity of 0 to 20% when the activity of the catalyst used for the oxidation reaction is 100%.

こうして得られた二種類の活性の異なる触媒を、二つの発熱ピークの間の温度の極小値をTm、反応浴温度をTbとしたとき、Tm−Tb≧15となるように充填する。原料ガスの濃度、組成、空間速度、反応管径、反応圧力、反応器の除熱能力など、様々な要因がTb、Tmに影響するため、事前にコンピューターによるシミュレーションなどによって、触媒活性や不活性物質による希釈割合、異なる触媒層同士の充填長比などを最適化する。Tm−Tbは20℃以上がより好ましい。   The two kinds of catalysts having different activities thus obtained are packed so that Tm−Tb ≧ 15, where Tm is the minimum temperature between the two exothermic peaks and Tb is the reaction bath temperature. Various factors such as source gas concentration, composition, space velocity, reaction tube diameter, reaction pressure, and reactor heat removal ability affect Tb and Tm. Optimize the dilution ratio by substance and the filling length ratio between different catalyst layers. Tm-Tb is more preferably 20 ° C. or higher.

反応管内にガス流れ方向に熱伝対を設置し、10cm間隔程度で温度測定を行い、得られた触媒層内温度をY軸に、触媒充填長をX軸にしたプロットからTmを求める。10cm以上の間隔で測定した場合、正確なデータが得られない場合があり、好ましくない。   A thermocouple is installed in the gas flow direction in the reaction tube, temperature is measured at intervals of about 10 cm, and Tm is obtained from a plot with the obtained catalyst layer temperature on the Y axis and the catalyst packing length on the X axis. When measured at intervals of 10 cm or more, accurate data may not be obtained, which is not preferable.

次に本発明を更に実施例により具体的に説明する。なお、実施例において、転化率、収率、選択率は以下の式に従って算出した。
原料転化率(%)=(反応したターシャリーブタノールまたはイソブチレンのモル数)/(供給したターシャリーブタノールまたはイソブチレンのモル数)×100
メタクロレイン収率(%)=(生成したメタクロレインのモル数)/(供給したターシャリーブタノールまたはイソブチレンのモル数)×100
メタクリル酸収率(%)=(生成したメタクリル酸のモル数)/(供給したターシャリーブタノールまたはイソブチレンのモル数)×100
有効選択率(%)=(メタクロレイン収率+メタクリル酸収率)/原料転化率×100
Next, the present invention will be described more specifically with reference to examples. In Examples, the conversion rate, yield, and selectivity were calculated according to the following formulas.
Raw material conversion (%) = (number of moles of reacted tertiary butanol or isobutylene) / (number of moles of supplied tertiary butanol or isobutylene) × 100
Yield of methacrolein (%) = (number of moles of methacrolein produced) / (number of moles of supplied tertiary butanol or isobutylene) × 100
Methacrylic acid yield (%) = (number of moles of methacrylic acid produced) / (number of moles of supplied tertiary butanol or isobutylene) × 100
Effective selectivity (%) = (methacrolein yield + methacrylic acid yield) / raw material conversion rate × 100

実施例1
(触媒の調製)
蒸留水12000mlを加熱攪拌しながらモリブデン酸アンモニウム3000gと硝酸セシウム55.2gを溶解して水溶液(A)を得た。別に、硝酸コバルト2782g、硝酸第二鉄1144g、硝酸ニッケル412gを蒸留水2300mlに溶解して水溶液(B)を、また濃硝酸292mlを加えて酸性にした蒸留水1215mlに硝酸ビスマス1167gを溶解して水溶液(C)をそれぞれ調製した。上記水溶液(A)に(B)、(C)を順次、水溶液(A)を激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し、得られた粉末を460℃で5時間焼成し予備焼成粉末(D)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Fe=2.0、Co=6.75、Ni=1.0、Cs=0.20であった。
その後、予備焼成粉末(D)をシリカ−アルミナ混合物不活性担体(粒径4.0mm)に成型後の触媒に対して45重量%を占める割合で担持した。こうして得た成型物を520℃で5時間焼成し酸化触媒(E)を得た。
Example 1
(Preparation of catalyst)
While heating and stirring 12,000 ml of distilled water, 3000 g of ammonium molybdate and 55.2 g of cesium nitrate were dissolved to obtain an aqueous solution (A). Separately, 2782 g of cobalt nitrate, 1144 g of ferric nitrate and 412 g of nickel nitrate were dissolved in 2300 ml of distilled water to dissolve the aqueous solution (B). Aqueous solutions (C) were prepared respectively. (B) and (C) were sequentially mixed with the aqueous solution (A) while vigorously stirring the aqueous solution (A), the resulting suspension was dried using a spray dryer, and the resulting powder was dried at 460 ° C. Firing for 5 hours gave a pre-fired powder (D). At this time, the composition ratio of the catalytically active component excluding oxygen is Mo = 12, Bi = 1.7, Fe = 2.0, Co = 6.75, Ni = 1.0, Cs = 0.20 in atomic ratio. Met.
Thereafter, the pre-fired powder (D) was supported on a silica-alumina mixture inert carrier (particle size: 4.0 mm) in a proportion of 45% by weight based on the molded catalyst. The molded product thus obtained was calcined at 520 ° C. for 5 hours to obtain an oxidation catalyst (E).

(酸化反応試験)
熱媒体として溶融塩を循環させるためのジャケット及び触媒層温度を測定するための熱電対を管軸に設置した、内径23mmのステンレス製反応器の原料ガス入り口側からターシャリーブタノールの脱水層として直径5mmのシリカ―アルミナ球を20cm、酸化触媒層第一層(原料ガス入り口側)として酸化触媒(E)とシリカ−アルミナ混合物不活性担体を重量比4:1で混合した希釈触媒90cm、酸化触媒第二層(ガス出口側)として酸化触媒(E)を225cmの順で充填し、反応浴温度Tbを345℃にした。ここに原料モル比がイソブチレン:酸素:窒素:水=1:2:10:1.6となるようにターシャリーブタノール、空気、窒素、水の供給量を設定したガスを空間速度1000h−1で酸化反応器内へ導入し、反応を行った結果、反応開始後200時間経過したときの原料転化率99.6%、メタクロレイン収率81.07%、メタクリル酸収率3.59%、有効選択率85.02%であった。また、触媒層内の温度は、酸化触媒層第一層目の発熱ピーク温度が410℃、酸化触媒層第二層目の発熱ピーク温度が389℃、二つの発熱ピークの間の極小値Tmが377℃、Tm−Tb=32℃であった。
(Oxidation reaction test)
A diameter of a dehydrated layer of tertiary butanol from a raw material gas inlet side of a stainless steel reactor having an inner diameter of 23 mm, in which a jacket for circulating molten salt as a heat medium and a thermocouple for measuring the catalyst layer temperature are installed on the tube axis Diluted catalyst 90 cm, oxidation catalyst comprising 20 mm of 5 mm silica-alumina sphere, mixing oxidation catalyst (E) and silica-alumina mixture inert carrier at a weight ratio of 4: 1 as oxidation catalyst layer first layer (source gas inlet side) As the second layer (gas outlet side), the oxidation catalyst (E) was filled in the order of 225 cm, and the reaction bath temperature Tb was set to 345 ° C. A gas in which the supply amounts of tertiary butanol, air, nitrogen, and water are set so that the raw material molar ratio is isobutylene: oxygen: nitrogen: water = 1: 2: 10: 1.6 at a space velocity of 1000 h −1 . As a result of introducing into the oxidation reactor and carrying out the reaction, the raw material conversion was 99.6%, methacrolein yield 81.07%, methacrylic acid yield 3.59% when 200 hours passed after the start of the reaction, effective The selectivity was 85.02%. The temperature within the catalyst layer is 410 ° C. for the first exothermic peak temperature of the oxidation catalyst layer, 389 ° C. for the second exothermic peak temperature of the oxidation catalyst layer, and a minimum value Tm between the two exothermic peaks. They were 377 degreeC and Tm-Tb = 32 degreeC.

実施例2
実施例1の反応を原料転化率99.5%になるように反応浴温度Tbを調節しながら6000h継続したところ、メタクロレイン収率80.73%、メタクリル酸収率3.74%、有効選択率84.82%であった。また、触媒層内の温度は、Tbが348℃、酸化触媒層第一層目の発熱ピーク温度が399℃、酸化触媒層第二層目の発熱ピーク温度が377℃、二つの発熱ピークの間の極小値Tmが370℃、Tm−Tb=22℃であった。
Example 2
When the reaction of Example 1 was continued for 6000 hours while adjusting the reaction bath temperature Tb so that the raw material conversion was 99.5%, methacrolein yield 80.3%, methacrylic acid yield 3.74%, effective selection The rate was 84.82%. The temperature in the catalyst layer is Tb of 348 ° C., the exothermic peak temperature of the first oxidation catalyst layer is 399 ° C., the exothermic peak temperature of the second oxidation catalyst layer is 377 ° C., and it is between the two exothermic peaks. The minimum value Tm was 370 ° C. and Tm−Tb = 22 ° C.

実施例3
実施例1の反応を原料転化率99.5%になるように反応浴温度Tbを調節しながら12000h継続したところ、メタクロレイン収率80.18%、メタクリル酸収率4.04%、有効選択率84.70%であった。また、触媒層内の温度は、Tbが355℃、酸化触媒層第一層目の発熱ピーク温度が408℃、酸化触媒層第二層目の発熱ピーク温度が384℃、二つの発熱ピークの間の極小値Tmが380℃で、Tm−Tb=25℃であった。
Example 3
When the reaction of Example 1 was continued for 12000 h while adjusting the reaction bath temperature Tb so that the raw material conversion was 99.5%, methacrolein yield 80.18%, methacrylic acid yield 4.04%, effective selection The rate was 84.70%. The temperature in the catalyst layer is Tb of 355 ° C., the exothermic peak temperature of the first oxidation catalyst layer is 408 ° C., the exothermic peak temperature of the second oxidation catalyst layer is 384 ° C., and between the two exothermic peaks. The minimum value Tm of 380 ° C. was Tm−Tb = 25 ° C.

実施例4
実施例1において触媒を充填する反応管の内径を21mmとし、空間速度を1200h−1としたこと以外は実施例1と同様に反応を行った。反応開始後300時間における、原料転化率は99.5%、メタクロレイン収率80.2%、メタクリル酸収率3.77%、有効選択率84.4%であった。また、触媒層内の温度は、Tbが352℃、酸化触媒層第一層目の発熱ピーク温度が403℃、酸化触媒層第二層目の発熱ピーク温度が375℃、二つの発熱ピークの間の極小値Tmが370℃、Tm−Tb=18℃であった。
Example 4
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the inner diameter of the reaction tube filled with the catalyst was 21 mm and the space velocity was 1200 h- 1 . 300 hours after the start of the reaction, the raw material conversion rate was 99.5%, methacrolein yield 80.2%, methacrylic acid yield 3.77%, and effective selectivity 84.4%. The temperature in the catalyst layer is Tb of 352 ° C., the exothermic peak temperature of the first oxidation catalyst layer is 403 ° C., the exothermic peak temperature of the second oxidation catalyst layer is 375 ° C., and between the two exothermic peaks. The minimum value Tm was 370 ° C. and Tm−Tb = 18 ° C.

比較例1
実施例1において酸化触媒層第一層として酸化触媒(E)とシリカ−アルミナ混合物不活性担体を重量比2:1で混合した希釈触媒を充填したこと以外は実施例1と同様に反応を行った。反応開始後300時間における、原料転化率は99.5%、メタクロレイン収率79.4%、メタクリル酸収率3.66%、有効選択率83.5%であった。また、触媒層内の温度は、Tbが351℃、酸化触媒層第一層目の発熱ピーク温度が370℃、酸化触媒層第二層目の発熱ピーク温度が385℃、二つの発熱ピークの間の極小値Tmが365℃、Tm−Tb=14℃であった。
Comparative Example 1
The reaction was conducted in the same manner as in Example 1 except that the oxidation catalyst (E) and the silica-alumina mixture inert carrier mixed at a weight ratio of 2: 1 were filled as the first oxidation catalyst layer in Example 1. It was. 300 hours after the start of the reaction, the raw material conversion rate was 99.5%, methacrolein yield 79.4%, methacrylic acid yield 3.66%, and effective selectivity 83.5%. The temperature in the catalyst layer is as follows: Tb is 351 ° C., the exothermic peak temperature of the first oxidation catalyst layer is 370 ° C., the exothermic peak temperature of the second oxidation catalyst layer is 385 ° C., and between the two exothermic peaks. The minimum value Tm was 365 ° C. and Tm−Tb = 14 ° C.

以上のように、反応浴温度Tbや、発熱ピーク温度を公知の範囲にした場合より、Tm−Tb≧15℃となるようにした場合のほうが、長期間にわたって高い収率、有効選択率を維持できることが分る。   As described above, when the reaction bath temperature Tb and the exothermic peak temperature are within a known range, the case where Tm−Tb ≧ 15 ° C. maintains a higher yield and effective selectivity over a long period of time. I know I can

Claims (2)

ターシャリーブタノール及び/またはイソブチレンを原料とし、これを反応管ガス流れ方向に二つの発熱ピークを有するように酸化触媒を充填した反応管に供給し、分子状酸素の存在下で原料を部分酸化しメタクロレイン及び/またはメタクリル酸を製造する方法において、前記酸化触媒がMo Bi Fe Co (式中Mo、Bi、Fe及びCoはモリブデン、ビスマス、鉄及びコバルトをそれぞれ表し、Xはアルカリ金属またはTlから選ばれる一種以上の元素、YはNi、Sn、Zn、W、Cr、Mn、Mg、Sb、CeまたはTiから選ばれる一種以上の元素を表し、元素記号右下の添字は各元素の原子比であり、a=13とした時、b=0.1−10、c=0.1−10、d=1−10、e=0.01−2、f=0−2、hは各々の元素の酸化状態によって定まる数値である。)で表され、二つの酸化触媒層の発熱ピークの間の温度の極小値をTm、反応浴温度をTbとしたとき、Tm−Tb≧15℃とすることを特徴とするメタクロレイン及び/またはメタクリル酸の製造方法。 Tertiary butanol and / or isobutylene is used as a raw material, and this is supplied to a reaction tube filled with an oxidation catalyst so as to have two exothermic peaks in the reaction tube gas flow direction, and the raw material is partially oxidized in the presence of molecular oxygen. a method for producing methacrolein and / or methacrylic acid, wherein the oxidation catalyst is Mo a Bi b Fe c Co d X e Y f O h ( wherein Mo, Bi, Fe and Co are molybdenum, bismuth, iron and cobalt X represents one or more elements selected from alkali metals or Tl, Y represents one or more elements selected from Ni, Sn, Zn, W, Cr, Mn, Mg, Sb, Ce or Ti The subscript at the lower right is an atomic ratio of each element. When a = 13, b = 0.1-10, c = 0.1-10, d = 1-10, e = 0.01- , F = 0-2, h is represented by a numerical value determined by the oxidation state of each element.), And the minimum value of temperature during the exothermic peak of the two oxidation catalyst layer Tm, the reaction bath temperature Tb A process for producing methacrolein and / or methacrylic acid, wherein Tm−Tb ≧ 15 ° C. 原料ガス入り口側の触媒層を不活性物質で希釈することにより二つの発熱ピークが得られるようにすることを特徴とする請求項1記載のメタクロレイン及び/またはメタクリル酸の製造方法。   2. The method for producing methacrolein and / or methacrylic acid according to claim 1, wherein two exothermic peaks are obtained by diluting the catalyst layer on the raw material gas inlet side with an inert substance.
JP2007288469A 2007-11-06 2007-11-06 Method for producing methacrolein and / or methacrylic acid Active JP5130562B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007288469A JP5130562B2 (en) 2007-11-06 2007-11-06 Method for producing methacrolein and / or methacrylic acid
PCT/JP2008/068846 WO2009060704A1 (en) 2007-11-06 2008-10-17 Process for producing methacrolein and/or methacrylic acid
KR1020107008636A KR101558941B1 (en) 2007-11-06 2008-10-17 Process For Producing Methacrolein And/Or Methacrylic Acid
CN2008801146268A CN101848883B (en) 2007-11-06 2008-10-17 Process for producing methacrolein and/or methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007288469A JP5130562B2 (en) 2007-11-06 2007-11-06 Method for producing methacrolein and / or methacrylic acid

Publications (2)

Publication Number Publication Date
JP2009114119A JP2009114119A (en) 2009-05-28
JP5130562B2 true JP5130562B2 (en) 2013-01-30

Family

ID=40625604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288469A Active JP5130562B2 (en) 2007-11-06 2007-11-06 Method for producing methacrolein and / or methacrylic acid

Country Status (4)

Country Link
JP (1) JP5130562B2 (en)
KR (1) KR101558941B1 (en)
CN (1) CN101848883B (en)
WO (1) WO2009060704A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161703A1 (en) 2012-04-23 2013-10-31 日本化薬株式会社 Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst
WO2015053269A1 (en) 2013-10-10 2015-04-16 日本化薬株式会社 Method for producing unsaturated carboxylic acid, and supported catalyst
US9604199B2 (en) 2012-04-23 2017-03-28 Nipponkayaku Kabushikikaisha Catalyst for production of butadiene, process for producing the catalyst, and process for producing butadiene using the catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347845B (en) * 2011-02-02 2015-04-01 日本化药株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2017184496A1 (en) * 2016-04-21 2017-10-26 Rohm And Haas Company Methods for using macroporous inert materials in monomer production
KR102417077B1 (en) * 2019-01-18 2022-07-04 주식회사 엘지화학 Process for producing methyl methacrylate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN142430B (en) * 1975-04-21 1977-07-09 Standard Oil Co
JP2934267B2 (en) * 1989-12-06 1999-08-16 株式会社日本触媒 Method for producing methacrolein and methacrylic acid
JPH0784400B2 (en) * 1990-04-03 1995-09-13 株式会社日本触媒 Process for producing unsaturated aldehyde and unsaturated acid
JP3028327B2 (en) * 1992-12-25 2000-04-04 三菱レイヨン株式会社 Method for producing methacrolein and methacrylic acid
US6969774B2 (en) * 1999-12-10 2005-11-29 Mitsubishi Rayon Co., Ltd. Method for producing methacrylic acid
JP4497442B2 (en) * 2001-01-16 2010-07-07 三菱レイヨン株式会社 Method for producing methacrolein and methacrylic acid
WO2003055835A1 (en) * 2001-12-27 2003-07-10 Mitsubishi Chemical Corporation Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
KR100868454B1 (en) * 2005-07-08 2008-11-11 주식회사 엘지화학 Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with high efficiency

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161703A1 (en) 2012-04-23 2013-10-31 日本化薬株式会社 Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst
US9573127B2 (en) 2012-04-23 2017-02-21 Nipponkayaku Kabushikikaisha Process for producing shaped catalyst and process for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using the shaped catalyst
US9604199B2 (en) 2012-04-23 2017-03-28 Nipponkayaku Kabushikikaisha Catalyst for production of butadiene, process for producing the catalyst, and process for producing butadiene using the catalyst
WO2015053269A1 (en) 2013-10-10 2015-04-16 日本化薬株式会社 Method for producing unsaturated carboxylic acid, and supported catalyst
US9751822B2 (en) 2013-10-10 2017-09-05 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated carboxylic acid and supported catalyst

Also Published As

Publication number Publication date
KR101558941B1 (en) 2015-10-08
CN101848883B (en) 2013-11-20
JP2009114119A (en) 2009-05-28
CN101848883A (en) 2010-09-29
WO2009060704A1 (en) 2009-05-14
KR20100075514A (en) 2010-07-02

Similar Documents

Publication Publication Date Title
JP6527499B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP3793317B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated acid
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JP2008535784A (en) Process for producing unsaturated aldehyde and / or unsaturated acid
JP5130562B2 (en) Method for producing methacrolein and / or methacrylic acid
WO2015008814A1 (en) Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP6912153B2 (en) Manufacturing method of unsaturated aldehyde
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
JP4058270B2 (en) Method for producing methacrylic acid
JP4497442B2 (en) Method for producing methacrolein and methacrylic acid
JP4824867B2 (en) Method for producing methacrolein and methacrylic acid
JP3939187B2 (en) Process for producing unsaturated aldehyde
WO2019198763A1 (en) Method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid, and catalyst for production of at least one of unsaturated aldehyde and unsaturated carboxylic acid
WO2002098827A1 (en) Process for producing (meth)acrolein and/or (meth)acrylic acid
JP4824871B2 (en) Method for producing acrolein and acrylic acid
KR101218128B1 (en) / process for producting methacrolein and/or methacrylic acid
JP4248163B2 (en) Method for producing methacrylic acid
JP5590382B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5607865B2 (en) Method for producing methacrylic acid
JP2009084167A (en) Manufacturing method of acrolein and/or acrylic acid
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
JP5433321B2 (en) Method for producing (meth) acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250