JP5130446B2 - Surface modified substrate and polymer coated substrate - Google Patents

Surface modified substrate and polymer coated substrate Download PDF

Info

Publication number
JP5130446B2
JP5130446B2 JP2009114889A JP2009114889A JP5130446B2 JP 5130446 B2 JP5130446 B2 JP 5130446B2 JP 2009114889 A JP2009114889 A JP 2009114889A JP 2009114889 A JP2009114889 A JP 2009114889A JP 5130446 B2 JP5130446 B2 JP 5130446B2
Authority
JP
Japan
Prior art keywords
polymer
substrate
film
polymerization initiator
polydopamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009114889A
Other languages
Japanese (ja)
Other versions
JP2010261001A (en
Inventor
淳 高原
元康 小林
宏直 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2009114889A priority Critical patent/JP5130446B2/en
Publication of JP2010261001A publication Critical patent/JP2010261001A/en
Application granted granted Critical
Publication of JP5130446B2 publication Critical patent/JP5130446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面修飾基材およびポリマー被覆基材に関する。特に基材の材質によらず、基材表面をポリマーで簡易に被覆しうる表面修飾基材、ならびに該表面修飾基材を用いて形成したいわゆるポリマーブラシに関する。   The present invention relates to a surface-modified substrate and a polymer-coated substrate. In particular, the present invention relates to a surface-modified base material that can easily cover the surface of the base material with a polymer regardless of the material of the base material, and a so-called polymer brush formed using the surface-modified base material.

表面改質の方法として材料表面にポリマーをグラフト重合させる、いわゆるポリマーブラシの利用が知られている。ポリマーブラシを調製するには重合反応の開始点となる官能基を対象となる材料表面に固定化する。このため、材料表面の化学的特性に応じた試薬を準備する必要がある。例えば、ガラスやシリコンに対してはシランカップリング系化合物(非特許文献1−3)、金にはチオール類(非特許文献1−5)、鉄やアルミにはリン酸化合物(非特許文献6−7)など基材と化学的に結合するのに適切な化合物を選択する必要があり、ユニバーサルに対応出来る化合物が検討されている。   As a surface modification method, use of a so-called polymer brush in which a polymer is graft-polymerized on a material surface is known. In order to prepare a polymer brush, a functional group serving as a starting point for a polymerization reaction is immobilized on the surface of a target material. For this reason, it is necessary to prepare a reagent according to the chemical characteristics of the material surface. For example, for glass and silicon, a silane coupling compound (Non-Patent Document 1-3), for gold, a thiol (Non-Patent Document 1-5), and for iron and aluminum, a phosphate compound (Non-Patent Document 6). It is necessary to select an appropriate compound for chemically bonding to the substrate such as -7), and a compound that can be used universally has been studied.

また、上記のように材料表面にポリマーブラシ膜を調製する方法は従来から行われていたが、一般的にグラフト密度が低く1平方ナノメール当たり0.01〜0.1本未満しか高分子鎖が固定化できないという問題があった。1998年以降、リビング重合を用いた表面開始重合法が開発され(非特許文献8)、グラフト密度は0.1〜1.0本/nm程度にまで向上したが、表面改質対象となる材料に応じて重合開始剤の固定化方法を変える必要があった。 In addition, a method for preparing a polymer brush film on the surface of a material as described above has been conventionally performed. However, generally, the graft density is low, and only 0.01 to less than 0.1 polymer chain per square nanomail is obtained. There was a problem that could not be fixed. Since 1998, a surface-initiated polymerization method using living polymerization has been developed (Non-Patent Document 8), and the graft density has been improved to about 0.1 to 1.0 / nm 2 , but is subject to surface modification. It was necessary to change the immobilization method of the polymerization initiator depending on the material.

ところで、二枚貝の足糸腺から分泌されるドーパミン含有タンパクは海水中でも安定な接着力を発揮する天然の接着剤として知られている。このドーパミンは塩基性条件下で様々な材料表面に付着し酸化重合し、膜を形成することが知られている(非特許文献9)。   By the way, dopamine-containing protein secreted from bivalve foot glands is known as a natural adhesive that exhibits stable adhesive force even in seawater. It is known that this dopamine adheres to the surface of various materials under basic conditions and oxidatively polymerizes to form a film (Non-patent Document 9).

O. Prueker, J. Ruehe, Macromolecules, 1998, 31, 592-601O. Prueker, J. Ruehe, Macromolecules, 1998, 31, 592-601 B. Zhao and W. J. Brittain, J. Am. Chem. Soc., 1999, 121, 3557-3558B. Zhao and W. J. Brittain, J. Am. Chem. Soc., 1999, 121, 3557-3558 K. Ohno, T. Morinaga, K. Koh, Y. Tsujii and T. Fukuda, Macromolecules, 2005, 38, 2137-2142K. Ohno, T. Morinaga, K. Koh, Y. Tsujii and T. Fukuda, Macromolecules, 2005, 38, 2137-2142 J. -B. Kim, M. L. Bruening and G. L. Baker, Am. Chem. Soc., 2000, 122, 7616-7617J.-B. Kim, M. L. Bruening and G. L. Baker, Am. Chem. Soc., 2000, 122, 7616-7617 W. Huang, J. -B. Kim, M. L. Bruening, G. L. Baker, Macromolecules, 2002, 35, 1175-1179W. Huang, J. -B. Kim, M. L. Bruening, G. L. Baker, Macromolecules, 2002, 35, 1175-1179 R. Matsuno, K. Yamamoto, H. Otuska and A. Takahara, Macromolecules, 2004, 37, 2203-2209R. Matsuno, K. Yamamoto, H. Otuska and A. Takahara, Macromolecules, 2004, 37, 2203-2209 R. Matsuno, H. Otuska and A. Takahara, Soft Matt., 2006, 2, 415-421R. Matsuno, H. Otuska and A. Takahara, Soft Matt., 2006, 2, 415-421 M. Ejaz, S. Yamamoto, K. Ohno, Y. Tsujii, T. Fukuda, Macromolecules 1998, 31, 5934-5936M. Ejaz, S. Yamamoto, K. Ohno, Y. Tsujii, T. Fukuda, Macromolecules 1998, 31, 5934-5936 H. S. Lee, M. W. Dellatore, M. Miller, P. B. Messersmith, Science, 2007, 318, 426-430H. S. Lee, M. W. Dellatore, M. Miller, P. B. Messersmith, Science, 2007, 318, 426-430

本発明は、上記の従来技術に鑑みてなされたものであり、材質によらず、各種の基材表面に簡易に重合開始剤を固定しうる技術を提供することを目的としている。また、本発明は、表面に重合開始剤が固定された表面修飾基材を用いて形成した新規ポリマーブラシ(ポリマー被覆基材)を提供することを目的としている。   The present invention has been made in view of the above-described conventional technology, and an object thereof is to provide a technology capable of easily fixing a polymerization initiator on the surface of various base materials regardless of the material. Another object of the present invention is to provide a novel polymer brush (polymer-coated substrate) formed using a surface-modified substrate having a polymerization initiator fixed on the surface.

本発明者らは上記課題に鑑み鋭意検討した結果、各種基材表面に簡易に形成することが可能なポリドーパミン膜に着目するに至った。ポリドーパミン膜には、ドーパミン由来のフェノール性水酸基、アミノ基が存在するため、適切な化学処理により重合反応の起点となる官能基(以下、「重合開始剤」と呼ぶことがある)を導入できる可能性がある。   As a result of intensive studies in view of the above problems, the present inventors have focused on polydopamine films that can be easily formed on the surfaces of various substrates. Since the polydopamine film has a phenolic hydroxyl group and amino group derived from dopamine, a functional group (hereinafter sometimes referred to as a “polymerization initiator”) that becomes the starting point of the polymerization reaction can be introduced by appropriate chemical treatment. there is a possibility.

かかる知見に基づいて完成された本発明は、下記事項を要旨として含む。
(1) 基材と、基材表面に形成されたポリドーパミン膜と、該ポリドーパミン膜に固定された重合開始剤とを含む表面修飾基材。
The present invention completed based on such knowledge includes the following matters as a gist.
(1) A surface-modified base material comprising a base material, a polydopamine film formed on the surface of the base material, and a polymerization initiator fixed to the polydopamine film.

(2) 基材と、基材表面に形成されたポリドーパミン膜と、該ポリドーパミン膜に固定された重合開始剤と、該重合開始剤を起点としてモノマーを重合してなる高分子膜とを有するポリマー被覆基材。 (2) A base material, a polydopamine film formed on the surface of the base material, a polymerization initiator fixed to the polydopamine film, and a polymer film obtained by polymerizing monomers starting from the polymerization initiator A polymer-coated substrate.

(3) 前記高分子膜が摺動性高分子である(2)に記載のポリマー被覆基材。 (3) The polymer-coated substrate according to (2), wherein the polymer film is a slidable polymer.

本発明によれば、材質によらず、各種の基材表面に簡易に重合開始剤を固定しうる技術が提供される。また、本発明によれば、該表面に重合開始剤が固定された表面修飾基材を用いて形成した新規ポリマーブラシ(ポリマー被覆基材)が提供される。さらに本発明によれば、グラフト密度の高いポリマーブラシが得られる。   According to the present invention, there is provided a technique capable of easily fixing a polymerization initiator on various substrate surfaces regardless of the material. Moreover, according to this invention, the novel polymer brush (polymer coating base material) formed using the surface modification base material with which the polymerization initiator was fixed to this surface is provided. Furthermore, according to the present invention, a polymer brush having a high graft density can be obtained.

図1は本発明の実施例において製造したポリドーパミン膜(図1A)、重合開始剤が導入されたポリドーパミン膜(図1B)およびポリドーパミン膜上に形成されたポリメチルメタクリレート膜(図1C)のXPSスペクトルを示す。FIG. 1 shows a polydopamine film (FIG. 1A) manufactured in an embodiment of the present invention, a polydopamine film in which a polymerization initiator is introduced (FIG. 1B), and a polymethyl methacrylate film (FIG. 1C) formed on the polydopamine film. The XPS spectrum of is shown.

以下、本発明を、その最良の形態を含めて、さらに具体的に説明する。本発明に係る表面修飾基材は、基材と、基材表面に形成されたポリドーパミン膜と、該ポリドーパミン膜に固定された重合開始剤とを含む。   Hereinafter, the present invention will be described more specifically, including its best mode. The surface-modified base material according to the present invention includes a base material, a polydopamine film formed on the surface of the base material, and a polymerization initiator fixed to the polydopamine film.

ポリドーパミン膜は、金属や各種の材質表面に形成することが可能であり、たとえばポリテトラフルオロエチレン(PTFE)表面などにも形成することができる。したがって、本発明において使用する基材の材質は特に限定はされず、シリコン、アルミニウム、ステンレス等の金属製の基材であってもよく、またポリオレフィン、PTFE等のポリマーからなる基材であってもよく、さらにガラスなどの無機材料であってもよい。ポリマーからなる基材においては、ポリマーをあらゆる手法で変性させた樹脂も、基材の構成樹脂として用いることができる。   The polydopamine film can be formed on the surface of metal or various materials, for example, it can be formed on the surface of polytetrafluoroethylene (PTFE). Therefore, the material of the base material used in the present invention is not particularly limited, and may be a base material made of metal such as silicon, aluminum or stainless steel, or a base material made of a polymer such as polyolefin or PTFE. In addition, an inorganic material such as glass may be used. In a base material made of a polymer, a resin obtained by modifying a polymer by any method can also be used as a constituent resin of the base material.

これらは単独で、或いは2種類以上を含む樹脂であっても構わない。このような樹脂の成形体には、必要に応じて、各種の添加剤が配合されていても良い。添加剤としては、例えば軟化剤、安定剤、充填剤、酸化防止剤、結晶核剤、ワックス、増粘剤、機械的安定性付与剤、レベリング剤、濡れ剤、造膜助剤、架橋剤、防腐剤、防錆剤、顔料、分散剤、凍結防止剤、消泡剤等が挙げられ、これらは単独で、或いは2種類以上組み合わせて添加される。   These may be used alone or in combination of two or more. Various additives may be blended in the molded body of such a resin as necessary. Examples of additives include softeners, stabilizers, fillers, antioxidants, crystal nucleating agents, waxes, thickeners, mechanical stability imparting agents, leveling agents, wetting agents, film-forming aids, crosslinking agents, Examples include antiseptics, rust inhibitors, pigments, dispersants, antifreezing agents, antifoaming agents, and the like. These may be added alone or in combination of two or more.

また、基材の形状も特に限定はされない。たとえば、シート状、粒子状であってもよく、各種の成形体形状であってもよい。たとえば基材は、金属または重合体からなるカテーテル、ステントなど医療用器材、転がり軸受、すべり軸受、内燃機関、変速機等の自動車部品や建設機械部品などであってもよい。これらの成形体を本発明において基材として使用する場合、成形体表面に所望の高分子膜を簡易かつ高密度で形成することが可能であり、機器の性能を向上することができる。たとえば高分子膜として摺動性の高分子膜を形成することで、滑り性が向上するため、カテーテルやステントなどの挿管作業を円滑かつ安全に行えるようになる。   Further, the shape of the substrate is not particularly limited. For example, it may be in the form of a sheet or particle, or may be in the form of various molded products. For example, the base material may be a medical device such as a catheter or stent made of a metal or a polymer, a rolling bearing, a sliding bearing, an automobile part such as an internal combustion engine, a transmission, or a construction machine part. When these molded bodies are used as the base material in the present invention, a desired polymer film can be easily and densely formed on the surface of the molded body, and the performance of the device can be improved. For example, by forming a slidable polymer film as the polymer film, the slipperiness is improved, so that intubation work of a catheter, a stent, or the like can be performed smoothly and safely.

基材表面へのポリドーパミン膜の形成は、ドーパミンの優れた接着性と自発的薄膜形成能力を活用して行われる。具体的には、ドーパミン水溶液(pH=8程度)に基材を浸漬させると速やかにドーパミンの自己酸化重合が始まり、基材表面に高分子化したドーパミンが堆積して薄膜を形成する。この薄膜はガラスや金属など幅広い材料表面に安定に接着する。   Formation of the polydopamine film on the surface of the substrate is performed by utilizing the superior adhesiveness and spontaneous thin film forming ability of dopamine. Specifically, when the substrate is immersed in an aqueous solution of dopamine (pH = about 8), dopamine self-oxidation polymerization starts rapidly, and polymerized dopamine is deposited on the surface of the substrate to form a thin film. This thin film adheres stably to the surface of a wide range of materials such as glass and metal.

ドーパミン水溶液の濃度は、一般的には0.01〜0.1モル/リットル程度であれば特に限定はされないが、0.01〜0.05モル/リットルが好ましい。pHは、一般的には6.4〜10.8程度であり、最も好ましくは8.0〜8.5である。また、基材浸漬時のドーパミン水溶液の温度は、10〜50℃程度が好ましい。浸漬時間は、目的とするポリドーパミン膜の厚みにより様々であり、一般的には6〜48時間程度が好適である。得られるポリドーパミン膜の厚さは、10〜30nm程度が好ましい。   The concentration of the aqueous dopamine solution is not particularly limited as long as it is generally about 0.01 to 0.1 mol / liter, but is preferably 0.01 to 0.05 mol / liter. The pH is generally about 6.4 to 10.8, and most preferably 8.0 to 8.5. Further, the temperature of the dopamine aqueous solution at the time of immersion in the substrate is preferably about 10 to 50 ° C. The soaking time varies depending on the thickness of the target polydopamine film, and is generally about 6 to 48 hours. The thickness of the resulting polydopamine film is preferably about 10 to 30 nm.

ポリドーパミン膜には、ドーパミン由来のフェノール性水酸基、アミノ基が存在するため、適切な化学処理により重合反応の起点となる官能基(重合開始剤)を導入できる。   Since a polydopamine film has a phenolic hydroxyl group and amino group derived from dopamine, a functional group (polymerization initiator) serving as a starting point of a polymerization reaction can be introduced by an appropriate chemical treatment.

重合開始剤の種類は、最終的に基材表面に被覆される高分子膜を形成するモノマーの種類に応じて適宜に選択される。高分子膜形成用モノマーと重合開始剤との関係を以下にまとめるが、本発明で使用する重合開始剤および形成される高分子膜がこれらに限定されることはない。   The type of the polymerization initiator is appropriately selected according to the type of monomer that forms the polymer film that is finally coated on the substrate surface. The relationship between the polymer film-forming monomer and the polymerization initiator is summarized below, but the polymerization initiator used in the present invention and the formed polymer film are not limited to these.

Figure 0005130446
Figure 0005130446

アクリル酸エステルおよびメタクリル酸エステルにはメタクリル酸メチルをはじめ、エステル基としてメチル基、エチル基、ブチル基、t−ブチル基、ヘキシル基、2−エチルヘキシル基、オクチル基、ヒドロキシエチル基、2,3−ジヒドロキシプロピル基、メトキシエトキシエチル基、ポリエチレングリコール基、3−エチルオキセタニル基、2,2−ジメチルジオキソラン−4−イル基、αグルコース、βラクトース、ジメチルアミノ基、4級アンモニウムカチオン、N−アルキルイミダゾールカチオン、N−アルキルピリジニウムカチオン、2,2,2−トリフルオロエチル基、2−パーフルオロブチルエチル基、2−パーフルオロオクチルエチル基が結合したモノマーも含まれる。また、アクリル酸、メタクリル酸、2−(2−メタクリロイルオキシエチル)ジメチルアミノ酢酸、2−メタクリルロイルオキシエチルホスホリルコリン、3−(N−[2−メタクリロイロキシエチル]−N,N−ジメチルアンモニオ)プロパンスルホネートも含まれる。   Acrylic acid esters and methacrylic acid esters include methyl methacrylate, and ester groups such as methyl group, ethyl group, butyl group, t-butyl group, hexyl group, 2-ethylhexyl group, octyl group, hydroxyethyl group, 2, 3 -Dihydroxypropyl group, methoxyethoxyethyl group, polyethylene glycol group, 3-ethyloxetanyl group, 2,2-dimethyldioxolan-4-yl group, α-glucose, β-lactose, dimethylamino group, quaternary ammonium cation, N-alkyl A monomer having an imidazole cation, an N-alkylpyridinium cation, a 2,2,2-trifluoroethyl group, a 2-perfluorobutylethyl group, or a 2-perfluorooctylethyl group is also included. Further, acrylic acid, methacrylic acid, 2- (2-methacryloyloxyethyl) dimethylaminoacetic acid, 2-methacryloyloxyethyl phosphorylcholine, 3- (N- [2-methacryloyloxyethyl] -N, N-dimethylammonio ) Propanesulfonate is also included.

アクリルアミド誘導体には無置換アクリルアミドの他にN−イソプロピルアクリルアミド、N−イソプロピルメタクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−エチルアクリルアミド、N,N−ジ(ヒドロキシエチル)アクリルアミド、(3−(メタクリロイルアミノ)プロピル)ジメチル−3−スルホプロピル)アンモニウム塩、1−(3−スルホプロピル)−2−ビニルピリジニウムヒドロキシドを含む。
スチレン誘導体としてはスチレン、スチレンスルホン酸、4−ビニル安息香酸、4−ビニル安息香酸t−ブチル、4−ジメチルアミノスチレン、2−ビニルピリジン、3−ビニルピリジン、4−ビニルピリジンが含まれる。
Acrylamide derivatives include unsubstituted acrylamide, N-isopropylacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N-methyl-N-ethylacrylamide, N, N-di ( Hydroxyethyl) acrylamide, (3- (methacryloylamino) propyl) dimethyl-3-sulfopropyl) ammonium salt, 1- (3-sulfopropyl) -2-vinylpyridinium hydroxide.
Styrene derivatives include styrene, styrene sulfonic acid, 4-vinylbenzoic acid, t-butyl 4-vinylbenzoate, 4-dimethylaminostyrene, 2-vinylpyridine, 3-vinylpyridine, and 4-vinylpyridine.

上記の重合開始剤は、ポリドーパミン膜表面のフェノール性水酸基やアミノ基と反応して、ポリドーパミン膜に固定される。したがって、重合開始剤の使用量は、フェノール性水酸基やアミノ基に対して当量程度であれば十分であるが、やや過剰に使用してもよい。また、重合開始剤を固定する際の温度、時間は、使用する重合開始剤に種類に応じて選定され、特に限定されない。ポリドーパミン膜への重合開始剤の固定法としては、たとえばポリドーパミン膜を有する基材を、重合開始剤を含有する塩化メチレンなどの有機溶媒または水に浸漬する方法、あるいは該基材を有機溶媒または水に浸漬し、重合開始剤を滴下する方法などが挙げられる。
上記の工程を経て、本発明に係る表面修飾基材が得られる。
The polymerization initiator is fixed to the polydopamine film by reacting with the phenolic hydroxyl group or amino group on the surface of the polydopamine film. Therefore, the amount of the polymerization initiator used is sufficient if it is about equivalent to the phenolic hydroxyl group or amino group, but it may be used slightly excessively. Moreover, the temperature and time for fixing the polymerization initiator are selected according to the type of the polymerization initiator used, and are not particularly limited. As a method for fixing a polymerization initiator to a polydopamine film, for example, a method of immersing a substrate having a polydopamine film in an organic solvent or water such as methylene chloride containing a polymerization initiator, or the substrate is an organic solvent Or the method etc. which are immersed in water and a polymerization initiator is dripped are mentioned.
Through the above steps, the surface-modified base material according to the present invention is obtained.

次いで、表面修飾基材に固定された重合開始剤を起点として、所望の重合性モノマーを重合することで、本発明に係るポリマー被覆基材が得られる。重合性モノマーの重合条件は、使用するモノマー種に応じて適宜に選定され、また必要に応じ助触媒等を添加してもよい。また、重合時の温度、時間は、使用する重合開始剤、モノマー種および目的とする高分子膜の厚みに応じて選定され、特に限定されない。重合法としては具体的には、前記表面修飾基材を、重合性モノマーまたはその溶液に浸漬する方法などが挙げられる。   Next, the polymer-coated substrate according to the present invention is obtained by polymerizing a desired polymerizable monomer using a polymerization initiator fixed to the surface-modified substrate as a starting point. The polymerization conditions for the polymerizable monomer are appropriately selected according to the type of monomer used, and a co-catalyst or the like may be added as necessary. The temperature and time during the polymerization are selected according to the polymerization initiator used, the monomer type, and the thickness of the target polymer film, and are not particularly limited. Specific examples of the polymerization method include a method of immersing the surface-modified substrate in a polymerizable monomer or a solution thereof.

高分子膜は、前記重合開始剤を起点として成長し、いわゆるポリマーブラシの形態で本発明に係るポリマー被覆基材が得られる。得られる高分子膜の厚みは、その用途にもよるが一般に30〜200nm程度である。また、本発明によれば、高いグラフト密度で高分子膜を形成することも可能である。ポリマーはポリドーパミン膜に固定された重合開始剤を起点として成長する。したがって、重合開始剤を高密度でポリドーパミン膜に固定することで、得られる高分子膜も緻密になる。高分子膜の緻密性は、基材表面の単位面積当たりに形成されるポリマー鎖の本数(グラフト密度ともいう)で規定でき、たとえば、本発明によれば、0.5本/nm以上のグラフト密度で高分子膜を形成することもできる。 The polymer film grows starting from the polymerization initiator, and the polymer-coated substrate according to the present invention is obtained in the form of a so-called polymer brush. The thickness of the resulting polymer film is generally about 30 to 200 nm although it depends on its use. According to the present invention, it is also possible to form a polymer film with a high graft density. The polymer grows starting from a polymerization initiator fixed to the polydopamine film. Therefore, by fixing the polymerization initiator to the polydopamine film at a high density, the resulting polymer film becomes dense. The denseness of the polymer film can be defined by the number of polymer chains formed per unit area of the substrate surface (also referred to as graft density). For example, according to the present invention, the density is 0.5 / nm 2 or more. It is also possible to form a polymer film with a graft density.

本発明のポリマー被覆基材を摺動部材として用いる場合、高分子膜としてはメタクリル酸アルキルエステル(アルキル鎖長C6以上、またはエチレングリコール鎖長9繰り返し単位以上)を主成分単位として含む摺動性高分子が好ましく用いられる。また、耐摩耗性や高温条件下での低摩擦性を向上させるにはメタクリル酸ブチルイミダゾリウム塩などが優れている。さらにメタクリル酸ブチルイミダゾリウム塩はイオン伝導性にも優れるため燃料電池の電極表面コーティングなどへも応用が可能である。   When the polymer-coated substrate of the present invention is used as a sliding member, the polymer film includes a slidability containing, as a main component unit, an alkyl methacrylate (alkyl chain length of C6 or more, or ethylene glycol chain length of 9 repeating units or more). A polymer is preferably used. In addition, butyl imidazolium methacrylate is excellent for improving wear resistance and low friction under high temperature conditions. Furthermore, since butyl imidazolium methacrylate is excellent in ion conductivity, it can be applied to electrode surface coating of fuel cells.

ステントやカテーテルなどステンレス製医用材料で表面に低摩擦特性を付与する場合、高分子膜としては高分子電解質や水溶性ポリマーが好ましく用いられる。特に、ポリ(アクリル酸ポリエチレングリコール)グラフト薄膜は大気中でも低摩擦を発現する。   When a stainless steel medical material such as a stent or a catheter is used to impart low friction characteristics to the surface, a polymer electrolyte or a water-soluble polymer is preferably used as the polymer film. In particular, a poly (polyethylene glycol acrylate) graft thin film exhibits low friction even in the air.

材料表面に撥水性材料を付与するには本法によりポリ(メタクリル酸パーフルオロアルキル)グラフト薄膜を調製することで達成可能である。   Giving a water-repellent material to the material surface can be achieved by preparing a poly (perfluoroalkyl methacrylate) graft thin film by this method.

抗菌コート材料を得るには本法によりポリ(メタクリルロイルオキシエチルトリアルキルアンモニウム塩)をグラフトすることで達成できる。   An antibacterial coating material can be obtained by grafting poly (methacryloyloxyethyltrialkylammonium salt) by this method.

窓ガラスや外壁などの基材に防汚性を付与するには高分子両性電解質グラフト薄膜が適している。   A polymer ampholyte graft thin film is suitable for imparting antifouling properties to substrates such as window glass and outer walls.

上記したように、本発明においては(1)ポリドーパミン膜の固定化、(2)重合開始剤の導入の2段階のプロセスを経て基材表面に重合開始剤を固定化している。一方、従来法では1段階の工程で重合開始剤を固定化できるが、従来法では基材の材質に応じて適切な試薬を選択し、反応条件を調整しながら重合開始剤を基材表面に固定する必要がある。上記でも述べたように例えば、ガラスやシリコンに対してはシランカップリング系化合物、金にはチオール類、鉄やアルミにはリン酸化合物など基材と化学的に結合するのに適切な化合物を個々に用意しておかなくてはならない。そのために労力およびコストが増大する。一方、本発明では様々な材質の基材に対してもドーパミンという1種類の物質を用い、同じプロセスを経て確実に重合開始剤を固定化できるため、非常に簡便で優れた手法である。   As described above, in the present invention, the polymerization initiator is immobilized on the substrate surface through a two-step process of (1) immobilizing the polydopamine film and (2) introducing the polymerization initiator. On the other hand, in the conventional method, the polymerization initiator can be immobilized in a single step, but in the conventional method, an appropriate reagent is selected according to the material of the substrate, and the polymerization initiator is applied to the substrate surface while adjusting the reaction conditions. Need to be fixed. As mentioned above, for example, silane coupling compounds for glass and silicon, thiols for gold, phosphate compounds for iron and aluminum, etc., suitable compounds for chemically bonding to the substrate. It must be prepared individually. This increases labor and cost. On the other hand, in the present invention, since one kind of substance called dopamine is used for substrates of various materials and the polymerization initiator can be reliably fixed through the same process, it is a very simple and excellent technique.

また、従来法では化学処理の際にトルエンやテトラヒドロフランなどの有機溶剤を使用する。さらに、ごくわずかの水分が存在しても重合開始剤の固定化反応が阻害されるため使用する溶剤の脱水はもちろん、場合によっては乾燥窒素を充填したグローブボックス中で全ての処理工程を行う必要があり、高度な技術と設備が要求される。一方、本発明ではドーパミン水溶液に基材を浸漬するだけで基材表面にポリドーパミン膜が形成され、また重合開始剤の固定も容易である。ドーパミンは生体内で神経伝達物質として存在する物質であり、溶媒として使用する水はほぼ無害と考えて良い。従って、本発明は従来法に比べ環境負荷の極めて低いという大きな特徴を持つ技術である。   In the conventional method, an organic solvent such as toluene or tetrahydrofuran is used for chemical treatment. In addition, the immobilization reaction of the polymerization initiator is inhibited even in the presence of a very small amount of water. In addition to dehydrating the solvent used, in some cases, it is necessary to carry out all treatment steps in a glove box filled with dry nitrogen. Advanced technology and equipment are required. On the other hand, in the present invention, a polydopamine film is formed on the surface of the substrate simply by immersing the substrate in an aqueous dopamine solution, and the polymerization initiator can be easily fixed. Dopamine is a substance that exists as a neurotransmitter in the living body, and water used as a solvent may be considered almost harmless. Therefore, the present invention is a technique having a great feature that the environmental load is extremely low as compared with the conventional method.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

pH8.5に調整したTris−HCl緩衝溶液にドーパミン塩酸塩を加え、ステンレス製基材を浸漬した。12時間後、基材表面上にはポリドーパミン膜が生成した。ポリドーパミン膜を形成した基材を、塩化メチレンに浸漬し、ここに重合開始剤として酸臭化物(2-bromoisobutylyl bromide)を滴下して、ポリドーパミン膜に重合開始剤を固定して表面修飾基材を得た。表面修飾基材を洗浄、自然乾燥した後、メタクリル酸メチルとCuBr(I)を含む溶液に表面修飾基材を浸漬し、70℃で6時間反応させることで基材表面にポリメチルメタクリレート(PMMA)をグラフトし、その後洗浄、乾燥を行った。反応の進行はX線光電子分光法(XPS)により確認した。また、静的接触角測定、原子間力顕微鏡(AFM)により水に対する接触角の変化、および膜厚の変化を測定した。   Dopamine hydrochloride was added to a Tris-HCl buffer solution adjusted to pH 8.5, and a stainless steel substrate was immersed therein. After 12 hours, a polydopamine film was formed on the substrate surface. The base material on which the polydopamine film is formed is dipped in methylene chloride, and acid bromide (2-bromoisobutylyl bromide) is dropped as a polymerization initiator here, and the polymerization initiator is fixed to the polydopamine film to modify the surface. Got. After the surface-modified substrate is washed and air-dried, the surface-modified substrate is immersed in a solution containing methyl methacrylate and CuBr (I) and reacted at 70 ° C. for 6 hours, thereby polymethylmethacrylate (PMMA) on the substrate surface. ), And then washed and dried. The progress of the reaction was confirmed by X-ray photoelectron spectroscopy (XPS). Moreover, the change of the contact angle with respect to water and the change of film thickness were measured by static contact angle measurement and atomic force microscope (AFM).

図1にステンレス基材上でのポリドーパミン膜調製後(A)、酸臭化物反応処理後(B)、PMMA調製後(C)におけるXPSスペクトルを示す。酸臭化物との反応後にC=O、Br3dのピークが観察され、ポリドーパミン膜上へ表面開始剤が固定化できていることを確認した。メタクリル酸メチルの重合後、Br3dとN1sのピーク強度が低下し、C1sとO1sのスペクトルにエステル結合由来のピークが明瞭に現れたことからPMMAグラフト層の生成が示された。また水に対する静的接触角はポリドーパミン膜55°に対し、PMMA膜調製後は80°へと上昇した。さらに、ポリドーパミン/PMMAは170nm以上の膜厚を有していた。以上の結果から、種々の基材への接着性に優れたポリドーパミンを下地として利用することで様々な基材上への高分子鎖の固定化による表面改質が可能であると考えられる。 FIG. 1 shows XPS spectra after preparation of polydopamine film on a stainless steel substrate (A), after treatment with oxybromide (B), and after preparation of PMMA (C). After reaction with acid bromide, C = O, Br 3d peaks were observed, confirming that the surface initiator was immobilized on the polydopamine film. After the polymerization of methyl methacrylate, the peak intensities of Br 3d and N 1s decreased, and the peaks derived from ester bonds clearly appeared in the C 1s and O 1s spectra, indicating the formation of a PMMA graft layer. In addition, the static contact angle with respect to water increased to 80 ° after the preparation of the PMMA membrane with respect to the polydopamine membrane 55 °. Furthermore, polydopamine / PMMA had a film thickness of 170 nm or more. From the above results, it is considered that surface modification can be achieved by immobilizing polymer chains on various substrates by using polydopamine having excellent adhesion to various substrates as a base.

また、上記と同法によりシリコン基板、アルミニウム上でポリドーパミン薄膜を調製し、さらに酸臭化物(2-bromoisobutylyl bromide)を反応させることで重合開始官能基を固定した。また、その後、上記と同様にして基材表面にPMMAがグラフトしたことをXPSおよびエリプソメーター、接触角測定により確認した。  Further, a polydopamine thin film was prepared on a silicon substrate and aluminum by the same method as described above, and a polymerization initiation functional group was fixed by further reacting with oxybromide (2-bromoisobutylyl bromide). Thereafter, it was confirmed by XPS, ellipsometer, and contact angle measurement that PMMA was grafted on the surface of the substrate in the same manner as described above.

さらに、上記と同法によりポリテトラフルオロエチレン(PTFE)基材上でポリドーパミン薄膜を調製した。XPSスペクトルからポリドーパミン由来の炭素C1sおよび窒素N1Sの結合ピークが観測されポリドーパミン薄膜の生成を確認した。 Furthermore, a polydopamine thin film was prepared on a polytetrafluoroethylene (PTFE) substrate by the same method as described above. From the XPS spectrum, a binding peak of carbon C 1s and nitrogen N 1S derived from polydopamine was observed, confirming the formation of a polydopamine thin film.

ステンレス基材およびガラス基板上でのポリドーパミン膜を調製後、表面に2−ブロモイソブチル基を固定した。得られたステンレス製基材とCuBr(I)、2,2‘−ビピリジルをガラス容器に入れ真空脱気した後、高純度アルゴンで置換した。ここに水、メタクリル酸ポリエチレングリコール(分子量475)、2−ブロモイソブチル酸エチルをこの順に加え、直ちに凍結脱気した後、高純度アルゴンを充填した。室温で4時間撹拌した後、ステンレス基板を取り出し、メタノールと水で十分に洗浄した。これにより膜厚35nmのポリ(メタクリル酸ポリエチレングリコール)グラフト層が生成したことをエリプソメーターにより確認した。  After preparing a polydopamine film on a stainless steel substrate and a glass substrate, a 2-bromoisobutyl group was fixed on the surface. The obtained stainless steel substrate and CuBr (I), 2,2′-bipyridyl were placed in a glass container and vacuum degassed, and then replaced with high-purity argon. Water, polyethylene glycol methacrylate (molecular weight: 475), and ethyl 2-bromoisobutyrate were added in this order and immediately freeze-degassed, and then filled with high-purity argon. After stirring at room temperature for 4 hours, the stainless steel substrate was taken out and thoroughly washed with methanol and water. As a result, it was confirmed by an ellipsometer that a 35 nm-thick poly (polyethylene glycol methacrylate) graft layer was formed.

表面摩擦特性を直線摺動型摩擦試験機によりステンレス球(直径10mm)プローブを用いて大気中荷重50g(面圧201MPa)、摺動速度120mm/min条件下にて評価した。未処理のステンレス基板の動摩擦係数が0.34であるのに対してポリ(メタクリル酸ポリエチレングリコール)グラフトステンレス基板は0.028であり、グラフト処理により動摩擦係数が10分の1以下まで低下した。水中でも動摩擦係数は0.098程度であり低摩擦表面が得られている。また、荷重20g(面圧148MPa)条件下では大気中で80往復以上の摩擦に対しても低摩擦を維持していた。通常のコーティング方法では数往復程度の摩擦で膜が剥離するが、本件のグラフト処理では耐摩耗性が向上していることが明らかとなった。

The surface friction characteristics were evaluated by a linear sliding friction tester using a stainless sphere (diameter 10 mm) probe under an atmospheric load of 50 g (surface pressure 201 MPa) and a sliding speed of 120 mm / min. The dynamic friction coefficient of the untreated stainless steel substrate was 0.34, whereas the poly (polyethylene glycol methacrylate) grafted stainless steel substrate was 0.028, and the dynamic friction coefficient was reduced to 1/10 or less by grafting. Even in water, the coefficient of dynamic friction is about 0.098, and a low friction surface is obtained. Further, under the condition of a load of 20 g (surface pressure of 148 MPa), low friction was maintained even in friction of 80 reciprocations or more in the atmosphere. In the usual coating method, the film peels off with a few reciprocations of friction, but it has been clarified that the abrasion resistance is improved in this grafting process.

Claims (3)

基材と、
基材表面に直接に形成されたポリドーパミン膜と、
該ポリドーパミン膜に固定された重合開始剤とを含む表面修飾基材。
A substrate;
A polydopamine film formed directly on the substrate surface;
A surface-modified base material comprising a polymerization initiator fixed to the polydopamine film.
基材と、
基材表面に直接に形成されたポリドーパミン膜と、
該ポリドーパミン膜に固定された重合開始剤と、
該重合開始剤を起点としてモノマーを重合してなる高分子膜とを有するポリマー被覆基材。
A substrate;
A polydopamine film formed directly on the substrate surface;
A polymerization initiator immobilized on the polydopamine membrane;
A polymer-coated substrate having a polymer film obtained by polymerizing monomers starting from the polymerization initiator.
前記高分子膜が摺動性高分子であり、前記摺動性高分子がメタクリル酸アルキルエステル(アルキル鎖長C6以上、またはイオン性官能基を有するメタクリル酸エステル)を主成分単位として含む摺動性高分子である請求項2に記載のポリマー被覆基材。 The polymer film is Ri Ah with sliding polymer, sliding containing the sliding polymer is methacrylic acid alkyl ester (the alkyl chain length C6 or higher, or methacrylic acid ester having an ionic functional group) as a main component unit The polymer-coated substrate according to claim 2, which is a dynamic polymer .
JP2009114889A 2009-05-11 2009-05-11 Surface modified substrate and polymer coated substrate Active JP5130446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114889A JP5130446B2 (en) 2009-05-11 2009-05-11 Surface modified substrate and polymer coated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114889A JP5130446B2 (en) 2009-05-11 2009-05-11 Surface modified substrate and polymer coated substrate

Publications (2)

Publication Number Publication Date
JP2010261001A JP2010261001A (en) 2010-11-18
JP5130446B2 true JP5130446B2 (en) 2013-01-30

Family

ID=43359363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114889A Active JP5130446B2 (en) 2009-05-11 2009-05-11 Surface modified substrate and polymer coated substrate

Country Status (1)

Country Link
JP (1) JP5130446B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263837B1 (en) * 2011-05-19 2013-05-13 한국과학기술원 Method of electrochemical coating for polydopamine, and polydopamine coated neural electorde
KR101285301B1 (en) 2011-10-17 2013-07-11 한국교통대학교산학협력단 Antibacterial coating compound and composition comprising the same
KR101327891B1 (en) 2012-02-02 2013-11-11 에스케이씨 주식회사 Porous film coated with biopolymer and separator for secondary battery comprising same
HK1218396A1 (en) * 2013-02-04 2017-02-17 Gore & Ass Coating for substrate
US9272075B2 (en) 2013-02-04 2016-03-01 W.L. Gore & Associates, Inc. Coating for substrate
ES2692150T3 (en) * 2013-02-04 2018-11-30 W.L. Gore & Associates, Inc. Substrate coating
WO2014185361A1 (en) 2013-05-13 2014-11-20 独立行政法人科学技術振興機構 Novel composite material, and polymer coating material precursor produced using same
KR102080283B1 (en) * 2013-10-04 2020-02-21 주식회사 엘지화학 Surface-modified membrane and method of modifyng the membrane surface
US10414847B2 (en) 2014-05-08 2019-09-17 Japan Science And Technology Agency Polymer brush
WO2017188214A1 (en) * 2016-04-25 2017-11-02 学校法人早稲田大学 Non-water-soluble self-supporting thin film having high adhesiveness
KR101861013B1 (en) * 2016-10-18 2018-05-25 주식회사 제낙스 Fiber electrode using surface-polymerization and surface modification for the same
EP3363835B1 (en) * 2017-02-20 2023-10-11 The Gillette Company LLC Article comprising a polymer layer
CN107088821B (en) * 2017-06-05 2019-04-02 安徽省亚欧陶瓷有限责任公司 A kind of ceramic surface polishing renovation technique
US20200308706A1 (en) 2017-12-28 2020-10-01 National Institute Of Advanced Industrial Science And Technology A substrate for formation of a polymer brush, a process of producing the substrate, and a precursor solution used with the process
KR20200065672A (en) * 2018-11-30 2020-06-09 삼성전기주식회사 Composition for surface treatment and surface treatment method using the same
CN109942870A (en) * 2019-04-01 2019-06-28 广东石油化工学院 A kind of preparation method of the biomass combined film of polyvinyl alcohol of branch-line polymer brush protection
JP6943397B1 (en) 2020-08-06 2021-09-29 大日精化工業株式会社 Surface treatment film, its manufacturing method, and articles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608922B2 (en) * 2008-11-07 2013-12-17 The University Of Connecticut Biosensor for continuous monitoring of metabolites and proteins and methods of manufacture thereof

Also Published As

Publication number Publication date
JP2010261001A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5130446B2 (en) Surface modified substrate and polymer coated substrate
Yuan et al. Superhydrophobic fluoropolymer-modified copper surface via surface graft polymerisation for corrosion protection
Chen et al. Poly (vinylidene fluoride) with grafted poly (ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes
Inoue et al. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures
US8614003B2 (en) Superhydrophobic poly(dimethylsiloxane) and methods for making the same
Quintana et al. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture
Vasilev et al. Solvent-induced porosity in ultrathin amine plasma polymer coatings
Yu et al. Controlled grafting of well-defined epoxide polymers on hydrogen-terminated silicon substrates by surface-initiated ATRP at ambient temperature
Bai et al. Preparation and characterizations of poly (2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization
JP6453210B2 (en) Novel composite material and polymer coating precursor using the same
Divandari et al. Understanding the effect of hydrophobic protecting blocks on the stability and biopassivity of polymer brushes in aqueous environments: A Tiramisu for cell-culture applications
JP2009526112A (en) Electrografting method to form and control strong adhesive nanostructured polymer coatings
Lu et al. Corrosion protection of iron surface modified by poly (methyl methacrylate) using surface-initiated atom transfer radical polymerization (SI-ATRP)
US20140148552A1 (en) Biomimetic Agent For Anti-Biofouling Coating And Method For Making The Same
JP6407513B2 (en) Polymer for surface modification of medical materials
Zhu et al. A rapid approach to prepare poly (2-methyl-2-oxazoline)-based antifouling coating by UV irradiation
Zhang et al. Polymer brushes on structural surfaces: a novel synergistic strategy for perfectly resisting algae settlement
Friis et al. Hydrophilic polymer brush layers on stainless steel using multilayered ATRP initiator layer
Zengin et al. RAFT‐mediated synthesis of poly [(oligoethylene glycol) methyl ether acrylate] brushes for biological functions
JP6560560B2 (en) Contamination resistant surface modifier and surface treatment method
Brotherton et al. Hydrophilic aldehyde-functional polymer brushes: synthesis, characterization, and potential bioapplications
Liao et al. UV-assisted Li+-catalyzed radical grafting polymerization of vinyl ethers: A new strategy for creating hydrolysis-resistant and long-lived polymer brushes as a “smart” surface coating
Cimen et al. Preparation of oligo‐N‐isopropylacrylamide brushes with OH and COOH end‐groups via surface‐initiated NMP
Chen et al. Fabrication of biomimetic device with PS-b-PNIPAAm copolymer pillars mimicking a gecko foot pad
Cordeiro et al. Functionalization of poly (dimethylsiloxane) surfaces with maleic anhydride copolymer films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5130446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250