JP5128810B2 - Water quality management method and water quality management system in polluted water tank and swimming tank - Google Patents

Water quality management method and water quality management system in polluted water tank and swimming tank Download PDF

Info

Publication number
JP5128810B2
JP5128810B2 JP2006351302A JP2006351302A JP5128810B2 JP 5128810 B2 JP5128810 B2 JP 5128810B2 JP 2006351302 A JP2006351302 A JP 2006351302A JP 2006351302 A JP2006351302 A JP 2006351302A JP 5128810 B2 JP5128810 B2 JP 5128810B2
Authority
JP
Japan
Prior art keywords
water
swimming
tank
amount
turbidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006351302A
Other languages
Japanese (ja)
Other versions
JP2008161746A (en
Inventor
真彦 徳永
健一 得田
正史 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2006351302A priority Critical patent/JP5128810B2/en
Publication of JP2008161746A publication Critical patent/JP2008161746A/en
Application granted granted Critical
Publication of JP5128810B2 publication Critical patent/JP5128810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Description

本発明は、浮遊粒子によって濁りが生じる汚濁水槽中や遊泳用水槽内の水質を、効率的に管理する汚濁水槽中や遊泳用水槽中の水質管理方法およびその水質管理システムに関する。   The present invention relates to a water quality management method and a water quality management system in a polluted water tank or a swimming water tank for efficiently managing the water quality in a polluted water tank or a swimming water tank where turbidity is caused by suspended particles.

汚濁水が貯留される汚濁水槽や遊泳用水槽では、その水質管理が重要である。例えば、プールなどの遊泳用水槽中の遊泳用水は、公衆衛生上の観点から、遊離残留塩素濃度や濁度等についての水質基準が法律により規定されている。このため、該水質基準を満たすように、遊泳用水の水質を管理する必要がある。一方、施設のランニングコストを低減するために、水質管理は効率的に行う必要がある。さらに、スポーツジムのプールなどの遊泳用水槽は、営業終了後から翌日の営業開始までの限られた時間内で一定の水質にまで遊泳用水を浄化する必要があり、短時間で経済的に浄化処理を完了できるシステムが求められている。   Water quality management is important for polluted water tanks and swimming tanks where polluted water is stored. For example, for swimming water in a swimming tank such as a pool, water quality standards for free residual chlorine concentration, turbidity and the like are regulated by law from the viewpoint of public health. For this reason, it is necessary to manage the water quality of the swimming water so as to satisfy the water quality standard. On the other hand, water quality management needs to be performed efficiently in order to reduce the running cost of the facility. Furthermore, swimming tanks such as sports gym pools need to purify swimming water to a certain level of water quality within a limited time from the end of business operation until the start of business on the next day. There is a need for a system that can complete the process.

特許文献1のプール等の循環濾過装置においては、水槽の底部に開口した吸水口からの主採水と、水槽から溢れたオーバーフロー水との2系統に分けて水槽の水を取り出し、取り出した各水はヘアーキャッチャを通過させた後、オーバーフロー水についてはサンド濾過器機を通過させたのち主採水に合流させている。オーバーフロー水が合流した主採水は循環濾過機で浄化され、その大部分がプールに直接戻されるが、その一部はさらに超精密フィルターで浄化した後プールに戻される。この循環によりプールの水質を新規な水道水と同レベルまで浄化し、新規な水の補給を減らし補給費用や水温調整のための燃料費を節約するようにしている。
特公平04−34442号公報
In the circulation filtering device such as a pool of Patent Document 1, the water collected in the water tank is divided into two systems, that is, main water from the water inlet opening at the bottom of the water tank and overflow water overflowing from the water tank. After the water has passed through the hair catcher, the overflow water is passed through the sand filter machine and then merged with the main sampling water. The main collected water with overflow water is purified by a circulating filter and most of it is returned directly to the pool, but a part of it is further purified by an ultra-precision filter and then returned to the pool. This circulation purifies the water quality of the pool to the same level as new tap water, reduces the supply of new water, and saves fuel costs for replenishment costs and water temperature adjustment.
Japanese Patent Publication No. 04-34442

特許文献1では、単に遊泳用水を循環させるだけであり、どの程度遊泳用水槽内の水が浄化できているかを管理してはおらず、従ってまた必要な循環水量を管理することも出来ず不経済な水質管理システムであった。   Patent Document 1 merely circulates swimming water, and does not manage how much water in the swimming tank has been purified, and therefore it is also uneconomical that it cannot manage the necessary amount of circulating water. Water quality management system.

本発明は上記従来の課題に鑑みて創案されたものであって、所定時間内で汚濁水槽中や遊泳用水槽中の濁り度を適切に低減できるよう汚濁水槽や遊泳用水槽の給水量、排水量を制御して、効率的に水質管理する汚濁水槽中や遊泳用水槽中の水質管理方法およびその水質管理システムを提供することを目的とする。   The present invention was devised in view of the above-described conventional problems, and the amount of water supply and drainage of the polluted water tank and the swimming water tank can be appropriately reduced within a predetermined time so that the turbidity in the polluted water tank or the swimming water tank can be appropriately reduced. It is an object of the present invention to provide a water quality management method and a water quality management system in a polluted water tank and a swimming tank that efficiently control water quality.

本発明にかかる汚濁水槽中の水質管理方法は、浮遊粒子によって濁りが生じる汚濁水槽中の汚濁水を、該汚濁水槽の底部に設けた排水口から吸い出される吸引排水および該汚濁水槽から溢れる越流水として排出し、これら排出された汚濁水を、濾過器で濾過した後、該汚濁水槽の側部に設けた給水口から再度当該汚濁水槽へ給水する汚濁水循環システムによって、汚濁水が循環される該汚濁水槽中の水質を管理するに際し、上記汚濁水槽中の汚濁水の濁りを低減すべく、上記汚濁水循環システムを任意の所定期間稼働させるときの稼働開始から終了までの該汚濁水槽中の、浮遊粒子を含む汚濁水の動きを数値解析によりシミュレーションし、該シミュレーションによって、浮遊粒子が上記汚濁水槽から汚濁水とともに排出されることによって該汚濁水槽中の汚濁水の濁りが設定濁り度以下となる給水量と吸引排水量および越流水量を算出し、該算出した給水量と吸引排水量および越流水量となるように、上記汚濁水循環システムの給水量と吸引排水量および越流水量を制御することを特徴とする。 The water quality management method in the polluted water tank according to the present invention includes the waste water in the polluted water tank, which is turbid due to suspended particles, sucked out from the drain port provided at the bottom of the polluted water tank and overflowed from the polluted water tank. After discharging the polluted water as flowing water and filtering the discharged polluted water with a filter, the polluted water is circulated by a polluted water circulation system that feeds water again to the polluted water tank from the water supply port provided on the side of the polluted water tank. In managing the water quality in the polluted water tank, in order to reduce the turbidity of the polluted water in the polluted water tank, in the polluted water tank from the start to the end when the polluted water circulation system is operated for an arbitrary predetermined period, the movement of the polluted water containing the suspended particles was simulated by numerical analysis, by the simulation, by airborne particles are discharged together with the polluted water from the dirty water tank Water supply and suction wastewater turbidity of polluted water in the polluted water tank is less than the set turbidity and calculating the overflow water flow, so that the water supply quantity and the suction discharging amount and overflow water flow to the calculated, of the polluted water circulation system It is characterized by controlling the amount of water supply, suction drainage and overflow water .

また、本発明にかかる遊泳用水槽中の水質管理方法は、浮遊粒子によって濁りが生じる遊泳用水槽中の遊泳用水を、該遊泳用水槽の底部に設けた排水口から吸い出される吸引排水および該遊泳用水槽から溢れる越流水として排出し、これら排出された遊泳用水を、濾過器で濾過した後、該遊泳用水槽の側部に設けた給水口から再度当該遊泳用水槽へ給水する遊泳用水循環システムによって、遊泳用水が循環される該遊泳用水槽中の水質を管理するに際し、上記遊泳用水槽中の遊泳用水の濁りを低減すべく、上記遊泳用水循環システムを24時間内の任意の所定時間稼働させるときの稼働開始から終了までの該遊泳用水槽中の、浮遊粒子を含む遊泳用水の動きを数値解析によりシミュレーションし、該シミュレーションによって、浮遊粒子が上記遊泳用水槽から遊泳用水とともに排出されることによって該遊泳用水槽中の遊泳用水の濁りが設定濁り度以下となる給水量と吸引排水量および越流水量を算出し、該算出した給水量と吸引排水量および越流水量となるように、上記遊泳用水循環システムの給水量と吸引排水量および越流水量を制御することを特徴とする。 Further, the water quality management method in the swimming aquarium according to the present invention includes the aspiration drainage in which the swimming water in the swimming aquarium in which turbidity is caused by suspended particles is sucked out from a drain outlet provided at the bottom of the swimming aquarium, and the The swimming water circulation is discharged as overflow water overflowing from the swimming tank, and after the discharged swimming water is filtered by a filter, it is supplied again to the swimming tank from the water supply port provided on the side of the swimming tank. When the water quality in the swimming aquarium in which the swimming water is circulated by the system is controlled, the swimming water circulation system is kept at any predetermined time within 24 hours in order to reduce the turbidity of the swimming water in the swimming aquarium. in aquarium said swimming and shutdown operation start time to run, simulated by numerical analysis the movement of swimming water containing suspended particles, by the simulation, on the suspended particles is Calculating the amount of water supply and suction discharging amount and overflow water flow turbidity of swimming water in aquarium the swimming becomes less than the set turbidity by being discharged together with the swimming water from swimming tanks, water supply and suction discharging amount of the calculated In addition, the water supply amount, the suction drainage amount, and the overflow water amount of the swimming water circulation system are controlled so as to be the overflow water amount .

前記遊泳用水槽中の遊泳用水の濁りのデータとして、該遊泳用水槽中の浮遊粒子の粒子径、粒子密度および個数を用いるとともに、前記設定濁り度を、該遊泳用水槽中に残存する浮遊粒子の残存個数で設定し、前記シミュレーションが、前記給水量と、前記吸引排水量および前記越流水量の和とを等しく設定して前記遊泳用水循環システムの稼働を終了したときの上記遊泳用水槽中に残存する浮遊粒子の残存個数を数値解析により算出するステップと、上記設定濁り度以下であって浮遊粒子の残存個数が最小となる上記給水量と上記吸引排水量および上記越流水量の組み合わせを決定するステップとを含むことを特徴とする。 As the turbidity data of the swimming water in the swimming tank, the particle size, particle density and number of suspended particles in the swimming tank are used, and the set turbidity is determined by the suspended particles remaining in the swimming tank. In the swimming tank when the water supply amount is set equal to the sum of the suction drainage amount and the overflow water amount and the operation of the swimming water circulation system is finished. A step of calculating the remaining number of remaining floating particles by numerical analysis and a combination of the water supply amount, the suction drainage amount, and the overflow water amount that are below the set turbidity and minimize the remaining number of floating particles are determined. And a step.

前記シミュレーションの濁りの初期条件が、前記遊泳用水槽全体で均等に設定されることを特徴とする。   The initial conditions of turbidity in the simulation are set uniformly in the entire swimming tank.

前記シミュレーションの濁りの初期条件が、前記遊泳用水槽を深さ方向に区分した各深度で異ならせて設定されることを特徴とする。   The initial condition of turbidity in the simulation is set differently at each depth obtained by dividing the swimming tank in the depth direction.

本発明にかかる遊泳用水槽中の水質管理システムは、遊泳用水槽の底部に設けられた排水口から吸引ポンプで遊泳用水を吸引排水として排水する第1排水系と、遊泳用水槽から溢れる遊泳用水を越流水として排水する第2排水系と、第1および第2排水系からの吸引排水および越流水を濾過する濾過器と、濾過器で濾過された遊泳用水を給水ポンプで圧送して、遊泳用水槽の側部に設けられた給水口から遊泳用水槽内へ再度給水する給水系とを有する遊泳用水循環システムと、上記遊泳用水槽中の遊泳用水の濁りを低減すべく、上記遊泳用水循環システムを24時間内の任意の所定時間稼働させるときの稼働開始から終了までの該遊泳用水槽中の、浮遊粒子を含む遊泳用水の動きを数値解析によりシミュレーションし、該シミュレーションによって、浮遊粒子が上記遊泳用水槽から遊泳用水とともに排出されることによって該遊泳用水槽中の遊泳用水の濁りが設定濁り度以下となる給水量と吸引排水量および越流水量を算出し、該算出した給水量と吸引排水量および越流水量となるように、上記遊泳用水循環システムの給水量と吸引排水量および越流水量を制御する制御手段とを備えたことを特徴とする。 A water quality management system in a swimming tank according to the present invention includes a first drainage system for draining swimming water as suction drainage by a suction pump from a drain port provided at the bottom of the swimming tank, and swimming water overflowing from the swimming tank. A second drainage system that drains the water as overflow water, a filter that filters the suction drainage and overflow water from the first and second drainage systems, and swimming water that is filtered by the filter with a water supply pump to swim A swimming water circulation system having a water supply system for supplying water again from a water supply opening provided on a side of the water tank into the swimming water tank, and the swimming water circulation to reduce the turbidity of the swimming water in the swimming water tank. system in aquarium said swimming and shutdown operation start time for any given time operation of 24 hours, simulation by numerical analysis the movement of swimming water containing suspended particles, in the simulation I, airborne particles can calculate the amount of water supply and suction discharging amount and overflow water flow turbidity of swimming water in aquarium the swimming becomes less than the set turbidity by being discharged together with the swimming water from the swimming tanks, the Control means for controlling the water supply amount, the suction drainage amount, and the overflow water amount of the swimming water circulation system so as to obtain the calculated water supply amount, the suction drainage amount, and the overflow water amount is provided.

本発明にかかる汚濁水槽中や遊泳用水槽中の水質管理方法およびその水質管理システムにあっては、所定時間内で汚濁水槽中や遊泳用水槽中の濁り度を適切に低減できるよう汚濁水槽や遊泳用水槽の給水量、排水量を制御して、効率的に水質管理することが可能となる。   In the water quality management method and the water quality management system in the water tank or swimming tank according to the present invention, the water tank or the water quality management system can appropriately reduce the turbidity in the water tank or swimming tank within a predetermined time. The water quality can be efficiently managed by controlling the amount of water supply and drainage of the swimming tank.

以下に、本発明にかかる汚濁水槽中や遊泳用水槽中の水質管理方法およびその水質管理システムの好適な一実施形態を、添付図面を参照して詳細に説明する。本実施形態にかかる遊泳用水槽中の水質管理システムは基本的には、図1から図3に示すように、遊泳用水槽1と、遊泳用水槽1の底部に設けられた排水口2と、排水口2から吸引ポンプP1で遊泳用水を吸引排水として吸い出す第1排水系D1と、遊泳用水槽1の両側部の上縁1aから溢れる遊泳用水を越流水として排水する第2排水系D2と、第1排水系D1および第2排水系D2からの吸引排水および越流水を濾過する濾過器4と、濾過器4で濾過された遊泳用水を給水ポンプP2で圧送して、遊泳用水槽1の側部に設けられた給水口5から遊泳用水槽内へ再度給水する給水系Sからなる遊泳用水循環システムと、遊泳用水槽1中の、浮遊粒子を含む遊泳用水の動きを数値解析によりシミュレーションし、シミュレーションによって、浮遊粒子が遊泳用水槽1から遊泳用水とともに排出されることによって遊泳用水槽1中の遊泳用水の濁りが、設定濁り度以下となる給水量Q1と吸引排水量Q2および越流水量Q3を算出するための演算装置6と、演算装置6により算出された給水量Q1と吸引排水量Q2および越流水量Q3となるように、遊泳用水循環システムの給水量と吸引排水量および越流水量を制御する制御装置7とから構成される制御手段8とを備える。 DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a water quality management method and a water quality management system in a polluted water tank or a swimming water tank according to the present invention will be described in detail with reference to the accompanying drawings. The water quality management system in the swimming tank according to the present embodiment basically includes a swimming tank 1, a drain port 2 provided at the bottom of the swimming tank 1, as shown in FIGS. A first drainage system D1 for sucking out swimming water as suction drainage from the drainage port 2 with a suction pump P1, and a second drainage system D2 for draining swimming water overflowing from the upper edges 1a of both sides of the swimming tank 1 as overflow water; A filter 4 for filtering the suction drainage and overflow water from the first drainage system D1 and the second drainage system D2, and the swimming water filtered by the filter 4 is pumped by the water supply pump P2, and the side of the swimming tank 1 Simulation of the swimming water circulation system consisting of a water supply system S for re-supplying the water into the swimming tank from the water supply port 5 provided in the section, and the movement of the swimming water containing floating particles in the swimming tank 1 by numerical analysis, by simulation, In order to calculate the water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3 in which the turbidity of the swimming water in the swimming tank 1 becomes equal to or less than the set turbidity by discharging the particles from the swimming tank 1 together with the swimming water. And a control device 7 for controlling the water supply amount, the suction drainage amount, and the overflow water amount of the swimming water circulation system so that the water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3 calculated by the arithmetic device 6 are obtained. The control means 8 comprised from these.

本実施形態における、遊泳用水槽1は平面視長方形に形成されている。遊泳用水槽1の底面の中央部には、遊泳用水槽1の長手方向に沿って、遊泳用水槽1内の遊泳用水を吸引して排水する排水口2が複数設けられている。排水口2には、吸引した排水を濾過器4まで導く吸引排水管10が接続されている。吸引排水管10の各排水口2への接続部近傍には、制御装置7からの制御信号を受けて各排水口2からの吸引排水量Q2を制御するための排水流量調整弁11が、各排水口2に対応させて設けられている。吸引排水管10の排水流量調整弁11と濾過器4との間には、制御装置7からの制御信号を受けて、遊泳用水槽1内の水を吸引して、濾過器4へ圧送するための吸引ポンプP1が設けられている。本実施形態においては吸引排水管10と排水流量調整弁11および吸引ポンプP1とにより、第1排水系D1が形成されている。第1排水系D1では、遊泳用水槽1の遊泳用水が吸引排水として、吸引排水管10と吸引ポンプP1により、排水口2から排水流量調整弁11を通り濾過器4へと圧送される。   In the present embodiment, the swimming tank 1 is formed in a rectangular shape in plan view. A plurality of drain ports 2 for sucking and draining the swimming water in the swimming tank 1 are provided along the longitudinal direction of the swimming tank 1 at the center of the bottom surface of the swimming tank 1. A suction drain pipe 10 that guides the sucked waste water to the filter 4 is connected to the drain port 2. In the vicinity of the connection portion of each suction drain pipe 10 to each drain port 2, a drain flow rate adjusting valve 11 for receiving a control signal from the control device 7 and controlling the suction drainage amount Q 2 from each drain port 2 is provided for each drainage. It is provided corresponding to the mouth 2. Between the drainage flow rate adjusting valve 11 of the suction drain pipe 10 and the filter 4, in order to receive the control signal from the control device 7, the water in the swimming tank 1 is sucked and pumped to the filter 4. The suction pump P1 is provided. In the present embodiment, a first drainage system D1 is formed by the suction drainage pipe 10, the drainage flow rate adjustment valve 11, and the suction pump P1. In the first drainage system D1, the swimming water in the swimming tank 1 is sucked and drained from the drainage port 2 through the drainage flow rate adjustment valve 11 to the filter 4 by the suction drainage pipe 10 and the suction pump P1.

遊泳用水槽1の幅方向両側面の上縁1aには、上縁1aに沿って、遊泳用水槽1から溢れる越流水を受ける側溝12が設けられている。側溝12底部には、越流水口13が複数設けられている。越流水口13には、重力排水方式により、越流水を還水槽15まで導く越流水管14が接続されている。越流水管14が接続される還水槽15には、越流水が貯留されるとともに、水道水等による補給水を補充する補給水管15aと余剰水を排出するオーバーフロー管15bが設けられている。還水槽15には、還水槽15内の越流水を濾過器4へ圧送するための越流水圧送管16が接続されている。越流水圧送管16には、還水槽15内の越流水を濾過器4に圧送する越流水圧送ポンプP3が設けられている。本実施形態では、遊泳用水槽1の上縁1a、側溝12、越流水口13、越流水管14、還水槽15、越流水圧送管16および越流水圧送ポンプP3により第2排水系D2が形成され、遊泳用水槽1からの越流水は、越流水管14により、側溝12の越流水口13から還水槽15へ導かれ、還水槽15から越流水圧送管16と越流水圧送ポンプP3により濾過器4へ圧送されている。   Side grooves 12 that receive overflow water overflowing from the swimming tank 1 are provided along the upper edge 1a on the upper edges 1a of both sides in the width direction of the swimming tank 1. A plurality of overflow water ports 13 are provided at the bottom of the side groove 12. An overflow water pipe 14 that guides the overflow water to the return water tank 15 is connected to the overflow water port 13 by a gravity drainage method. The return water tank 15 to which the overflow water pipe 14 is connected is provided with a supply water pipe 15 a for replenishing makeup water such as tap water and an overflow pipe 15 b for discharging excess water, while storing overflow water. The return water tank 15 is connected to an overflow water pressure feed pipe 16 for pressure-feeding the overflow water in the return water tank 15 to the filter 4. The overflow water pressure feed pipe 16 is provided with an overflow water pressure feed pump P <b> 3 that pressure-feeds the overflow water in the return water tank 15 to the filter 4. In this embodiment, the second drainage system D2 is formed by the upper edge 1a of the swimming tank 1, the side groove 12, the overflow water port 13, the overflow water pipe 14, the return water tank 15, the overflow water pumping pipe 16, and the overflow water pumping pump P3. The overflow water from the swimming tank 1 is led to the return water tank 15 from the overflow water port 13 of the side groove 12 by the overflow water pipe 14, and is filtered from the return water tank 15 by the overflow water pressure feed pipe 16 and the overflow water pressure feed pump P3. It is pumped to the vessel 4.

濾過器4は、圧送されてきた吸引排水および越流水を遊泳用水槽1の給水として再利用するために浮遊粒子等の除去を行う。本実施形態における濾過器4は、排水中の浮遊粒子の除去機能の他、滅菌等の水処理機能も有している。濾過器4には、濾過器4で処理された排水を、給水として遊泳用水槽1に導く給水管20が接続されている。給水管20には、制御装置7からの制御信号により給水を濾過器4から遊泳用水槽1へ圧送する、給水ポンプP2が設けられている。給水管20は遊泳用水槽1の側部の下方に設けられた複数の給水口5へ接続されている。各給水口5の近傍の給水管20には、制御装置7からの制御信号により、各給水口5からの給水量を制御するための給水流量調整弁21が、各給水口5毎に設けられている。本実施形態の給水系Sは、給水管20、給水ポンプP2、給水流量調整弁21および給水口5により形成されている。給水系Sでは、濾過器4で濾過された給水が、給水管20と給水ポンプP2により、濾過器4から遊泳用水槽1へ圧送される。   The filter 4 removes suspended particles and the like in order to recycle the suction drainage and overflow water that have been sent under pressure as the water supply for the swimming tank 1. The filter 4 in the present embodiment has a water treatment function such as sterilization in addition to the function of removing suspended particles in the waste water. Connected to the filter 4 is a water supply pipe 20 that guides the wastewater treated by the filter 4 to the swimming tank 1 as water supply. The water supply pipe 20 is provided with a water supply pump P <b> 2 that pumps water supply from the filter 4 to the swimming tank 1 in accordance with a control signal from the control device 7. The water supply pipe 20 is connected to a plurality of water supply ports 5 provided below the side of the swimming water tank 1. A water supply flow rate adjustment valve 21 for controlling the amount of water supplied from each water supply port 5 by a control signal from the control device 7 is provided for each water supply port 5 in the water supply pipe 20 near each water supply port 5. ing. The water supply system S of the present embodiment is formed by a water supply pipe 20, a water supply pump P <b> 2, a water supply flow rate adjustment valve 21, and a water supply port 5. In the water supply system S, the water supply filtered by the filter 4 is pumped from the filter 4 to the swimming tank 1 by the water supply pipe 20 and the water supply pump P2.

本実施形態における吸引ポンプP1、給水ポンプP2、越流水圧送ポンプP3、排水流量調整弁11および給水流量調整弁21には、制御装置7からの制御信号線22が接続されている。制御装置7は、演算装置6からの給水量Q1や吸引排水量Q2データに基づき、上記各機器の作動状態を制御する機能を有しており、制御信号線22により上記各機器へ制御信号を伝送している。制御信号線22により伝送された制御装置7からの制御信号により、給水ポンプP2の回転数および給水流量調整弁21の開度が制御されて、遊泳用水槽1へ供給される水量が給水量Q1に制御される。同様に制御信号線22により伝送された制御装置7から制御信号により、吸引ポンプP1の回転数および排水流量調整弁11の開度が制御されて、遊泳用水槽1から吸い出される排水量が吸引排水流量Q2に制御される。本実施形態における遊泳用水槽1の吸引排水量Q2および越流水量Q3の和は、給水量Q1と等しくなるように、制御装置7により各上記各機器が制御されることが好ましい。吸引排水量Q2と越流水量Q3との和が、給水量Q1と等しくなる場合には、制御信号線22により伝送された制御装置7からの制御信号により、越流水圧送ポンプP3の回転数が制御され、越流水圧送ポンプP3の圧送水量は、給水量Q1と吸引排水量Q2との差、すなわち越流水量Q3(Q1−Q2=Q3)と等しくなるよう制御される。   A control signal line 22 from the control device 7 is connected to the suction pump P1, the feed water pump P2, the overflow water pressure feed pump P3, the drainage flow rate adjustment valve 11 and the feed water flow rate adjustment valve 21 in the present embodiment. The control device 7 has a function of controlling the operating state of each device based on the water supply amount Q1 and the suction drainage amount Q2 data from the arithmetic device 6, and transmits a control signal to each device through the control signal line 22. doing. The number of rotations of the water supply pump P2 and the opening of the water supply flow rate adjustment valve 21 are controlled by the control signal transmitted from the control device 7 through the control signal line 22, and the amount of water supplied to the swimming tank 1 is the water supply amount Q1. Controlled. Similarly, the rotational speed of the suction pump P1 and the opening degree of the drainage flow rate adjustment valve 11 are controlled by the control signal from the control device 7 transmitted by the control signal line 22, and the amount of drainage sucked out from the swimming tank 1 is sucked and drained. The flow rate is controlled to Q2. It is preferable that each said each apparatus is controlled by the control apparatus 7 so that the sum of the suction | inhalation drainage amount Q2 of the swimming tank 1 and the overflow water amount Q3 in this embodiment may become equal to the water supply amount Q1. When the sum of the amount of suction drainage Q2 and the amount of overflow water Q3 is equal to the amount of water supply Q1, the rotational speed of the overflow water pump P3 is controlled by the control signal transmitted from the control device 7 through the control signal line 22. Then, the pumping water amount of the overflow water pump P3 is controlled to be equal to the difference between the water supply amount Q1 and the suction drainage amount Q2, that is, the overflow water amount Q3 (Q1−Q2 = Q3).

制御装置7はデータ送信線23により演算装置6に接続されている。本実施形態における演算装置6はパソコンで構成されている。パソコンは入力装置のキーボードやマウス、表示装置のディスプレイ、演算・記録装置を格納する本体により構成されている。本体には出力用端子が設けられており、出力用端子にはデータ送信線23が接続されている。演算装置6では、本体にインストールされた数値解析によるシミュレーション用プログラムにより、本水質管理システム稼働時間T内における遊泳用水槽1の浮遊粒子の動きをシミュレーションして、遊泳用水槽1から排出される浮遊粒子を予測し、遊泳用水槽1の濁り度を設定された濁り度以下とするための給水量Q1、吸引排水量Q2および越流水量Q3を算出する。算出された給水量Q1と吸引排水量Q2および越流水量Q3のデータは、データ送信線23により制御装置7へ送信される。本実施形態における制御手段8は、演算装置6が算出データを制御装置7に送信し、制御装置7が各機器へ制御信号を送信することで、遊泳用水循環システムの流量を制御する機能を有している。   The control device 7 is connected to the arithmetic device 6 by a data transmission line 23. The arithmetic device 6 in this embodiment is composed of a personal computer. The personal computer is composed of a keyboard and a mouse for input devices, a display for a display device, and a main body for storing an arithmetic / recording device. The main body is provided with an output terminal, and a data transmission line 23 is connected to the output terminal. The arithmetic unit 6 simulates the movement of floating particles in the swimming tank 1 within the operation time T of the water quality management system using a simulation program by numerical analysis installed in the main body, and floats discharged from the swimming tank 1. Particles are predicted, and the water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3 are calculated so that the turbidity of the swimming tank 1 is less than the set turbidity. The calculated water supply amount Q 1, suction drainage amount Q 2, and overflow water amount Q 3 are transmitted to the control device 7 through the data transmission line 23. The control means 8 in this embodiment has a function of controlling the flow rate of the swimming water circulation system by the calculation device 6 transmitting the calculation data to the control device 7 and the control device 7 transmitting a control signal to each device. doing.

以上説明した本実施形態にかかる遊泳用水槽中の水質管理システムを利用した水質管理方法について説明する。本実施形態の遊泳用水槽1中の水質管理方法は、大きく前段と後段に分かれる。前段では、遊泳用水の動きを数値解析によりシミュレーションして、濁り度を設定値以下にするために最適な、給水量Q1と吸引排水量Q2、越流水量Q3を求める。後段では、求められた給水量Q1と吸引排水量Q2、越流水量Q3に基づいて各装置を制御する。   A water quality management method using the water quality management system in the swimming tank according to the present embodiment described above will be described. The water quality management method in the swimming tank 1 of this embodiment is roughly divided into a front stage and a rear stage. In the first stage, the movement of swimming water is simulated by numerical analysis, and the optimum water supply amount Q1, suction drainage amount Q2, and overflow water amount Q3 are obtained to make the turbidity below the set value. In the subsequent stage, each device is controlled based on the obtained water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3.

前段は、図4から図6に示すように、シミュレーション条件入力段階、シミュレーションによる排出浮遊粒子数および流量算出段階、最適流量決定段階および最適流量出力段階の4段階で構成される。   As shown in FIG. 4 to FIG. 6, the previous stage is composed of four stages: a simulation condition input stage, a simulation of the number of suspended particles and flow rate by simulation, an optimum flow rate determination stage, and an optimum flow rate output stage.

本実施形態の、シミュレーション条件入力段階においては、まずステップS01において遊泳用水槽1の条件の入力と算出を行う。遊泳用水槽の形状データを長さL(m)、幅W(m)、水深D(m)で入力し、遊泳用水槽1の遊泳用水容量G(m3)を算出する。水深Dは遊泳用水槽1の底面から幅方向側面上縁1aまでの寸法を入力する。 In the simulation condition input stage of the present embodiment, first, input and calculation of conditions for the swimming tank 1 are performed in step S01. The shape data of the swimming tank is input as length L (m), width W (m), and water depth D (m), and the swimming water capacity G (m 3 ) of the swimming tank 1 is calculated. As the water depth D, a dimension from the bottom surface of the swimming tank 1 to the upper edge 1a in the width direction is input.

次いで、ステップS02において、本水質管理システムの稼働時間Tを入力する。稼働時間Tは、数値解析によりシミュレーションを行う解析時間のデータとなる。本実施形態における稼働時間Tは、遊泳用水槽1の使用状況を検討の上、24時間内の任意の時間を設定する。本実施形態では、遊泳用水槽1を使用していない夜間から翌朝の時間で稼働時間Tを設定する(図4参照)。   Next, in step S02, the operating time T of the water quality management system is input. The operating time T is analysis time data for performing simulation by numerical analysis. The working time T in the present embodiment is set to an arbitrary time within 24 hours after considering the usage status of the swimming tank 1. In this embodiment, the operation time T is set from the night when the swimming tank 1 is not used to the next morning (see FIG. 4).

ステップS03において遊泳用水槽内の浮遊粒子の条件を入力する。遊泳用水槽1中の水のサンプリングによるデータや、既存データが存在する場合はそれらを利用して、遊泳用水槽1中に浮遊する粒子の実体に近い値を、浮遊粒子のデータとして入力する。本実施形態おいて、浮遊粒子は、その密度により重粒子、軽粒子の2種類に分けて入力する。重粒子と軽粒子の区分は、水中で浮上しやすい粒子を軽粒子、水中で沈降しやすい粒子を重粒子とする。本実施形態における、浮遊粒子の入力データは、その重軽粒子径d(m)、重粒子密度ρh(kg/m3)、軽粒子密度ρl(kg/m3)である。なお、浮遊粒子の分け方は、密度を指標とした重粒子、軽粒子に限定されるものではない。例えば、密度を基準として重粒子、中粒子、軽粒子のように細分化しても良いし、粒子径などの他の観点から分けても良い。さらに、それらを組み合わせて分けても良い。 In step S03, the condition of suspended particles in the swimming tank is input. Data obtained by sampling the water in the swimming tank 1 or existing data, if any, is used to input a value close to the substance of the particles floating in the swimming tank 1 as floating particle data. In the present embodiment, the floating particles are input by being divided into two types of heavy particles and light particles according to the density. In the classification of heavy particles and light particles, particles that float easily in water are light particles, and particles that easily settle in water are heavy particles. In the present embodiment, the input data of suspended particles is the heavy and light particle diameter d (m), heavy particle density ρh (kg / m 3 ), and light particle density ρl (kg / m 3 ). Note that the method of dividing the suspended particles is not limited to heavy particles and light particles using density as an index. For example, the particles may be subdivided into heavy particles, medium particles, and light particles based on the density, or may be divided from other viewpoints such as particle diameter. Further, they may be combined and divided.

次のステップS04において、遊泳用水槽1内の濁り度の初期条件として、遊泳用水中における浮遊粒子の分布状況を入力する。遊泳用水槽1内の浮遊粒子の分布状況は、遊泳用水槽1内の水のサンプリング等により実情に近い分布状況を設定することが望ましい。
本実施形態では、図3に示すように、遊泳用水槽1をその深さ方向のほぼ中央で2領域に区分し、上部、下部に分けて浮遊粒子の分布状況を入力する。本実施形態においては、遊泳用水槽1上部における上部浮遊重粒子数をKhh(個)と上部浮遊軽粒子数Klh、および遊泳用水槽1下部における下部浮遊重粒子数Khl(個)と下部浮遊軽粒子数Kll(個)を入力し、遊泳用水槽1全体における総浮遊粒子数Kt(個)は、これらの入力粒子数の合計値として算出する。上記で入力した重軽粒子径d、重粒子密度ρh、軽粒子密度ρl、および、上部浮遊重粒子数Khh、上部浮遊軽粒子Klh、下部浮遊重粒子数Khl、下部浮遊軽粒子数Kll、総浮遊粒子数Ktを遊泳用水槽1の濁り度のデータとして用いる。なお、遊泳用水槽1全体を1領域として、総重粒子数(Khh+Khl)と総軽粒子数(Klh+Kll)を遊泳用水槽1の深さ方向で比例配分しても良い。すなわち、重粒子数を遊泳用水槽1の深さ方向の位置に比例させて分布数を多くし、遊泳用水槽1の底部に近いほど多くし、軽粒子数の数は逆に遊泳用水槽1内の水面に近いほど多くする。また、遊泳用水槽1を水平方向で複数領域に区分してしても良い。
In the next step S04, the distribution state of suspended particles in the swimming water is input as an initial condition of the turbidity in the swimming tank 1. The distribution state of suspended particles in the swimming tank 1 is desirably set to a distribution state close to the actual situation by sampling the water in the swimming tank 1.
In the present embodiment, as shown in FIG. 3, the swimming tank 1 is divided into two regions at approximately the center in the depth direction, and the distribution state of suspended particles is input into upper and lower parts. In the present embodiment, the number of upper suspended heavy particles in the upper part of the swimming tank 1 is Khh (number) and the number of upper suspended light particles Klh, and the number of lower suspended heavy particles in the lower part of the swimming tank 1 is Khl (number) and the lower suspended light particle. The number of particles Kll (number) is input, and the total number of suspended particles Kt (number) in the entire swimming tank 1 is calculated as the total value of these numbers of input particles. Heavy light particle diameter d, heavy particle density ρh, light particle density ρl input above, upper suspended heavy particle number Khh, upper suspended light particle Klh, lower suspended heavy particle number Khl, lower suspended light particle number Kll, total The suspended particle number Kt is used as turbidity data of the swimming tank 1. The entire swimming tank 1 may be defined as one region, and the total number of heavy particles (Khh + Khl) and the total number of light particles (Klh + Kll) may be proportionally distributed in the depth direction of the swimming tank 1. That is, the number of heavy particles is proportional to the position in the depth direction of the swimming tank 1 and the number of distributions is increased. The closer to the bottom of the swimming tank 1 is, the larger the number of light particles is. Increase the closer to the water surface. Further, the swimming tank 1 may be divided into a plurality of regions in the horizontal direction.

次いで、ステップS05において本水質管理システムのT時間稼働後に遊泳用水槽1中に残存する浮遊粒子の許容残存個数を設定残存浮遊粒子数Kss(個)として入力する。設定残存浮遊粒子数Kssは、遊泳用水槽1の水質管理目標とする設定濁り度のデータとして用いる。本実施形態における「濁り度」は水質基準における「濁度」と同義である。「設定濁り度」と「設定残存浮遊粒子数Kss」との対応関係は、予め「濁り度」の異なる遊泳用水槽1内の水を、深さ方向、水平方向の異なる複数箇所でサンプリングし、「濁り度」と「残存浮遊粒子数」の相関関係を求め、その相関関係から設定する。また、設定残存浮遊粒子数Kssは重粒子、軽粒子毎に定めても良い。さらに、濁り度の主要因である重粒子のみ残存個数を、設定残存浮遊粒子数Kssとしてもよい。   Next, in step S05, the allowable remaining number of floating particles remaining in the swimming water tank 1 after the water quality management system is operated for T time is input as the set remaining floating particle number Kss (number). The set remaining suspended particle number Kss is used as data of set turbidity as a water quality management target of the swimming tank 1. “Turbidity” in the present embodiment is synonymous with “turbidity” in water quality standards. The correspondence between the “set turbidity” and the “set remaining suspended particle number Kss” is obtained by sampling the water in the swimming tank 1 having different “turbidity” in advance at a plurality of locations in the depth direction and the horizontal direction, The correlation between “turbidity” and “the number of remaining suspended particles” is obtained and set from the correlation. The set remaining floating particle number Kss may be determined for each heavy particle and light particle. Furthermore, the remaining number of heavy particles, which is the main factor of turbidity, may be set as the set number of remaining floating particles Kss.

ステップS06において給排水口2、5の条件を入力する。給水口5の断面積si(m2)と個数wi(個)、排水口2の断面積se(m2)と個数we(個)を入力する。また、遊泳用水槽1における給排水口2、5の設置位置データも必要に応じて入力する。 In step S06, the conditions for the water supply / drain ports 2 and 5 are input. The sectional area si (m 2 ) and the number wi (pieces) of the water supply port 5 and the sectional area se (m 2 ) and the number we (pieces) of the drain port 2 are input. Moreover, the installation position data of the water supply / drain ports 2 and 5 in the swimming tank 1 are also input as necessary.

なお、ステップS06における入力データを変更しながらシミュレーションした場合には、遊泳用水槽1内の浮遊粒子を効率的に排出する水流を発生させることが可能な、給水口5や排水口2の配置等を検討することが出来る。   In addition, when it simulates changing the input data in step S06, arrangement | positioning of the water supply port 5 and the drain port 2, etc. which can generate the water flow which discharge | emits the floating particle | grains in the swimming tank 1 efficiently, etc. Can be considered.

ステップS07において遊泳用水槽1水の初期値循環回数Rを入力する。本実施形態における循環回数Rは1日(24時間)で遊泳用水槽1の水が何回入れ替わるかを数値で入力する。遊泳用水槽1内の水の循環回数R(回/日)は、遊泳用水槽1への給水量Q1(m3/sec)を決定するためのデータとなる。 In step S07, the initial value circulation number R of the swimming tank 1 water is input. In the present embodiment, the number of circulations R is a numerical value that indicates how many times the water in the swimming tank 1 is replaced in one day (24 hours). The water circulation frequency R (times / day) in the swimming tank 1 is data for determining the amount of water supply Q1 (m 3 / sec) to the swimming tank 1.

次に、数値解析によるシミュレーションを利用した排出浮遊粒子数および流量算出段階へ移行する。ステップS08において、遊泳用水槽1への給水量Q1(m3/sec)を算出する。本実施形態における給水量Q1は、遊泳用水槽1への一日あたりの総給水量Qd(m3/日)から、Q1=Qd/(24*60*60)により算出する。総給水量Qdは遊泳用水容量G(m3)と循環回数R(回/日)との積により算出される。給水量Q1の計算において1日あたりの循環回数R(回/日)を用いることにより、24時間一定量で給水する場合の給水量Q1が算出される。従って、初期値の循環回数Rから初期値の給水量Q1が算出される。給水量Q1を24時間一定量とすることで、遊泳用水槽1の循環装置を定常に運転でき装置寿命が長くなる等の利点がある。 Next, the process proceeds to the stage of calculating the number of suspended particles and the flow rate using a simulation by numerical analysis. In step S08, a water supply amount Q1 (m 3 / sec) to the swimming tank 1 is calculated. The water supply amount Q1 in the present embodiment is calculated from the total water supply amount Qd (m 3 / day) per day to the swimming tank 1 by Q1 = Qd / (24 * 60 * 60). The total water supply amount Qd is calculated by the product of the swimming water capacity G (m 3 ) and the circulation frequency R (times / day). By using the number of circulations R per day (times / day) in the calculation of the water supply amount Q1, the water supply amount Q1 when water is supplied at a constant amount for 24 hours is calculated. Accordingly, the initial water supply amount Q1 is calculated from the initial circulation number R. By setting the water supply amount Q1 to a constant amount for 24 hours, there is an advantage that the circulation device of the swimming tank 1 can be operated steadily and the device life is extended.

なお、給水量Q1を、循環回数Rからの計算により求めるのではなく、本水質管理システムの稼働時間T内における給水量Q1として直接入力しても良い。この場合、本水質管理システム稼働時間内の給水量Q1を、本水質管理システムが稼働していない時間帯の遊泳用水槽1への給水量とは異なる水量で入力することが出来、例えば本水質管理システムの稼働時間Tが短時間に限定される場合の水質管理に対応できる。   The water supply amount Q1 may be directly input as the water supply amount Q1 within the operation time T of the water quality management system, instead of being calculated by calculation from the circulation count R. In this case, the water supply amount Q1 within the operation time of the water quality management system can be input with a water amount different from the water supply amount to the swimming tank 1 during the time period when the water quality management system is not operating. It can cope with water quality management when the operation time T of the management system is limited to a short time.

ステップS09においては遊泳用水槽1からの総排水量に占める吸引排水量の割合を吸引排水量割合Br(%)とし、その値をn(%)とする。nの初期値は自動的に「0」に設定される。nは0%から100%まで、1%刻みで増加され、各nの値につて順次シミュレーションされる。   In step S09, the ratio of the suction drainage amount to the total drainage amount from the swimming tank 1 is defined as the suction drainage amount ratio Br (%), and the value thereof is defined as n (%). The initial value of n is automatically set to “0”. n is increased from 0% to 100% in increments of 1%, and each n value is simulated sequentially.

ステップS10において、本水質管理システム稼働中の各排水量Q2,Q3の初期値を算出し、給水口5、排水口2における流速を算出する。本実施形態において、給水量Q1は吸引排水量Q2と越流水越流水量Q3の和(Q1=Q2+Q3)である。従って、吸引排水量Q2(m3/sec)はQ2=Q1*0.01nにより算出され、越流水越流水量Q3(m3/sec)はQ3=Q1−Q2により算出される。算出された給水量Q1と、給水口5の断面積siおよび個数wiから給水口5における給水口流速Vi(m/sec)が算出される(Vi=Q1/(si*wi))。また、吸引排水量Q2と、排水口2の断面積seおよび個数weから、排水口2における吸引排水口流速Ve(m/sec)が算出される(Ve=Q2/(se*we))。これらの数値は、数値解析による浮遊粒子の遊泳用水槽1内における動きのシミュレーションに利用される。 In step S10, initial values of the drainage amounts Q2 and Q3 during operation of the water quality management system are calculated, and flow rates at the water supply port 5 and the drainage port 2 are calculated. In the present embodiment, the water supply amount Q1 is the sum of the suction drainage amount Q2 and the overflow water amount Q3 (Q1 = Q2 + Q3). Accordingly, the suction drainage amount Q2 (m 3 / sec) is calculated by Q2 = Q1 * 0.01n, and the overflow water overflow amount Q3 (m 3 / sec) is calculated by Q3 = Q1−Q2. The water supply flow velocity Vi (m / sec) at the water supply port 5 is calculated from the calculated water supply amount Q1, the cross-sectional area si and the number wi of the water supply port 5 (Vi = Q1 / (si * wi)). Further, the suction drainage port flow velocity Ve (m / sec) at the drainage port 2 is calculated from the suction drainage amount Q2 and the cross-sectional area se and the number we of the drainage ports 2 (Ve = Q2 / (se * we)). These numerical values are used for the simulation of the movement of suspended particles in the swimming tank 1 by numerical analysis.

次にステップS11に移行し、数値解析によるシミュレーションを実行する。シミュレーションは、演算装置6にインストールされた数値解析によるシミュレーション用プログラムを利用して、遊泳用水槽1内の浮遊粒子の動きをシミュレートする。本実施形態においては、数値解析によるシミュレーション用プログラムとして、市販されている汎用の流体解析用の数値解析プログラム、例えば「STREAM」(商品名)等のソフトウエアを使用する。数値解析プログラムを用いたシミュレーションを実施するために、遊泳用水槽1全体を解析領域としてXYZ方向に分割し、解析領域を複数のセルに分割する。浮遊粒子は遊泳用水槽1上部の重粒子数Khh、および軽粒子数Klhを、遊泳用水槽1上部の各セルに均等に配分する。同様に遊泳用水槽1下部の重粒子数Khl、および軽粒子数Kllを遊泳用水槽1下部の各セルに均等に配分する。配分された各粒子の位置を解析領域の座標値で特定する。また、給水口5、排水口2の位置を面として解析領域の座標値で特定する。また、越流水については、遊泳用水槽1水が溢れ出る遊泳用水槽1の幅方向側面の上縁1aを座標値として特定する。   Next, it transfers to step S11 and performs the simulation by numerical analysis. The simulation simulates the movement of suspended particles in the swimming tank 1 by using a simulation program by numerical analysis installed in the arithmetic device 6. In the present embodiment, a commercially available numerical analysis program for fluid analysis such as “STREAM” (trade name) is used as a simulation program by numerical analysis. In order to perform a simulation using a numerical analysis program, the entire swimming tank 1 is divided into XYZ directions as an analysis region, and the analysis region is divided into a plurality of cells. The suspended particles equally distribute the number of heavy particles Khh and the number of light particles Klh in the upper part of the swimming tank 1 to each cell in the upper part of the swimming tank 1. Similarly, the number of heavy particles Khl and the number of light particles Kll in the lower part of the swimming tank 1 are equally distributed to the cells in the lower part of the swimming tank 1. The position of each distributed particle is specified by the coordinate value of the analysis area. Further, the positions of the water supply port 5 and the water discharge port 2 are specified as coordinate values in the analysis region. For overflow water, the upper edge 1a of the side surface in the width direction of the swimming tank 1 from which the swimming tank 1 overflows is specified as a coordinate value.

本実施形態における浮遊粒子のシミュレーションは、汎用の数値解析プログラムにより行われるが、その解析は一般的に、質量保存則、ナビエ・ストークス方程式を利用した有限要素法等を用いて遊泳用水槽1内の水の動きを数値解析し、それに併せて、その水中での浮遊粒子の位置を、水中の粒子追跡の基本式Mpa=Fp+Fg、により求める。前記式中、Mpa:粒子の質量、Fp:粒子が流体から受ける抗力、Fg:粒子が受ける重力、Fp=Cd*(1/2)*V2、Cd:抵抗係数、V:流速である。浮遊粒子の遊泳用水槽1内における位置は、解析領域内の座標値として与えられる。上記解析を稼働時間内0からT(h)間の各経過時間(sec)ごとに行い、流体中の浮遊粒子の動きを追跡する。該経過時間は解析時間と解析精度を考慮して予め設定しておく。遊泳用水槽1から排出された浮遊粒子の数は、ある経過時間における浮遊粒子の位置と、次の経過時間後における浮遊粒子の位置を結ぶ線が、排水口2の面と交差し、または、遊泳用水槽1の幅方向側面の上縁1aの線と交差した場合に、その粒子は排出されたと判定し、排出されたと判定された粒子の数を積算する。 The simulation of suspended particles in the present embodiment is performed by a general-purpose numerical analysis program, and the analysis is generally performed in the swimming tank 1 using a mass conservation law, a finite element method using the Navier-Stokes equation, or the like. The movement of the water is numerically analyzed, and at the same time, the position of the suspended particles in the water is obtained by the basic equation Mpa = Fp + Fg for particle tracking in the water. In the above formula, Mpa is the mass of the particles, Fp is the drag force that the particles receive from the fluid, Fg is the gravity that the particles receive, Fp = Cd * (1/2) * V 2 , Cd is the resistance coefficient, and V is the flow velocity. The position of the suspended particles in the swimming tank 1 is given as a coordinate value in the analysis region. The above analysis is performed for each elapsed time (sec) between 0 and T (h) within the operation time, and the movement of suspended particles in the fluid is tracked. The elapsed time is set in advance in consideration of analysis time and analysis accuracy. The number of suspended particles discharged from the swimming tank 1 is such that the line connecting the position of suspended particles at a certain elapsed time and the position of suspended particles after the next elapsed time intersects the surface of the drain port 2, or When crossing the line of the upper edge 1a in the width direction side surface of the swimming tank 1, it is determined that the particles have been discharged, and the number of particles determined to have been discharged is integrated.

この積算により、算出時の吸引排水量割合Br=nの場合の、吸引排水により排出された浮遊粒子数の積算値をKoute(n)(個)、越流水により排出された浮遊粒子数の積算値をKouto(n)(個)として、残存浮遊粒子数Kr(n)(個)をKr=Ktー(Koute+Kouto)で算出する。   With this integration, the calculated value of the number of suspended particles discharged by suction drainage when the suction drainage amount ratio Br = n at the time of calculation is Koute (n) (pieces), the integrated value of the number of suspended particles discharged by overflow water Is Kouto (n) (number), and the number of remaining suspended particles Kr (n) (number) is calculated by Kr = Kt− (Kout + Kouto).

本実施形態ではステップS10とステップS11により、吸引排水量Q2および越流水量Q3を適宜に設定して遊泳用水循環システムの稼働を終了したときの遊泳用水槽1中に残存する浮遊粒子の残存個数が、浮遊粒子数Krとして数値解析により算出されている。   In the present embodiment, the remaining number of suspended particles remaining in the swimming tank 1 when the suction drainage amount Q2 and the overflow water amount Q3 are appropriately set and the operation of the swimming water circulation system is terminated by steps S10 and S11. The number of suspended particles is calculated by numerical analysis.

ステップS12において、吸引排水両割合n、吸引排水により排出された浮遊粒子数の積算値Koute(n)、越流水により排出された浮遊粒子数の積算値Kouto(n)残存浮遊粒子数Kr(n)の値および給水量Q1、吸引排水量Q2、越流水量Q3の値を保存する。   In step S12, both the suction drainage ratio n, the integrated value Koute (n) of the number of suspended particles discharged by the suctioned drainage, the integrated value Kouto (n) of the number of suspended particles discharged by the overflow water, Kr (n ) And water supply amount Q1, suction drainage amount Q2, and overflow water amount Q3.

続くステップS13で、吸引排水量割合Brの値nを比較しn≧100%でない場合、ステップS14でnの値を1%増加させた後、ステップS10からステップS12までを繰り返す。n≧100の場合、ステップS15へ移行し、シミュレーションによる排出浮遊粒子数および流量算出段階を終了する。なお、nの値の増加量は1%に限定されず、解析時間と解析精度を考慮して値を定めてもよい。   In the subsequent step S13, the value n of the suction drainage amount ratio Br is compared. If n ≧ 100%, the value of n is increased by 1% in step S14, and then steps S10 to S12 are repeated. In the case of n ≧ 100, the process proceeds to step S15, and the calculation of the number of suspended particles and flow rate calculation by the simulation is completed. Note that the amount of increase in the value of n is not limited to 1%, and the value may be determined in consideration of analysis time and analysis accuracy.

ステップS15において、保存した残存浮遊粒子数Kr(n)の中から最小値であるKr(min)を抽出する。次にステップS16において、抽出された残存浮遊粒子数Kr(min)と設定残存浮遊粒子数Kss(個)との比較を行う。比較においてKr(min)≦Kssであれば、設定濁り度を達成したものとしてステップS18へ進む。Kr(min)≦Kssとならない場合は設定濁り度は未達成としてステップS17へ進む。   In step S15, the minimum value Kr (min) is extracted from the stored number of remaining suspended particles Kr (n). Next, in step S16, the extracted remaining suspended particle number Kr (min) is compared with the set remaining suspended particle number Kss (number). If Kr (min) ≦ Kss in the comparison, it is determined that the set turbidity has been achieved, and the process proceeds to step S18. If Kr (min) ≦ Kss is not satisfied, the set turbidity is not achieved and the process proceeds to step S17.

ステップS17で循環回数Rを0.1増加させた後、ステップS08からステップS16を繰り返す。これら手順により、給水量Q1を適宜に設定しながら濁り度を低減させるための適切な給水量Q1を算出するシミュレーションが実施される。なお、循環回数Rの増加量は0.1(回/日)に限定されるものではなく、演算装置6による解析時間等を考慮して定めればよい。例えば、循環回数Rの初期値に対する一定割合を、上記増加量として用いてもよい。   After the circulation number R is increased by 0.1 in step S17, steps S08 to S16 are repeated. By these procedures, a simulation for calculating an appropriate water supply amount Q1 for reducing the turbidity while appropriately setting the water supply amount Q1 is performed. Note that the increase amount of the circulation number R is not limited to 0.1 (times / day), and may be determined in consideration of the analysis time by the arithmetic unit 6 and the like. For example, a constant ratio with respect to the initial value of the circulation number R may be used as the increase amount.

本実施形態では、入力した循環回数Rでは設定残存浮遊粒子数Kssを満足できない場合に限り、循環回数Rを0.1(回/日)増加させて再計算させる手順としている。すなわち、遊泳用水の浄化費用を増加させる給水量Q1の増加を抑え、浄化費用をあまり増加させない吸引排水量Q2を優先的に調整することで、濁り度を管理している。このため、経済的なシステム運転を実現しながら、設定濁り度(設定残存浮遊粒子数Kss以下)が達成可能な給水量Q1、吸引排水量Q2を求めることが出来る。   In the present embodiment, only when the set circulation count R cannot satisfy the set remaining suspended particle count Kss, the circulation count R is increased by 0.1 (times / day) and recalculated. That is, the turbidity is managed by preferentially adjusting the suction drainage amount Q2 that suppresses an increase in the water supply amount Q1 that increases the purification cost of swimming water and does not increase the purification cost so much. Therefore, it is possible to obtain the water supply amount Q1 and the suction drainage amount Q2 that can achieve the set turbidity (the set remaining suspended particle number Kss or less) while realizing economical system operation.

最適流量決定段階では、ステップS18において、最少残存浮遊粒子数Kr(min)と、その際の、給水量Q1(min)と吸引排水量Q2(min)と越流水量Q3(min)を最適流量としての、給水量Q1と吸引排水量Q2と越流水量Q3として決定する。   In the optimum flow rate determination stage, in step S18, the minimum remaining floating particle number Kr (min), and the water supply amount Q1 (min), the suction drainage amount Q2 (min), and the overflow water amount Q3 (min) at that time are set as the optimum flow rate. The water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3 are determined.

本実施形態では、ステップS15、ステップS16、ステップS17およびステップS18により、設定濁り度以下であって浮遊粒子の残存個数Krが最小となる給水量Q1と吸引排水量Q2および越流水量Q3の組み合わせが決定されている。   In the present embodiment, the combination of the water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3, which is below the set turbidity and minimizes the remaining number Kr of the suspended particles, is obtained by steps S15, S16, S17, and S18. It has been decided.

最適流量出力段階のステップS19において、最適な流量としての給水量Q1、引排水量Q2、越流水量Q3のデータを制御装置7へ出力する。   In step S19 in the optimum flow rate output stage, data of the water supply amount Q1, the drainage amount Q2, and the overflow water amount Q3 as the optimum flow rate are output to the control device 7.

本実施形態における遊泳用水槽中の水質管理方法の後段では、演算装置6からの最適流量としての給水量Q1、引排水量Q2、越流水量Q3の各データにより、各ポンプP1、P2、P3の回転数と、流量調整弁11、21の開度を制御装置7で制御する。各ポンプP1、P2、P3の制御方法は、例えばインバーターを利用した回転数制御等である。また、遊泳用水槽1中の遊泳用水中の浮遊粒子を排出しやすい水流が発生するように、使用する給水口5と排水口2の配置や、流速を、各流量調整弁11、21の開度で調整することも可能である。   In the latter stage of the water quality management method in the swimming tank in the present embodiment, each of the pumps P1, P2, P3 is determined based on the water supply amount Q1, the drainage amount Q2, and the overflow water amount Q3 as the optimum flow rate from the arithmetic unit 6. The number of revolutions and the opening degree of the flow rate adjusting valves 11 and 21 are controlled by the control device 7. The control method of each pump P1, P2, P3 is, for example, rotational speed control using an inverter. In addition, the arrangement of the water supply port 5 and the drainage port 2 used and the flow rate are adjusted so that the flow rate adjustment valves 11 and 21 are opened so that a water flow that easily discharges suspended particles in the swimming water 1 is generated. It is also possible to adjust in degrees.

以上説明した本実施形態にかかる遊泳用水槽中の水質管理方法および水質管理システムにあっては 遊泳用水槽1と、遊泳用水槽1の底部に設けられた排水口2と、排水口2から吸引ポンプP1で遊泳用水を吸引排水として排水する第1排水系D1と、遊泳用水槽1の両側部の上縁1aから溢れる遊泳用水を越流水として排水する第2排水系D2と、第1排水系D1および第2排水系D2からの吸引排水および越流水を濾過する濾過器4と、濾過器4で濾過された遊泳用水を給水ポンプP2で圧送して、遊泳用水槽1の両側部に設けられた給水口5から遊泳用水槽1内へ再度給水する給水系Sからなる遊泳用水循環システムと遊泳用水槽1中の、浮遊粒子を含む遊泳用水の動きを数値解析によりシミュレーションし、浮遊粒子が遊泳用水槽1から遊泳用水とともに排出されることによって、遊泳用水槽1中の遊泳用水の設定濁り度としての設定残存浮遊粒子数Kss以下となる給水量Q1と吸引排水量Q2および越流水量Q3を算出するための制御手段8とを備えているため、遊泳用水槽1内の濁りを除去するために適切な給水量Q1、吸引排水量Q2により遊泳用水槽1の水を循環させることが出来、遊泳用水槽1の水の濁りを経済的に適切に、設定した濁り度以下にすることが出来る。また、遊泳用水槽1の底部に複数の排水口2を設け、側部に複数の給水口5を設けているため、遊泳用水槽1全体に適切な水流を発生させることが出来、給水量Q1、吸引排水量Q2による、濁り度の低減が容易に実現できる。   In the water quality management method and the water quality management system in the swimming tank according to the present embodiment described above, the swimming tank 1, the drain port 2 provided at the bottom of the swimming tank 1, and the suction from the drain port 2 A first drainage system D1 that drains swimming water as suction drainage by the pump P1, a second drainage system D2 that drains swimming water overflowing from the upper edges 1a of both sides of the swimming tank 1 as overflow water, and a first drainage system A filter 4 that filters suction drainage and overflow water from D1 and the second drainage system D2, and swimming water filtered by the filter 4 is pumped by a water supply pump P2, and is provided on both sides of the swimming tank 1. The movement of swimming water containing floating particles in the swimming water tank 1 and the swimming water tank 1 is simulated by numerical analysis, and the floating particles swim. Water tank 1 The water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3 that are equal to or less than the set remaining suspended particle number Kss as the set turbidity of the swimming water in the swimming tank 1 are calculated by being discharged together with the swimming water. Since the control means 8 is provided, the water in the swimming tank 1 can be circulated by the appropriate water supply amount Q1 and the suction drainage amount Q2 in order to remove the turbidity in the swimming tank 1. Water turbidity can be economically adequately reduced below the set turbidity. Moreover, since the several drainage port 2 is provided in the bottom part of the swimming tank 1, and the several water supply port 5 is provided in the side part, a suitable water flow can be generated in the whole swimming tank 1, and water supply amount Q1 The turbidity can be easily reduced by the suction drainage amount Q2.

遊泳用水槽1中の遊泳用水の濁りを低減するために、遊泳用水循環システムを24時間内の任意のT時間稼働させるときの稼働開始から終了までの遊泳用水槽1中の、浮遊粒子を含む遊泳用水の動きを数値解析によりシミュレーションし、浮遊粒子が遊泳用水槽1から遊泳用水とともに排出されることによって遊泳用水槽1中の遊泳用水の濁りが設定濁り度以下となる給水量Q1と吸引排水量Q2および越流水量Q3を算出し、遊泳用水循環システムをこれら水量で制御しているため、遊泳用水槽1の使用状況を加味した時間内で、適切に遊泳用水槽1の水の濁り度を低減できる。また、濁り度を低減させるための適切な給水量Q1と吸引排水量Q2および越流水量Q3による遊泳用水槽1の循環水量が設定できるため、濁り度管理のために無駄に水の循環回数Rすなわち給水量Q1を増やさなくても済み、経済的な水質管理が出来る。さらに、数値解析によるシミュレーションにより、濁り度を小さくするための適切な給水量Q1と吸引排水量Q2および越流水量Q3が容易に算出でき遊泳用水槽1の水質管理が省力化される。   In order to reduce the turbidity of the swimming water in the swimming tank 1, the floating water circulation system includes floating particles in the swimming tank 1 from the start to the end when operating for any T time within 24 hours. Simulation of the movement of swimming water by numerical analysis, and the suspended water is discharged together with the swimming water from the swimming tank 1 so that the turbidity of the swimming water in the swimming tank 1 is below the set turbidity and the amount of suction drainage Since Q2 and overflow water amount Q3 are calculated and the water circulation system for swimming is controlled by these water amounts, the turbidity of the water in the swimming tank 1 can be appropriately adjusted within the time that takes into account the use status of the swimming tank 1. Can be reduced. In addition, since the circulating water amount of the swimming tank 1 can be set by the appropriate water supply amount Q1, the suction drainage amount Q2 and the overflow water amount Q3 for reducing the turbidity, the number of water circulations R for use in managing the turbidity, that is, Economical water quality management is possible without increasing the water supply Q1. Furthermore, by simulation based on numerical analysis, appropriate water supply amount Q1, suction drainage amount Q2 and overflow water amount Q3 for reducing turbidity can be easily calculated, and the water quality management of the swimming tank 1 can be saved.

遊泳用水槽1中の遊泳用水の濁りのデータとして、遊泳用水槽1中の重粒子、軽粒子の重軽粒子径m、各粒子密度ρh、ρlおよび各個数Khh、Khl、Klh、Kllを用いるとともに、管理目標とする設定濁り度を、遊泳用水槽1中に残存する浮遊粒子の設定残存粒子数Kssで設定し、濁り度を低減させるための適切な給水量Q1と吸引排水量Q2および越流水量Q3を算出するシミュレーションにおいて、給水量Q1と、吸引排水量Q2および越流水量Q3の和とを等しく設定して遊泳用水循環システムの稼働を終了したときの遊泳用水槽1中に残存する浮遊粒子の残存個数Krを数値解析により算出するステップS08からステップS17と、設定濁り度(設定残存粒子数Kss)以下であって浮遊粒子の残存個数Krが最小となる給水量Q1と吸引排水量Q2および越流水量Q3の組み合わせを決定するステップS15、ステップS16、ステップS17およびステップS18とを含んでいるため、濁り度を遊泳用水槽1内の残存浮遊粒子数Krおよび設定残存浮遊粒子数Kssで判断でき、パソコンで操作可能な一般的な汎用流体解析プログラムを利用したシミュレーションが可能となり、濁り度を低減させるために適切な給水量Q1と吸引排水量Q2および越流水量Q3を経済的、かつ容易に設定出来るようになる。このため、広汎な遊泳用水槽への応用が可能となる。 As the turbidity data of the swimming water in the swimming tank 1, the heavy particles in the swimming tank 1, the heavy and light particle diameters m, the particle densities ρh and ρl, and the numbers Khh, Khl, Klh, and Kll are used. At the same time, the set turbidity as a management target is set by the set remaining particle count Kss of the floating particles remaining in the swimming tank 1, and an appropriate water supply amount Q1, suction drainage amount Q2 and overflow water for reducing the turbidity In the simulation for calculating the amount Q3, the suspended particles remaining in the swimming tank 1 when the water supply amount Q1 is set equal to the sum of the suction drainage amount Q2 and the overflow water amount Q3 and the operation of the swimming water circulation system is finished. Steps S08 to S17 in which the remaining number Kr is calculated by numerical analysis, and the remaining number Kr of suspended particles is the minimum, which is equal to or less than the set turbidity (set remaining particle number Kss). Step S15, Step S16, Step S17 and Step S18 for determining the combination of the water supply amount Q1, the suction drainage amount Q2 and the overflow water amount Q3, so that the turbidity is determined by the number of remaining suspended particles Kr in the swimming tank 1 It is possible to make a simulation using a general-purpose fluid analysis program that can be determined by the number of remaining suspended particles Kss and can be operated on a personal computer. In order to reduce turbidity, water supply amount Q1, suction water discharge amount Q2, and overflow water are appropriate. The quantity Q3 can be set economically and easily. For this reason, application to a wide swimming tank is possible.

本実施形態においては、遊泳用水槽1を深さ方向に2区分しているため、濁り度としての浮遊粒子数を重粒子数Khh、Khlと軽粒子数Klh、Kllの分布状況を現実に近い状態で設定でき、シミュレーションの精度を高めることが出来る。このため、より効果的な給水量Q1と吸引排水量Q2および越流水量Q3が定まり、効率的な水質管理が出来る。   In this embodiment, since the swimming tank 1 is divided into two in the depth direction, the number of suspended particles as turbidity is almost equal to the distribution of the heavy particles Khh and Khl and the light particles Klh and Kll. It can be set in the state, and the accuracy of simulation can be improved. For this reason, more effective water supply amount Q1, suction drainage amount Q2, and overflow water amount Q3 are determined, and efficient water quality management can be performed.

本実施形態のシミュレーションにおける吸引排水量Q2および越流水量Q3の和が、給水量Q1と等しくなるようにしたため、給水量Q1と、吸引排水量Q2および越流水量Q3との関係が簡潔になり、算出および制御が容易になるとともに、処理後の水槽水の水質を一定に維持出来る。   Since the sum of the suction drainage amount Q2 and the overflow water amount Q3 in the simulation of the present embodiment is made equal to the supply water amount Q1, the relationship between the supply water amount Q1, the suction drainage amount Q2 and the overflow water amount Q3 is simplified and calculated. And control becomes easy and the quality of the aquarium water after treatment can be maintained constant.

本実施形態においては、遊泳用水槽1を深さ方向に2区分し、各領域毎に濁りの初期条件としての浮遊粒子数を均等に設定したが、遊泳用水槽1全体で均等に浮遊粒子数を設定しても良い。この場合、シミュレーションのための入力が簡略化できる。   In the present embodiment, the swimming tank 1 is divided into two in the depth direction, and the number of suspended particles as an initial condition of turbidity is set evenly for each region, but the number of suspended particles is evenly distributed throughout the swimming tank 1. May be set. In this case, the input for simulation can be simplified.

上記実施形態にあっては、遊泳用水槽1中の水質管理方法および水質管理システムを例にとって説明したが、汚濁水槽1に対しても同様なステップおよび構成によって、汚濁水槽1中の水質管理方法および水質管理システムを構成することができ、具体的には、上記構成における遊泳用水槽1に代えて、汚濁水槽1を対象とし、浮遊粒子によって濁りが生じる汚濁水槽1中の汚濁水を、汚濁水槽1の底部に設けた排水口2から吸い出される吸引排水および汚濁水槽1から溢れる越流水として排出し、これら排出された汚濁水を、濾過器4で濾過した後、汚濁水槽1の側部に設けた給水口5から再度当該汚濁水槽1へ給水する汚濁水循環システムによって、汚濁水が循環される汚濁水槽1中の水質を管理するに際し、汚濁水槽1中の汚濁水の濁りを低減すべく、汚濁水循環システムを任意の所定期間、例えば数日もしくな数週間など、稼働させるときの稼働開始から終了までの汚濁水槽1中の、浮遊粒子を含む汚濁水の動きを数値解析によりシミュレーションし、シミュレーションによって、浮遊粒子が汚濁水槽1から汚濁水とともに排出されることによって汚濁水槽1中の汚濁水の濁りが設定濁り度以下となる給水量Q1と吸引排水量Q2および越流水量Q3を算出し、算出した給水量Q1と吸引排水量Q2および越流水量Q3となるように、汚濁水循環システムの給水量と吸引排水量および越流水量を制御する。このような汚濁水槽1中の水質管理方法にあっても、上記実施形態と同様な作用・効果を奏することはもちろんである。
In the above embodiment, the water quality management method and the water quality management system in the swimming aquarium 1 have been described as an example, but the water quality management method in the pollution aquarium 1 is also performed for the polluted water tank 1 by the same steps and configurations. Specifically, instead of the swimming tank 1 in the above configuration, the polluted water in the polluted water tank 1 in which the suspended water tank 1 is made turbid due to suspended particles is contaminated. The drainage discharged from the drain port 2 provided at the bottom of the water tank 1 and discharged as overflow water overflowing from the polluted water tank 1 are filtered by the filter 4 and then the side of the polluted water tank 1 When managing the water quality in the polluted water tank 1 in which the polluted water is circulated by the polluted water circulation system that feeds water to the polluted water tank 1 again from the water supply port 5 provided in the turbid water tank 1 The movement of polluted water containing suspended particles in the polluted water tank 1 from the start to the end when operating the polluted water circulation system for any predetermined period, for example several days or weeks Simulation by analysis, and by simulation , suspended particles are discharged from the polluted water tank 1 together with the polluted water, so that the turbidity of the polluted water in the polluted water tank 1 is less than the set turbidity, the amount of water supply Q1, the amount of suction drainage Q2, and the amount of overflow water Q3 is calculated, and the water supply amount, the suction drainage amount, and the overflow water amount of the polluted water circulation system are controlled so that the calculated water supply amount Q1, the suction drainage amount Q2, and the overflow water amount Q3 are obtained . Even in such a water quality management method in the polluted water tank 1, it is needless to say that the same actions and effects as in the above-described embodiment can be achieved.

本発明に係る遊泳用水槽中の水質管理システムの好適な一実施形態の概要を示す図である。It is a figure which shows the outline | summary of suitable one Embodiment of the water quality management system in the water tank for swimming based on this invention. 図1における遊泳用水槽の平面図である。It is a top view of the water tank for swimming in FIG. 図1に示す遊泳用水槽の深さ方向の区分を示す断面図である。It is sectional drawing which shows the division of the depth direction of the water tank for swimming shown in FIG. 図1に示す遊泳用水槽中の水質管理システムの稼働時間帯を示す図である。It is a figure which shows the operation time zone of the water quality management system in the water tank for swimming shown in FIG. 本発明に係る遊泳用水槽中の水質管理方法の好適な一実施例における給水量、吸引排水量、越流水量を定めるための手順の前半部分を示すフローチャート図である。It is a flowchart figure which shows the first half part of the procedure for determining the amount of water supply, the amount of suction drainage, and the amount of overflow water in one suitable Example of the water quality management method in the water tank for swimming which concerns on this invention. 図5に示した手順に続く後半の手順を示すフローチャート図である。It is a flowchart figure which shows the procedure of the second half following the procedure shown in FIG.

符号の説明Explanation of symbols

1 遊泳用水槽
2 排水口
4 濾過器
5 給水口
8 制御手段
D1 第1排水系
D2 第2排水系
S 給水系
T 稼働時間
P1 吸引ポンプ
P2 給水ポンプ
Q1 給水量
Q2 吸引排水量
Q3 越流水量
DESCRIPTION OF SYMBOLS 1 Swimming tank 2 Drainage port 4 Filter 5 Water supply port 8 Control means D1 1st drainage system D2 2nd drainage system S Water supply system T Operation time P1 Suction pump P2 Water supply pump Q1 Water supply amount Q2 Suction drainage amount Q3 Overflow water amount

Claims (6)

浮遊粒子によって濁りが生じる汚濁水槽中の汚濁水を、該汚濁水槽の底部に設けた排水口から吸い出される吸引排水および該汚濁水槽から溢れる越流水として排出し、これら排出された汚濁水を、濾過器で濾過した後、該汚濁水槽の側部に設けた給水口から再度当該汚濁水槽へ給水する汚濁水循環システムによって、汚濁水が循環される該汚濁水槽中の水質を管理するに際し、
上記汚濁水槽中の汚濁水の濁りを低減すべく、上記汚濁水循環システムを任意の所定期間稼働させるときの稼働開始から終了までの該汚濁水槽中の、浮遊粒子を含む汚濁水の動きを数値解析によりシミュレーションし、
該シミュレーションによって、浮遊粒子が上記汚濁水槽から汚濁水とともに排出されることによって該汚濁水槽中の汚濁水の濁りが設定濁り度以下となる給水量と吸引排水量および越流水量を算出し、
該算出した給水量と吸引排水量および越流水量となるように、上記汚濁水循環システムの給水量と吸引排水量および越流水量を制御することを特徴とする汚濁水槽中の水質管理方法。
The polluted water in the polluted water tank in which turbidity is caused by suspended particles is discharged as suction drainage discharged from a drain outlet provided at the bottom of the polluted water tank and overflow water overflowing from the polluted water tank, and the discharged polluted water is After filtering with a filter, when managing the water quality in the polluted water tank in which the polluted water is circulated by the polluted water circulation system that feeds water again to the polluted water tank from the water supply port provided on the side of the polluted water tank,
In order to reduce the turbidity of the polluted water in the polluted water tank, numerical analysis of the movement of the polluted water containing suspended particles in the polluted water tank from the start to the end when the polluted water circulation system is operated for any predetermined period Simulated by
By the simulation, suspended water is discharged from the contaminated water tank together with the contaminated water, thereby calculating the water supply amount, the suction drainage amount, and the overflow water amount so that the turbidity of the contaminated water tank becomes less than the set turbidity,
A water quality management method in a polluted water tank, wherein the water supply amount, the suction drainage amount, and the overflow water amount of the polluted water circulation system are controlled so that the calculated water supply amount, suction drainage amount, and overflow water amount are obtained .
浮遊粒子によって濁りが生じる遊泳用水槽中の遊泳用水を、該遊泳用水槽の底部に設けた排水口から吸い出される吸引排水および該遊泳用水槽から溢れる越流水として排出し、これら排出された遊泳用水を、濾過器で濾過した後、該遊泳用水槽の側部に設けた給水口から再度当該遊泳用水槽へ給水する遊泳用水循環システムによって、遊泳用水が循環される該遊泳用水槽中の水質を管理するに際し、
上記遊泳用水槽中の遊泳用水の濁りを低減すべく、上記遊泳用水循環システムを24時間内の任意の所定時間稼働させるときの稼働開始から終了までの該遊泳用水槽中の、浮遊粒子を含む遊泳用水の動きを数値解析によりシミュレーションし、
該シミュレーションによって、浮遊粒子が上記遊泳用水槽から遊泳用水とともに排出されることによって該遊泳用水槽中の遊泳用水の濁りが設定濁り度以下となる給水量と吸引排水量および越流水量を算出し、
該算出した給水量と吸引排水量および越流水量となるように、上記遊泳用水循環システムの給水量と吸引排水量および越流水量を制御することを特徴とする遊泳用水槽中の水質管理方法。
The swimming water in the swimming tank in which turbidity is caused by suspended particles is discharged as suction drainage discharged from a drain outlet provided at the bottom of the swimming tank and overflow water overflowing from the swimming tank, and these discharged swimming The quality of the water in the swimming tank in which the swimming water is circulated by the swimming water circulation system for supplying water to the swimming tank again from the water supply port provided on the side of the swimming tank after filtering the water with a filter In managing
In order to reduce turbidity of the swimming water in the swimming tank, the floating water circulation system includes suspended particles in the swimming tank from the start to the end when the swimming water circulation system is operated for any predetermined time within 24 hours. Simulate the movement of swimming water by numerical analysis,
By the simulation, suspended water is discharged from the swimming tank together with the swimming water to calculate the water supply amount, the suction drainage amount, and the overflow water amount so that the turbidity of the swimming water in the swimming tank is not more than the set turbidity,
A water quality management method in a swimming tank, wherein the water supply amount, suction drainage amount, and overflow water amount of the swimming water circulation system are controlled so that the calculated water supply amount, suction drainage amount, and overflow water amount are obtained .
前記遊泳用水槽中の遊泳用水の濁りのデータとして、該遊泳用水槽中の浮遊粒子の粒子径、粒子密度および個数を用いるとともに、前記設定濁り度を、該遊泳用水槽中に残存する浮遊粒子の残存個数で設定し、
前記シミュレーションが、
前記給水量と、前記吸引排水量および前記越流水量の和とを等しく設定して前記遊泳用水循環システムの稼働を終了したときの上記遊泳用水槽中に残存する浮遊粒子の残存個数を数値解析により算出するステップと、
上記設定濁り度以下であって浮遊粒子の残存個数が最小となる上記給水量と上記吸引排水量および上記越流水量の組み合わせを決定するステップとを含むことを特徴とする請求項2に記載の遊泳用水槽中の水質管理方法。
As the turbidity data of the swimming water in the swimming tank, the particle size, particle density and number of suspended particles in the swimming tank are used, and the set turbidity is determined by the suspended particles remaining in the swimming tank. Set by the remaining number of
The simulation is
Numerically analyzing the remaining number of floating particles remaining in the swimming tank when the water supply amount and the sum of the suction drainage amount and the overflow water amount are set equal to each other and the operation of the swimming water circulation system is finished. A calculating step;
3. The swimming according to claim 2, further comprising a step of determining a combination of the water supply amount, the suction drainage amount, and the overflow water amount that is equal to or less than the set turbidity and has a minimum remaining number of suspended particles. Water quality management method in water tank.
前記シミュレーションの濁りの初期条件が、前記遊泳用水槽全体で均等に設定されることを特徴とする請求項2または3に記載の遊泳用水槽中の水質管理方法。   4. The water quality management method in a swimming tank according to claim 2 or 3, wherein initial conditions of turbidity in the simulation are set uniformly in the entire swimming tank. 前記シミュレーションの濁りの初期条件が、前記遊泳用水槽を深さ方向に区分した各深度で異ならせて設定されることを特徴とする請求項2または3に記載の遊泳用水槽中の水質管理方法。   4. The water quality management method in a swimming tank according to claim 2, wherein the initial turbidity condition of the simulation is set differently at each depth obtained by dividing the swimming tank in the depth direction. 5. . 遊泳用水槽の底部に設けられた排水口から吸引ポンプで遊泳用水を吸引排水として排水する第1排水系と、遊泳用水槽から溢れる遊泳用水を越流水として排水する第2排水系と、第1および第2排水系からの吸引排水および越流水を濾過する濾過器と、濾過器で濾過された遊泳用水を給水ポンプで圧送して、遊泳用水槽の側部に設けられた給水口から遊泳用水槽内へ再度給水する給水系とを有する遊泳用水循環システムと、
上記遊泳用水槽中の遊泳用水の濁りを低減すべく、上記遊泳用水循環システムを24時間内の任意の所定時間稼働させるときの稼働開始から終了までの該遊泳用水槽中の、浮遊粒子を含む遊泳用水の動きを数値解析によりシミュレーションし、
該シミュレーションによって、浮遊粒子が上記遊泳用水槽から遊泳用水とともに排出されることによって該遊泳用水槽中の遊泳用水の濁りが設定濁り度以下となる給水量と吸引排水量および越流水量を算出し、
該算出した給水量と吸引排水量および越流水量となるように、上記遊泳用水循環システムの給水量と吸引排水量および越流水量を制御する制御手段とを備えたことを特徴とする遊泳用水槽中の水質管理システム。
A first drainage system for draining swimming water as suction drainage from a drainage port provided at the bottom of the swimming tank, a second drainage system for draining swimming water overflowing from the swimming tank as overflow water, and a first And a filter for filtering the suction drainage and overflow water from the second drainage system, and the swimming water filtered by the filter is pumped by a water supply pump and is used for swimming from the water supply port provided on the side of the swimming tank A swimming water circulation system having a water supply system for supplying water again into the aquarium;
In order to reduce turbidity of the swimming water in the swimming tank, the floating water circulation system includes suspended particles in the swimming tank from the start to the end when the swimming water circulation system is operated for any predetermined time within 24 hours. Simulate the movement of swimming water by numerical analysis,
By the simulation, suspended water is discharged from the swimming tank together with the swimming water to calculate the water supply amount, the suction drainage amount, and the overflow water amount so that the turbidity of the swimming water in the swimming tank is not more than the set turbidity,
In a swimming tank, comprising a control means for controlling the water supply amount, the suction drainage amount, and the overflow water amount of the swimming water circulation system so that the calculated water supply amount, suction drainage amount, and overflow water amount are obtained. Water quality management system.
JP2006351302A 2006-12-27 2006-12-27 Water quality management method and water quality management system in polluted water tank and swimming tank Expired - Fee Related JP5128810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006351302A JP5128810B2 (en) 2006-12-27 2006-12-27 Water quality management method and water quality management system in polluted water tank and swimming tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351302A JP5128810B2 (en) 2006-12-27 2006-12-27 Water quality management method and water quality management system in polluted water tank and swimming tank

Publications (2)

Publication Number Publication Date
JP2008161746A JP2008161746A (en) 2008-07-17
JP5128810B2 true JP5128810B2 (en) 2013-01-23

Family

ID=39691928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351302A Expired - Fee Related JP5128810B2 (en) 2006-12-27 2006-12-27 Water quality management method and water quality management system in polluted water tank and swimming tank

Country Status (1)

Country Link
JP (1) JP5128810B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112283B2 (en) * 2008-12-26 2013-01-09 株式会社ヤマト Equipment control system
KR101486970B1 (en) * 2014-02-05 2015-01-30 이랜드체육조경(주) The Swimming Pool Having the Playing Facility
CN117290559B (en) * 2023-11-22 2024-03-01 山东贵玉复合材料有限公司 Water treatment agent content monitoring method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263512A (en) * 1988-08-31 1990-03-02 Takano:Kk Circulation filter device for pool or the like
JPH10169226A (en) * 1996-12-11 1998-06-23 Nippon Filcon Co Ltd Pool water circulating and filtering method, and circulating and filtering type pool
JP4395822B2 (en) * 2000-08-29 2010-01-13 フィンランドサウナジャパン株式会社 Circulating water supply system in pools

Also Published As

Publication number Publication date
JP2008161746A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5128810B2 (en) Water quality management method and water quality management system in polluted water tank and swimming tank
CN208949033U (en) A kind of recirculated water automatic dosing apparatus with filtering function
KR100740655B1 (en) Lenz edging water treating apparatus
KR20090116023A (en) Aquarium water filtration device
KR102224305B1 (en) Upstream water quality management and pollution response system
KR20150001964U (en) Fishbowl having drainage and circulation equipment
JP2003236305A (en) Oil-water separation apparatus and oil-water separation method
JP6132104B2 (en) How to clean the filter
CN209010268U (en) A kind of paint line pure water circulation-supplied system
JP3143798U (en) Dental plaster shaping device
CN211516855U (en) Cutting fluid purification device with oil-liquid separation function
JP3339483B2 (en) Weir member, liquid tank and article processing device
KR102089609B1 (en) Upstream water quality management and pollution response system
KR20150138138A (en) Water filter Automation Management System
CN210549914U (en) Water tank for numerical control equipment
JP6828836B1 (en) Backwashing method for filtration equipment and filtration equipment
KR102387473B1 (en) Water purifying apparatus for fish tank
TW202035008A (en) Split-flow liquid filter producing a filtrate that does not contain floating impurities, a large amount of fine particle and/or coarse particle impurities
KR102439796B1 (en) A system for cleaning aquarium
JP2006009241A (en) Fishway exit equipment
CN217194680U (en) Water supply structure for vacuum pump of wafer grinding machine
CN219993276U (en) Swimming pool overflow drain construction structure
EP1143294B1 (en) Processing installation for rinsing water having an independent recycling filtering device
JP7339033B2 (en) How to install processing waste liquid treatment equipment
GB2462930A (en) Water pump housing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees