JP5125997B2 - Multi-layer channel member and ultrasonic fluid measuring device using the same - Google Patents

Multi-layer channel member and ultrasonic fluid measuring device using the same Download PDF

Info

Publication number
JP5125997B2
JP5125997B2 JP2008283846A JP2008283846A JP5125997B2 JP 5125997 B2 JP5125997 B2 JP 5125997B2 JP 2008283846 A JP2008283846 A JP 2008283846A JP 2008283846 A JP2008283846 A JP 2008283846A JP 5125997 B2 JP5125997 B2 JP 5125997B2
Authority
JP
Japan
Prior art keywords
plate
support portion
partition plate
flow path
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008283846A
Other languages
Japanese (ja)
Other versions
JP2010112775A (en
Inventor
武彦 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008283846A priority Critical patent/JP5125997B2/en
Priority to US13/062,862 priority patent/US8418566B2/en
Priority to CN200980134518.1A priority patent/CN102144147B/en
Priority to PCT/JP2009/005889 priority patent/WO2010052912A1/en
Priority to CN201210333384.XA priority patent/CN102944695B/en
Priority to EP09824612A priority patent/EP2343516A4/en
Publication of JP2010112775A publication Critical patent/JP2010112775A/en
Application granted granted Critical
Publication of JP5125997B2 publication Critical patent/JP5125997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、複数の扁平流路を形成する多層流路部材およびそれを用いた超音波式流体計測装置に関するものである。   The present invention relates to a multilayer flow path member that forms a plurality of flat flow paths, and an ultrasonic fluid measuring device using the same.

超音波式流体計測装置は、計測用流路に流体を流して超音波を放射させ、この超音波の伝搬時間の情報に基づいて流体の流速を求めるものである。   An ultrasonic fluid measuring device is a device that causes a fluid to flow through a measurement channel and emits ultrasonic waves, and obtains the flow velocity of the fluid based on information on the propagation time of the ultrasonic waves.

この計測用流路は、断面長方形の角筒形状で対向する短辺側面の流れ方向上手側と下手側に一対の超音波送受波器を設け、流体の流れに対して斜めに横切るように超音波を伝播するようにしている。   This measurement channel is a rectangular tube with a rectangular cross section, and a pair of ultrasonic transducers are provided on the upper and lower sides in the flow direction on the opposite short sides. Sound waves are transmitted.

そして、近年では、計測精度を向上させるために、計測用流路に複数の隔壁を並行に配置することにより、計測用流路を多層流路とした超音波式流体計測装置が提案されている。   In recent years, in order to improve the measurement accuracy, an ultrasonic fluid measurement device in which a plurality of partition walls are arranged in parallel in the measurement channel and the measurement channel is a multilayer channel has been proposed. .

そして、計測用流路を多層流路として用いる場合の種々の改良がなされている。例えば、図9に示すように、複数の整流板40が積層された積層部によって複数の小流路に分割される流路を形成する流路ユニット41であって、前記複数の整流板40と、これら整流板40を支持する支持部42とを熱硬化性樹脂を用いて一体に形成していた。   Various improvements have been made when the measurement channel is used as a multilayer channel. For example, as shown in FIG. 9, a flow path unit 41 that forms a flow path that is divided into a plurality of small flow paths by a stacked portion in which a plurality of flow rectifying plates 40 are stacked, The support portion 42 that supports the current plate 40 is integrally formed using a thermosetting resin.

前記支持部42は、複数の整流板41をインサートした状態で形成されるようにしてある。   The support portion 42 is formed with a plurality of rectifying plates 41 inserted therein.

これによれば、整流板40と支持部42とが一体に形成されているため、整流板40を一枚、一枚、支持部42に差し込む作業を必要としない。   According to this, since the rectifying plate 40 and the support portion 42 are integrally formed, it is not necessary to insert one rectifying plate 40 into the support portion 42.

また、熱硬化性樹脂を用いて一体に形成されているため、例えば、熱可塑性の樹脂にて一体形成した場合に比べて、硬化時の収縮を抑えることができる。   Moreover, since it is integrally formed using a thermosetting resin, for example, shrinkage at the time of curing can be suppressed as compared with a case where it is integrally formed with a thermoplastic resin.

また、図10に示すように、計測管部材50に開口部51と収納部52とからなる溝部53を形成して、整流板54を挿入するようにしたものも見受けられる。   In addition, as shown in FIG. 10, it can be seen that a groove portion 53 including an opening 51 and a storage portion 52 is formed in the measurement tube member 50 and a rectifying plate 54 is inserted.

開口部51の開口寸法は整流板54の板厚よりも大きく、収納部52の収納高さ寸法は、整流板54の板厚と同等の大きさを有する。   The opening dimension of the opening 51 is larger than the plate thickness of the rectifying plate 54, and the storage height dimension of the storage unit 52 is equal to the plate thickness of the rectifying plate 54.

したがって、収納部52に収納された整流板54は、その厚み方向から収納部52の内壁面によって接触支持された状態となる。   Therefore, the rectifying plate 54 stored in the storage unit 52 is in contact with and supported by the inner wall surface of the storage unit 52 from the thickness direction.

また、開口部51から収納部52に至る溝部53の部位(以下、案内部位と呼ぶ)は、その開口寸法が徐々に小さくなる形状に形成されている。つまり、案内部位には、開口部51から収納部52へと至る傾斜面が形成されている。   Further, a portion of the groove 53 (hereinafter referred to as a guide portion) extending from the opening 51 to the storage portion 52 is formed in a shape in which the opening size gradually decreases. That is, an inclined surface extending from the opening 51 to the storage portion 52 is formed in the guide portion.

挿入動作時の整流板54が案内部位に接触すると、この傾斜面に沿って溝部53の深さ方向先端へと導かれる。   When the baffle plate 54 at the time of the insertion operation comes into contact with the guide portion, it is guided to the front end in the depth direction of the groove portion 53 along this inclined surface.

同方向先端へと導かれた整流板54は、上述の通り同方向先端に位置する収納部52に
収納されることとなる。
The rectifying plate 54 guided to the front end in the same direction is stored in the storage portion 52 positioned at the front end in the same direction as described above.

案内部位により整流板54が収納部52に案内されるため、挿入動作時の整流板54と収納部52とが開口部51の開口寸法の範囲内で傾いていた(若しくはズレていた)としても整流板54の挿入動作を継続することができる。   Since the rectifying plate 54 is guided to the storage portion 52 by the guide portion, even if the rectifying plate 54 and the storage portion 52 during the insertion operation are inclined (or misaligned) within the range of the opening size of the opening 51. The operation of inserting the current plate 54 can be continued.

このため、挿入時の整流板54と収納部52との位置関係の自由度が広がる。すなわち、両者の位置関係の自由度が広がるだけ、整流板54の嵌め込み作業が容易となる。   For this reason, the freedom degree of the positional relationship of the baffle plate 54 and the accommodating part 52 at the time of insertion spreads. That is, as the degree of freedom of the positional relationship between the two increases, the operation of fitting the current plate 54 becomes easier.

また、収納状態の整流板54を収納部52が接触支持するため、整流板54のガタつきを従来通り防止又は低減することができる(例えば、特許文献1,2,3参照)。
国際公開第2004/074783号パンフレット 特開2004−316685号公報 特開2006−029907号公報
In addition, since the storage portion 52 contacts and supports the rectifying plate 54 in the stored state, rattling of the rectifying plate 54 can be prevented or reduced as usual (see, for example, Patent Documents 1, 2, and 3).
International Publication No. 2004/074783 Pamphlet Japanese Patent Application Laid-Open No. 2004-316685 JP 2006-029907 A

しかしながら、計測用流路を多層流路とする際に、計測用流路に設けた一対の超音波送受波器と、計測用流路を層流通路に分割する多層流路との位置関係や、さらに、多層流路を形成するための仕切板の両縁をフレームにより支持した場合の仕切板間の寸法ばらつきで、計測精度を低下させるという問題があった。   However, when the measurement channel is a multilayer channel, the positional relationship between the pair of ultrasonic transducers provided in the measurement channel and the multilayer channel that divides the measurement channel into laminar channels Furthermore, there is a problem that measurement accuracy is lowered due to dimensional variations between the partition plates when both edges of the partition plate for forming the multi-layer flow path are supported by the frame.

そして、図9の例では、複数の整流板40と、これらを支持する支持部42とが熱硬化性樹脂を用いて一体にインサート成形するようになっていて、熱硬化性樹脂を用いているため、硬化時間に時間を要し、成形型に樹脂を注入してから冷却して成形型から成型品を取り出す時間が非常に長くかかり、生産性にかけ、その分コストも高くなってしまう欠点があった。   In the example of FIG. 9, the plurality of rectifying plates 40 and the support portion 42 that supports them are integrally insert-molded using a thermosetting resin, and the thermosetting resin is used. Therefore, it takes a long time to cure, and it takes a very long time to inject the resin into the mold and then cool it down to take out the molded product from the mold, which increases productivity and increases the cost. there were.

そのため、熱硬化性樹脂を用いずに、熱可塑性の樹脂を用いると、収縮が大きいところから、今度は寸法精度がでないという欠点がある。   For this reason, if a thermoplastic resin is used instead of a thermosetting resin, there is a disadvantage that the dimensional accuracy is not high due to the large shrinkage.

また、成形型にインサートする複数の整流板40を狭いピッチでセットする手間は必要で、やはり、インサート成形する時間と手間を要してしまうものであった。   Further, it is necessary to set a plurality of rectifying plates 40 to be inserted into the mold at a narrow pitch, and it also takes time and time for insert molding.

また、図10の例では、溝部53が整流板54の板厚よりも大きい開口部51と、整流板54の板厚と同等の大きさ収納部52とからなり、同収納部52は開口部51よりも溝部53の深さ方向先端に形成されており、整流板54は開口部51の案内部位に案内され、収納部52に導かれるようになっているが、整流板54を寸法精度良く保持させるためには、保持する収納部52にモーメントがかかり、よって、強度が必要で、収納部52の奥行き寸法が十分確保されている必要がある。   In the example of FIG. 10, the groove portion 53 includes an opening 51 having a thickness larger than the plate thickness of the rectifying plate 54 and a storage portion 52 having a size equivalent to the plate thickness of the rectifying plate 54. The rectifying plate 54 is guided by the guide portion of the opening 51 and guided to the storage portion 52, but the rectifying plate 54 is formed with high dimensional accuracy. In order to hold, a moment is applied to the holding portion 52 to be held, and therefore, strength is required, and the depth dimension of the holding portion 52 needs to be sufficiently secured.

しかしながら、収納部52を形成する計測管部材50を成型性の観点より樹脂を用いると、保持強度を有させるためには、厚さを厚くしなければならないが、厚くすると収縮、ひけ等により寸法精度が低下すると言う相反する課題を生じ、そのため、強度と精度と併せて挿入のしやすさという作業性などのバランスが必要となり、結果的に高精度が追求できないという欠点があった。   However, if resin is used for the measuring tube member 50 forming the storage portion 52 from the viewpoint of moldability, the thickness must be increased in order to have a holding strength. There is a conflicting problem that the accuracy is lowered. Therefore, it is necessary to balance the workability such as the ease of insertion in combination with the strength and the accuracy, and as a result, there is a disadvantage that high accuracy cannot be pursued.

本発明は、従来の問題を解決するためになされたもので、流体の計測精度を向上する高精度な多層流路部材および該多層流路部材を用いた超音波式流体計測装置を提供することにある。   The present invention has been made to solve the conventional problems, and provides a highly accurate multilayer flow path member that improves fluid measurement accuracy and an ultrasonic fluid measurement device using the multilayer flow path member. It is in.

本発明は前記従来の課題を解決したもので、複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合し両縁部を支持し合う天板および底板とを備え、前記仕切板の両縁部の一部に前記側板で支持される支持部を形成するとともに、前記側板に前記支持部を挿入する挿入孔を設け、前記挿入孔は、前記支持部の幅および厚さより広い隙間とした挿入部と、前記挿入部に前記支持部を挿入する方向に直交する平面の上下方向に隣接させて配設され、前記支持部の幅と略同一の幅を有し前記支持部を固定する固定部とから形成し前記支持部を挿入部へ挿入してから前記固定部にスライドさせて前記側板に前記仕切板を固定した状態で生
じる前記挿入部の隙間を閉塞手段で閉塞するようにし、前記閉塞手段は前記天板および前記底板のいずれか一方、あるいは両方に一体形成したものである。
The present invention solves the above-described conventional problems, and includes a partition plate that is partitioned into a plurality of flat flow paths, a side plate that is orthogonal to the partition plate and supports both edges, and is disposed vertically in parallel with the partition plate. A top plate and a bottom plate that are coupled to the side plate and support both edge portions, and a support portion supported by the side plate is formed on a part of both edge portions of the partition plate, and the side plate includes the top plate and the bottom plate. An insertion hole for inserting a support portion is provided, and the insertion hole has an insertion portion that is wider than the width and thickness of the support portion, and a vertical direction in a plane perpendicular to the direction in which the support portion is inserted into the insertion portion. It is arranged adjacently and has a width substantially the same as the width of the support portion and is formed from a fixing portion that fixes the support portion, and the support portion is inserted into the insertion portion and then slid to the fixing portion. In a state where the partition plate is fixed to the side plate,
The gap between the insertion portions is closed by closing means, and the closing means is integrally formed on one or both of the top plate and the bottom plate .

これにより、仕切板の支持部を側板の挿入孔の挿入部へ挿入したのち、挿入部の側部に位置する固定部へスライドさせることで、側板に仕切板が固定されるようになり、仕切板は挿入孔の固定部の位置精度で保持される。つまり、側板の挿入孔の挿入部で、仕切板の支持部の挿入しやすさを確保するとともに、固定部へスライドさせることで、支持部の高精度な固定を確保することができるようになる。   Thus, after inserting the support portion of the partition plate into the insertion portion of the insertion hole of the side plate, the partition plate is fixed to the side plate by sliding to the fixing portion located on the side portion of the insertion portion. The plate is held with the positional accuracy of the fixing portion of the insertion hole. That is, the insertion portion of the insertion hole of the side plate ensures the ease of insertion of the support portion of the partition plate, and can be secured to the support portion with high accuracy by sliding to the fixing portion. .

本発明によれば、側板の挿入孔の挿入部で、仕切板の支持部の挿入しやすさを確保するとともに、固定部へスライドさせることで、仕切板の支持部の高精度な固定を確保することができ、挿入のしやすさという作業性を保持したまま、側板への仕切板の固定強度を十分確保するようにでき、簡易な構成で高精度の多層流路部材を形成することができ、流体の計測精度を向上する高精度な多層流路部材および該多層流路部材を用いた超音波式流体計測装置を提供することができるようになる。   According to the present invention, at the insertion portion of the insertion hole of the side plate, the ease of inserting the support portion of the partition plate is ensured, and the support portion of the partition plate is secured with high precision by sliding to the fixing portion. It is possible to ensure sufficient fixing strength of the partition plate to the side plate while maintaining the workability of ease of insertion, and to form a highly accurate multilayer flow path member with a simple configuration. In addition, it is possible to provide a highly accurate multilayer flow path member that improves fluid measurement accuracy and an ultrasonic fluid measurement device using the multilayer flow path member.

第1の発明は、複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合し両縁部を支持し合う天板および底板とを備え、前記仕切板の両縁部の一部に前記側板で支持される支持部を形成するとともに、前記側板に前記支持部を挿入する挿入孔を設け、前記挿入孔は、前記支持部の幅および厚さより広い隙間とした挿入部と、前記挿入部に前記支持部を挿入する方向に直交する平面の上下方向に隣接させて配設され、前記支持部の幅と略同一の幅を有し前記支持部を固定する固定部とから形成し前記支持部を挿入部へ挿入してから前記固定部にスライドさせて前記側板に前記仕切板を固定した状態で生じる前記挿入部の隙間を閉塞手段で閉塞するようにし、前記閉塞手段は前記天板および前記底板のいずれか一方、あるいは両方に一体形成したものである。
A first invention is provided with a partition plate partitioned into a plurality of flat flow paths, a side plate orthogonal to the partition plate and supporting both edge portions, and arranged vertically in parallel with the partition plate, and coupled to the side plate. An insertion hole including a top plate and a bottom plate that support both edge portions, and forming a support portion supported by the side plate at a part of both edge portions of the partition plate, and inserting the support portion into the side plate The insertion hole is disposed adjacent to the insertion portion having a gap wider than the width and thickness of the support portion, and the vertical direction of the plane orthogonal to the direction in which the support portion is inserted into the insertion portion, The partition plate is formed on the side plate by inserting the support portion into the insertion portion and then sliding the fixation portion on the side plate. The gap of the insertion portion that occurs in a fixed state is closed by the closing means, Fort means are integrally formed on either one or both of the top plate and the bottom plate.

したがって、仕切板の支持部を側板の挿入孔の挿入部へ挿入したのち、挿入部の側部に位置する固定部へスライドさせることで、側板に仕切板が固定されるようになり、仕切板は挿入孔の固定部の位置精度で保持される。つまり、側板の挿入孔の挿入部で、仕切板の支持部の挿入しやすさを確保するとともに、固定部へスライドさせることで、支持部の高精度な固定を確保することができるようになる。   Therefore, after inserting the support portion of the partition plate into the insertion portion of the insertion hole of the side plate, the partition plate is fixed to the side plate by sliding to the fixing portion located on the side portion of the insertion portion. Is held with the positional accuracy of the fixing portion of the insertion hole. In other words, the insertion portion of the insertion hole of the side plate ensures the ease of insertion of the support portion of the partition plate and can be secured to the support portion with high accuracy by sliding to the fixing portion. .

また、仕切板の支持部を側板の挿入孔の挿入部へ挿入したのち、挿入部の上下方向のいずれかに位置する固定部へスライドさせることで、側板に仕切板が固定されるようになり、また、仕切板は挿入孔の固定部の位置精度で保持される。
In addition, after inserting the support portion of the partition plate into the insertion portion of the insertion hole of the side plate, the partition plate is fixed to the side plate by sliding it to the fixing portion located in any one of the vertical directions of the insertion portion. Moreover, the partition plate is held with the positional accuracy of the fixing portion of the insertion hole.

また、閉塞手段で側板への仕切板の固定ために生じる開口を閉塞することができるとともに、仕切板の支持部がスライドした固定部から挿入孔の挿入部に戻ることができなくなり、支持部が挿入部に戻って外れてしまう心配がなくなる。
Further , the opening generated for fixing the partition plate to the side plate can be closed by the closing means, and the support portion of the partition plate cannot be returned from the fixed portion to which the partition plate has slid to the insertion portion of the insertion hole. There is no need to worry about returning to the insertion section.

更に、仕切板と側板の固定と側板と天板および底板のいずれか、あるいは両方を同時に固定ができるようになり、簡単な構成で多層流路部材の組立構成ができるようになる。
Furthermore , it becomes possible to fix the partition plate and the side plate and / or the side plate, the top plate and the bottom plate at the same time, and to assemble the multilayer flow path member with a simple configuration.

第6の発明は、前記第1の発明の多層流路部材を超音波式流体計測装置の計測部に配置したものである。 A sixth invention is obtained by placing the first inventions of the multilayer flow path member in the measurement portion of the ultrasonic fluid measurement apparatus.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1に示すように、超音波式流体計測装置1の流体路2は、左右の鉛直流路3a、3bと、この左右の鉛直流路3a、3bの上端部同士を連結する水平流路4とで略逆U字状に形成されている。
(Embodiment 1)
As shown in FIG. 1, the fluid path 2 of the ultrasonic fluid measuring device 1 includes left and right vertical flow paths 3a and 3b and a horizontal flow path 4 that connects the upper ends of the left and right vertical flow paths 3a and 3b. And is formed in a substantially inverted U shape.

水平流路4は、上面が開口した断面長方形の矩形状をなす計測流路収容部5を有しており、この対向する短辺側壁部には送受波器取付部6が形成され、超音波計測部7を構成している。   The horizontal flow path 4 has a measurement flow path accommodating portion 5 having a rectangular shape with a rectangular cross section whose upper surface is open. A transducer mounting portion 6 is formed on the opposing short side wall portion, and ultrasonic waves are formed. The measuring unit 7 is configured.

そして、この計測流路収容部5には、流体を複数の扁平流路に区画する多層流路部材8が収納され、上方開放部が蓋部9で密閉されるようにしてある。   The measurement flow path accommodating portion 5 accommodates a multilayer flow path member 8 that divides the fluid into a plurality of flat flow paths, and the upper open portion is sealed by the lid portion 9.

前記計測流路収容部5における短辺側壁部の送受波器取付部6には、円形の貫通穴6aが設けることで、流動する流体を斜めに横切るような超音波伝播路6bが形成されている。このような超音波伝搬路6bが流れに対して角度をもって設定されている配置パターンは、所謂、Zパス(Z−path)またはZ法と呼ばれている。   The transducer mounting part 6 on the short side wall part in the measurement flow path accommodating part 5 is provided with a circular through hole 6a, so that an ultrasonic wave propagation path 6b that obliquely crosses the flowing fluid is formed. Yes. Such an arrangement pattern in which the ultrasonic wave propagation path 6b is set with an angle with respect to the flow is called a so-called Z path or Z method.

図2〜図4に示すように、多層流路部材8は、計測流路を複数の扁平流路10に区画するための薄板状部材からなる仕切板11と、これら仕切板11における流体の流れ方向に沿った縁部11aを支持する側板12,13と、前記側板12,13の上下方向に配置させた天板14、および底板15によって矩形箱状に形成されている。そして、前記左右の側板12,13に仕切板11が水平に所定間隔で保持されている。   As shown in FIGS. 2 to 4, the multilayer flow path member 8 includes a partition plate 11 made of a thin plate member for partitioning the measurement flow path into a plurality of flat flow paths 10, and fluid flow in these partition plates 11. The side plates 12 and 13 that support the edge 11a along the direction, the top plate 14 arranged in the vertical direction of the side plates 12 and 13, and the bottom plate 15 are formed in a rectangular box shape. The left and right side plates 12 and 13 hold the partition plate 11 horizontally at a predetermined interval.

側板12,13の内面には、前記仕切板11を所定間隔で保持するため複数本のスリット16が設けられている。このスリット16は、各仕切板11によって仕切られる扁平流路10の断面積が均一になるように、流体の流れに対して直交する上下方に沿って等間隔で設けられている。   A plurality of slits 16 are provided on the inner surfaces of the side plates 12 and 13 in order to hold the partition plate 11 at a predetermined interval. The slits 16 are provided at equal intervals along the upper and lower sides perpendicular to the fluid flow so that the cross-sectional areas of the flat flow paths 10 partitioned by the partition plates 11 are uniform.

また、多層流路部材10の側板12,13には、超音波伝搬路6bと対応して超音波通
過用開口17が設けられている。この開口17には、超音波を透過させることができる、例えば細かなメッシュ・パンチングメタル等のフィルタ部材18が取り付けられている。
Further, the side plates 12 and 13 of the multilayer flow path member 10 are provided with ultrasonic wave passing openings 17 corresponding to the ultrasonic wave propagation paths 6b. A filter member 18 such as a fine mesh punching metal that can transmit ultrasonic waves is attached to the opening 17.

仕切板11における縁部11aの前後、および中央部からは幅方向外側へ突出する支持部11bが形成されている。   Supporting portions 11b are formed to protrude outward in the width direction from the front and rear of the edge portion 11a and the central portion of the partition plate 11.

一方、側板12,13に設けられているスリット16には、前記支持部11bに対応した位置に挿入孔19が設けられており、これら挿入孔19を通して支持部11bの端面11cが外側に露出するようにしてある。   On the other hand, the slit 16 provided in the side plates 12 and 13 is provided with an insertion hole 19 at a position corresponding to the support portion 11b, and the end surface 11c of the support portion 11b is exposed to the outside through the insertion hole 19. It is like that.

また、挿入孔19は、支持部11bの幅と厚さより広い隙間の挿入部19aと、支持部11bの厚さと略同一の固定部19bと、これら挿入部19aと固定部19bをなだらかに結ぶガイド部19cとから形成されている。   The insertion hole 19 includes an insertion portion 19a having a gap wider than the width and thickness of the support portion 11b, a fixing portion 19b substantially the same as the thickness of the support portion 11b, and a guide that gently connects the insertion portion 19a and the fixing portion 19b. Part 19c.

ここで、仕切板11の支持部11bを側板12,13の挿入孔19の挿入部19aへ挿入したのち、ガイド部19cを介して固定部19bへスライドさせることで、側板12,13に仕切板11が固定される。   Here, after inserting the support portion 11b of the partition plate 11 into the insertion portion 19a of the insertion hole 19 of the side plates 12 and 13, the slide plate 11 is slid to the fixing portion 19b via the guide portion 19c, whereby the side plates 12 and 13 are moved to the partition plate. 11 is fixed.

これによって、仕切板11は挿入孔19の固定部19bで保持され、高精度で仕切板11の間隔を位置決めできるようになる。   Thus, the partition plate 11 is held by the fixing portion 19b of the insertion hole 19, and the interval between the partition plates 11 can be positioned with high accuracy.

つまり、側板12,134の挿入孔19の挿入部19aで、仕切板11の支持部11bの挿入しやすさを確保するとともに、固定部19bへスライドさせることで、支持部11bの高精度な固定が図られることとなる。   That is, the insertion portion 19a of the insertion hole 19 of the side plates 12 and 134 ensures the ease of insertion of the support portion 11b of the partition plate 11, and is slid to the fixing portion 19b, thereby fixing the support portion 11b with high accuracy. Will be achieved.

また、挿入部19aと固定部19bとをなだらかに結ぶガイド部19cで連絡するによって、前記作業がスムーズにできるようになっている。   Further, the above-described operation can be performed smoothly by communicating with the guide portion 19c that gently connects the insertion portion 19a and the fixing portion 19b.

さらに、側板12,13の挿入孔19の挿入部19aは、天板14、および底板15の両方に一体形成した閉塞手段20a,20bを差し込むことで閉塞されるように構成してある。   Further, the insertion portion 19 a of the insertion hole 19 of the side plates 12 and 13 is configured to be closed by inserting closing means 20 a and 20 b integrally formed on both the top plate 14 and the bottom plate 15.

よって、側板12,13への仕切板11の固定ために生じる挿入部19aの存在により生じる開口を閉塞することができるとともに、仕切板11の支持部11bが固定部19bから挿入部19aに戻ることも防止できるものである。   Therefore, the opening caused by the presence of the insertion portion 19a generated for fixing the partition plate 11 to the side plates 12 and 13 can be closed, and the support portion 11b of the partition plate 11 returns from the fixing portion 19b to the insertion portion 19a. Can also be prevented.

したがって、仕切板11と側板12,13の固定と、側板12,13と天板14、および底板15のいずれか、あるいは両方を同時に固定ができるようになり、簡単な構成で多層流路部材の組立が容易にできるようになる。   Accordingly, the partition plate 11 and the side plates 12 and 13 can be fixed, and the side plates 12 and 13 and the top plate 14 and / or the bottom plate 15 can be fixed at the same time. Assembling becomes easy.

つまり、仕切板11と側板12,13の固定は、仕切板11が内側に位置し、その両サイドを側板12,13で支持するようになっているとともに、その側板12,13の外側から閉塞手段20a,20bを一体形成したコ形形状の天板14、および底板15が押さえるようにしてある。   In other words, the partition plate 11 and the side plates 12 and 13 are fixed in such a manner that the partition plate 11 is positioned on the inner side and both sides thereof are supported by the side plates 12 and 13 and are closed from the outer side of the side plates 12 and 13. The U-shaped top plate 14 and the bottom plate 15 in which the means 20a and 20b are integrally formed are pressed.

またさらに、閉塞手段20a,20bで仕切板11の支持部11bが固定部19bから外れないようにしてあるとともに、挿入部19aにはまり込んだ閉塞手段20a,20bが抜け止めをするため、他の固定手段を用いなくても、多層流路部材の組立構成ができ、部品点数を少なくかつ組立工数も削減でき、安価で高精度の多層流路部材が得られるようになる。   Furthermore, the blocking means 20a, 20b prevents the support portion 11b of the partition plate 11 from being detached from the fixed portion 19b, and the blocking means 20a, 20b fitted into the insertion portion 19a prevent the other portions from being removed. Even if the fixing means is not used, the multilayer flow path member can be assembled, the number of parts can be reduced and the number of assembling steps can be reduced, and an inexpensive and highly accurate multilayer flow path member can be obtained.

特に、仕切板11と側板12,13の固定が外れようとする力、つまり、仕切板11の支持部11bが固定部19bから挿入部19aに戻って外れようとする力と、天板14、および底板156に一体形成した閉塞手段20a,20bを挿入孔挿入部19aにはめ込み保持する力の方向と異なることや、閉塞手段20a,20bの挿入部19aにはめ込み保持される力と閉塞手段20a,20bを一体形成した天板14、および底板15が側板12,13を押さえる力の方向が異なり干渉するため、より固定がしっかりするようになる。   In particular, the force that causes the partition plate 11 and the side plates 12 and 13 to be unfixed, that is, the force that the support portion 11b of the partition plate 11 returns from the fixing portion 19b to the insertion portion 19a, and the top plate 14, Further, the closing means 20a and 20b formed integrally with the bottom plate 156 are different from the direction of the force for fitting and holding the insertion means 19a in the insertion hole insertion portion 19a, and the force and the closing means 20a and 20a, Since the top plate 14 integrally formed with 20b and the bottom plate 15 interfere with each other in the direction of the force pressing the side plates 12 and 13, the fixation becomes more secure.

(実施の形態2)
図5〜図8は実施の形態2を示すもので、図3,4と同作用を行う構成には便宜上同一符号を付し、具体的説明は実施の形態1のものを援用する。
(Embodiment 2)
5 to 8 show the second embodiment. The same reference numerals are given to the components that perform the same operations as those in FIGS. 3 and 4 for convenience, and those of the first embodiment are used for specific description.

図5,6のように、挿入孔19は、支持部11bの幅と厚さより広い隙間の挿入部19aと、挿入部19aの下方向に位置させ、支持部11bの幅と略同一の幅を有する固定部19bと、これら挿入部19aと固定部19bをなだらかに結ぶガイド部19cから形成されている。   As shown in FIGS. 5 and 6, the insertion hole 19 is positioned below the insertion portion 19a with a gap wider than the width and thickness of the support portion 11b and the insertion portion 19a, and has a width substantially the same as the width of the support portion 11b. The fixing part 19b has a guide part 19c that gently connects the insertion part 19a and the fixing part 19b.

上記した構成で、仕切板11の支持部11bを側板12,13の挿入部19aへ挿入したのち、下方向に位置する固定部19bへスライドさせることで、側板12,13に仕切板11が固定されるようになる。   With the configuration described above, after inserting the support portion 11b of the partition plate 11 into the insertion portion 19a of the side plates 12 and 13, the partition plate 11 is fixed to the side plates 12 and 13 by sliding to the fixing portion 19b positioned downward. Will come to be.

つまり、側板12,13の挿入部19aで仕切板11の支持部11bの挿入しやすさを確保するとともに、固定部19bへスライドさせることで、仕切板11の支持部11bの高精度な固定を確保することができるようになる。   In other words, the insertion portions 19a of the side plates 12 and 13 ensure the ease of insertion of the support portions 11b of the partition plate 11, and the support portions 11b of the partition plates 11 are fixed with high precision by sliding them to the fixing portions 19b. It will be possible to secure.

このように、側板12,13の固定部19bに固定された仕切板11は保持代を側板112,13のほぼ板厚全域で、かつ、固定部19bの幅とすることができ、仕切板11の間隔を挿入孔19の固定部19bの位置精度に保持することができるので、挿入のしやすさという作業性を保持したまま、側板12,13への仕切板11の固定強度を十分確保するようにでき、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができることとなる。   In this way, the partition plate 11 fixed to the fixing portion 19b of the side plates 12 and 13 can have the holding margin almost the entire plate thickness of the side plates 112 and 13 and the width of the fixing portion 19b. Can be maintained with the positional accuracy of the fixing portion 19b of the insertion hole 19, so that the fixing strength of the partition plate 11 to the side plates 12 and 13 is sufficiently secured while maintaining the workability of ease of insertion. In addition, a highly accurate multilayer flow path member can be formed with a simple configuration without using a separate member for ensuring dimensional accuracy.

なお、実施の形態2では、仕切板11の支持部11bを側板12,13の挿入孔19の挿入部19aから固定部19bへスライドする方向が、仕切板11の積み重ねる方向と同一なので、積み重ねる仕切板11の支持部11bと固定部19bの幅と方向を変えることで、ひとつの挿入孔19で複数の仕切板11を固定することができるようになる。   In the second embodiment, the direction in which the support portion 11b of the partition plate 11 is slid from the insertion portion 19a of the insertion hole 19 of the side plates 12 and 13 to the fixing portion 19b is the same as the stacking direction of the partition plate 11, By changing the width and direction of the support portion 11 b and the fixing portion 19 b of the plate 11, the plurality of partition plates 11 can be fixed by one insertion hole 19.

例えば、図7に示すように、挿入孔19の挿入部19aの上下に固定部19bを設けることで、1つの挿入孔19で2枚の仕切板11の支持部11bを固定することができ、また、図8に示すように、挿入孔19に幅の異なる固定部19bとガイド部19cを多段に設けることで、1つの挿入孔19で複数の仕切板11の支持部11bを固定することができるようになる。   For example, as shown in FIG. 7, by providing the fixing portions 19b above and below the insertion portion 19a of the insertion hole 19, the support portions 11b of the two partition plates 11 can be fixed by one insertion hole 19, Further, as shown in FIG. 8, the support portions 11 b of the plurality of partition plates 11 can be fixed by one insertion hole 19 by providing the insertion holes 19 with fixing portions 19 b and guide portions 19 c having different widths. become able to.

また、実施の形態1の例では、挿入部19aの側部に固定19bを位置するようにしたが、これは、実施の形態2の例に比べ、仕切板11の支持部11bの上下面が挿入孔19の固定部19bで保持されるので、その保持力が強い利点があり、また、実施の形態2の例では、挿入部19aの下方向に固定部19bを位置するようにしたが、これは、移動距離が短いので作業性がよいという利点があり、閉塞手段20a,20bを挿入部19aに嵌め込むことで、保持力を得られるので、何れの構成を選択しても良くても良く、その他
各部の構成も本発明の目的を達成する範囲であればその構成はどのようなものであってもよい。
Further, in the example of the first embodiment, the fixing 19b is positioned on the side portion of the insertion portion 19a, but this is because the upper and lower surfaces of the support portion 11b of the partition plate 11 are different from the example of the second embodiment. Since it is held by the fixing portion 19b of the insertion hole 19, there is an advantage that the holding force is strong, and in the example of Embodiment 2, the fixing portion 19b is positioned below the insertion portion 19a. This has an advantage that workability is good because the moving distance is short, and a holding force can be obtained by fitting the closing means 20a, 20b into the insertion portion 19a, so any configuration may be selected. In addition, the configuration of each part may be any configuration as long as the object of the present invention is achieved.

以上のように本発明にかかる多層流路部材は、簡易な構成で高精度の多層流路部材を形成することができるようになり、信頼性の高い多層流路部材および該多層流路部材を用いた超音波式流体計測装置を提供することができるようになるので、ガスメータ等の用途に適用できる。   As described above, the multilayer channel member according to the present invention can form a highly accurate multilayer channel member with a simple configuration. Since the used ultrasonic fluid measuring apparatus can be provided, it can be applied to uses such as a gas meter.

本発明の実施の形態1における超音波式流体計測装置の分解斜視図1 is an exploded perspective view of an ultrasonic fluid measuring apparatus according to Embodiment 1 of the present invention. 同超音波式流体計測装置の要部断面図Cross-sectional view of the main part of the ultrasonic fluid measuring device 同超音波式流体計測装置の多層流路部材の分解斜視図Exploded perspective view of multilayer flow path member of the same ultrasonic fluid measuring device 多層流路部材の組立工程を示す説明図Explanatory drawing which shows the assembly process of a multilayer channel member 本発明の実施の形態2における多層流路部材の分解斜視図The disassembled perspective view of the multilayer flow-path member in Embodiment 2 of this invention 同多層流路部材の組立工程を示す説明図Explanatory drawing which shows the assembly process of the same multilayer flow path member 他の例における多層流路部材の組立工程を示す説明図Explanatory drawing which shows the assembly process of the multilayer flow-path member in another example さらに他の例における多層流路部材の組立工程を示す説明図Explanatory drawing which shows the assembly process of the multilayer flow-path member in another example. 従来の同超音波式流体計測装置の要部断面図Sectional view of the main part of the conventional ultrasonic fluid measuring device 従来の同超音波式流体計測装置の他の例の要部断面図Sectional drawing of the principal part of another example of the conventional ultrasonic fluid measuring device

符号の説明Explanation of symbols

1 超音波式流体計測装置
5 計測流路収容部
8 多層流路部材
11 仕切板
11b 支持部
12,13 側板
14 天板
20a,20b 閉塞手段
15 底板
19 挿入孔
19a 挿入部
19b 固定部
20a,20b 閉塞手段
DESCRIPTION OF SYMBOLS 1 Ultrasonic fluid measuring device 5 Measurement flow path accommodating part 8 Multilayer flow path member 11 Partition plate 11b Support part 12, 13 Side plate 14 Top plate 20a, 20b Closure means 15 Bottom plate 19 Insertion hole 19a Insertion part 19b Fixing part 20a, 20b Blocking means

Claims (2)

複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合し両縁部を支持し合う天板および底板とを備え、
前記仕切板の両縁部の一部に前記側板で支持される支持部を形成するとともに、前記側板に前記支持部を挿入する挿入孔を設け、
前記挿入孔は、前記支持部の幅および厚さより広い隙間とした挿入部と、前記挿入部に前記支持部を挿入する方向に直交する平面の上下方向に隣接させて配設され、前記支持部の幅と略同一の幅を有し前記支持部を固定する固定部とから形成し、
前記支持部を挿入部へ挿入してから前記固定部にスライドさせて前記側板に前記仕切板を固定した状態で生じる前記挿入部の隙間を閉塞手段で閉塞するようにし、
前記閉塞手段は前記天板および前記底板のいずれか一方、あるいは両方に一体形成した多層流路部材。
A partition plate that divides into a plurality of flat channels, a side plate that is orthogonal to the partition plate and supports both edge portions, and is arranged vertically in parallel with the partition plate, and is coupled to the side plate to support both edge portions. With a fitted top and bottom plate,
Forming a support portion supported by the side plate at a part of both edge portions of the partition plate, and providing an insertion hole for inserting the support portion into the side plate;
The insertion hole is disposed adjacent to an insertion portion having a gap wider than the width and thickness of the support portion, and an up-down direction of a plane perpendicular to the insertion direction of the support portion. A fixed portion that has a width substantially the same as the width of the support portion and fixes the support portion,
The support portion is inserted into the insertion portion and then slid to the fixing portion to close the gap of the insertion portion generated in a state where the partition plate is fixed to the side plate with a closing means,
It said closure means is either one, or a multilayer flow path member which is integrally formed on both the top plate and the bottom plate.
請求項1記載の多層流路部材を計測部に配置した超音波式流体計測装置。
An ultrasonic fluid measurement device in which the multilayer flow path member according to claim 1 is disposed in a measurement unit.
JP2008283846A 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same Expired - Fee Related JP5125997B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008283846A JP5125997B2 (en) 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same
US13/062,862 US8418566B2 (en) 2008-11-05 2009-11-05 Multi-layered flow passage member and ultrasonic wave fluid measuring device
CN200980134518.1A CN102144147B (en) 2008-11-05 2009-11-05 Multilayer channel member and ultrasonic fluid measuring device using same
PCT/JP2009/005889 WO2010052912A1 (en) 2008-11-05 2009-11-05 Multilayer channel member and ultrasonic fluid measuring device using same
CN201210333384.XA CN102944695B (en) 2008-11-05 2009-11-05 Multi-layered flow passage member and ultrasonic wave fluid measuring device
EP09824612A EP2343516A4 (en) 2008-11-05 2009-11-05 Multilayer channel member and ultrasonic fluid measuring device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283846A JP5125997B2 (en) 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same

Publications (2)

Publication Number Publication Date
JP2010112775A JP2010112775A (en) 2010-05-20
JP5125997B2 true JP5125997B2 (en) 2013-01-23

Family

ID=42301446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283846A Expired - Fee Related JP5125997B2 (en) 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same

Country Status (1)

Country Link
JP (1) JP5125997B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135686U (en) * 1983-02-28 1984-09-10 シャープ株式会社 Detachable device
JP3982894B2 (en) * 1998-01-24 2007-09-26 共栄工業株式会社 Connector
JP2003269417A (en) * 2002-03-13 2003-09-25 Yazaki Corp Straightening mesh unit and fixing method of straightening mesh
JP4459734B2 (en) * 2004-06-30 2010-04-28 東洋ガスメーター株式会社 Gas meter
JP4583831B2 (en) * 2004-07-27 2010-11-17 東洋ガスメーター株式会社 Gas meter
JP2008107234A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Ultrasonic fluid measuring apparatus

Also Published As

Publication number Publication date
JP2010112775A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5793644B2 (en) Ultrasonic flow meter
JP5413443B2 (en) Electronic equipment
US9551603B2 (en) Ultrasonic flow meter device
WO2010052912A1 (en) Multilayer channel member and ultrasonic fluid measuring device using same
JP4893754B2 (en) Channel device for fluid measurement and ultrasonic flow meter using the same
JP5126004B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP5125997B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JPWO2018078690A1 (en) Automotive electronics
JP5277911B2 (en) Fluid flow measuring device
JP5125996B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
WO2017168470A1 (en) Board guide member and housing
JP4898724B2 (en) Method for manufacturing multilayer flow path member of ultrasonic fluid measuring device
JP2014194987A (en) Resin housing
JP6391515B2 (en) Substrate storage container and manufacturing method thereof
JP2020086102A (en) Exterior structure and image formation device
JP2002118381A (en) Substrate housing case
JP4741207B2 (en) Gas meter
KR101171271B1 (en) Assembling jig
JP4898723B2 (en) Multi-layer flow path member of ultrasonic fluid measuring device
JP2020123688A (en) Shape correction structure for electronic device casing, electronic device casing, and electronic device
KR100881009B1 (en) A yoke of optical pick-up for disk drive and manufacturing method of it
JP6467851B2 (en) keyboard
JP5768225B2 (en) Sensor device
JP2010186973A (en) Electronic control apparatus
JP2021097161A (en) Electronic unit and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees