JP5124844B2 - Coke oven combustion state monitoring method - Google Patents

Coke oven combustion state monitoring method Download PDF

Info

Publication number
JP5124844B2
JP5124844B2 JP2007216213A JP2007216213A JP5124844B2 JP 5124844 B2 JP5124844 B2 JP 5124844B2 JP 2007216213 A JP2007216213 A JP 2007216213A JP 2007216213 A JP2007216213 A JP 2007216213A JP 5124844 B2 JP5124844 B2 JP 5124844B2
Authority
JP
Japan
Prior art keywords
combustion
concentration meter
soot
soot concentration
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007216213A
Other languages
Japanese (ja)
Other versions
JP2009046637A (en
Inventor
雄二郎 綱島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007216213A priority Critical patent/JP5124844B2/en
Publication of JP2009046637A publication Critical patent/JP2009046637A/en
Application granted granted Critical
Publication of JP5124844B2 publication Critical patent/JP5124844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークス炉の燃焼室での不完全燃焼を早期に特定して対処を行うためのコークス炉の燃焼状態監視方法に関する。   The present invention relates to a method for monitoring a combustion state of a coke oven for early identification and handling of incomplete combustion in a combustion chamber of a coke oven.

コークス炉は、炭化室と燃焼室とを水平方向に交互に配置し、これらの下方に蓄熱室を配置して成り、炭化室と、その両隣の燃焼室と、これらの各燃焼室にそれぞれ連通した蓄熱室とを一組として一窯を構成し、窯を複数並列に配置した炉団を形成する。コークス炉の各窯においては、炭化室に装入された石炭を、炉団方向に沿う両隣の燃焼室から燃料ガスの燃焼で生じた熱が供給されることによって乾留し、コークスを製造する。その際、炭化室内では、装入された粉状の石炭が熱分解反応により軟化溶融し、ガスやタール等の副産物が発生して離脱し、一方残留分は熱縮合等により塊状になり、コークスが生成する。   The coke oven is composed of carbonization chambers and combustion chambers arranged alternately in the horizontal direction, and a heat storage chamber arranged below them, which communicates with the carbonization chamber, its adjacent combustion chambers, and each of these combustion chambers. One kiln is configured with the heat storage chamber as a set, and a furnace group in which a plurality of kilns are arranged in parallel is formed. In each kiln of the coke oven, the coal charged in the carbonization chamber is dry-distilled by supplying heat generated by the combustion of fuel gas from the adjacent combustion chambers along the direction of the furnace group to produce coke. At that time, in the carbonization chamber, the charged coal powder is softened and melted by a thermal decomposition reaction, and by-products such as gas and tar are generated and separated, while the residue is agglomerated by thermal condensation or the like, and coke. Produces.

炭化室内に生成されたコークスは、炉長方向の一端の窯口に設置された押出機により他端の窯口から押し出されて排出され、その他端の窯口に設置されたコークガイド車により消火車に導かれて積み込まれる。この操作を窯出しという。窯出しの際、押出機およびコークガイド車は、それぞれ、コークス炉において、押出機が設置される側(以下、「P/S」という)およびコークガイド車及び消火車が設置される側(以下、「C/S」という)に炉団方向に沿って敷設された軌条上を移動し、窯出しの対象となる炭化室の窯口に一致させられる。   The coke generated in the carbonization chamber is pushed out by the extruder installed at the kiln at one end in the furnace length direction and discharged from the kiln at the other end, and extinguished by a coke guide car installed at the other kiln. It is led to the car and loaded. This operation is called taking out the kiln. When leaving the kiln, the extruder and the coke guide car are respectively the side in which the extruder is installed (hereinafter referred to as “P / S”) and the side in which the coke guide car and the fire extinguishing car are installed (hereinafter referred to as “coke oven”). , Referred to as “C / S”) on the rails laid along the direction of the furnace group, and is made to coincide with the kiln entrance of the carbonization chamber to be subjected to kiln out.

空の炭化室内には、炭化室の上方に設置された石炭装入車から、炭化室の天井部に設けられた装入口を通じて、石炭が投下され装入される。この操作を装炭という。   Coal is dropped and charged into an empty carbonization chamber from a coal charging vehicle installed above the carbonization chamber through an inlet provided in the ceiling of the carbonization chamber. This operation is called charcoal charging.

ここで、コークスを窯出しした後に新たに石炭を装炭するにあたり、隣接する窯の炭化室に石炭を装入すると、装入前の石炭の温度は常温程度と低いことから、炭化室の温度が急激に低下し、炭化室と燃焼室とを仕切る炉壁煉瓦に亀裂が発生しさらに拡大する。   Here, when coal is newly charged after the coke is discharged from the kiln, if the coal is charged into the carbonization chamber of the adjacent kiln, the temperature of the coal before charging is as low as room temperature, so the temperature of the carbonization chamber Decreases rapidly, cracks occur in the furnace wall brick that separates the carbonization chamber and the combustion chamber and further expands.

このような亀裂の発生や拡大を防止するために、実操業では、コークス炉の各窯に端から順に1、2、3、・・・と番号を付し、装炭の際は、例えば、窯番号1、6、11、・・・、2、7、12、・・・、3、8、13、・・・の順に窯に石炭を装入するといったように、窯を4つずつあけて順に石炭の装炭を行う。そして、窯出しの際は、例えば、窯番号3、5、2、4、1、8、10、7、9、6、13、・・・の順に窯からコークスを排出するといったように、隣接する5つの窯を順に一群としてまとめ、一窯群ずつその中で窯を少なくとも1つあけて順にコークスの窯出しを行う。このように窯をあけて装炭および窯出しを行えば、コークス炉全体の温度を均一に保持することができるため、炭化室の急激な温度低下が抑えられ、亀裂の発生や拡大を防止することができる。   In order to prevent the occurrence and expansion of such cracks, in actual operation, numbers are assigned to the kilns of the coke oven in order from the end, 1, 2, 3,... Open four kilns at a time, such as charging coal into the kiln in the order of kiln numbers 1, 6, 11, ... 2, 7, 12, ... 3, 8, 13, ... Then, coal is loaded in order. And when leaving the kiln, for example, the coke is discharged from the kiln in the order of kiln numbers 3, 5, 2, 4, 1, 8, 10, 7, 9, 6, 13,. The five kilns are collected as a group in order, and at least one kiln is opened in each kiln group, and the coke is discharged in order. If the kiln is opened and the charcoal and the kiln are removed in this way, the temperature of the entire coke oven can be maintained uniformly, so that a rapid temperature decrease in the carbonization chamber can be suppressed, and cracking and expansion can be prevented. be able to.

また、石炭を乾留するには多大な熱量が必要であり、その熱は、燃焼室内で燃料ガスと空気を混合して燃焼させたときの燃焼熱が用いられる。その際、燃料ガスおよび空気(以下、「燃焼用ガス」ともいう)は、蓄熱室を通じて予熱された後に燃焼室に導入され、燃焼することによって燃焼効率を向上させている。燃焼後の排ガスは、隣の列の蓄熱室を経て排出され、その蓄熱室で排熱が回収される。このようなガス(燃焼用ガスおよび排ガス)の流れは、15〜30分程度の一定期間が経過する度に切り替えられ、これにより、蓄熱室では、排ガスから排熱を回収する機能と、先に回収した排熱で燃焼用ガスを予熱する機能とが順次切り替わる。このガス流れの切替え(以下、「燃焼切替え」ともいう)は、蓄熱室での熱交換効率を向上させるために行われる。   In addition, a large amount of heat is required to dry-distill coal, and the heat of combustion when the fuel gas and air are mixed and burned in the combustion chamber is used. At that time, fuel gas and air (hereinafter also referred to as “combustion gas”) are preheated through the heat storage chamber and then introduced into the combustion chamber to burn, thereby improving combustion efficiency. The exhaust gas after combustion is discharged through the heat storage chamber in the adjacent row, and the exhaust heat is recovered in the heat storage chamber. The flow of such gas (combustion gas and exhaust gas) is switched each time a fixed period of about 15 to 30 minutes elapses, whereby the heat storage chamber has a function of recovering exhaust heat from the exhaust gas, The function of preheating the combustion gas with the recovered exhaust heat is sequentially switched. This gas flow switching (hereinafter also referred to as “combustion switching”) is performed in order to improve the heat exchange efficiency in the heat storage chamber.

図1は、燃焼切替えを説明するための従来一般のコークス炉の全体構成を模式的に示す斜視図であって、同図(a)と同図(b)とは燃焼切替えによって互いにガス流れが相反する状態を示している。図2は、燃焼切替えを説明するための従来一般のコークス炉の構成を模式的に示す図である。   FIG. 1 is a perspective view schematically showing the overall configuration of a conventional general coke oven for explaining combustion switching. FIG. 1 (a) and FIG. It shows a conflicting state. FIG. 2 is a diagram schematically showing a configuration of a conventional general coke oven for explaining combustion switching.

図1に示すように、コークス炉は、燃焼室1が炉団方向に複数並列に配置され、隣接する燃焼室1同士の間にそれぞれ炭化室2が配置されており、これらの下方に蓄熱室3が炉団方向に複数並列に配置されている。燃焼室1は、炭化室に沿って、一般に20から40個に区画別けされており、各区画はフリューと呼ばれている。フリューは上部が互いに連絡し燃焼側と排気側となる2フリューを一組として炉長方向に区画され、蓄熱室3は、燃焼室1の各フリューに対応するように区画されている。燃焼室1の各フリューは、それぞれ区画された蓄熱室3に連通している。こうして、コークス炉は、炭化室2と、その両隣の燃焼室1と、これらの各燃焼室1にそれぞれ連通した蓄熱室3とを一組とした窯が、炉団方向に複数並列に配置された状態になっている。   As shown in FIG. 1, in the coke oven, a plurality of combustion chambers 1 are arranged in parallel in the direction of the furnace group, and carbonization chambers 2 are arranged between adjacent combustion chambers 1, and a heat storage chamber is provided below these chambers. A plurality of 3 are arranged in parallel in the furnace group direction. The combustion chamber 1 is generally divided into 20 to 40 sections along the carbonization chamber, and each section is called a flue. The flues are partitioned in the furnace length direction as a set of two flues that communicate with each other at the upper part and are on the combustion side and the exhaust side, and the heat storage chamber 3 is partitioned so as to correspond to each ful of the combustion chamber 1. Each flue of the combustion chamber 1 communicates with the partitioned heat storage chamber 3. Thus, in the coke oven, a plurality of kilns each including a carbonization chamber 2, a combustion chamber 1 adjacent to the coking chamber, and a heat storage chamber 3 communicating with each combustion chamber 1 are arranged in parallel in the furnace group direction. It is in the state.

また、コークス炉は、その炉長方向の両端となるP/SおよびC/Sに、炉団方向に沿った一対の煙道4、5を備えている。P/Sの煙道4には、各燃焼室1の2フリューのうちの一方のフリューに連通した蓄熱室3から図示しない排気管が接続され、C/Sの煙道5には、他方のフリューに連通した蓄熱室3から図示しない排気管が接続されている。P/Sの煙道4とC/Sの煙道5には、燃焼切替えに従って、蓄熱室3から排ガスが交互に排出される。P/Sの煙道4とC/Sの煙道5は、互いに合流して煙突6につながっており、P/Sの煙道4とC/Sの煙道5それぞれに排出された排ガスは、煙突6から外部へ放出される。   Moreover, the coke oven is provided with a pair of flues 4 and 5 along the furnace group direction at P / S and C / S which are both ends in the furnace length direction. An exhaust pipe (not shown) is connected to the P / S flue 4 from the heat storage chamber 3 communicating with one of the two flues of each combustion chamber 1, and the other exhaust pipe is connected to the C / S flue 5. An exhaust pipe (not shown) is connected from the heat storage chamber 3 communicating with the flue. Exhaust gas is alternately discharged from the heat storage chamber 3 to the P / S flue 4 and the C / S flue 5 in accordance with the combustion switching. The P / S flue 4 and the C / S flue 5 merge together and are connected to the chimney 6. The exhaust gas discharged into the P / S flue 4 and the C / S flue 5 respectively is , Discharged from the chimney 6 to the outside.

図1(a)に示すガス流れの場合、図1(a)中の実線矢印で示す方向に、燃焼用ガスおよび排ガスが流れる。このときのガス流れは、図2中の実線矢印で示すようになり、燃焼用ガスが図示しない供給用配管を通じて蓄熱室3Aに供給される。このとき、蓄熱室3Aは、当該ガス流れに切り替わる前段階で排ガスの排熱(顕熱)を回収して蓄えており、この蓄熱室3Aに供給された燃焼用ガスは、ここで予熱される。   In the case of the gas flow shown in FIG. 1A, the combustion gas and the exhaust gas flow in the direction indicated by the solid arrow in FIG. The gas flow at this time is as shown by the solid line arrow in FIG. 2, and the combustion gas is supplied to the heat storage chamber 3A through a supply pipe (not shown). At this time, the heat storage chamber 3A collects and stores the exhaust heat (sensible heat) of the exhaust gas before switching to the gas flow, and the combustion gas supplied to the heat storage chamber 3A is preheated here. .

予熱された燃焼用ガスは、燃焼室1の一方のフリューに導入され、燃焼して上昇する。この排ガスは、上部で連絡している隣のフリューを下降し、さらに隣の蓄熱室3Bに引き落とされた後、P/Sの煙道4に排出される。このとき、蓄熱室3Bは、排ガスの排熱を回収して蓄える。P/Sの煙道4に排出された排ガスは、煙突6を通じて外部へ放出される。   The preheated combustion gas is introduced into one flue of the combustion chamber 1 and combusts and rises. The exhaust gas descends the adjacent flue connected at the upper part, is further drawn down to the adjacent heat storage chamber 3B, and is then discharged into the P / S flue 4. At this time, the heat storage chamber 3B collects and stores the exhaust heat of the exhaust gas. The exhaust gas discharged to the P / S flue 4 is discharged to the outside through the chimney 6.

この状態からガス流れが切り替えられると、図1(b)中の破線矢印で示す方向に、燃焼用ガスおよび排ガスが流れる。このときのガス流れは、図2中の破線矢印で示すようになり、蓄熱室3A、3B、および燃焼室1では、上記とは逆方向に、燃焼用ガスおよび排ガスが流れる。このとき、上記とは逆に、蓄熱室3Aは、排ガスから排熱を回収し、一方蓄熱室3Bは、先に回収した排熱で燃焼用ガスを予熱する。排ガスは、C/Sの煙道5に排出され、煙突6を通じて外部へ放出される。   When the gas flow is switched from this state, the combustion gas and the exhaust gas flow in the direction indicated by the broken-line arrow in FIG. The gas flow at this time is as shown by broken-line arrows in FIG. 2, and in the heat storage chambers 3A, 3B and the combustion chamber 1, combustion gas and exhaust gas flow in the opposite directions. At this time, contrary to the above, the heat storage chamber 3A recovers the exhaust heat from the exhaust gas, while the heat storage chamber 3B preheats the combustion gas with the exhaust heat recovered earlier. The exhaust gas is discharged to the C / S flue 5 and discharged outside through the chimney 6.

このようなガス流れにおいて、燃焼室1への燃焼用ガスの導入、ならびにP/Sの煙道4およびC/Sの煙道5への排ガスの排出は、煙突6のドラフト力により行われる。   In such a gas flow, the introduction of the combustion gas into the combustion chamber 1 and the discharge of the exhaust gas into the P / S flue 4 and the C / S flue 5 are performed by the draft force of the chimney 6.

ところで、燃焼室で不完全燃焼が起こった場合、煤が発生し煙突より黒煙として外部に放出されることから、環境問題が生じる。また、不完全燃焼が起こると、石炭の乾留に要する熱量が低下するため、石炭の乾留が不十分となってコークスの品質が悪化し、乾留熱量原単位も悪化する。さらに、未処理のガスやタール等が窯出し時に系外へ排出され、環境が汚染される。そのため、燃焼室での燃焼状態は重要な管理項目の一つとされている。   By the way, when incomplete combustion occurs in the combustion chamber, soot is generated and discharged as black smoke from the chimney, resulting in an environmental problem. Further, when incomplete combustion occurs, the amount of heat required for the carbonization of coal is reduced, so that the coal is inadequately carbonized, the quality of coke is deteriorated, and the basic unit of heat of dry distillation is also deteriorated. Furthermore, untreated gas, tar, etc. are discharged out of the system when leaving the kiln, and the environment is polluted. Therefore, the combustion state in the combustion chamber is regarded as one of the important management items.

特に、燃焼室下部に設けられている燃焼用ガスの取入口の弁は、開度が慎重に調整される。通常、煙突のドラフト等によるガス吸引力、および燃焼用ガスの取入口の弁開度は一定であり、燃焼室での燃焼状態は不完全燃焼とはならず、煙突から黒煙も発生しない。しかし、下記の図3、図4に示す状況のとき不完全燃焼が起こる。   In particular, the opening of the combustion gas intake valve provided at the lower portion of the combustion chamber is carefully adjusted. Normally, the gas suction force by the chimney draft or the like and the valve opening of the combustion gas intake are constant, and the combustion state in the combustion chamber does not become incomplete combustion, and black smoke is not generated from the chimney. However, incomplete combustion occurs in the situation shown in FIGS.

図3は、炉壁煉瓦の損傷に起因して不完全燃焼が起こる状況を示す図である。同図に示すように、炭化室2と燃焼室1とを仕切る炉壁煉瓦2aに、亀裂、目地切れ、貫通等の損傷が生じており、この場合、炭化室2内の未燃ガスや粉炭が燃焼室1側に漏れ込み、これにより、燃焼室1で不完全燃焼が起こる。   FIG. 3 is a diagram illustrating a situation in which incomplete combustion occurs due to damage to the furnace wall brick. As shown in the figure, the furnace wall brick 2a that partitions the carbonization chamber 2 and the combustion chamber 1 is damaged, such as cracks, joints, and penetrations. In this case, unburned gas and pulverized coal in the carbonization chamber 2 are present. Leaks into the combustion chamber 1, thereby causing incomplete combustion in the combustion chamber 1.

図4は、燃焼切替えに伴う設備障害に起因して不完全燃焼が起こる状況を示す図である。同図に示すように、ガス流れが切り替わる度に、燃焼用ガス取入口の弁は開閉するが、引掛り等の設備障害で適正な開度とならない場合に、燃焼室1で不完全燃焼が起こる。   FIG. 4 is a diagram showing a situation where incomplete combustion occurs due to equipment failure accompanying combustion switching. As shown in the figure, every time the gas flow is switched, the valve of the combustion gas intake opens and closes. However, when the opening degree is not appropriate due to equipment failure such as catching, incomplete combustion occurs in the combustion chamber 1. Occur.

不完全燃焼を抑え煙突からの黒煙の発生を抑制するために、炉壁煉瓦に亀裂、目地切れ、貫通等の損傷が生じた場合は、補修により損傷箇所に補修材を溶射し、場合によっては煉瓦を積み替え、一方、燃焼切替えに伴う設備障害が発生した場合は、その是正を行う必要がある。特に近年の高い環境意識から、早期の原因究明と対処が求められる。   In order to suppress incomplete combustion and suppress the generation of black smoke from the chimney, if the furnace wall brick is damaged, such as cracks, joints, penetration, etc., the repair material is sprayed to the damaged part by repair, depending on the case In the meantime, bricks are transshipped. On the other hand, if a facility failure occurs due to combustion switching, it is necessary to correct it. In particular, early investigation of the cause and countermeasures are required due to the recent high environmental awareness.

そこで、前記図1および図2に示すように、P/Sの煙道4とC/Sの煙道5が合流した後の経路中、一般には煙突6の下部に、煤煙濃度計10が設置されている。この煤煙濃度計10は、ダスト濃度計または煤塵濃度計とも称され、投光器と受光器を用いて光の透過度を測定することにより、排ガス中の煤煙量を連続的に把握できるものであり、不完全燃焼による黒煙(煤や漏れ込み石炭)の発生を監視している。   Therefore, as shown in FIGS. 1 and 2, a smoke concentration meter 10 is generally installed at the lower part of the chimney 6 in the path after the P / S flue 4 and the C / S flue 5 merge. Has been. This soot concentration meter 10 is also called a dust concentration meter or a soot concentration meter, and can continuously measure the amount of soot in the exhaust gas by measuring light transmittance using a projector and a light receiver. Monitors the generation of black smoke (soot and leaking coal) due to incomplete combustion.

また、特許文献1には、燃焼室毎に炉壁煉瓦を撮影しその画像から亀裂の大きさを検出する亀裂の測定方法が記載されている。しかし、一般的なコークス炉ではフリューが1000箇所以上、燃料ガスおよび空気の取入口が数十箇所以上あるため、前記特許文献1に記載の方法は、不完全燃焼の発生原因および発生箇所が特定されていないときに、早期の対処が困難である。   Patent Document 1 describes a crack measurement method in which a furnace wall brick is photographed for each combustion chamber and the size of the crack is detected from the image. However, since a general coke oven has 1000 or more flues and several dozen or more intake ports for fuel gas and air, the method described in Patent Document 1 identifies the cause and location of incomplete combustion. When not, early coping is difficult.

また、特許文献2には、煙突の下部に設けた煤塵濃度計により排ガス中のCO濃度を測定し、そのCO濃度が所定値以上になったときの窯番号を記憶しておき、当該窯による乾留の開始に際し、燃焼室への燃料ガスの供給を一時停止させることにより黒煙の発生を防止する方法が記載されている。特許文献3には、不完全燃焼の起こる窯の燃焼室に空気を吹き込むことにより黒煙の発生を防止する方法が記載されている。しかし、前記特許文献2および3に記載の方法は、一時的に黒煙の発生を防止するに過ぎず、さらに、乾留に要する熱量が低下するため、コークスの品質悪化を招く。   In Patent Document 2, the CO concentration in the exhaust gas is measured by a dust concentration meter provided at the lower part of the chimney, the kiln number when the CO concentration becomes a predetermined value or more is stored, A method for preventing the generation of black smoke by temporarily stopping the supply of fuel gas to the combustion chamber at the start of dry distillation is described. Patent Document 3 describes a method of preventing the generation of black smoke by blowing air into a combustion chamber of a kiln where incomplete combustion occurs. However, the methods described in Patent Documents 2 and 3 merely prevent the generation of black smoke temporarily, and further reduce the amount of heat required for dry distillation, leading to deterioration of coke quality.

また、特許文献4には、装炭後に、煙突下部に設置の煤塵濃度計により排ガス中の煤煙濃度を測定し、その煤煙濃度に応じて決定された時間、燃料ガスの供給および排ガスの排出を一時停止させることにより黒煙の発生を防止する方法が記載されている。特許文献5には、煙突下部に設けた煤煙濃度計により排ガス中の煤煙濃度を測定し、その煤煙濃度を、装炭水分、排ガス量、および濃度測定位置から各窯までの距離に基づいて補正した指標を用いて、各窯の炉壁煉瓦の状態を評価する方法が記載されている。   Further, in Patent Document 4, after coal loading, the smoke concentration in the exhaust gas is measured by a soot concentration meter installed at the lower part of the chimney, and the supply of fuel gas and the discharge of exhaust gas are determined for the time determined according to the smoke concentration. A method for preventing the generation of black smoke by temporarily stopping is described. In Patent Document 5, the smoke concentration in the exhaust gas is measured by a smoke concentration meter provided at the lower part of the chimney, and the smoke concentration is corrected based on the moisture content of the coal, the amount of exhaust gas, and the distance from the concentration measurement position to each kiln. A method for evaluating the state of the furnace wall bricks of each kiln using the measured index is described.

しかし、不完全燃焼の起こっている窯からの排ガスは、正常に燃焼している他の窯からの排ガスおよび余剰酸素により希釈されて煙突に至ることから、前記特許文献2、4および5に記載の方法のような煙突での煤煙濃度の測定では、不完全燃焼の起こっていることを見逃すおそれがある。   However, since the exhaust gas from the kiln in which incomplete combustion has occurred is diluted with exhaust gas from other kilns that are normally burning and surplus oxygen to reach the chimney, it is described in Patent Documents 2, 4, and 5. In the measurement of the smoke density at the chimney as in the above method, it may be overlooked that incomplete combustion has occurred.

さらに、前記特許文献1〜5に記載の方法では、下記の図5に示すような状況のときに、黒煙の発生を引き起こす不完全燃焼が、燃焼室の炉壁煉瓦の損傷によって発生したものか、それとも燃焼切替えに伴う設備障害によって発生したものかを判定することが困難である。   Furthermore, in the methods described in Patent Documents 1 to 5, in the situation shown in FIG. 5 below, incomplete combustion causing black smoke is caused by damage to the furnace wall bricks in the combustion chamber. It is difficult to determine whether it is caused by equipment failure accompanying combustion switching.

図5は、煙突下部に設置した煤煙濃度計による測定での指示値の一例を示すタイムチャートである。同図に示す煤煙濃度計の指示値は、煤煙濃度計による測定値であって、不完全燃焼の度合い表す。同図に示す18:00から20:30の期間中、30分毎に燃焼切替えを行っているが、煤煙濃度計の指示値は不定期で不規則となっており、これだけでは、不完全燃焼の発生が、炉壁煉瓦の損傷を要因とするものか、それとも燃焼切替えに伴う設備障害を要因とするものかを判定できない。   FIG. 5 is a time chart showing an example of the indicated value in the measurement by the smoke concentration meter installed at the lower part of the chimney. The indicated value of the soot concentration meter shown in the figure is a value measured by the soot concentration meter and represents the degree of incomplete combustion. During the period from 18:00 to 20:30 shown in the figure, combustion is switched every 30 minutes, but the indicated value of the soot concentration meter is irregular and irregular. It is not possible to determine whether the occurrence of this is due to damage to the furnace wall bricks or due to equipment failure associated with combustion switching.

また、特許文献6には、各窯の蓄熱室から煙道への排ガス経路にそれぞれ煤煙濃度計を設置し、煤煙濃度が上昇したり、煤煙濃度の上昇が予測されるときに、別途集塵機を有する迂回経路に排ガスを導く方法が記載されている。しかし、前記特許文献6に記載の方法は、100程度ある窯の蓄熱室からの排ガス経路すべてに、煤煙濃度計および迂回経路を設ける必要があり、莫大なコスト負担を強いられる。さらに、煙道をコークス炉の両端に備える場合、煤煙濃度計および迂回経路の設置が倍増することから、コスト負担が一層増大する。しかも、迂回経路を設置するスペースの問題もあり、正規の排ガス経路と迂回経路とに切り替える複雑な制御システムが必要となる問題もある。   In Patent Document 6, a smoke concentration meter is installed in the exhaust gas path from the heat storage chamber of each kiln to the flue, and when a smoke concentration rises or a smoke concentration rise is predicted, a separate dust collector is installed. A method for directing exhaust gas to a detour path is described. However, in the method described in Patent Document 6, it is necessary to provide a soot concentration meter and a detour path in all exhaust gas paths from the heat storage chambers of about 100 kilns, which imposes an enormous cost burden. Further, when the flue is provided at both ends of the coke oven, the installation of the soot concentration meter and the detour path doubles, which further increases the cost burden. In addition, there is a problem of a space for installing a detour route, and there is a problem that a complicated control system for switching between a regular exhaust gas route and a detour route is required.

特開昭62−288503号公報Japanese Patent Laid-Open No. 62-288503 特開平5−239464号公報JP-A-5-239464 特開平10−168459号公報Japanese Patent Laid-Open No. 10-168458 特開平6−256764号公報JP-A-6-256564 特開2004−203966号公報JP 2004-203966 A 特開平6−63334号公報JP-A-6-63334

本発明は、上記の問題に鑑みてなされたものであり、黒煙を引き起こす不完全燃焼の発生を簡単な構成で早期に特定し対処することが可能なコークス炉の燃焼状態監視方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a method for monitoring the combustion state of a coke oven that can quickly identify and deal with the occurrence of incomplete combustion that causes black smoke with a simple configuration. For the purpose.

上記目的を達成するため、本発明によるコークス炉の燃焼状態監視方法は、炭化室と燃焼室と蓄熱室から構成される窯が複数並列に配置され、互いに合流して煙突につながる一対の煙道を備えて成り、各煙道には燃焼切替えに従って蓄熱室から排ガスが交互に排出されるコークス炉において、各煙道の合流前の経路中にそれぞれ第1煤煙濃度計、第2煤煙濃度計を設けており、第1煤煙濃度計による測定値と第2煤煙濃度計による測定値に基づいて、燃焼室での不完全燃焼の有無を判定する。   In order to achieve the above object, a method for monitoring a combustion state of a coke oven according to the present invention includes a pair of flues in which a plurality of kilns each including a carbonization chamber, a combustion chamber, and a heat storage chamber are arranged in parallel and connected to a chimney. In a coke oven in which exhaust gas is alternately discharged from the heat storage chamber according to combustion switching in each flue, a first soot concentration meter and a second soot concentration meter are respectively provided in the path before the joining of each flue. Based on the measured value by the first soot concentration meter and the measured value by the second soot concentration meter, the presence or absence of incomplete combustion in the combustion chamber is determined.

ここで、本発明によるコークス炉の燃焼状態監視方法は、上記の構成を前提として、各煙道の経路中、互いに隣接する複数の窯を一群とした窯群同士の間に、それぞれ第1煤煙濃度計および第2煤煙濃度計を設けており、一定期間の経過に応じて燃焼切替えが行われる度に、その期間の各第1煤煙濃度計による測定値の平均値と、各第2煤煙濃度計による測定値の平均値とをそれぞれ算出し、互いに上下流で隣接する第1煤煙濃度計同士の測定平均値の差、または互いに上下流で隣接する第2煤煙濃度計同士の測定平均値の差が、所定の閾値を超えた場合、その下流側の窯群のうちの燃焼室で不完全燃焼が発生したと判定するHere, the method for monitoring the combustion state of the coke oven according to the present invention is based on the above configuration, and the first soot is disposed between the kiln groups including a plurality of kilns adjacent to each other in the path of each flue. A densitometer and a second soot concentration meter are provided, and each time combustion switching is performed as a certain period elapses, the average value of the measured values by each first soot concentration meter during that period and each second soot concentration The average value of the measured values by the meter is calculated, and the difference between the measured average values of the first soot concentration meters adjacent upstream and downstream of each other, or the measured average value of the second soot concentration meters adjacent to each other upstream and downstream of each other When the difference exceeds a predetermined threshold value, it is determined that incomplete combustion has occurred in the combustion chamber of the downstream kiln group .

また、一定期間の経過に応じて燃焼切替えが行われる度に、その期間の前記窯群同士の間に設けられた第1煤煙濃度計による測定値の平均値と、第2煤煙濃度計による測定値の平均値とをそれぞれ算出し、隣り合う期間における第1煤煙濃度計の測定平均値と、第2煤煙濃度計の測定平均値とを比較して、両者の差が所定の閾値を超えた場合、燃焼切替えに伴う設備障害に起因して燃焼室で不完全燃焼が発生したと判定することが好ましい。
Moreover, whenever combustion switching is performed according to progress of a fixed period, the average value of the measured value by the 1st smoke concentration meter provided between the said kiln groups of the period, and the measurement by the 2nd smoke concentration meter The average value of each value was calculated, and the measurement average value of the first soot concentration meter and the measurement average value of the second soot concentration meter in the adjacent period were compared, and the difference between the two exceeded a predetermined threshold value. In this case, it is preferable to determine that incomplete combustion has occurred in the combustion chamber due to equipment failure associated with combustion switching .

本発明のコークス炉の燃焼状態監視方法によれば、各煙道にそれぞれ第1煤煙濃度計、第2煤煙濃度計を設置するという簡単な構成によって、両煤煙濃度計の測定値より、黒煙を引き起こす不完全燃焼の発生を早期に特定することができ、早期に対処することが可能になる。   According to the method for monitoring the combustion state of the coke oven of the present invention, the black smoke can be obtained from the measured values of the two smoke concentration meters with a simple configuration in which a first smoke concentration meter and a second smoke concentration meter are installed in each flue. It is possible to identify the occurrence of incomplete combustion that causes the problem at an early stage and to deal with it early.

以下に、本発明の実施形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図6は、本発明のコークス炉の燃焼状態監視方法を説明するためのコークス炉の全体構成の一例を模式的に示す斜視図である。同図では、実線矢印で示すように、燃焼切替えによって排ガスがP/Sの煙道4に排出される場合のガス流れの状態を示している。同図において、前記図1での構成と同じ構成には同一の符号を付し、重複する説明は適宜省略する。   FIG. 6 is a perspective view schematically showing an example of the entire configuration of the coke oven for explaining the coke oven combustion state monitoring method of the present invention. In the figure, as indicated by solid arrows, the state of gas flow when exhaust gas is discharged to the P / S flue 4 by combustion switching is shown. In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted as appropriate.

図6に示すように、本発明におけるコークス炉は、P/Sの煙道4とC/Sの煙道5の合流前の経路中に、それぞれ第1煤煙濃度計11と第2煤煙濃度計12を設置している。その第1煤煙濃度計11と第2煤煙濃度計12は、各煙道4、5の最下流に配置された窯と合流地点との間に、P/SとC/Sで対になるように設置されている。   As shown in FIG. 6, the coke oven according to the present invention includes a first soot concentration meter 11 and a second soot concentration meter in the paths before joining the P / S flue 4 and the C / S flue 5, respectively. 12 is installed. The first soot concentration meter 11 and the second soot concentration meter 12 are paired at P / S and C / S between the kiln arranged at the most downstream of each flue 4 and 5 and the junction. Is installed.

第1煤煙濃度計11、第2煤煙濃度計12としては、投光器と受光器を用いて光の透過度を測定する光透過式のものを採用することができる。第1煤煙濃度計11と第2煤煙濃度計12は、それぞれP/Sの煙道4とC/Sの煙道5を流れる排ガス中の煤煙量を連続的に把握できるものであり、燃焼室1で起こった不完全燃焼による黒煙(煤や漏れ込み石炭)の発生を監視する。もっとも、第1煤煙濃度計11、第2煤煙濃度計12としては、燃焼室1で起こった不完全燃焼を排ガス中の酸素濃度から検知できる酸素濃度計を採用することも可能である。   As the 1st soot concentration meter 11 and the 2nd soot concentration meter 12, the light transmission type thing which measures the transmittance | permeability of light using a light projector and a light receiver is employable. The first soot concentration meter 11 and the second soot concentration meter 12 can continuously grasp the amount of soot in the exhaust gas flowing through the P / S flue 4 and the C / S flue 5, respectively. Monitor the generation of black smoke (soot and leaking coal) due to incomplete combustion in 1 However, as the first soot concentration meter 11 and the second soot concentration meter 12, it is possible to employ an oxygen concentration meter that can detect incomplete combustion that has occurred in the combustion chamber 1 from the oxygen concentration in the exhaust gas.

また、本発明におけるコークス炉は、従来のコークス炉と同様に、P/Sの煙道4とC/Sの煙道5が合流した後の経路中である煙突6の下部に、煤煙濃度計10を設置している。この煙突下部の煤煙濃度計10は、特に設置しなくてもよいが、第1煤煙濃度計11による測定値、および第2煤煙濃度計12による測定値の検証に用いることができる。   The coke oven according to the present invention has a soot concentration meter in the lower part of the chimney 6 in the path after the P / S flue 4 and the C / S flue 5 merge, as in the conventional coke oven. 10 is installed. The smoke concentration meter 10 at the lower part of the chimney need not be particularly installed, but can be used for verification of the measurement value by the first smoke concentration meter 11 and the measurement value by the second smoke concentration meter 12.

このような構成のコークス炉においては、燃焼切替えに従って、燃焼室1から蓄熱室3を経てP/Sの煙道4とC/Sの煙道5に交互に排ガスが排出され、P/Sの煙道4とC/Sの煙道5に交互に排ガスが流れるため、第1煤煙濃度計11と第2煤煙濃度計12では、交互に煤煙が検出される。   In the coke oven having such a configuration, according to combustion switching, exhaust gas is alternately discharged from the combustion chamber 1 through the heat storage chamber 3 to the P / S flue 4 and the C / S flue 5. Since the exhaust gas alternately flows through the flue 4 and the C / S flue 5, the first smoke concentration meter 11 and the second smoke concentration meter 12 alternately detect the smoke.

このとき、燃焼切替えに伴う設備障害、例えば、燃焼用ガス取入口の弁の引掛りや蓄熱室3から煙道4、5への排気弁の詰まり等を要因として、燃焼室1で不完全燃焼が起こった場合、燃焼切替えに従って、不完全燃焼の発生と正常燃焼への復元とが繰り返されるため、発生した煤煙は、第1煤煙濃度計11および第2煤煙濃度計12の一方のみで検出される。   At this time, incomplete combustion is caused in the combustion chamber 1 due to equipment failure caused by combustion switching, for example, catching of the valve of the combustion gas intake or clogging of the exhaust valve from the heat storage chamber 3 to the flue 4, 5. When this occurs, the generation of incomplete combustion and the restoration to normal combustion are repeated according to the combustion switching, so that the generated soot is detected by only one of the first soot concentration meter 11 and the second soot concentration meter 12. .

また、炉壁煉瓦の損傷、例えば、亀裂や目地切れや貫通等を要因として、炭化室2から燃焼室1に未燃ガスや粉炭が漏れ込み、燃焼室1で不完全燃焼が起こった場合、排ガス中の煤煙はガス流れの方向に関係なく発生するため、発生した煤煙は、第1煤煙濃度計11と第2煤煙濃度計12の両方で検出され、仮に煤煙発生中に燃焼切替えが行われても、第1煤煙濃度計11と第2煤煙濃度計12で継続して検出される。   In addition, when unburned gas or pulverized coal leaks from the carbonization chamber 2 into the combustion chamber 1 due to damage to the furnace wall bricks, such as cracks, joint breaks, penetration, etc., and incomplete combustion occurs in the combustion chamber 1, Since soot in the exhaust gas is generated regardless of the direction of gas flow, the generated soot is detected by both the first soot concentration meter 11 and the second soot concentration meter 12, and the combustion switching is performed during the generation of soot. However, it is continuously detected by the first smoke density meter 11 and the second smoke density meter 12.

コークス炉の燃焼状態の監視は、以下のように行う。   The combustion state of the coke oven is monitored as follows.

図7は、煤煙濃度計による測定での指示値の一例を示すタイムチャートであって、同図(a)は煙突下部に設置した煤煙濃度計による指示値を、同図(b)はC/Sの煙道に設置した第2煤煙濃度計による指示値を、同図(c)はP/Sの煙道に設置した第1煤煙濃度計による指示値をそれぞれ示している。同図に示す各煤煙濃度計の指示値は、煤煙濃度計による測定値であって、不完全燃焼の度合い表す。同図中、装炭タイミングと燃焼切替えタイミングをそれぞれ矢印で示している。   FIG. 7 is a time chart showing an example of the indicated value in the measurement by the soot concentration meter. FIG. 7A shows the indicated value by the soot concentration meter installed at the lower part of the chimney, and FIG. The indicated value by the second soot concentration meter installed in the S flue is shown in FIG. 5C, and the indicated value by the first soot concentration meter installed in the P / S flue is shown. The indicated value of each soot concentration meter shown in the figure is a value measured by the soot concentration meter and represents the degree of incomplete combustion. In the figure, the charcoal timing and the combustion switching timing are indicated by arrows, respectively.

図7に示すように、燃焼切替えは一定期間#1、#2、#3、#4、#5が経過する度に行われ、図7(a)のみでは、前記図5に示す状況と同じく、煤煙濃度計10の指示値は不定期で不規則となっている。   As shown in FIG. 7, the combustion switching is performed every time a fixed period # 1, # 2, # 3, # 4, # 5 elapses. FIG. 7A alone is the same as the situation shown in FIG. The indicated value of the soot concentration meter 10 is irregular and irregular.

ただし、期間#1、#3、#5の間は、P/Sの煙道4に排ガスが流れて第1煤煙濃度計11で煤煙が検出され(図7(c)参照)、一方C/Sの煙道5には排ガスが流れず第2煤煙濃度計12で煤煙は検出されない(図7(b))。期間#2、#4の間は、C/Sの煙道5に排ガスが流れて第2煤煙濃度計12で煤煙が検出され(図7(b)参照)、一方P/Sの煙道4には排ガスが流れず第1煤煙濃度計11で煤煙は検出されない(図7(c))。   However, during periods # 1, # 3, and # 5, exhaust gas flows through the P / S flue 4 and soot smoke is detected by the first soot concentration meter 11 (see FIG. 7C), while C / Exhaust gas does not flow through the S flue 5, and soot is not detected by the second soot concentration meter 12 (FIG. 7B). During periods # 2 and # 4, exhaust gas flows through the C / S flue 5 and smoke is detected by the second soot concentration meter 12 (see FIG. 7B), while the P / S flue 4 No exhaust gas flows through the first soot concentration meter 11, and soot is not detected (FIG. 7C).

各期間#1〜#5の第1煤煙濃度計11および第2煤煙濃度計12による測定の指示値から、各期間#1〜#5での指示値の平均値C1#1、C2#2、C1#3、C2#4、C1#5をそれぞれ算出する。図7中に破線で示すように、期間#1では第1煤煙濃度計11により測定平均値C1#1が「11」、期間#2では第2煤煙濃度計12により測定平均値C2#2が「9」、期間#3では第1煤煙濃度計11により測定平均値C1#3が「21」、期間#4では第2煤煙濃度計12により測定平均値C2#4が「1」、期間#5では第1煤煙濃度計11により測定平均値C1#5が「7」となっている。   From the instruction values measured by the first soot concentration meter 11 and the second soot concentration meter 12 in each period # 1 to # 5, the average values C1 # 1, C2 # 2 of the instruction values in each period # 1 to # 5, C1 # 3, C2 # 4, and C1 # 5 are respectively calculated. As indicated by a broken line in FIG. 7, the measurement average value C1 # 1 is “11” by the first soot concentration meter 11 in the period # 1, and the measurement average value C2 # 2 is by the second soot concentration meter 12 in the period # 2. “9”, the measurement average value C1 # 3 is “21” by the first soot concentration meter 11 in the period # 3, and the measurement average value C2 # 4 is “1” by the second soot concentration meter 12 in the period # 4, the period # 5, the measurement average value C1 # 5 is “7” by the first soot concentration meter 11.

次に、隣り合う期間同士の測定平均値、すなわち、期間#1での測定平均値C1#1と期間#2での測定平均値C2#2、期間#2での測定平均値C2#2と期間#3での測定平均値C1#3、・・・、期間#4での測定平均値C2#4と期間#5での測定平均値C1#5をそれぞれ順次比較し、それぞれの期間同士の測定平均値の差を算出する。このとき、予め閾値を設定しておき、各期間同士の測定平均値の差がその閾値を超えているか否かを判定する。その閾値については、煙道4、5に設置した煤煙濃度計の種類、燃焼用ガスの性質等によって異なるため、コークス炉毎に適正に設定する必要がある。   Next, a measurement average value between adjacent periods, that is, a measurement average value C1 # 1 in period # 1, a measurement average value C2 # 2 in period # 2, and a measurement average value C2 # 2 in period # 2 The measurement average value C1 # 3 in the period # 3,..., The measurement average value C2 # 4 in the period # 4 and the measurement average value C1 # 5 in the period # 5 are sequentially compared. Calculate the difference between the measured average values. At this time, a threshold is set in advance, and it is determined whether or not the difference between the measurement average values of the periods exceeds the threshold. The threshold value varies depending on the type of smoke concentration meter installed in the flues 4 and 5, the nature of the combustion gas, and the like, and must be set appropriately for each coke oven.

ここでは、閾値を「10」と設定する。期間#2と#3同士の測定平均値C2#2とC1#3の差、および期間#3と#4同士の測定平均値C1#3とC2#4の差は、閾値を超えており、この場合、燃焼切替えに従って煤煙の発生量に大きな差が生じているため、燃焼切替えに伴う設備障害に起因して燃焼室で不完全燃焼が発生したと判定することができる。したがって、この場合は、黒煙を引き起こす不完全燃焼の要因を早期に特定することができ、さらに燃焼用ガス取入口の弁や蓄熱室から煙道への排気弁の点検を行い、早期に対処することが可能になる。   Here, the threshold is set to “10”. The difference between the measurement average values C2 # 2 and C1 # 3 between the periods # 2 and # 3 and the difference between the measurement average values C1 # 3 and C2 # 4 between the periods # 3 and # 4 exceed the threshold. In this case, since there is a large difference in the amount of smoke generated according to the combustion switching, it can be determined that incomplete combustion has occurred in the combustion chamber due to equipment failure accompanying the combustion switching. Therefore, in this case, the cause of incomplete combustion that causes black smoke can be identified early, and further, the combustion gas intake valve and the exhaust valve from the heat storage chamber to the flue are inspected and dealt with early. It becomes possible to do.

一方、炉壁煉瓦の損傷に起因して燃焼室で不完全燃焼が発生した場合、装炭直後に煤煙が発生するわけであるが、燃焼切替えに伴う設備障害の要因も重なったとき、この要因による影響を除外する必要がある。そこで、装炭タイミング毎に、炭化室へ石炭を装炭した直後において、第1煤煙濃度計11、第2煤煙濃度計12それぞれによる測定の指示値のピーク値を求め、この測定ピーク値から、これが属する燃焼切替え期間中の上記測定平均値を減算する。このとき、上記の各期間同士の測定平均値の差の判定に用いた閾値とは別に、予め閾値を設定しておき、装炭直後の測定ピーク値の減算値がその閾値を超えているか否かを判定する。   On the other hand, if incomplete combustion occurs in the combustion chamber due to damage to the furnace wall bricks, soot is generated immediately after coal loading. It is necessary to exclude the effects of. Therefore, immediately after coal is loaded into the carbonization chamber at each coal loading timing, the peak values of the measured values by the first soot concentration meter 11 and the second soot concentration meter 12 are obtained, and from this measured peak value, The above measured average value during the combustion switching period to which it belongs is subtracted. At this time, apart from the threshold value used for the determination of the difference between the measurement average values of the above periods, a threshold value is set in advance, and whether or not the subtraction value of the measurement peak value immediately after coal charging exceeds the threshold value. Determine whether.

装炭直後の測定ピーク値の減算値が閾値を超えている場合、装炭直後に多量の煤煙が発生しているため、その装炭タイミングの窯の炉壁煉瓦の損傷に起因して燃焼室で不完全燃焼が発生したと判定することができる。したがって、この場合は、黒煙を引き起こす不完全燃焼の要因を早期に特定することができ、さらに損傷窯の補修を行い、早期に対処することが可能になる。   When the subtracted value of the measured peak value immediately after charcoal exceeds the threshold, a large amount of soot is generated immediately after charcoal. It can be determined that incomplete combustion has occurred. Therefore, in this case, the cause of incomplete combustion that causes black smoke can be identified early, and the damaged kiln can be repaired and dealt with early.

このように、本発明のコークス炉の燃焼状態監視方法は、炭化室と燃焼室と蓄熱室から構成される窯が複数並列に配置され、互いに合流して煙突につながる一対の煙道を備えて成り、各煙道には燃焼切替えに従って蓄熱室から排ガスが交互に排出されるコークス炉において、各煙道の合流前の経路中にそれぞれ第1煤煙濃度計、第2煤煙濃度計を設けており、第1煤煙濃度計による測定値と第2煤煙濃度計による測定値に基づいて、燃焼室での不完全燃焼の有無を判定するようになっている。これにより、各煙道にそれぞれ第1煤煙濃度計、第2煤煙濃度計を設置するという簡単な構成によって、黒煙を引き起こす不完全燃焼の発生を早期に特定することができ、早期に対処することが可能になる。   As described above, the coke oven combustion state monitoring method according to the present invention includes a plurality of kilns including a carbonization chamber, a combustion chamber, and a heat storage chamber arranged in parallel, and includes a pair of flues that join each other and connect to a chimney. In the coke oven where the flue gas is alternately discharged from the heat storage chamber according to the combustion switching, each flue is provided with a first soot concentration meter and a second soot concentration meter in the path before joining each flue The presence / absence of incomplete combustion in the combustion chamber is determined based on the measured value by the first soot concentration meter and the measured value by the second soot concentration meter. Thereby, the occurrence of incomplete combustion that causes black smoke can be identified at an early stage by a simple configuration in which a first soot concentration meter and a second soot concentration meter are installed in each flue, and the early measures are taken. It becomes possible.

特に、一定期間の経過に応じて燃焼切替えが行われる度に、その期間の第1煤煙濃度計による測定値の平均値と、第2煤煙濃度計による測定値の平均値とをそれぞれ算出し、隣り合う期間における第1煤煙濃度計の測定平均値と、第2煤煙濃度計の測定平均値とを比較して、両者の差が所定の閾値を超えた場合、燃焼切替えに伴う設備障害に起因して燃焼室で不完全燃焼が発生したと判定するようにすれば、燃焼用ガス取入口の弁や蓄熱室から煙道への排気弁の点検を行って、燃焼室での燃焼状態を正常な燃焼状態に復帰させることが可能になる。   In particular, each time combustion switching is performed in accordance with the passage of a certain period, the average value of the measurement value by the first soot concentration meter and the average value of the measurement value by the second soot concentration meter during that period are calculated, When the measured average value of the first soot concentration meter and the measured average value of the second soot concentration meter in the adjacent period are compared and the difference between the two exceeds a predetermined threshold value, it is caused by equipment failure accompanying combustion switching If it is determined that incomplete combustion has occurred in the combustion chamber, check the combustion gas intake valve and the exhaust valve from the heat storage chamber to the flue to ensure that the combustion state in the combustion chamber is normal. It becomes possible to return to a proper combustion state.

また、本発明のコークス炉の燃焼状態監視方法は、以下のように変形することも可能である。   In addition, the coke oven combustion state monitoring method of the present invention can be modified as follows.

図8は、本発明のコークス炉の燃焼状態監視方法を説明するためのコークス炉の全体構成の他の一例を模式的に示す斜視図である。同図に示すように、P/Sの煙道4とC/Sの煙道5の合流前の経路中に、それぞれ設置する第1煤煙濃度計11と第2煤煙濃度計12を増設することも可能である。   FIG. 8 is a perspective view schematically showing another example of the overall configuration of the coke oven for explaining the method for monitoring the combustion state of the coke oven of the present invention. As shown in the figure, the first smoke concentration meter 11 and the second smoke concentration meter 12 to be installed in the path before joining the P / S flue 4 and the C / S flue 5, respectively, should be added. Is also possible.

具体的には、図8に示すコークス炉は、互いに隣接する5つの窯を端から順に一群としてまとめ、一窯群ずつ順に窯出しを行うものである。第1煤煙濃度計11は、P/Sの煙道4の経路中、窯出しで区分される窯群同士の間に設置されている。同様に、第2煤煙濃度計12は、C/Sの煙道5の経路中、第1煤煙濃度計11と対になるように、窯群同士の間に設置されている。   Specifically, the coke oven shown in FIG. 8 collects five adjacent kilns as a group in order from the end, and performs the firing of the kilns one by one. The 1st soot concentration meter 11 is installed between the kiln groups divided by kiln out in the path | route of the flue 4 of P / S. Similarly, the second soot concentration meter 12 is installed between the kiln groups so as to be paired with the first soot concentration meter 11 in the path of the C / S flue 5.

このような構成のコークス炉においては、上記の燃焼状態監視方法に加え、以下に示す燃焼状態の監視を行うことができる。すなわち、一定期間の経過に応じて燃焼切替えが行われる度に、その期間の各第1煤煙濃度計11による測定値の平均値と、各第2煤煙濃度計12による測定値の平均値とをそれぞれ算出する。次に、互いに上下流で隣接する第1煤煙濃度計11同士の測定平均値の差を求める。同様に、互いに上下流で隣接する第2煤煙濃度計12同士の測定平均値の差を求める。   In the coke oven having such a configuration, in addition to the combustion state monitoring method described above, the following combustion state can be monitored. That is, each time combustion switching is performed in accordance with the passage of a certain period, the average value of the measured value by each first soot concentration meter 11 and the average value of the measured value by each second soot concentration meter 12 during that period are obtained. Calculate each. Next, the difference in the measurement average value between the first soot concentration meters 11 adjacent to each other upstream and downstream is obtained. Similarly, a difference in measurement average value between the second soot concentration meters 12 adjacent to each other upstream and downstream is obtained.

このとき、上記の各期間同士の測定平均値の差の判定に用いた閾値、および装炭直後の測定ピーク値の減算値の判定に用いた閾値とは別に、予め閾値を設定しておき、各上下流の第1煤煙濃度計11同士の測定平均値の差、または各上下流の第2煤煙濃度計12同士の測定平均値の差がその閾値を超えているか否かを判定する。   At this time, separately from the threshold value used for the determination of the difference between the measurement average values of each of the above periods and the threshold value used for the determination of the subtraction value of the measurement peak value immediately after coal loading, a threshold value is set in advance. It is determined whether or not the difference between the measurement average values of the first and second smoke concentration meters 11 on each upstream or downstream, or the difference between the measurement average values of the second smoke concentration meters 12 on each upstream and downstream exceeds the threshold value.

各上下流の第1煤煙濃度計11同士の測定平均値の差、または各上下流の第2煤煙濃度計12同士の測定平均値の差が閾値を超えている場合、下流側の窯群で煤煙が発生している状況であるため、その下流側の窯群のうちの燃焼室で不完全燃焼が発生したと判定することができる。したがって、この場合は、黒煙を引き起こす不完全燃焼の要因とその発生箇所を早期に特定することができ、一層早期に対処することが可能なる。   When the difference in the measurement average value between the first and second smoke density meters 11 on each upstream or downstream, or the difference in the measurement average value between the second smoke density meters 12 on each upstream and downstream exceeds the threshold, the downstream kiln group Since soot is generated, it can be determined that incomplete combustion has occurred in the combustion chamber of the downstream kiln group. Therefore, in this case, the cause of incomplete combustion that causes black smoke and the occurrence location thereof can be identified at an early stage, and can be dealt with earlier.

本発明のコークス炉の燃焼状態監視方法によれば、各煙道にそれぞれ第1煤煙濃度計、第2煤煙濃度計を設置するという簡単な構成によって、黒煙を引き起こす不完全燃焼の発生を早期に特定し対処することが可能になる。   According to the method for monitoring the combustion state of the coke oven of the present invention, it is possible to prevent the occurrence of incomplete combustion causing black smoke at an early stage with a simple configuration in which a first soot concentration meter and a second soot concentration meter are installed in each flue. Can be identified and dealt with.

燃焼切替えを説明するための従来一般のコークス炉の全体構成を模式的に示す斜視図であって、同図(a)と同図(b)とは燃焼切替えによって互いにガス流れが相反する状態を示している。It is a perspective view which shows typically the whole general structure of the conventional common coke oven for demonstrating combustion switching, Comprising: The figure (a) and the figure (b) show the state where gas flow mutually opposes by combustion switching. Show. 燃焼切替えを説明するための従来一般のコークス炉の構成を模式的に示す図である。It is a figure which shows typically the structure of the conventional common coke oven for demonstrating combustion switching. 炉壁煉瓦の損傷に起因して不完全燃焼が起こる状況を示す図である。It is a figure which shows the condition where incomplete combustion arises due to the damage of a furnace wall brick. 燃焼切替えに伴う設備障害に起因して不完全燃焼が起こる状況を示す図である。It is a figure which shows the condition where incomplete combustion arises due to the equipment failure accompanying combustion switching. 煙突下部に設置した煤煙濃度計による測定での指示値の一例を示すタイムチャートである。It is a time chart which shows an example of the indication value by the measurement by the smoke concentration meter installed in the chimney lower part. 本発明のコークス炉の燃焼状態監視方法を説明するためのコークス炉の全体構成の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the whole structure of a coke oven for demonstrating the combustion state monitoring method of the coke oven of this invention. 煤煙濃度計による測定での指示値の一例を示すタイムチャートであって、同図(a)は煙突下部に設置した煤煙濃度計による指示値を、同図(b)は第2煤煙濃度計による指示値を、同図(c)は第1煤煙濃度計による指示値をそれぞれ示している。It is a time chart which shows an example of the instruction | indication value by the measurement with a soot density meter, The figure (a) is an indication value by the soot density meter installed in the chimney lower part, The figure (b) is a 2nd soot density meter. The indicated value (c) in FIG. 5 shows the indicated value by the first soot concentration meter. 本発明のコークス炉の燃焼状態監視方法を説明するためのコークス炉の全体構成の他の一例を模式的に示す斜視図である。It is a perspective view which shows typically another example of the whole structure of the coke oven for demonstrating the combustion state monitoring method of the coke oven of this invention.

符号の説明Explanation of symbols

1 燃焼室
2 炭化室
3 蓄熱室
4 煙道
5 煙道
6 煙突
10 煙突に設置の煤煙濃度計
11 第1煤煙濃度計
12 第2煤煙濃度計
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Carbonization chamber 3 Thermal storage chamber 4 Chimney 5 Chimney 6 Chimney 10 Smoke concentration meter installed in the chimney 11 First smoke concentration meter 12 Second smoke concentration meter

Claims (2)

炭化室と燃焼室と蓄熱室から構成される窯が複数並列に配置され、互いに合流して煙突につながる一対の煙道を備えて成り、各煙道には燃焼切替えに従って蓄熱室から排ガスが交互に排出されるコークス炉において、
各煙道の合流前の経路中、互いに隣接する複数の窯を一群とした窯群同士の間に、それぞれ第1煤煙濃度計および第2煤煙濃度計を設けており、
一定期間の経過に応じて燃焼切替えが行われる度に、その期間の各第1煤煙濃度計による測定値の平均値と、各第2煤煙濃度計による測定値の平均値とをそれぞれ算出し、互いに上下流で隣接する第1煤煙濃度計同士の測定平均値の差、または互いに上下流で隣接する第2煤煙濃度計同士の測定平均値の差が、所定の閾値を超えた場合、その下流側の窯群のうちの燃焼室で不完全燃焼が発生したと判定することを特徴とするコークス炉の燃焼状態監視方法。
A plurality of kilns composed of a carbonization chamber, combustion chamber, and heat storage chamber are arranged in parallel, and are provided with a pair of flues that merge with each other and connect to the chimney. In the coke oven discharged in
In the path before the merging of each flue, a first smoke concentration meter and a second smoke concentration meter are provided between the groups of kilns in which a plurality of adjacent kilns are grouped ,
Each time combustion switching is performed in accordance with the passage of a certain period, the average value of the measured value by each first soot concentration meter and the average value of the measured value by each second soot concentration meter during that period are calculated, When the difference between the measurement average values of the first soot concentration meters adjacent upstream and downstream of each other or the difference of the measurement average value between the second soot concentration meters adjacent upstream and downstream of each other exceeds a predetermined threshold, the downstream A method for monitoring the combustion state of a coke oven, characterized in that it is determined that incomplete combustion has occurred in a combustion chamber of a side kiln group .
一定期間の経過に応じて燃焼切替えが行われる度に、その期間の前記窯群同士の間に設けられた第1煤煙濃度計による測定値の平均値と、第2煤煙濃度計による測定値の平均値とをそれぞれ算出し、隣り合う期間における第1煤煙濃度計の測定平均値と、第2煤煙濃度計の測定平均値とを比較して、両者の差が所定の閾値を超えた場合、燃焼切替えに伴う設備障害に起因して燃焼室で不完全燃焼が発生したと判定することを特徴とする請求項1に記載のコークス炉の燃焼状態監視方法。 Each time combustion switching is performed in accordance with the passage of a certain period, the average value of the measured values by the first soot concentration meter provided between the kiln groups during that period and the measured value by the second soot concentration meter When the average value is calculated and the measurement average value of the first smoke density meter and the measurement average value of the second smoke density meter in the adjacent period are compared, and the difference between the two exceeds a predetermined threshold value, The method for monitoring a combustion state of a coke oven according to claim 1, wherein it is determined that incomplete combustion has occurred in the combustion chamber due to equipment failure accompanying combustion switching.
JP2007216213A 2007-08-22 2007-08-22 Coke oven combustion state monitoring method Expired - Fee Related JP5124844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216213A JP5124844B2 (en) 2007-08-22 2007-08-22 Coke oven combustion state monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216213A JP5124844B2 (en) 2007-08-22 2007-08-22 Coke oven combustion state monitoring method

Publications (2)

Publication Number Publication Date
JP2009046637A JP2009046637A (en) 2009-03-05
JP5124844B2 true JP5124844B2 (en) 2013-01-23

Family

ID=40499152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216213A Expired - Fee Related JP5124844B2 (en) 2007-08-22 2007-08-22 Coke oven combustion state monitoring method

Country Status (1)

Country Link
JP (1) JP5124844B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468837A1 (en) * 2010-12-21 2012-06-27 Tata Steel UK Limited Method and device for assessing through-wall leakage of a heating wall of a coke oven
CN115093862B (en) * 2022-06-14 2023-08-01 鞍山华泰环能工程技术有限公司 Flue structure, pressure adjusting method of flue structure and coke oven

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753868B2 (en) * 1987-11-18 1995-06-07 川崎製鉄株式会社 Coke oven carbonization chamber management method
JP2594403B2 (en) * 1992-08-19 1997-03-26 株式会社中山製鋼所 Black smoke emission prevention device for coke oven
JPH115982A (en) * 1997-06-17 1999-01-12 Sumitomo Metal Ind Ltd Method for detecting damage to wall of coke oven carbonization chamber
JP3948346B2 (en) * 2002-05-24 2007-07-25 Jfeスチール株式会社 Coke oven gas combustion method

Also Published As

Publication number Publication date
JP2009046637A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP3948347B2 (en) Coke oven gas combustion control method and apparatus
CN101821575B (en) Method for monitoring smoke duct connecting carbonated block baking furnace to smoke processing centre
KR20120096459A (en) Method and device for keeping coke furnace chambers hot when a waste heat boiler is stopped
JP5124844B2 (en) Coke oven combustion state monitoring method
JP5652194B2 (en) Diagnostic method for furnace air preheater
JP2007045871A (en) Method for burning soot dust in coke oven
JP3948346B2 (en) Coke oven gas combustion method
KR101035760B1 (en) Coke oven combination carbon monoxide consistency measurement sensor
CN209778746U (en) Pyrolysis feeding hearth
JP6287481B2 (en) Crack measuring method and crack repairing method for furnace body
JP2526000B2 (en) Measuring method of airtightness of coke oven coke chamber group and coke chamber repair method
JP2004203966A (en) Method for estimating circumstance of furnace wall of coke oven
CN104673335B (en) Stepped heat storage co-firing chamber smoke suppressing energy saving vehicle
JP5268561B2 (en) Daily combustion management method in oil fired boiler facilities
JP2821985B2 (en) Combustible gas combustion control method for coke dry fire extinguishing equipment
JP2002285163A (en) Method for checking damage of coke oven carbonizing chamber
JPH08338697A (en) Repair time determining method of heat exchanger for heating furnace
JP2003206486A (en) Method for burning gas of coke oven
JPH115982A (en) Method for detecting damage to wall of coke oven carbonization chamber
JP5233260B2 (en) Gas furnace ignition control method and ignition control apparatus
JP3838379B2 (en) Method for promoting dry distillation of coke oven kiln
JP4930961B2 (en) Method and apparatus for preventing gas leakage in coke oven duct
CN114235287A (en) Method and device for evaluating wall-through leakage of heating wall of coke oven
JPH01132686A (en) Control of coke oven chamber of coke oven
JP2021138859A (en) Method of repairing pillar wall of regeneration chamber in coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees