JP5120912B2 - Method for manufacturing a panel having a self-flame blocking function - Google Patents

Method for manufacturing a panel having a self-flame blocking function Download PDF

Info

Publication number
JP5120912B2
JP5120912B2 JP2006223657A JP2006223657A JP5120912B2 JP 5120912 B2 JP5120912 B2 JP 5120912B2 JP 2006223657 A JP2006223657 A JP 2006223657A JP 2006223657 A JP2006223657 A JP 2006223657A JP 5120912 B2 JP5120912 B2 JP 5120912B2
Authority
JP
Japan
Prior art keywords
tube
panel
flame
frame
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006223657A
Other languages
Japanese (ja)
Other versions
JP2008045360A (en
Inventor
祐一 中川
雪男 富田
八百三 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006223657A priority Critical patent/JP5120912B2/en
Publication of JP2008045360A publication Critical patent/JP2008045360A/en
Application granted granted Critical
Publication of JP5120912B2 publication Critical patent/JP5120912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本発明は熱可塑性樹脂に熱膨張性黒鉛粒子と鱗片状無機紛体およびポリリン酸アンモニウム系試薬の3成分を充填したプラスチック複合樹脂からなる押出チューブを用いた自己遮炎機能を持つパネルの製造方法に関する。 The present invention is method of manufacturing a panel having a self flame blocking function using the extrusion tube made of a plastic composite resin filled with three components of the thermally expandable graphite particles in a thermoplastic resin and scale-like inorganic powder and ammonium polyphosphate based reagents About.

熱膨張性黒鉛粒子を用いた防炎、遮炎性能のプラスチック組成物や軒天井パネルの構造物に関して、例えば特許文献1〜4など多数提案されている。しかしながらいずれも樹脂に熱膨張性黒鉛と特殊難燃剤を一定割合配合することで得られる難燃材料の開発のみを言及したり、あるいは金属製の特殊構造を持つ複雑な吸排気通路に上記の熱膨張性黒鉛含有プラスチックシートを取り付けた遮炎軒天井パネル、有孔板の周辺に熱膨張性黒鉛を含む樹脂組成物を塗布する遮炎軒天井有孔パネル等であり、製造コストが掛かりすぎたり、遮炎性能が不十分だったりするため実用化が遅れている。   For example, Patent Documents 1 to 4 have been proposed in many respects regarding a flameproof and flameproof plastic composition using thermally expandable graphite particles and a structure of an eaves ceiling panel. However, both mention only the development of flame retardant materials obtained by blending a certain proportion of thermally expansive graphite and special flame retardant into the resin, or the above heat in the complicated intake and exhaust passages with special metal structures. Flameproof eaves ceiling panels with expansive graphite-containing plastic sheets attached, and flameproof eaves ceiling perforated panels coated with a resin composition containing thermally expansible graphite around the perforated plate, etc. The practical application is delayed due to insufficient flame barrier performance.

特許第3431944号公報Japanese Patent No. 3431944 特許第2800282号公報Japanese Patent No. 2800282 特開2000−328686号公報JP 2000-328686 A 特開2004−218339号公報JP 2004-218339 A

本発明の目的は、上記の問題点に鑑みてなされたもので、建築物の吸排気換気ダクト、天井通気ダクト、天井裏通気パネル等に高温の熱や火炎が襲来した時に、その熱を捕捉して自動的にダクトや孔が閉塞し、火炎や煙の進入を阻止する機能を持った装置、設備を構成するもので、その主要な部分に当たる熱膨張性黒鉛等が配向充填されたプラスチック製チューブで構成される遮炎パネルの製造法を提供することにある。 The object of the present invention has been made in view of the above problems, and captures the heat when a high-temperature heat or flame strikes an intake / exhaust ventilation duct, ceiling ventilation duct, ceiling ventilation panel, etc. of a building. The system automatically constructs equipment and facilities that have the function of blocking the entrance of flames and smoke by automatically closing ducts and holes, and is made of plastic that is oriented and filled with heat-expandable graphite that hits its main part. It is providing the manufacturing method of the flame-shielding panel comprised with a tube .

上記の目的を達成するため、自己封止機能を最大限に発揮するチューブで構成される簡易な遮炎パネルの構造と製造法を検討して低コスト、高性能の遮炎パネル製法を確立し、簡易加熱試験でその性能を実証することである。本発明は次の構成を特徴としている。 To achieve the above object, structure and low cost considering the preparation of simple flame blocking panel composed of tube to maximize the self-sealing function, high performance flame blocking panel production method Establish and verify its performance with a simple heating test. The present invention is characterized by the following configuration.

請求項1の発明に係る遮炎通気パネルの製造方法は、押出成形された熱膨張性黒鉛粒子充填チューブが加熱された時、押出方向に対してよりもチューブの内外方向に対して膨張するように、黒鉛粒子の結晶のC軸を半径方向に極度に配向させてなる自己封止機能を持つプラスチック複合チューブを一定長さに切断したコマを、金属製の四角または円形を含む多角形の形状の型枠の上下に設置する2枚の金網の間に開孔部を上下方向にして一定間隔で並べて固定し、さらにこの金網を枠に設置して成り、その金網の一方、または両方にフィルターを載せてなることができる空気ダクトの取り入れ口、屋根裏の換気パネルまたはベントキャップ型換気口等の換気設備に設置可能なことを特徴としている。 According to a first aspect of the present invention, there is provided a method for producing a flame-shielding ventilation panel , such that when an extruded heat-expandable graphite particle-filled tube is heated, the tube expands in the inner and outer directions of the tube rather than in the extrusion direction. In addition, a piece obtained by cutting a plastic composite tube having a self-sealing function in which the C-axis of the graphite particle crystal is extremely oriented in the radial direction into a certain length is formed into a polygonal shape including a metal square or a circle. It is made up of two metal meshes installed on the top and bottom of the metal frame. The openings are aligned and fixed at regular intervals with the vertical direction, and this wire mesh is installed on the frame. Filter on one or both of the metal meshes. It can be installed in ventilation equipment such as air duct intakes, attic ventilation panels or vent cap type ventilation openings.

請求項2の発明に係る遮炎通気孔パネルの製造方法は、押出成形された熱膨張性黒鉛粒子充填チューブが加熱された時、押出方向に対してよりもチューブの内外方向に対して膨張するように、黒鉛粒子の結晶のC軸を半径方向に極度に配向させてなる自己封止機能を持つプラスチック複合材チューブを一定長さに切断したコマを、石膏、セメント珪酸ボード、珪酸カルシウム、セメント板等の無機不燃板の成形時に成形枠内の四方に一定間隔で設置したピン等のチューブ保持治具を使ってコマを定位置に固定した後、無機系スラリーを流し込み、その中に固定させてなることを特徴としている。 According to a second aspect of the present invention, when the extruded heat-expandable graphite particle filled tube is heated, it expands in the inner and outer directions of the tube rather than in the extrusion direction. As above, a piece of plastic composite tube with a self-sealing function that is made by extremely orienting the C axis of the graphite particle crystal in the radial direction is cut into a certain length, gypsum, cement silicate board, calcium silicate, cement Fix the coma in place using tube holding jigs such as pins installed at regular intervals on the four sides of the molding frame when molding inorganic non-combustible plates such as plates, then pour inorganic slurry and fix it in it It is characterized by.

請求項3の発明は、請求項2において、前記パネルを金網でサンドイッチしてなることを特徴としている。 The invention of claim 3 is characterized in that, in claim 2, the panel is sandwiched by a wire mesh.

本発明によれば、自己封止機能を持つプラスチック複合材チューブを切断したコマを金網上に配置した遮炎通気パネルおよび不燃無機材料のスラリー中に配置して埋め込んだ遮炎通気孔パネルが得られる。According to the present invention, a flame barrier vent panel in which a frame obtained by cutting a plastic composite tube having a self-sealing function is disposed on a wire mesh and a flame barrier vent panel in which the flame is disposed and embedded in a slurry of an incombustible inorganic material are obtained. It is done.

本発明は熱膨張性黒鉛自身の膨張する性質を十分に引き出すための樹脂組成物の配合とその成形方法を鋭意研究した結果、熱膨張を最大限引き出す成形技術と配合を見出した。さらに得られた成形チューブを使って簡易な構造で遮炎機能を十分発揮できる低コストの各種パネルの開発を実現した。   In the present invention, as a result of intensive studies on the blending of a resin composition for fully exploiting the expanding property of the thermally expandable graphite itself and its molding method, a molding technique and blending that maximize thermal expansion have been found. Furthermore, using the resulting molded tube, we have developed various low-cost panels that can fully demonstrate the flame shielding function with a simple structure.

熱膨張性黒鉛粒子充填押出成形チューブが加熱された時、押出方向に対してよりもチューブの内外方向に対して膨張するように、黒鉛粒子の結晶のC軸を半径方向に極度に配向させてなる自己封止機能を持つプラスチック複合材チューブ(具体例1)と比較例
通常塩ビホース等の押出成形はダイニップルを通してチューブホーミングダイに空気を送り込み、ダイ先端で大きく膨らませた後、サイジングダイを通して一定の口径にし、冷却後巻き取る過程で成形される。この場合、無機充填材は配合されないのでダイニップルの長さは極短くてよい。
本実施例の成形では鱗片状の熱膨張性黒鉛、マイカ鉱物、粘土鉱物等の鱗片状無機紛体を樹脂に配合してチューブ状に押出すに当たり、押出方向に平行に鱗片状粒子の平面が配向するようなチューブ押出ダイスの設計を必要とする。そのためにはダイニップルの長さは長いことに越したことはないがチューブ押出ダイスの経済的設計から10〜40cm程度、好ましくは15〜30cm程度、ダイニップルとダイ内径の間隙は1〜5mm程度範囲、好ましくは2〜4mm程度に調整して樹脂組成物を押出すことで十分配向が可能となる。またダイニップルには強制的に空気を送り込むことなく、フォーミングダイ先端で必ず生じるダイスウェルを極力抑えるようにサイジングダイを通し、冷却しながら引っ張ることでチューブ半径方向にほとんどの黒鉛粒子のC軸を向けることが可能となる。また同時に配合させた鱗片状粒子の分散がチューブ表面硬さを調整し、チューブの変形を抑制するとともに自らも配向し、黒鉛の配向を促進させる効果を持つ。
コマの加熱には簡易加熱試験装置を用い、そのセラミックヒータ表面温度を450℃に制御し、その表面から25mm上に離れた距離に16メッシュの金網を設置してその上にコマを置いて試験した。
表1に示す、配向チューブ切断コマの加熱分解後の形状とチューブを切断して円筒成形金型に充填して圧縮成形により得られる円柱を切削して作成した無配向チューブ状コマの加熱分解後の形状の間の形状変化に関する比較から押出成形チューブの配向効果は明らかである。表1において、コマの加熱分解前後の形状変化を押出成形チューブに関しては実施例に、また圧縮成形のチューブに関しては比較例に示した。さらにまた表2に加熱分解後の圧縮成形物寸法対押出成形物寸法比を示した。
押出成形チューブに関しては加熱分解物の半径方向への広がりと高さ方向への膨張抑制が認められる。圧縮成形チューブに関しては高さ方向への膨張が顕著に認められる。

Figure 0005120912

表中
*:EVA(住友精化株式会社製、K2010N)100phr、熱膨張性黒鉛(エアウォーターケミカル社製、50LTE−U)30phr、ポリリン酸アンモニウム系試薬(鈴裕化学株式会社製、FCP−730)20phr
**:HDPE(日本ポリエチレン株式会社製、HY430)100phr、熱膨張性黒鉛(エアウォーターケミカル社製、50LTE−U)30phr、ポリリン酸アンモニウム系試薬(鈴裕化学株式会社製、FCP−730)20phr
例1:セリサイト(三信鉱工株式会社製、FTM18)10phr、例2:20phr、例3:30phr、例4:10phr、例5:20phr
Figure 0005120912
When the heat-expandable graphite particle-filled extruded tube is heated, the C-axis of the graphite particle crystal is extremely oriented in the radial direction so that it expands in the inner and outer directions of the tube rather than in the extrusion direction. Plastic composite tube with self-sealing function (Example 1) and comparative example Normally, extrusion molding of PVC hose, etc., sends air to the tube homing die through the die nipple, and then expands greatly at the tip of the die and then constant through the sizing die It is formed in the process of winding after cooling. In this case, since the inorganic filler is not blended, the length of the die nipple may be extremely short.
In the molding of this example, when a scale-like inorganic powder such as scaly heat-expandable graphite, mica mineral, clay mineral, etc. is blended into a resin and extruded into a tube shape, the plane of the scaly particles is oriented parallel to the extrusion direction. This requires the design of a tube extrusion die. For that purpose, the length of the die nipple is not long, but it is about 10 to 40 cm, preferably about 15 to 30 cm from the economical design of the tube extrusion die, and the gap between the die nipple and the die inner diameter is about 1 to 5 mm. The orientation can be sufficiently achieved by extruding the resin composition within the range, preferably about 2 to 4 mm. Also, without forcing air into the die nipple, a sizing die is passed through to minimize the die swell that always occurs at the tip of the forming die, and the C axis of most graphite particles is pulled in the tube radial direction by pulling while cooling. Can be directed. Further, the dispersion of the scale-like particles mixed at the same time has an effect of adjusting the tube surface hardness, suppressing the deformation of the tube, and orienting itself to promote the orientation of graphite.
A simple heating test device is used to heat the top, the surface temperature of the ceramic heater is controlled to 450 ° C, a 16-mesh wire mesh is installed at a distance of 25 mm above the surface, and the top is placed on the top to test. did.
After pyrolysis of a non-oriented tube-shaped piece created by cutting the cylinder obtained by compression molding by cutting the tube and filling the cylindrical mold as shown in Table 1 From the comparison of the shape change between the two shapes, the orientation effect of the extruded tube is clear. In Table 1, the shape change before and after the thermal decomposition of the top is shown in the example for the extruded tube, and in the comparative example for the compression molded tube. Further, Table 2 shows the ratio of the compression molded product size to the extruded product size after the thermal decomposition.
With regard to the extruded tube, it is recognized that the thermally decomposed product spreads in the radial direction and suppresses expansion in the height direction. With respect to the compression molded tube, expansion in the height direction is remarkably recognized.
Figure 0005120912

In the table *: EVA (Sumitomo Seika Chemicals Co., Ltd., K2010N) 100phr, Thermally expandable graphite (Air Water Chemical Co., 50LTE-U) 30phr, Ammonium polyphosphate reagent (Suzuhiro Chemical Co., Ltd., FCP-730) ) 20phr
**: HDPE (Nippon Polyethylene Co., Ltd., HY430) 100phr, Thermally expandable graphite (Air Water Chemical Co., 50LTE-U) 30phr, Ammonium polyphosphate reagent (Suzuhiro Chemical Co., Ltd., FCP-730) 20phr
Example 1: Sericite (manufactured by Sanshin Mining Co., Ltd., FTM18) 10 phr, Example 2: 20 phr, Example 3: 30 phr, Example 4: 10 phr, Example 5: 20 phr
Figure 0005120912

自己封止機能を持つプラスチック複合材チューブ(具体例2)と比較例
熱膨張性黒鉛粒子の膨張度合いは粒子径が大きい程大きいことから、大きな粒子を使うに越したことはないが、樹脂への均一分散性の悪さ、成形体の表面性状の悪さが目立つ。しかしながら押出成形ではスクリューとシリンダーの間の摩擦により、鱗片状粒子は当然破断して粒子径が小さくなることを考慮して、初期平均粒子径は大きな50μm前後が好ましく、従ってエアウォーターケミカル社製の50LTE-u粒子を30phr用いた。マトリックスとなる樹脂には代表的な熱可塑性樹脂である軟化温度の低いエチレン−酢酸ビニル共重合樹脂である住友精化製フローバックK2010Nを100phr用いた。さらに前項と同様に溶融時の粘度調整および成形後のチューブの硬さ保持、さらに難燃性の向上のために三信鉱工製のセリサイト紛体FTM-18を0〜50phrの間で変化させて添加し、また難燃剤としてはポリリン酸系の難燃剤、鈴裕化学製FCP−730を20phr配合して投入し、2軸押出成形機でチューブ状に成形した。
炭化物の硬さを評価するために次の方法で行った。切断コマのサイズはチューブの外径8.5mm±0.3mm、内径5mm±0.2mm、長さ6mm±0.1mmである。まず切断コマは16メッシュの平織り金網上に設置し、先の請求項の実施例と同様のセラミックヒータで加熱した。金網直下の温度が440〜460℃となる位置で片面1分間、計2分間加熱する。10秒前後で膨張が開始し、30〜40秒で膨張が終了するが1分経過後裏返してさらに1分間加熱して終了する。加熱分解後の外径、内径、高さを計測した後、硬さ、保形性の評価をするために荷重500gを3分間負荷し、前述3箇所の計測を行い、荷重負荷による圧縮率(%)を求め、表3に示した。
押出時における配合量をすべて重量部(phr)で行っているが、添加量の増加に伴って初期固定した樹脂100phr、熱膨張性黒鉛30phr、難燃剤20phrの配合量は後にセリサイト量を0〜50phrと変えて添加するため成形チューブ中での実際の配合比は変化する。したがって現実的な組成を表現するには不適当であることから、計算によって求めた体積分率での表現を付記した。セリサイトの増加に伴って、チューブ中の樹脂量、黒鉛量、ポリリン酸量は低下する。
表3よりセリサイトの体積分率が増加するに比例して炭化物の圧縮率が低下して、固形物の硬さが増し、外力に対する保形性が向上することは明らかである。セリサイトの初期配合量は70phr添加しても黒鉛の膨張を抑えたシリンダー温度185℃以下で押出し可能であるがチューブ中の黒鉛、ポリリン酸系難燃剤の体積分率が相対的に低下し、チューブの膨張度合いが低下することから、セリサイトの初期配合量は20〜40phr(体積分率5.2〜9.9%)が好ましい。このとき他の配合物の体積分率は樹脂75.8〜72%、熱膨張性黒鉛11.4〜10.8%、ポリリン酸系難燃剤7.7〜7.3%程度となる。
また、表3の試料C0〜C50の押出チューブを150mmに切断し、スパン間隔100mmとする3点曲げ試験に供した。荷重はスパンの中心に分銅によって負荷しながら荷重点の変位を記録し、荷重−変位曲線の直線部の変位2mmにおける力を表3に合わせて表示した。セリサイトの添加量20〜40phrで急激に増加し、セリサイトの添加によるチューブの剛性が増すことが確認された。

Figure 0005120912
表中
*:(セリサイトの体積)×100/配合成分の全体積
**:(荷重負荷前の高さ−荷重負荷後の高さ)/荷重負荷前の高さ
***:変位量2mm時点の荷重 Plastic composite tube with self-sealing function (Example 2) and comparative example Since the degree of expansion of thermally expandable graphite particles is larger as the particle size is larger, it has never been more convenient to use larger particles. Poor uniform dispersibility and the surface properties of the molded product are conspicuous. However, in extrusion molding, considering that the scaly particles are naturally broken due to friction between the screw and the cylinder and the particle size becomes smaller, the initial average particle size is preferably around 50 μm which is large. 30 phr of 50 LTE-u particles was used. As the matrix resin, 100 phr of Sumitomo Seika's low-softening ethylene-vinyl acetate copolymer resin Sumitomo Seika's flowback K2010N, which is a typical thermoplastic resin, was used. Furthermore, in the same way as in the previous section, the sericite powder FTM-18 manufactured by Sanshin Mining Co., Ltd. was changed between 0 and 50 phr in order to adjust the viscosity during melting, maintain the hardness of the tube after molding, and improve flame retardancy. As a flame retardant, 20 phr of a polyphosphoric acid flame retardant, FCP-730 manufactured by Suzuhiro Kagaku was added and molded into a tube shape with a twin screw extruder.
The following method was used to evaluate the hardness of the carbide. The size of the cutting piece is the tube outer diameter 8.5mm ± 0.3mm, inner diameter 5mm ± 0.2mm, length 6mm ± 0.1mm. First, the cutting piece was placed on a 16-mesh plain weave wire mesh and heated by the same ceramic heater as in the above-mentioned claims. Heat for 1 minute on each side for a total of 2 minutes at a position where the temperature immediately below the wire mesh is 440-460 ° C. Expansion starts in about 10 seconds, and expansion ends in 30 to 40 seconds, but after 1 minute, it is turned over and heated for another 1 minute. After measuring the outer diameter, inner diameter, and height after thermal decomposition, load 500 g for 3 minutes to evaluate hardness and shape retention, measure the above three locations, and compress the compressibility ( %) Was obtained and shown in Table 3.
The compounding amount at the time of extrusion is all performed in parts by weight (phr), but the compounding amount of resin 100 phr initially fixed as the addition amount increased, thermal expansion graphite 30 phr, flame retardant 20 phr, the sericite amount was reduced to 0 later. The actual blending ratio in the molded tube varies as it is added in a change of ~ 50phr. Therefore, since it is unsuitable for expressing a realistic composition, an expression with a volume fraction obtained by calculation is added. As the sericite increases, the amount of resin, the amount of graphite, and the amount of polyphosphoric acid in the tube decrease.
From Table 3, it is clear that the compressibility of carbide decreases as the volume fraction of sericite increases, the hardness of the solid increases, and the shape retention against external force improves. The initial blending amount of sericite can be extruded at a cylinder temperature of 185 ° C or less, which suppresses the expansion of graphite even when 70 phr is added, but the volume fraction of graphite and polyphosphate flame retardant in the tube is relatively reduced, Since the degree of expansion of the tube decreases, the initial blending amount of sericite is preferably 20 to 40 phr (volume fraction 5.2 to 9.9%). At this time, the volume fraction of other blends is about 75.8 to 72% resin, 11.4 to 10.8% thermally expandable graphite, and about 7.7 to 7.3% polyphosphoric acid flame retardant.
Further, the extruded tubes of samples C0 to C50 in Table 3 were cut into 150 mm and subjected to a three-point bending test with a span interval of 100 mm. The load was recorded at the center of the span with a weight, and the displacement at the load point was recorded. The force at the displacement of 2 mm in the linear part of the load-displacement curve was displayed in Table 3. The amount of sericite increased rapidly at 20 to 40 phr, and it was confirmed that the rigidity of the tube was increased by the addition of sericite.
Figure 0005120912
In the table *: (volume of sericite) x 100 / total volume of compounding ingredients **: (height before load load-height after load load) / height before load load **: displacement 2 mm Current load

自己封止機能を持つプラスチック複合材チューブ(具体例3)と比較例
住友精化株式会社製のエチレン−酢酸ビニル共重合樹脂(K2010N)100重量部(phr)に対しエアウォーターケミカル社製の熱膨張性黒鉛(50LTE-u)、ポリリン酸系試薬(鈴裕化学株式会社製FCP-730)を難燃・保形剤として、また三信鉱工株式会社製セリサイトFTM-18を押出助剤として配合し、塚田ラボラトリー製の2軸チューブ押出装置を使って得られたチューブについてJIS K 7201-2の試験法に準拠して、株式会社東洋精機製作所製のキャンドル燃焼試験機を用いて酸素指数を測定した。その際、下端を粘土で閉じた自立するパイプ状試験片の酸素指数測定値と、燃焼後の残渣の保形性を目視、及び写真で判定した結果を良好○、不良×、その中間△の記号で表4に示す。また、燃焼残渣の形がチューブ上部に残る例と燃焼残渣がチューブ上端から顕著に飛散する例の写真を図1に示す。
図1の写真(1)は表4の実施例1(熱膨張性黒鉛50LTE-U:30phr, 難燃剤FCP-730:20phrを配合したEVA樹脂)における燃焼試験後の状況写真例:試験時のO2 濃度: 33.6vol.%(燃焼後の残渣の保形性が高く、チューブに残存する)。
同写真(2)は表4の比較例1(熱膨張性黒鉛50LTE-U:30phrを配合したEVA樹脂)における燃焼試験後の状況写真例:試験時のO2 濃度: 27.2vol.%(チューブ上端からの顕著な飛散・剥落が認められる)。
同写真(3)は表4の実施例8(熱膨張性黒鉛50LTE-U:30phr, 難燃剤FCP-730:20phr, セリサイトFTM-18:10phr を配合したHDPE樹脂)における燃焼試験後の状況写真例:試験時のO2 濃度: 30.0vol.%(燃焼後の残渣の保形性が高く、チューブに残存する)。
同写真(4)は表4の比較例2(熱膨張性黒鉛 50LTE-U:30phrを配合したHDPE樹脂)における燃焼試験後の状況写真例: 試験時のO2 濃度: 23.8vol.% (チューブ上端からの顕著な飛散・剥落が認められる)。

Figure 0005120912
表中
*1 住友精化株式会社製 エチレン−酢酸ビニル共重合樹脂K2010N
*2 日本ポリエチレン株式会社製 HY430
*3 エアウォーターケミカル社製 熱膨張性黒鉛 50LTE−u
*4 鈴裕化学株式会社製 FCP−730
*5 三信鉱工株式会社製 セリサイトFTM−18 Self-sealing plastic composite tube (Example 3) and comparative example Heat from Air Water Chemical Co. for 100 parts by weight (phr) of ethylene-vinyl acetate copolymer resin (K2010N) manufactured by Sumitomo Seika Co., Ltd. Expansive graphite (50LTE-u) and polyphosphoric acid reagent (FCP-730 manufactured by Suzuhiro Chemical Co., Ltd.) are used as flame retardant and shape retention agents, and Sericite FTM-18 manufactured by Sanshin Mining Co., Ltd. is used as an extrusion aid. For the tube obtained by blending and using the twin-screw tube extruder manufactured by Tsukada Laboratory, the oxygen index is determined using a candle combustion tester manufactured by Toyo Seiki Seisakusho Co., Ltd. according to the test method of JIS K 7201-2. It was measured. At that time, the oxygen index measurement value of the self-supporting pipe-shaped test piece closed at the lower end with clay, and the result of judging the shape retention of the residue after combustion visually and with photographs were good ○, poor ×, and the intermediate Δ Table 4 shows the symbols . Further, FIG. 1 shows a photograph of an example in which the shape of the combustion residue remains in the upper part of the tube and an example in which the combustion residue is significantly scattered from the upper end of the tube.
The photograph (1) in FIG. 1 shows the situation after the combustion test in Example 1 in Table 4 (EVA resin containing 50 LTE-U: 30 phr of thermally expandable graphite and FCP-730: 20 phr of the flame retardant). O 2 concentration: 33.6 vol.% (The shape retention of the residue after combustion is high and remains in the tube).
The photograph (2) shows the situation after the combustion test in Comparative Example 1 of Table 4 (EVA resin blended with 50LTE-U: 30 phr of thermal expansion graphite): O 2 concentration during the test: 27.2 vol.% (Tube Remarkable scattering / peeling from the top is observed).
The photograph (3) shows the situation after the combustion test in Example 8 (HDPE resin containing 50 LTE-U: 30 phr flame retardant, FCP-730: 20 phr, and sericite FTM-18: 10 phr) in Table 4. Photo example: O 2 concentration during the test: 30.0 vol.% (The shape retention of the residue after combustion is high and remains in the tube).
The same photo (4) shows the situation after the combustion test in Comparative Example 2 (HDPE resin containing 50LTE-U: 30 phr of thermal expansion graphite) in Table 4. O 2 concentration during the test: 23.8vol.% (Tube Remarkable scattering / peeling from the top is observed).
Figure 0005120912
* 1 Ethylene-vinyl acetate copolymer resin K2010N manufactured by Sumitomo Seika Co., Ltd.
* 2 HY430 manufactured by Nippon Polyethylene Corporation
* 3 Thermally expandable graphite 50LTE-u manufactured by Air Water Chemical
* 4 FCP-730 manufactured by Suzuhiro Chemical Co., Ltd.
* 5 Sericite FTM-18 manufactured by Sanshin Mining Co., Ltd.

請求項の発明に関する実施例と比較例
図2Aはネット状遮炎通気パネルの平面図、図2Bはネット状遮炎通気パネルの断面図である。また図2Cは加熱前のコマと加熱後のコマの状態を示す。
押出法で連続して得られるチューブは外径8mm、10mm、12mm等に調整されたサイジングダイで一定の外径を持つチューブに最終的に成形される。チューブは必要とする長さにチューブ切断機で切断されてコマが得られる。このコマを金網(メッシュは16メッシュ程度からコマが升目から落下しない程度)上でコマの中心間距離(d)を変えた正三角形の頂点に互いに位置するよう配置する。この際コマは金網上で移動しないように、予め初期接着力の強いゴム系接着剤を用いて部分点接着するか、加熱した金網を配置したコマの上に押し当てて熱融着させて固定した後、一定間隔に固定されたコマの上にさらに金網を載せ、所々を針金で二枚の金網を結ぶとともに金網は枠に固定させることで遮炎ネットパネルが得られる。
例えば表1の実施例3の配合の押出チューブを成形し、16メッシュの平織りステンレス製金網の間に外直径8.7mmと、肉厚1.8mmの押出チューブから2,3,4,6mmの長さに切断したコマを正三角形の一辺の長さを変えながらその頂点に配置する形状で100×100mmサイズ内に並べ、熱した金網に熱融着して固定した。簡易加熱試験装置のセラミックヒータ表面温度を670℃に制御し、その表面から25mm上に離れた距離に遮炎パネルを設置した。加熱開始10〜30秒以内に膨張が開始し、さらに加熱を継続すると分解性生成物が金網表面にリング状に現れる。加熱面と裏面に溶出するが着火は見られず、時に見られても寸時に消火する。また溶出分解生成物の飛散も見られない。加熱パネル面の表面温度は最高約500〜550℃に達する。各チューブの内径および配置する正三角形の中心部が3個のコマの熱膨張で空間が完全閉塞するか否かを調べた結果を完全閉塞(○)、不完全閉塞(×)記号で表5に示す。
この結果から金網の全面が閉塞する条件は配置するコマの組成、長さ、外径、肉厚、コマの間の距離によって異なることが明らかになった。したがって、遮炎パネルの構成はここに示した実例によってなんら制約されるものではない。

Figure 0005120912
表中
実施例1、2、3、4:表1の実施例3の組成
実施例5、6、7、8:表1の実施例2の組成
実施例9、10:表1の実施例5の組成 Example and Comparative Example Regarding Invention of Claim 1 FIG. 2A is a plan view of a net-like flame-insulating vent panel, and FIG. 2B is a cross-sectional view of the net-like flame-insulating vent panel. FIG. 2C shows the state of the frame before heating and the state after heating.
The tube continuously obtained by the extrusion method is finally formed into a tube having a constant outer diameter with a sizing die adjusted to an outer diameter of 8 mm, 10 mm, 12 mm or the like. The tube is cut to a required length by a tube cutting machine to obtain a frame. The frames are arranged so as to be positioned at the vertices of equilateral triangles on the wire mesh (the mesh is about 16 mesh to the extent that the frame does not fall from the mesh) with the distance (d) between the centers of the frames changed. At this time, in order to prevent the frame from moving on the wire mesh, it is fixed in advance by partial point bonding using a rubber adhesive with a strong initial adhesive force or by pressing the heated wire mesh on the frame where it is placed and heat-sealing. After that, a fire net is obtained by placing a wire mesh on top of the frames fixed at regular intervals, connecting the two wire meshes with a wire at some points, and fixing the wire mesh to the frame.
For example, an extruded tube having the composition of Example 3 in Table 1 was formed, and the length was 2,3,4,6 mm from an extruded tube having an outer diameter of 8.7 mm and a wall thickness of 1.8 mm between 16 mesh plain woven stainless steel wire mesh. The frames cut into pieces were arranged in a size of 100 x 100 mm with the shape of one side of the equilateral triangle being changed at the apex, and fixed by heat fusing to a heated wire mesh. The surface temperature of the ceramic heater of the simple heating test device was controlled at 670 ° C, and a flame shield panel was installed at a distance of 25 mm above the surface. The expansion starts within 10 to 30 seconds from the start of heating, and when the heating is further continued, the decomposable product appears in a ring shape on the wire mesh surface. Although it elutes on the heating surface and the back surface, no ignition is seen, and even if it is seen sometimes, it extinguishes in a short time. In addition, no leaching decomposition products are scattered. The surface temperature of the heating panel reaches up to about 500-550 ° C. Table 5 shows the results of examining whether the inner diameter of each tube and the center of the equilateral triangle to be placed are completely closed by the thermal expansion of 3 frames. Shown in
From these results, it was clarified that the conditions for blocking the entire surface of the wire net differ depending on the composition, length, outer diameter, wall thickness, and distance between the frames. Therefore, the configuration of the flame shield panel is not limited by the examples shown here.
Figure 0005120912
In Table: Examples 1, 2, 3, 4: Composition of Example 3 of Table 1 Examples 5, 6, 7, 8: Composition of Example 2 of Table 1 Examples 9, 10: Example 5 of Table 1 Composition of

請求項の発明に関する実施例
従来の方法では不燃ボード成形後にボードに多数の孔を穿孔し、そこに成形チューブを挿入することになる。内径8mmФの孔を25mm間隔で穿孔した場合、穿孔屑は成形時に使用した材料の約8%になり資源と時間の浪費になる。コマの埋め込みにはさらに時間がかかるので自動化作業を必要とし、かかる経費は無視できない。さらにコマの直径と穿孔した孔径の合度が大きく相違すると孔に入らなかったり、入ったとしても緩かったりする。その場合には現場施工時に剥落の恐れがあり、接着剤等による固定が必要になる場合がある。
ここでの開発の方法では径サイズにばらつきがあっても流動する無機系成形素材のスラリーはコマに接触して硬化するため、切断コマ周辺に隙間は生じない。従って施工途中での緩みによるコマの脱落は皆無に近いと言える。
ここで用いる埋め込み用の不燃無機系成形素材とその成形方法にはチューブがダメージを受ける温度以下、100℃以下であればなんら限定されるものではなく、またチューブ切断コマの長さ、直径も限定されるものではない。また有機または無機短繊維の添加は成形板の補強に効果的である。有機系繊維としてはナイロン繊維、ビニロン繊維、アクリル繊維、レーヨン繊維等があり無機系繊維として、ガラス繊維、アルミナ繊維、ボロン繊維、カーボン繊維等がある。各々の繊維の長さは長いにこしたことはないが水中に分散させるときそのアスペクト比によって毛玉を生じる恐れがあるので毛玉を生じない範囲の長さに切断して用いることになる。埋め込み成形法の一例を示す。
図3Aは遮炎パネルの平面図、図3Bは遮炎パネルの断面図である。遮炎パネルは無機不燃材としての石膏板4の上面から下面まで同一の孔径の通気孔5を一定間隔で設け、この通気孔5に板厚と同じ長さのチューブ切断コマ2を配し、石膏板4の上下を金網1でサンドイッチした構造になっている。
In an embodiment a conventional method of the second aspect of the present invention drilling a number of holes in the board after noncombustible board forming, so that the insert molding tube therein. When holes with an inner diameter of 8 mm are drilled at intervals of 25 mm, the drilling waste is about 8% of the material used during molding, which wastes resources and time. Embedding frames requires more time and requires automation, and such costs cannot be ignored. Further it may not enter the hole when fitted Godo a pore diameter drilled and the diameter of the frame is significantly different, or loose as entered. In that case, there is a risk of peeling off during construction on site, and fixing with an adhesive or the like may be required.
In the method developed here, even if the diameter size varies, the slurry of the inorganic molding material that flows is in contact with the piece and hardens, so there is no gap around the cutting piece. Therefore, it can be said that there is almost no dropout due to loosening during construction.
The non-combustible inorganic molding material for embedding and the molding method used here are not limited as long as the temperature is less than the temperature at which the tube is damaged and 100 ° C. or less, and the length and diameter of the tube cutting piece are also limited. Is not to be done. The addition of organic or inorganic short fibers is effective for reinforcing the molded plate. Examples of organic fibers include nylon fibers, vinylon fibers, acrylic fibers, and rayon fibers. Examples of inorganic fibers include glass fibers, alumina fibers, boron fibers, and carbon fibers. The length of each fiber is not long, but when dispersed in water, there is a risk of generating pills depending on the aspect ratio. Therefore, the fibers are cut into lengths that do not generate pills. An example of an embedding molding method is shown.
FIG. 3A is a plan view of the flame shield panel, and FIG. 3B is a cross-sectional view of the flame shield panel. The flame shield panel is provided with vent holes 5 having the same hole diameter from the upper surface to the lower surface of the gypsum plate 4 as an inorganic incombustible material, and a tube cutting piece 2 having the same length as the plate thickness is disposed in the vent hole 5. It has a structure in which the gypsum plate 4 is sandwiched between the top and bottom of the wire mesh 1.

(実施例1)
無機不燃材として吉野石膏株式会社製の製品(焼石膏A級)を水に分散させたスラリーを調整した。この際、あらかじめ型枠内に25mm間隔に直径5mmФの真鍮ピンを設置して、(固化後に抜き取れば通気孔となる)ピンに表1実施例3の組成のチューブ切断コマ、外径8.7mmФ(内径5.1mmФ)×4mmを通した後、固化後の石膏板の厚みとして10mm程度の厚みが確保できるスラリー量を注入した。24時間後に、枠およびピンを除去して得られた成形板を乾燥し、石膏埋め込み遮炎パネルを完成させた。具体的には水150gに約15μm径×長さ3〜4mmのポリエステル短繊維約0.4gを撹拌分散させながら石膏150gの割合で投入して、図4の(1)の形状で約4mm厚の遮炎パネルを完成させた。
このパネルの自己封止機能を確認するために、100mm×100mmの寸法のパネルに対して加熱試験を行って遮炎機能を評価した。この加熱試験では、簡易加熱試験器のセラミックヒータ部分を上向きに設置し、その表面から25mm上部に遮炎パネルを火炎の当たる面に相当する面を対峙させた。この際ヒーターの表面温度は670℃に制御されている。
試験結果は、1分後に膨張開始、1分30秒後には通気孔は完全閉塞し、膨張した熱分解生成物が天井裏相当部分にマッシュルーム状に持ち上がる。加熱面の5mmФの通気孔には僅かの分解生成物が顔をのぞかせる程度ある。通気孔内は硬く封止され酸素不足のため20分間の加熱においても着火は見られず、不燃材料の石膏板の破壊も生じなかった。結果を表6に示す。
Example 1
As an inorganic incombustible material, a slurry in which a product (calcined gypsum class A) manufactured by Yoshino Gypsum Co., Ltd. was dispersed in water was prepared. At this time, brass pins with a diameter of 5 mmФ are installed in the formwork at intervals of 25 mm in advance, and a tube cutting piece having the composition of Table 1 Example 3 and an outer diameter of 8.7 mmФ are attached to the pins (if they are extracted after solidification, they become vent holes). After passing through (inner diameter 5.1 mmФ) × 4 mm, an amount of slurry capable of securing a thickness of about 10 mm as the thickness of the plaster board after solidification was injected. After 24 hours, the molded plate obtained by removing the frame and pins was dried to complete a gypsum-embedded flame barrier panel. Specifically, about 0.4 g of polyester short fibers with a diameter of about 15 μm x length 3-4 mm are stirred and dispersed in 150 g of water at a rate of 150 g of gypsum, and the shape of (1) in FIG. 4 is about 4 mm thick. A flameproof panel was completed.
In order to confirm the self-sealing function of the panel, a heat test was performed on a panel having a size of 100 mm × 100 mm to evaluate the flame shielding function. In this heating test, the ceramic heater part of the simple heating tester was installed upward, and the surface corresponding to the surface where the flame hits the flame-shielding panel 25 mm above the surface. At this time, the surface temperature of the heater is controlled at 670 ° C.
As a result of the test, the expansion started after 1 minute, and after 1 minute and 30 seconds, the vent hole was completely closed, and the expanded pyrolysis product was lifted up in a mushroom-like portion on the back of the ceiling. There is a small amount of decomposition products in the 5mmФ vent on the heating surface that can be seen. The inside of the vent hole was tightly sealed, and due to lack of oxygen, no ignition was observed even when heated for 20 minutes, and the gypsum board of non-combustible material did not break. The results are shown in Table 6.

(実施例2)
実施例1と同一組成、同一形状、但し長さのみ6mmのコマを使用し、同一手法で得られた石膏スラリーを埋め込み成形法、図4の(2)の形状で厚み約9.8mmの遮炎パネルを完成させた。実施例1と同様の簡易加熱試験を20分間行い、優れた遮炎機能を確認した。加熱反対面には熱分解生物が盛り上がるものの加熱面の通気孔には現れず、着火も板の亀裂も生じない。結果を表6に示す。
(Example 2)
Using the same composition and shape as in Example 1 but only a frame of 6 mm in length, the gypsum slurry obtained by the same method was embedded and molded, and the flame shield with a shape of (2) in FIG. Completed the panel. A simple heating test similar to that of Example 1 was performed for 20 minutes, and an excellent flame barrier function was confirmed. Although pyrolyzed organisms swell on the opposite side of the heating, they do not appear in the air vents on the heating side, and neither ignition nor cracking of the plate occurs. The results are shown in Table 6.

(実施例3)
前述と同一組成、同一形状、ただし長さのみ6mmのコマを使用し、同一手法で得られた石膏スラリーを埋め込み成形法、図4の(3)の形状で厚み10mmの遮炎パネルを完成させた。実施例1と同様の加熱試験を20分間行い、優れた遮炎機能を示した。実施例2より短時間に孔を閉塞し、分解生成が加熱反対側に突出したが熱面には少ししか溢れ出でず、着火も亀裂も見られなかった。結果を表6に示す。
(Example 3)
Using a frame of the same composition and shape as above, but only 6mm long, embedding the gypsum slurry obtained by the same method, and completing a flameproof panel with a thickness of 10mm in the shape of (3) in Fig. 4 It was. The same heating test as in Example 1 was performed for 20 minutes, and an excellent flame barrier function was exhibited. Closing the pores in a short time than in Example 2, but decomposition products is projected on the heating side opposite only not overflowing slightly on pressure hot surface ignition even cracking was not observed. The results are shown in Table 6.

(実施例4)
軽量骨材を混入させ通常石膏より重量を40%軽減した東京サンホーム株式会社製の石膏プラスターを用いて、プラスター100gに水100gの割合で調整したスラリーに表1の実施例2と組成は同じであるが形状が異なるチューブ切断コマ外形8.5mm、内径5mm,長さ6mmを埋め込んで成形した。硬化した成形板そのものの比重は約1.08で前者の石膏板の比重1.09とほぼ同じである。またFRP用Eガラスのフィラメント径11μm、のカット長1.5mm以下の繊維1gを水に撹拌分散させながらプラスターを投入して5.5mm厚の遮炎パネルを完成させた。
実施例1と同様の方法で簡易加熱試験を20分間行った結果、1分30秒後完全閉塞し、2分後には加熱面に分解生成物が膨張して顔を出すものの着火は見られず、発生する煙もわずかである。20分後に小さな亀裂が生じているが板の崩落には至らない。
Example 4
Using a gypsum plaster made by Tokyo Sunhome Co., Ltd., which is 40% lighter than normal gypsum by mixing lightweight aggregates, the composition is the same as Example 2 in Table 1 in a slurry adjusted to a ratio of 100 g of water to 100 g of plaster. However, it was molded by embedding a tube cutting piece outer shape of 8.5mm, an inner diameter of 5mm, and a length of 6mm with different shapes. The specific gravity of the cured molded plate itself is about 1.08, which is almost the same as the specific gravity of 1.09 of the former gypsum plate. A 5.5 mm thick flame barrier panel was completed by introducing a plaster while stirring and dispersing 1 g of a fiber with a filament diameter of 11 μm and a cut length of 1.5 mm or less of E glass for FRP in water.
As a result of performing a simple heating test in the same manner as in Example 1 for 20 minutes, it was completely closed after 1 minute and 30 seconds, and after 2 minutes , the decomposition product expanded on the heated surface and a face appeared, but no ignition was observed. There is little smoke generated. There is a small crack after 20 minutes, but the plate does not collapse.

(実施例5)
表1の実施例2と同一組成、同一形状のコマを使用し、同一手法で得られた石膏プラスターのスラリーに埋め込み、図4の(2)の形状で厚み9.2mmの遮炎パネルを完成させた。実施例4と同様の簡易加熱試験を20分間行い、着火、亀裂もなく、優れた遮炎機能を確認した。結果を表6に示す。
(Example 5)
Using a piece of the same composition and shape as Example 2 in Table 1 and embedding it in the gypsum plaster slurry obtained by the same method, a flameproof panel with a shape of (2) in FIG. It was. The same simple heating test as in Example 4 was performed for 20 minutes, and an excellent flame barrier function was confirmed without ignition and cracks. The results are shown in Table 6.

(実施例6)
表1の実施例2と同一組成、同一形状のコマを使用し、同一手法で得られた石膏プラスターのスラリーに埋め込み、図4の(3)の形状で厚み9.3mmの遮炎パネルを完成させた。実施例5と同様の加熱試験を20分間行い、優れた遮炎機能を確認した。実施例2より短時間に孔が閉塞し、分解生成が加熱反対側に突出したが熱面には溢れ出ない。着火も亀裂も見られなかった。結果を表6に示す。

Figure 0005120912
表中
*:図1のコマ埋め込み成形法(1)〜(3)
**:表1の配合組成 (Example 6)
Using a piece of the same composition and shape as Example 2 in Table 1 and embedding it in a gypsum plaster slurry obtained by the same method, a flameproof panel having a shape of (3) in FIG. It was. The same heating test as in Example 5 was performed for 20 minutes, and an excellent flame barrier function was confirmed. Example 2 holes are closed in a short period of time from, but degradation products are projected to heat the opposite side not overflow the pressurized hot surface. Ignition and cracks were not seen. The results are shown in Table 6.
Figure 0005120912
In the table *: Top embedding molding method (1) to (3) in FIG.
**: Composition composition in Table 1

請求項2及び3の発明に関する実施例
請求項2及び3の発明の成形法図4の(1)で埋め込むコマの間隔を通常の25mmより短く、例えば10mm〜15mmにして単位面積当たりの通気孔の個数を増やす場合、材料の高温脆化による亀裂、破損が起こり易くなることから金網で遮炎パネルをサンドイッチすることで安全性が確保できる。さらに不燃パネルの板厚よりコマの長さを長くして、一方の金網と成形板の間に露出するコマの層を形成させることで、加熱分解後に一定厚みを持つ炭化物断熱層を形成する。これによって薄い不燃材料の早い脆化を防ぐ効果が発揮できる。
The distance piece embedded in (1) molding 4 of claims 2 and 3 of the invention relates to embodiments the invention of claim 2 and 3 shorter than normal 25 mm, for example, vent holes per unit area in the 10mm~15mm In the case of increasing the number of materials, cracks and breakage due to high temperature embrittlement of the material are likely to occur, so safety can be ensured by sandwiching the flame barrier panel with a wire mesh. Furthermore, the length of the frame is made longer than the thickness of the non-combustible panel, and a layer of the exposed frame is formed between one of the wire mesh and the molded plate, thereby forming a carbide heat insulating layer having a certain thickness after thermal decomposition. By this, the effect which prevents the quick embrittlement of a thin incombustible material can be exhibited.

(実施例1)
表1の実施例2と同じチューブ組成、形状の内、長さのみ7mmの切断コマを請求項2及び3の発明の成形法、図4の(3)の方法によって石膏に埋め込む。但し埋め込み間隔(コマ中心間距離)を15mmとして平均厚み5.1mmの成形板を得た。コマは平均2mmの頭を石膏面から露出している。この状態で16メッシュのステンレス金網でサンドイッチして遮炎パネルを作成した。このパネルについて前述の方法と同じ簡易加熱試験を20分間行った。その際、コマの突出面を加熱面とした。
通気孔は完全に閉塞し、露出部分は膨張、分解した炭化物が金網と石膏板との間隙を80%程度充填し、わずかながらその一部はメッシュの外側に突き出る。加熱裏面にも炭化物が盛り上がり、石膏板には長めの亀裂が複数検出されたが崩壊には至らない。加熱初期に煙の量が多いが着火は生じない。
Example 1
Of the same tube composition and shape as in Example 2 in Table 1, a cutting piece having a length of only 7 mm is embedded in gypsum by the molding method of claims 2 and 3 and the method of FIG. 4 (3). However, a molding plate having an average thickness of 5.1 mm was obtained with the embedding interval (distance between the center of frames) being 15 mm. The top has an average 2mm head exposed from the plaster surface. In this state, a flame barrier panel was prepared by sandwiching with a 16 mesh stainless steel wire mesh. This panel was subjected to the same simple heating test as described above for 20 minutes. At that time, the protruding surface of the top was used as a heating surface.
The vent hole is completely closed, the exposed part is expanded, and the decomposed carbide fills the gap between the wire mesh and the gypsum board by about 80%, but a part of it protrudes to the outside of the mesh. Carbide swells on the heated back surface, and several long cracks are detected in the plaster board, but it does not collapse. There is a lot of smoke at the beginning of heating, but no ignition occurs.

(実施例2)
表1の実施例1と同じチューブ組成、形状の内、長さのみ3mmの切断コマを請求項5の成形法図4の(3)の方法によって前述の石膏プラスターに15mm間隔で埋め込み、厚み約6mmのパネルを作成し、16メッシュのステンレス金網でサンドイッチして遮炎パネルを完成させる。実施例1と異なるのは切断コマが不燃材料の中に完全に埋没されており、不燃材の表裏には5mmФの通気孔を持つ約1.5mmのプラスター層がコマの上下に形成されている。前述の簡易加熱試験を20分間行った結果、5mmФの通気孔は完全に閉塞し、炭化分解生成物は外部に溢れ出ることもなく、着火、亀裂は確認されない。
(Example 2)
A cutting piece having the same tube composition and shape as in Example 1 in Table 1 and having a length of only 3 mm is embedded in the above-mentioned gypsum plaster at an interval of 15 mm by the method shown in FIG. Create a 6mm panel and sandwich it with a 16 mesh stainless steel wire mesh to complete the flame barrier panel. The difference from Example 1 is that the cut pieces are completely buried in the incombustible material, and about 1.5 mm plaster layers having 5 mm-thick vent holes are formed on the top and bottom of the top and bottom of the incombustible material. As a result of performing the above-mentioned simple heating test for 20 minutes, the 5 mm-thick vent hole is completely closed, the carbonization decomposition product does not overflow to the outside, and ignition and cracking are not confirmed.

熱膨張性黒鉛を充填した難燃性複合材料の製造には一般にポリオレフィン樹脂等の熱可塑性樹脂がマトリックスとして用いられる。なかでもエチレン−酢酸ビニル共重合樹脂(EVA)は結晶性高分子である高密度ポリエチレン(HDPE)ほどのさはないが融点が低く、充填材との接着性もよい。また火災時の熱風や火炎で早期に軟化し、熱膨張性黒鉛の膨張を容易にすることから自己遮炎機能を持つチューブの押出成形には適した樹脂である。
表1の実施例1の配合でチューブを押出成形して得られた外径8mm、内径5mmの連続したチューブから6mmの長さのコマを切断した。このコマを厚さ11mmの珪酸カルシウム板に25mm間隔で貫通する通気孔を穿孔するにあたり、同一軸で直径8mm、深さ6mm、続いて直径5mm、深さ5mmの異口径で開けられた孔に嵌め込んだ。加熱試験は東洋精機株式会社製のコーンカロリメータIII,C3型を使用し、輻射熱流束50KW/m2で行った。試験時間は建築基準法の不燃材認定試験時間に相当する20分加熱とした。その結果の代表的数値を示す。
着火時間:着火せず、最高発熱速度:8.2KW/m2、総発熱量:5.39MJ/m2
この性能は不燃材規定の合格に匹敵するものである。
また加熱試験後の変化を図5(写真)に示す。(1)は加熱表面、(2)は加熱裏面、(3)は側面である。5mm径の外には炭化物はわずかに覗く程度であり、裏面には通気口を塞いで炭化物が約10mm盛り上がり、直径約15mmの堅い茸状の傘を形成する。加熱面側には炭化物は突出しておらず、着火、亀裂も生じなかった。
In the production of a flame retardant composite material filled with thermally expandable graphite, a thermoplastic resin such as a polyolefin resin is generally used as a matrix. Among them, ethylene-vinyl acetate copolymer resin (EVA) is not as hard as high-density polyethylene (HDPE), which is a crystalline polymer, but has a low melting point and good adhesion to a filler. In addition, it is a resin suitable for extrusion molding of a tube having a self-flame-blocking function because it softens early with hot air or flame at the time of fire and facilitates expansion of the thermally expandable graphite.
A frame having a length of 6 mm was cut from a continuous tube having an outer diameter of 8 mm and an inner diameter of 5 mm obtained by extruding the tube with the composition of Example 1 in Table 1. When perforating a hole that penetrates this frame through an 11 mm thick calcium silicate plate at 25 mm intervals, the hole was opened on the same axis with a diameter of 8 mm, a depth of 6 mm, and a diameter of 5 mm, and a depth of 5 mm. Fitted. The heating test was performed using a cone calorimeter type III, C3 manufactured by Toyo Seiki Co., Ltd., with a radiant heat flux of 50 KW / m 2 . The test time was 20 minutes equivalent to the non-combustible material certification test time of the Building Standard Law. Representative numerical values are shown.
Ignition time: No ignition, maximum heat generation rate: 8.2KW / m 2 , total heat generation: 5.39MJ / m 2
This performance is comparable to the noncombustible material regulations.
The change after the heating test is shown in FIG. (1) is a heating surface, (2) is a heating back surface, and (3) is a side surface. Outside the 5mm diameter, there is only a slight peek of carbide, and on the back side, the vent is plugged and the carbide rises about 10mm, forming a rigid bowl-shaped umbrella with a diameter of about 15mm. Carbide did not protrude on the heated surface side, and neither ignition nor cracking occurred.

自己封止機能を持つプラスチック複合材チューブを一定長さに切断したコマを、銅、ステンレス等の金属パイプやパイレックス(登録商標)ガラス管などの耐熱パイプの内部に設置し、水、油や気体の物質の輸送、移動の流れを非常時に熱を感知して管を閉塞させ、漏れ出しを抑止する緊急簡易バルブの役割を持たしたパイプ構造も考えられる。
耐熱性の金属パイプ、例えばステンレス、銅、真鍮等や石英やパイレックス(登録商標)等の耐熱ガラス管内部にそれらの内径以下で挿入可能な直径を持つコマ、即ち0mm〜0.2mm程度挿入パイプ径より小さな外径を持つ押出チューブ切断コマ、長さは口径に付加する圧力にもよるが、3mm〜20mmの長さ、肉厚は配合組成にもよるがパイプの直径の15%〜25%を持つ形状であれば加熱膨張後に管を閉塞可能とする。パイプの口径が大きくなれば、小口径の切断チューブを束ねて挿入しておくことも可能である。
外径10mmФ、内径8.5mmФのパイレックス(登録商標)ガラス管に表1実施例3の組成のチューブ、外径8.4mmФ、長さ5mmを挿入し、前述の加熱試験器で加熱して15mm程度に膨張させ、冷却後に家庭の水道口を全開して水圧を掛けても水漏れ、炭化チューブの移動は見られなかった。また窒素ガスボンベに接続して0.3MPaの圧力を付加してもガス漏れは石鹸膜法でも検出されないことから、極短時間の応急停止弁の役割を果たすことが確認された。
A piece of plastic composite tube with a self-sealing function cut to a certain length is placed inside a heat-resistant pipe such as a metal pipe such as copper or stainless steel or a Pyrex (registered trademark) glass pipe. A pipe structure with the role of an emergency simple valve that suppresses leakage by sensing heat in the event of an emergency when transporting or moving the substance is blocked.
Heat-resistant metal pipes, such as stainless steel, copper, brass, etc., tops with diameters that can be inserted within the inner diameter of heat-resistant glass tubes such as quartz and Pyrex (registered trademark), that is, insertion pipe diameters of about 0mm to 0.2mm Extruded tube cutting piece with smaller outer diameter, length depends on pressure applied to caliber, length of 3mm ~ 20mm, wall thickness depends on composition, but 15% ~ 25% of pipe diameter If it has a shape, the tube can be closed after expansion by heating. If the diameter of the pipe increases, it is possible to bundle and insert small-diameter cutting tubes .
Insert a tube of the composition of Example 1 in Table 1 with an outer diameter of 8.4 mmФ and a length of 5 mm into a Pyrex (registered trademark) glass tube with an outer diameter of 10 mmФ and an inner diameter of 8.5 mmФ, and heat it to about 15 mm using the heating tester described above. Even after cooling and cooling, the household tap was fully opened and water pressure was applied, and no water leaks and no movement of the carbonized tube were observed. In addition, even when a pressure of 0.3 MPa was applied by connecting to a nitrogen gas cylinder, gas leakage was not detected by the soap film method, so it was confirmed that it functions as an emergency stop valve for a very short time.

自己封止機能を持つプラスチック複合材チューブの自立するパイプ状試験片の燃焼試験後の状況を示す図面代用写真である。It is a drawing substitute photograph which shows the condition after the combustion test of the self-supporting pipe-shaped test piece of the plastic composite tube with a self-sealing function . 本発明のネット状遮炎通気パネルの平面図である。It is a top view of the net-like flame-proof ventilation panel of the present invention. 図2のネット状遮炎通気パネルの断面図である。It is sectional drawing of the net-like flame-insulating ventilation panel of FIG. 加熱前のコマと加熱後のコマの状態を示す説明図である。It is explanatory drawing which shows the state of the top before a heating and the top after a heating. 本発明の遮炎パネルの平面図である。It is a top view of the flame-shield panel of this invention. 図3Aの遮炎パネルの断面図である。It is sectional drawing of the flame-shielding panel of FIG. 3A. 無機系不燃材料に穿設された通気孔と該通気孔に埋め込まれる押出チューブ切断コマの関係を示す図である。It is a figure which shows the relationship between the vent hole pierced in the inorganic noncombustible material, and the extrusion tube cutting | disconnection piece | frame embedded in this vent hole. 遮炎通気孔パネルの加熱試験後の変化を示す図面代用写真である。It is a drawing substitute photograph which shows the change after the heating test of a flame-proof ventilation hole panel.

1 金網
2 コマ
3 型枠
4 石膏板
5 通気孔
1 Wire mesh 2 Frame 3 Formwork 4 Plasterboard 5 Vent

Claims (3)

押出成形された熱膨張性黒鉛粒子充填チューブが加熱された時、押出方向に対してよりもチューブの内外方向に対して膨張するように、黒鉛粒子の結晶のC軸を半径方向に極度に配向させてなる自己封止機能を持つプラスチック複合チューブを一定長さに切断したコマを、金属製の四角または円形を含む多角形の形状の型枠の上下に設置する2枚の金網の間に開孔部を上下方向にして一定間隔で並べて固定し、さらにこの金網を枠に設置して成り、その金網の一方、または両方にフィルターを載せてなることができる空気ダクトの取り入れ口、屋根裏の換気パネルまたはベントキャップ型換気口等の換気設備に設置可能な遮炎通気パネルの製造方法。When the extruded heat-expandable graphite particle-filled tube is heated, the C-axis of the graphite particle crystal is extremely oriented in the radial direction so that it expands inward and outward of the tube rather than in the direction of extrusion. Open a piece of plastic composite tube with a self-sealing function, cut to a certain length, between two metal meshes placed above and below a polygonal formwork including a metal square or circle. The holes are arranged in a vertical direction and fixed at regular intervals, and this wire mesh is installed on a frame, and an air duct intake that can be fitted with a filter on one or both of the wire mesh, ventilation in the attic A method of manufacturing a flameproof ventilation panel that can be installed in a ventilation facility such as a panel or a vent cap type ventilation opening. 押出成形された熱膨張性黒鉛粒子充填チューブが加熱された時、押出方向に対してよりもチューブの内外方向に対して膨張するように、黒鉛粒子の結晶のC軸を半径方向に極度に配向させてなる自己封止機能を持つプラスチック複合材チューブを一定長さに切断したコマを、石膏、セメント珪酸ボード、珪酸カルシウム、セメント板等の無機不燃板の成形時に成形枠内の四方に一定間隔で設置したピン等のチューブ保持治具を使ってコマを定位置に固定した後、無機系スラリーを流し込み、その中に固定させてなる遮炎通気孔パネルの製造方法。When the extruded heat-expandable graphite particle-filled tube is heated, the C-axis of the graphite particle crystal is extremely oriented in the radial direction so that it expands inward and outward of the tube rather than in the direction of extrusion. When a plastic composite tube with a self-sealing function is cut to a certain length, the frame is fixed at regular intervals in all directions in the molding frame when molding non-combustible plates such as gypsum, cement silicate board, calcium silicate, and cement board. A method of manufacturing a flame-proof vent panel, in which an inorganic slurry is poured after fixing a frame in place using a tube holding jig such as a pin installed in step 1. 前記パネルを金網でサンドイッチしてなる請求項2に記載された遮炎通気孔パネルの製造方法。The method for producing a flameproof vent panel according to claim 2, wherein the panel is sandwiched between metal meshes.
JP2006223657A 2006-08-18 2006-08-18 Method for manufacturing a panel having a self-flame blocking function Active JP5120912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223657A JP5120912B2 (en) 2006-08-18 2006-08-18 Method for manufacturing a panel having a self-flame blocking function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223657A JP5120912B2 (en) 2006-08-18 2006-08-18 Method for manufacturing a panel having a self-flame blocking function

Publications (2)

Publication Number Publication Date
JP2008045360A JP2008045360A (en) 2008-02-28
JP5120912B2 true JP5120912B2 (en) 2013-01-16

Family

ID=39179360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223657A Active JP5120912B2 (en) 2006-08-18 2006-08-18 Method for manufacturing a panel having a self-flame blocking function

Country Status (1)

Country Link
JP (1) JP5120912B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016580A1 (en) * 2016-07-20 2018-01-25 積水化学工業株式会社 Fire-resistant molded object and molded article including fire-resistant molded object
WO2020083956A1 (en) * 2018-10-24 2020-04-30 Hilti Aktiengesellschaft Composite material and fire proofing element for sealing passages and joints in construction elements
WO2020083953A1 (en) * 2018-10-24 2020-04-30 Hilti Aktiengesellschaft Composite material and fire proofing element for sealing passages and joints in construction elements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144972A (en) * 1998-11-04 2000-05-26 Kyoritsu Kagaku Sangyo Kk Foaming type refractory panel and its attaching structure
JP2002114914A (en) * 2000-10-05 2002-04-16 Sekisui Chem Co Ltd Fireproof resin composition and sheet shape of molded product therefrom
JP3992562B2 (en) * 2002-08-23 2007-10-17 エスケー化研株式会社 Perforated ceiling board and manufacturing method thereof
JP2004329655A (en) * 2003-05-09 2004-11-25 Tosetz Co Ltd Fire preventing section penetrating measure tool, and fire preventing measure construction method
JP4125697B2 (en) * 2004-06-08 2008-07-30 テクノポリマー株式会社 Flame retardant resin composition and molded article
JP4723875B2 (en) * 2005-02-21 2011-07-13 株式会社エス・ジー・シー Fireproof eaves ceiling panel with self-sealing function and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008045360A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US8578672B2 (en) Intumescent backer rod
JP4691324B2 (en) Fireproof resin sash
US20120304979A1 (en) Line Element Lead-Through with Support Structure
JP5120912B2 (en) Method for manufacturing a panel having a self-flame blocking function
US10427977B2 (en) Fire resistant geopolymer foam
TWI390103B (en) Waterproof sheet for tunnel
JP2022189839A (en) Fire-resistant resin molding, fire-resistant structure of structural member, method for constructing fire-resistant structural member, and method for manufacturing fire-resistant resin molding
JP2008031797A (en) Steel-frame coating structure
JP2022512801A (en) Composites and fire protection elements for sealing passage openings and joints in building components
CN206110611U (en) Compound fire prevention flue structure
WO2014125838A1 (en) Fire-retardant compartment passage structure
JP4278564B2 (en) Fireproof resin sash
CN210621976U (en) Insulation board with fireproof isolation belt
JP2008031799A (en) Construction method for fire-compartment penetration section, and fire-compartment penetration section structure
JP2010279144A (en) Thermally expansive fire-resistant material, fire-resistant molded item, and fireproofing method
JP4370414B2 (en) Resin panel
JP6924733B2 (en) How to manufacture fire protection sheet, fire protection member and fire protection sheet
EP3194344A1 (en) Molding of a foamed glass product with an outer protective crust
JP2010047459A (en) Inorganic foamed heat insulating material and method of manufacturing the same
JP4628512B2 (en) Composition for forming a fireproof sheet for blocking air vents, fireproof sheet for blocking vents, and method for producing the sheet
JP2008031795A (en) Fireproof structure
JP7000095B2 (en) Receptacle type fireproof double layer tube with built-in fireproof thermal expansion material
KR102345586B1 (en) Flame-retardant composite panel with sound-absorbing holes
JP2016151125A (en) Method to bond expansive material on fire-resistant sash, and fire-resistant sash manufactured by the same
Xu et al. Influence of fiberglass mesh on flammability of EPS used as insulation of buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250