JP5119756B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP5119756B2
JP5119756B2 JP2007157502A JP2007157502A JP5119756B2 JP 5119756 B2 JP5119756 B2 JP 5119756B2 JP 2007157502 A JP2007157502 A JP 2007157502A JP 2007157502 A JP2007157502 A JP 2007157502A JP 5119756 B2 JP5119756 B2 JP 5119756B2
Authority
JP
Japan
Prior art keywords
wiring layer
insulating film
wiring
protective insulating
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007157502A
Other languages
Japanese (ja)
Other versions
JP2008034816A (en
Inventor
幸明 余郷
久則 与倉
秀哉 山寺
博文 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2007157502A priority Critical patent/JP5119756B2/en
Priority to DE102007029873A priority patent/DE102007029873B4/en
Publication of JP2008034816A publication Critical patent/JP2008034816A/en
Application granted granted Critical
Publication of JP5119756B2 publication Critical patent/JP5119756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02331Multilayer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0235Shape of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04073Bonding areas specifically adapted for connectors of different types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05008Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body, e.g.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13021Disposition the bump connector being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance

Description

本発明は配線基板に係り、詳しくは、基板の表面上に配線層が多層に形成された多層構造の配線基板に関するものである。   The present invention relates to a wiring board, and more particularly to a wiring board having a multilayer structure in which wiring layers are formed in multiple layers on the surface of the board.

近年、半導体装置としてMEMS(Micro Electro Mechanical Systems)技術を利用して作製された各種センサ(例えば、圧力センサ、加速度センサ、超音波センサなど)の需要がますます高まっている。
これらセンサは腐食性ガス(例えば、酸性ガスやアルカリ性ガスなど)の雰囲気中(腐食環境)で使用される場合がある。
例えば、圧力センサの用途には車両におけるエンジンの燃料噴射圧計測や排気圧計測などがあり、これらの計測では腐食性ガスである排気ガスの雰囲気中に圧力センサが晒される。
In recent years, the demand for various sensors (for example, pressure sensors, acceleration sensors, ultrasonic sensors, etc.) manufactured using MEMS (Micro Electro Mechanical Systems) technology as semiconductor devices is increasing.
These sensors may be used in an atmosphere (corrosive environment) of corrosive gas (for example, acid gas or alkaline gas).
For example, the application of the pressure sensor includes measurement of fuel injection pressure and exhaust pressure of an engine in a vehicle. In these measurements, the pressure sensor is exposed to an atmosphere of exhaust gas that is corrosive gas.

ところで、センサを構成する半導体チップの配線を外部へ引き出すための接続部材(ボンディングワイヤ、バンプ)は、半導体チップの配線層に形成された電極パッドに接続されている。
そのため、センサを腐食性ガス雰囲気中で使用する際に、センサ本体が腐食性ガスに直接晒される場合には、電極パッドも腐食性ガスに直接晒されることから、電極パッドが腐食に耐え切れずに断線不良を起こすおそれがある。
By the way, connecting members (bonding wires, bumps) for drawing the wiring of the semiconductor chip constituting the sensor to the outside are connected to electrode pads formed on the wiring layer of the semiconductor chip.
Therefore, when the sensor is used in a corrosive gas atmosphere, if the sensor body is directly exposed to corrosive gas, the electrode pad is also directly exposed to corrosive gas. May cause disconnection failure.

図25(A)は、センサを構成する従来の半導体チップ300における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ300は、半導体基板301、絶縁膜302,303、配線層304、電極パッドPadなどから構成されている。
FIG. 25A is a schematic vertical sectional view showing the main part of the vicinity of an electrode pad Pad in a conventional semiconductor chip 300 constituting the sensor.
The semiconductor chip 300 includes a semiconductor substrate 301, insulating films 302 and 303, a wiring layer 304, an electrode pad Pad, and the like.

半導体基板301の表面上には絶縁膜302が形成され、絶縁膜302の表面上には配線層304が形成され、絶縁膜302および配線層304の表面上には絶縁膜303が形成されている。そして、配線層304の表面の一部が絶縁膜303に開口形成された開口部303aから露出し、その開口部303aから露出した配線層304の表面によって電極パッドPadが形成されている。
尚、配線層304は、絶縁膜302に形成されたコンタクトホール(図示略)を介して半導体基板301に接続されている。
An insulating film 302 is formed on the surface of the semiconductor substrate 301, a wiring layer 304 is formed on the surface of the insulating film 302, and an insulating film 303 is formed on the surfaces of the insulating film 302 and the wiring layer 304. . A part of the surface of the wiring layer 304 is exposed from the opening 303a formed in the insulating film 303, and the electrode pad Pad is formed by the surface of the wiring layer 304 exposed from the opening 303a.
The wiring layer 304 is connected to the semiconductor substrate 301 via a contact hole (not shown) formed in the insulating film 302.

電極パッドPadには、半導体チップ300の配線を外部へ引き出すための接続部材(図示略)が接続されている。尚、接続部材には、例えば、ワイヤボンディング(ボールボンディング)接続法で用いられるボンディングワイヤ(引出導線)や、フリップチップ(フェイスダウンボンディング)接続法で用いられるバンプなどがある。   A connection member (not shown) for drawing the wiring of the semiconductor chip 300 to the outside is connected to the electrode pad Pad. Examples of the connection member include a bonding wire (lead wire) used in a wire bonding (ball bonding) connection method and a bump used in a flip chip (face-down bonding) connection method.

半導体チップ300が腐食性ガス雰囲気中に置かれると、電極パッドPadが腐食性ガスに直接晒される。
ここで、電極パッドPad(配線層304)が単層のアルミニウム系膜によって形成されている場合、アルミニウム系膜は腐食性ガスによって腐食され易いため、電極パッドPadが腐食に耐え切れずに断線不良を起こすおそれがある。
尚、アルミニウム系膜の形成材料としては、例えば、アルミニウム単体、アルミニウムにシリコンを添加したシリコンアルミニウム合金などがある。
When the semiconductor chip 300 is placed in a corrosive gas atmosphere, the electrode pad Pad is directly exposed to the corrosive gas.
Here, when the electrode pad Pad (wiring layer 304) is formed of a single layer aluminum-based film, the aluminum-based film is easily corroded by a corrosive gas. There is a risk of causing.
Examples of the material for forming the aluminum-based film include aluminum alone and a silicon aluminum alloy obtained by adding silicon to aluminum.

図25(B)は、腐食性ガスに耐性がある保護配線層311,312で電極パッドPadを覆うようにした従来の半導体チップ310の要部概略縦断面図である。
半導体チップ310は、半導体基板301、絶縁膜302,303、配線層304、電極パッドPad、保護配線層311,312などから構成されている。
配線層304の表面上には各保護配線層311,312がこの順番で形成され、電極パッドPadの表面は2層の保護配線層311,312によって覆われている。
FIG. 25B is a schematic vertical cross-sectional view of a main part of a conventional semiconductor chip 310 in which the electrode pad Pad is covered with protective wiring layers 311 and 312 resistant to corrosive gas.
The semiconductor chip 310 includes a semiconductor substrate 301, insulating films 302 and 303, a wiring layer 304, an electrode pad Pad, protective wiring layers 311 and 312 and the like.
The protective wiring layers 311 and 312 are formed in this order on the surface of the wiring layer 304, and the surface of the electrode pad Pad is covered with the two protective wiring layers 311 and 312.

半導体チップ310では、保護配線層311,312が電極パッドPadを腐食性ガスから保護するバリア層として機能し、電極パッドPadが腐食性ガスに直接晒され無いため、電極パッドPadがアルミニウム系膜によって形成されている場合でも電極パッドPadの腐食をある程度まで防止できる。
ここで、保護配線層311の形成材料としては、例えば、各種高融点金属(ニッケル、チタン、タングステン、タンタルなど)の単体または合金(タングステンチタンなど)がある。
また、保護配線層312の形成材料としては、例えば金(Au)などがある。
In the semiconductor chip 310, the protective wiring layers 311 and 312 function as a barrier layer that protects the electrode pad Pad from a corrosive gas, and the electrode pad Pad is not directly exposed to the corrosive gas. Even when it is formed, corrosion of the electrode pad Pad can be prevented to some extent.
Here, as a forming material of the protective wiring layer 311, for example, there are single refractory metals (nickel, titanium, tungsten, tantalum, etc.) or alloys (tungsten titanium, etc.).
In addition, as a material for forming the protective wiring layer 312, for example, gold (Au) is used.

しかし、半導体チップ310が腐食性ガス雰囲気中に長時間晒された場合には、腐食性ガスが薄い各保護配線層311,312を透過して電極パッドPadを浸食するおそれがあり、耐食性に優れた各保護配線層311,312を用いても腐食性ガスから電極パッドPadを保護できないことがある。   However, when the semiconductor chip 310 is exposed to a corrosive gas atmosphere for a long time, the corrosive gas may permeate the thin protective wiring layers 311 and 312 and erode the electrode pad Pad, which is excellent in corrosion resistance. Further, even if each of the protective wiring layers 311 and 312 is used, the electrode pad Pad may not be protected from corrosive gas.

そこで、特許文献1に開示されるように、測定圧力を受圧するダイアフラムとケースとにより圧力検出室が区画形成されており、前記圧力検出室内には感圧部を有する半導体チップが設けられており、前記圧力検出室内には前記ダイアフラムが受圧した前記測定圧力を前記半導体チップに伝達する電気絶縁性の圧力伝達液体が封入された圧力センサが提案されている。   Therefore, as disclosed in Patent Document 1, a pressure detection chamber is defined by a diaphragm and a case for receiving a measurement pressure, and a semiconductor chip having a pressure sensing portion is provided in the pressure detection chamber. There has been proposed a pressure sensor in which an electrically insulating pressure transmission liquid for transmitting the measurement pressure received by the diaphragm to the semiconductor chip is enclosed in the pressure detection chamber.

また、特許文献2に開示されるように、ケースに配置されて圧力検出素子を有するセンサチップと、前記センサチップに形成された電極と、前記ケースに形成された外部出力用の端子を電気的に接続するフレキシブルプリント基板とを備え、前記電極および前記端子の接合部が熱可塑性樹脂により気密に封止された圧力センサが提案されている。
特開2005−181066号公報(第1〜11頁、図1) 特開2005−227039号公報(第1〜13頁、図1)
Further, as disclosed in Patent Document 2, a sensor chip having a pressure detection element disposed in a case, an electrode formed on the sensor chip, and an external output terminal formed on the case are electrically connected. And a flexible printed circuit board connected to the pressure sensor, and a pressure sensor in which a joint between the electrode and the terminal is hermetically sealed with a thermoplastic resin has been proposed.
Japanese Patent Laying-Open No. 2005-181066 (pages 1 to 11, FIG. 1) Japanese Patent Laying-Open No. 2005-227039 (pages 1 to 13, FIG. 1)

特許文献1および特許文献2の技術には以下の問題点があった。
[問題点1]特許文献1の技術では、ダイアフラムおよび圧力伝達液体を介して半導体チップに圧力が伝達されるため、半導体チップに圧力を直接印加する場合に比べて、センサの感度が低下する。
The techniques of Patent Document 1 and Patent Document 2 have the following problems.
[Problem 1] In the technique of Patent Document 1, since the pressure is transmitted to the semiconductor chip via the diaphragm and the pressure transmission liquid, the sensitivity of the sensor is lower than when pressure is directly applied to the semiconductor chip.

[問題点2]特許文献1の技術では、ダイアフラムおよび圧力伝達液体を設ける分だけセンサの外形寸法が大きくなる。特許文献2の技術では、熱可塑性樹脂を設ける分だけセンサの外形寸法が大きくなる。   [Problem 2] In the technique of Patent Document 1, the outer dimensions of the sensor are increased by the provision of the diaphragm and the pressure transmission liquid. In the technique of Patent Document 2, the outer dimensions of the sensor are increased by the provision of the thermoplastic resin.

[問題点3]特許文献1の技術では、ダイアフラムおよび圧力伝達液体を設ける分だけセンサの製造コストが増大する。特許文献2の技術では、ケースおよび熱可塑性樹脂を設ける分だけセンサの製造コストが増大する。   [Problem 3] With the technique of Patent Document 1, the manufacturing cost of the sensor increases by providing the diaphragm and the pressure transmission liquid. In the technique of Patent Document 2, the manufacturing cost of the sensor increases by providing the case and the thermoplastic resin.

本発明は上記問題を解決するためになされたものであって、その目的は、腐食性ガス雰囲気中に置かれても電極パッドの腐食を防止可能であると共に、機能を阻害せずコンパクトな配線基板を低コストに提供することにある。   The present invention has been made in order to solve the above-described problems. The object of the present invention is to prevent the electrode pad from being corroded even when placed in a corrosive gas atmosphere, and to achieve a compact wiring without impairing the function. It is to provide a substrate at a low cost.

[課題を解決するための手段]および[発明の効果]に記載する( )内の符号等は、[発明を実施するための最良の形態]に記載する構成部材・構成要素の符号に対応したものである。   Reference numerals in parentheses described in [Means for Solving the Problems] and [Effects of the Invention] corresponded to reference numerals of components and components described in [Best Mode for Carrying Out the Invention]. Is.

請求項1に記載の発明は、
基板(11)の表面上に形成された第1配線層(15)と、
その第1配線層(15)の上方に形成された第2配線層(16)と、
その第2配線層(16)を覆うように形成された保護絶縁膜(14)と、
その保護絶縁膜(14)に形成された開口部(14a,14b)と、
その開口部(14a,14b)に配置された電極パッド(Pad)と、
前記基板(11)および前記第1配線層(15)の表面上に形成された層間絶縁膜(13)と、
その層間絶縁膜(13)に形成されたビアホール(13a)と、
前記第2配線層(16)の下側全面および前記層間絶縁膜(13)の表面上に形成された第3配線層(21)と
を備えた配線基板(10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240)であって、
前記保護絶縁膜(14)の開口部(14a,14b)と前記第1配線層(15)とが基板(11)の板厚方向にて重ならない位置に形成され、
前記第2配線層(16)は前記第1配線層(15)から離れた位置まで延出されて引き出され、その第2配線層(16)における延出部分(16a)は前記保護絶縁膜(14)の開口部(14a)から露出され、その開口部(14a)から露出された第2配線層(16)の延出部分(16a)によって前記電極パッド(Pad)が形成され、
前記第2配線層(16)は、前記層間絶縁膜(13)の表面上および前記ビアホール(13a)の内部に形成され、
前記保護絶縁膜(14)は、前記層間絶縁膜(13)および前記第2配線層(16)の表面上に形成され、
前記第1配線層(15)と前記第3配線層(21)とは前記ビアホール(13a)を介して接続され、
前記第1配線層(15)と前記第2配線層(16)とは、前記ビアホール(13)の内部に充填された前記第3配線層(21)を介して接続され、
前記第3配線層(21)を介して前記層間絶縁膜(13)と前記第2配線層(16)が接着され、
前記ビアホール(13a)の内部に前記第3配線層(21)が充填されて埋め込まれていることを技術的特徴とする。
前記第2配線層(16)は金から成り、
前記第3配線層(21)はタンタルから成ることを技術的特徴とする。
The invention described in claim 1
A first wiring layer (15) formed on the surface of the substrate (11);
A second wiring layer (16) formed above the first wiring layer (15);
A protective insulating film (14) formed to cover the second wiring layer (16);
Openings (14a, 14b) formed in the protective insulating film (14);
An electrode pad (Pad) disposed in the opening (14a, 14b);
An interlayer insulating film (13) formed on the surfaces of the substrate (11) and the first wiring layer (15);
Via holes (13a) formed in the interlayer insulating film (13);
A wiring board (10, 20, 30, 40, 50) comprising a third wiring layer (21) formed on the entire lower surface of the second wiring layer (16) and on the surface of the interlayer insulating film (13). , 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240),
The openings (14a, 14b) of the protective insulating film (14) and the first wiring layer (15) are formed at positions that do not overlap in the thickness direction of the substrate (11),
The second wiring layer (16) is extended to a position away from the first wiring layer (15), and the extended portion (16a) in the second wiring layer (16) is formed by the protective insulating film ( The electrode pad (Pad) is formed by the extended portion (16a) of the second wiring layer (16) exposed from the opening (14a) of 14) and exposed from the opening (14a),
The second wiring layer (16) is formed on the surface of the interlayer insulating film (13) and inside the via hole (13a),
The protective insulating film (14) is formed on the surface of the interlayer insulating film (13) and the second wiring layer (16),
The first wiring layer (15) and the third wiring layer (21) are connected via the via hole (13a),
The first wiring layer (15) and the second wiring layer (16) are connected via the third wiring layer (21) filled in the via hole (13),
The interlayer insulating film (13) and the second wiring layer (16) are bonded via the third wiring layer (21),
A technical feature is that the third wiring layer (21) is filled and buried in the via hole (13a).
The second wiring layer (16) is made of gold,
The third wiring layer (21) is technically characterized by being made of tantalum.

請求項2に記載の発明は、
請求項1に記載の配線基板において、
前記第2配線層(16)の上側全面に形成された第4配線層(41)を備え、
その第4配線層(41)を介して前記第2配線層(16)と前記保護絶縁膜(14)が接着されることを技術的特徴とする。
The invention described in claim 2
The wiring board according to claim 1 ,
A fourth wiring layer (41) formed on the entire upper surface of the second wiring layer (16);
A technical feature is that the second wiring layer (16) and the protective insulating film (14) are bonded via the fourth wiring layer (41).

請求項3に記載の発明は、
請求項1に記載の配線基板において、
前記保護絶縁膜(14)の開口部(14a)の内部を除く前記第2配線層(16)の上側に形成された第5配線層(91)を備え、
その第5配線層(91)を介して前記第2配線層(16)と前記保護絶縁膜(14)が接着され、
前記保護絶縁膜(14)の開口部(14a)の内周壁面に位置する前記第5配線層(91)の端面(91a)は前記保護絶縁膜(14)によって覆われ、
前記保護絶縁膜(14)の開口部(14a)から前記第2配線層(16)が直接露出していることを技術的特徴とする。
The invention according to claim 3
The wiring board according to claim 1 ,
A fifth wiring layer (91) formed above the second wiring layer (16) excluding the inside of the opening (14a) of the protective insulating film (14);
The second wiring layer (16) and the protective insulating film (14) are bonded via the fifth wiring layer (91),
The end surface (91a) of the fifth wiring layer (91) located on the inner peripheral wall surface of the opening (14a) of the protective insulating film (14) is covered with the protective insulating film (14),
A technical feature is that the second wiring layer (16) is directly exposed from the opening (14a) of the protective insulating film (14).

請求項4に記載の発明は、
請求項2に記載の配線基板において、
前記第2配線層(16)は金から成り、
前記第4配線層(41)はタンタルまたはタングステンチタンから成ることを技術的特徴とする。
The invention according to claim 4
The wiring board according to claim 2 ,
The second wiring layer (16) is made of gold,
The fourth wiring layer (41) is technically characterized by being made of tantalum or tungsten titanium.

請求項5に記載の発明は、
請求項3に記載の配線基板において、
前記第2配線層(16)は金から成り、
前記第5配線層(91)はタンタルまたはタングステンチタンから成ることを技術的特徴とする。
The invention described in claim 5
The wiring board according to claim 3 ,
The second wiring layer (16) is made of gold,
The fifth wiring layer (91) is technically characterized by being made of tantalum or tungsten titanium.

請求項6に記載の発明は、
請求項1のいずれか1項に記載の配線基板において、
前記保護絶縁膜(14)の開口部の内部を除く前記第2配線層(16)の上側に形成された第2接着層(61)を備え、
その第2接着層(61)を介して前記第2配線層(16)と前記保護絶縁膜(14)が接着され、
前記保護絶縁膜(14)の開口部(14a)から前記第2配線層(16)が直接露出していることを技術的特徴とする。
The invention described in claim 6
The wiring board according to claim 1 ,
A second adhesive layer (61) formed on the upper side of the second wiring layer (16) excluding the inside of the opening of the protective insulating film (14);
The second wiring layer (16) and the protective insulating film (14) are bonded via the second adhesive layer (61),
A technical feature is that the second wiring layer (16) is directly exposed from the opening (14a) of the protective insulating film (14).

請求項7に記載の発明は、
請求項1〜6のいずれか1項に記載の配線基板において、
前記電極パッド(Pad)に対してワイヤボンディング接続法を用いて接続されたボンディングワイヤ(51)を備えたことを技術的特徴とする。
The invention described in claim 7
In the wiring board according to any one of claims 1 to 6 ,
A technical feature is that a bonding wire (51) connected to the electrode pad (Pad) using a wire bonding connection method is provided.

請求項8に記載の発明は、
請求項1〜6のいずれか1項に記載の配線基板において、
前記電極パッド(Pad)に対してフリップチップ接続法を用いて接続されたバンプ(52)を備えたことを技術的特徴とする。
The invention according to claim 8 provides:
In the wiring board according to any one of claims 1 to 6 ,
A technical feature is that a bump (52) connected to the electrode pad (Pad) using a flip chip connection method is provided.

請求項9に記載の発明は、
請求項1〜8のいずれか1項に記載の配線基板において、
前記配線基板(80)はセンサ(100,110)を構成することを技術的特徴とする。
The invention according to claim 9 is:
In the wiring board according to any one of claims 1 to 8 ,
The wiring board (80) constitutes a sensor (100, 110) as a technical feature.

請求項10に記載の発明は、
請求項1〜8のいずれか1項に記載の配線基板において、
前記配線基板(140)はパワー素子(180,200)を構成することを技術的特徴とする。
The invention according to claim 10 is:
In the wiring board according to any one of claims 1 to 8 ,
The wiring board (140) constitutes a power element (180, 200) as a technical feature.

<請求項1>
請求項1の発明では、第1配線層(15)の表面が第2配線層(16)および保護絶縁膜(14)によって覆われており、第1配線層(15)の表面が露出していない。
そのため、配線基板が腐食性ガス雰囲気中に置かれても、第1配線層(15)が腐食性ガスに直接晒されることがなく、腐食性ガスによって腐食され易い材料(例えばアルミニウム系膜など)によって第1配線層(15)を形成したとしても第1配線層は腐食されない。
<Claim 1>
In the invention of claim 1, the surface of the first wiring layer (15) is covered with the second wiring layer (16) and the protective insulating film (14), and the surface of the first wiring layer (15) is exposed. Absent.
Therefore, even when the wiring board is placed in a corrosive gas atmosphere, the first wiring layer (15) is not directly exposed to the corrosive gas, and is easily corroded by the corrosive gas (for example, an aluminum film). Even if the first wiring layer (15) is formed by the above, the first wiring layer is not corroded.

また、請求項1の発明では、第2配線層(16)の一部が保護絶縁膜(14)の開口部(14a,14b)から露出して電極パッド(Pad)が形成されている。
そのため、配線基板が腐食性ガス雰囲気中に置かれると、電極パッド(Pad)が腐食性ガスに直接晒される。そこで、配線基板が置かれる腐食性ガス雰囲気に耐性のある導電材料で第2配線層(16)を形成しておけば、電極パッド(Pad)は第2配線層(16)の一部であるため、腐食性ガスにより電極パッドが腐食されることはなく、電極パッドの断線不良を防止できる。
According to the first aspect of the present invention, a part of the second wiring layer (16) is exposed from the openings (14a, 14b) of the protective insulating film (14) to form electrode pads (Pad).
Therefore, when the wiring board is placed in a corrosive gas atmosphere, the electrode pad (Pad) is directly exposed to the corrosive gas. Therefore, if the second wiring layer (16) is formed of a conductive material resistant to the corrosive gas atmosphere on which the wiring board is placed, the electrode pad (Pad) is a part of the second wiring layer (16). Therefore, the electrode pad is not corroded by the corrosive gas, and disconnection failure of the electrode pad can be prevented.

ここで、保護絶縁膜(14)の開口部(14a,14b)と第1配線層(15)とが基板(11)の板厚方向(上下方向)にて重なる場合には、配線基板が腐食性ガス雰囲気中に置かれたときに、腐食性ガスが保護絶縁膜(14)の開口部(14a,14b)から第2配線層(16)を通って第1配線層(15)に到達し、腐食性ガスによって第1配線層(15)が腐食されるおそれがある。   Here, when the opening (14a, 14b) of the protective insulating film (14) and the first wiring layer (15) overlap in the thickness direction (vertical direction) of the substrate (11), the wiring substrate is corroded. When placed in a reactive gas atmosphere, corrosive gas reaches the first wiring layer (15) from the openings (14a, 14b) of the protective insulating film (14) through the second wiring layer (16). The first wiring layer (15) may be corroded by the corrosive gas.

しかし、請求項1の発明では、保護絶縁膜(14)の開口部(14a,14b)と第1配線層(15)とが基板(11)の板厚方向(上下方向)にて重ならない位置に形成されている。
従って、請求項1の発明によれば、配線基板が腐食性ガス雰囲気中に置かれたときに、腐食性ガスが保護絶縁膜(14)の開口部(14a,14b)から第2配線層(16)を通って第1配線層(15)に到達することがなく、その腐食性ガスによって第1配線層(15)が腐食されるおそれもない。
However, in the first aspect of the invention, the opening (14a, 14b) of the protective insulating film (14) and the first wiring layer (15) do not overlap in the thickness direction (vertical direction) of the substrate (11). Is formed.
Therefore, according to the first aspect of the present invention, when the wiring board is placed in a corrosive gas atmosphere, the corrosive gas flows from the openings (14a, 14b) of the protective insulating film (14) to the second wiring layer (14a, 14b). 16), the first wiring layer (15) is not reached, and the corrosive gas does not cause the first wiring layer (15) to be corroded.

ところで、請求項1の配線基板を用いて圧力センサを構成した場合には、特許文献1のようにダイアフラムおよび圧力伝達液体を介して配線基板に形成された半導体チップに圧力を伝達させる必要が無く、腐食性ガス雰囲気中に置かれた配線基板に形成された半導体チップ(80)に圧力を直接印加可能であるため、前記した[問題点1]を解決できる。
すなわち、請求項1の配線基板を用いて圧力センサを構成した場合には、圧力センサの機能であるセンサの感度の低下を防止可能になり、当該機能が阻害されない。
By the way, when the pressure sensor is configured using the wiring board according to claim 1, there is no need to transmit the pressure to the semiconductor chip formed on the wiring board via the diaphragm and the pressure transmission liquid as in Patent Document 1. Since the pressure can be directly applied to the semiconductor chip (80) formed on the wiring board placed in the corrosive gas atmosphere, the above [Problem 1] can be solved.
That is, when a pressure sensor is configured using the wiring board according to claim 1, it is possible to prevent a decrease in the sensitivity of the sensor, which is a function of the pressure sensor, and the function is not hindered.

また、請求項1の配線基板を用いて各種センサ(例えば、圧力センサ、加速度センサ、超音波センサなど)を構成した場合には、特許文献1のようにダイアフラムおよび圧力伝達液体を設ける必要や、特許文献2のように熱可塑性樹脂を設ける必要が無く、センサの外形寸法が大きくならないため、前記した[問題点2]を解決できる。   When various sensors (for example, a pressure sensor, an acceleration sensor, an ultrasonic sensor, etc.) are configured using the wiring board according to claim 1, it is necessary to provide a diaphragm and a pressure transmission liquid as in Patent Document 1, Since there is no need to provide a thermoplastic resin as in Patent Document 2 and the outer dimensions of the sensor do not increase, the above [Problem 2] can be solved.

さらに、請求項1の配線基板を用いて前記した各種センサを構成した場合には、特許文献1のようにダイアフラムおよび圧力伝達液体を設ける必要や、特許文献2のように熱可塑性樹脂を設ける必要が無く、センサの製造コストが増大しないため、前記した[問題点3]を解決できる。   Further, when the various sensors described above are configured using the wiring board according to claim 1, it is necessary to provide a diaphragm and a pressure transmission liquid as in Patent Document 1 or a thermoplastic resin as in Patent Document 2 Since the manufacturing cost of the sensor does not increase, the above [Problem 3] can be solved.

また、請求項1の発明では、第2配線層(16)が第1配線層(15)から離れた位置まで延出されて引き出され、その第2配線層の延出部分(16a)の一部が保護絶縁膜(14)の開口部(14a)から露出して電極パッド(Pad)が形成されているため、保護絶縁膜(14)の開口部(14a)と第1配線層(15)とが基板(11)の板厚方向(上下方向)にて重なることはない(第1〜第15,第22実施形態に該当)
According to the first aspect of the present invention, the second wiring layer (16) is extended to a position distant from the first wiring layer (15) and is drawn out, and one extension portion (16a) of the second wiring layer is extracted. Since the electrode pad (Pad) is formed by exposing the portion from the opening (14a) of the protective insulating film (14), the opening (14a) of the protective insulating film (14) and the first wiring layer (15) Do not overlap in the thickness direction (vertical direction) of the substrate (11) ( corresponding to the first to fifteenth and twenty-second embodiments) .

また、請求項1の発明では、第2配線層(16)が層間絶縁膜(13)のビアホール(13a)にて第1配線層(15)と接続され、その第2配線層が第1配線層から離れた位置まで延出されて引き出され、その第2配線層の延出部分(16a)の一部が保護絶縁膜(14)の開口部(14a)から露出して電極パッド(Pad)が形成されている(第1〜第15実施形態に該当)
そのため、請求項1の発明では、保護絶縁膜(14)の開口部(14a)とビアホール(13a)および第1配線層(15)とが基板(11)の板厚方向(上下方向)にて重なることはない。
In the invention of claim 1 , the second wiring layer (16) is connected to the first wiring layer (15) through the via hole (13a) of the interlayer insulating film (13), and the second wiring layer is connected to the first wiring layer. A part of the extension part (16a) of the second wiring layer is exposed from the opening part (14a) of the protective insulating film (14) and is extended to a position away from the layer, and is exposed to an electrode pad (Pad). (Corresponding to the first to fifteenth embodiments) .
Therefore, in the invention of claim 1 , the opening (14a) of the protective insulating film (14), the via hole (13a), and the first wiring layer (15) are arranged in the plate thickness direction (vertical direction) of the substrate (11). There is no overlap.

従って、請求項1の発明によれば、配線基板が腐食性ガス雰囲気中に置かれたときに、腐食性ガスが保護絶縁膜(14)の開口部(14a,14b)からビアホール(13a)を通って第1配線層(15)に到達することがなく、その腐食性ガスによって第1配線層(15)が腐食されるおそれもない。
Therefore, according to the invention of claim 1 , when the wiring board is placed in a corrosive gas atmosphere, the corrosive gas passes through the via holes (13a) from the openings (14a, 14b) of the protective insulating film (14). There is no possibility that the first wiring layer (15) passes through and the first wiring layer (15) is not corroded by the corrosive gas.

また、請求項1の発明において、層間絶縁膜(13)との密着性に優れると共に、各配線層(15,16)と確実に接続されて良好な導通が得られる導電材料を第3配線層(21)の形成材料に用いれば、第2配線層(16)の形成材料に層間絶縁膜との密着性が低い導電材料を用いた場合でも、第3配線層が第2配線層と層間絶縁膜を接着する接着層(密着層)として機能する。
In the first aspect of the invention, a conductive material that is excellent in adhesion to the interlayer insulating film (13) and that is reliably connected to each wiring layer (15, 16) to obtain good conduction is provided in the third wiring layer. When used as the forming material of (21), even when a conductive material having low adhesion to the interlayer insulating film is used as the forming material of the second wiring layer (16), the third wiring layer is insulated from the second wiring layer and the interlayer insulation. It functions as an adhesive layer (adhesion layer) for adhering the film .

また、請求項1の発明では、ビアホール(13a)の内部に第3配線層(21)が充填されて埋め込まれているため、ビアホール13aの上方における第3配線層(21)の表面が略平坦になり、第3配線層(21)の上側に形成する第2配線層(16)によってビアホール(13a)を充填する必要が無くなる(第10実施形態に該当)
従って、請求項1の発明によれば、第2配線層(16)の形成材料や形成方法として段差被覆性が低いものを使用した場合でも、第3配線層(21)を介して第1配線層(15)と第2配線層(16)との良好な導通が得られる。
In the invention of claim 1 , since the third wiring layer (21) is filled and buried inside the via hole (13a), the surface of the third wiring layer (21) above the via hole 13a is substantially flat. Thus, it is not necessary to fill the via hole (13a) with the second wiring layer (16) formed above the third wiring layer (21) (corresponding to the tenth embodiment) .
Therefore, according to the first aspect of the present invention, even when a material having a low step coverage is used as the forming material or forming method of the second wiring layer (16), the first wiring is interposed via the third wiring layer (21). Good conduction between the layer (15) and the second wiring layer (16) is obtained.

ところで、第2配線層(16)の形成材料として金を用いた場合、金は導電性に優れるもの層間絶縁膜(13)との密着性に劣るという欠点がある。
そこで、請求項1の発明では、第3配線層(21)の形成材料としてタンタルを用いる(第2,第4,第6,第10,第11実施形態に該当)
タンタルは、金に対して電気抵抗が大きいという欠点があるが、層間絶縁膜(13)との密着性に優れ、第2配線層(16)の形成材料である金と確実に接続されて良好な導通が得られる上に、耐腐食性に優れているため、第3配線層(21)の形成材料として好適である。
By the way, when gold is used as the forming material of the second wiring layer (16), there is a disadvantage that gold is inferior in adhesion with the interlayer insulating film (13) although it is excellent in conductivity.
Therefore, in the first aspect of the invention, tantalum is used as the material for forming the third wiring layer (21) (corresponding to the second, fourth, sixth, tenth and eleventh embodiments) .
Tantalum has a drawback that it has a large electric resistance with respect to gold, but it has excellent adhesion to the interlayer insulating film (13) and is well connected to gold as a material for forming the second wiring layer (16). It is suitable as a material for forming the third wiring layer (21) because it provides excellent conduction and is excellent in corrosion resistance.

請求項2:第4,第5,第8,第9実施形態に該当>
請求項2の発明において、保護絶縁膜(14)との密着性に優れると共に、第2配線層(16)と確実に接続されて良好な導通が得られる導電材料を第4配線層(41)の形成材料に用いれば、第2配線層の形成材料に保護絶縁膜との密着性が低い導電材料を用いた場合でも、第4配線層が第2配線層と保護絶縁膜を接着する接着層(密着層)として機能するため、請求項1の発明の前記作用・効果と同様の作用・効果が得られる。
< Claim 2 : Corresponds to the fourth, fifth, eighth, and ninth embodiments>
In the invention of claim 2 , a conductive material that has excellent adhesion to the protective insulating film (14) and is reliably connected to the second wiring layer (16) to obtain good conduction is provided in the fourth wiring layer (41). If the conductive material having low adhesion to the protective insulating film is used as the second wiring layer forming material, the fourth wiring layer adheres the second wiring layer and the protective insulating film. Since it functions as an (adhesion layer), the same function / effect as the function / effect of the invention of claim 1 can be obtained.

請求項3:第11実施形態に該当>
請求項3の発明において、保護絶縁膜(14)との密着性に優れると共に、第2配線層(16)と確実に接続されて良好な導通が得られる導電材料を第5配線層(91)の形成材料に用いれば、第2配線層の形成材料に保護絶縁膜との密着性が低い導電材料を用いた場合でも、第5配線層が第2配線層と保護絶縁膜を接着する接着層(密着層)として機能するため、請求項2の発明の前記作用・効果と同様の作用・効果が得られる。
< Claim 3 : Corresponds to the eleventh embodiment>
In the invention of claim 3 , a conductive material that is excellent in adhesion to the protective insulating film (14) and that is reliably connected to the second wiring layer (16) to obtain good conduction is provided in the fifth wiring layer (91). If the conductive material having a low adhesion to the protective insulating film is used as the second wiring layer forming material, the fifth wiring layer adheres the second wiring layer and the protective insulating film. Since it functions as an (adhesion layer), the same functions and effects as those of the invention of claim 2 can be obtained.

そして、請求項3の発明では、第5配線層(91)は、保護絶縁膜(14)の開口部(14a)の内部を除く第2配線層(16)の上側に形成されている。また、保護絶縁膜(14)の開口部(14a)の内周壁面に位置する第5配線層(91)の端面(91a)は、保護絶縁膜(14)によって覆われている。
従って、請求項3の発明によれば、第5配線層(91)が露出せず、第5配線層(91)が腐食性ガスに晒されるおそれが無いため、第5配線層の形成材料に耐腐食性が低いものを使用可能になる。
In the invention of claim 3 , the fifth wiring layer (91) is formed above the second wiring layer (16) excluding the inside of the opening (14a) of the protective insulating film (14). The end surface (91a) of the fifth wiring layer (91) located on the inner peripheral wall surface of the opening (14a) of the protective insulating film (14) is covered with the protective insulating film (14).
Therefore, according to the invention of claim 3 , the fifth wiring layer (91) is not exposed and the fifth wiring layer (91) is not exposed to corrosive gas. The one with low corrosion resistance can be used.

請求項4:第4,第5,第8,第9実施形態に該当>
第2配線層(16)の形成材料として金を用いた場合、金は導電性に優れるもの保護絶縁膜(14)との密着性に劣るという欠点がある。
そこで、請求項4の発明では、第4配線層(41)の形成材料としてタンタルまたはタングステンチタンを用いる。
タンタルまたはタングステンチタンは、金に対して電気抵抗が大きいという欠点があるが、保護絶縁膜(14)との密着性に優れ、第2配線層(16)の形成材料である金と確実に接続されて良好な導通が得られる上に、耐腐食性に優れているため、第4配線層(41)の形成材料として好適である。
< Claim 4 : Corresponding to Fourth, Fifth, Eighth and Ninth Embodiments>
When gold is used as the material for forming the second wiring layer (16), the gold has a drawback that it is excellent in conductivity but inferior in adhesion to the protective insulating film (14).
Accordingly, in the invention of claim 4 , tantalum or tungsten titanium is used as a material for forming the fourth wiring layer (41).
Tantalum or tungsten titanium has a drawback that it has a large electric resistance with respect to gold, but has excellent adhesion to the protective insulating film (14) and is reliably connected to gold, which is a material for forming the second wiring layer (16). As a result, good conduction is obtained and the corrosion resistance is excellent, so that it is suitable as a material for forming the fourth wiring layer (41).

請求項5:第11実施形態に該当>
第2配線層(16)の形成材料として金を用いた場合、金は導電性に優れるもの保護絶縁膜(14)との密着性に劣るという欠点がある。
そこで、請求項5の発明では、第5配線層(91)の形成材料としてタンタルまたはタングステンチタンを用いる。
タンタルまたはタングステンチタンは、金に対して電気抵抗が大きいという欠点があるが、保護絶縁膜(14)との密着性に優れ、第2配線層(16)の形成材料である金と確実に接続されて良好な導通が得られる上に、耐腐食性に優れているため、第5配線層(91)の形成材料として好適である。
< Claim 5 : Corresponds to the eleventh embodiment>
When gold is used as the material for forming the second wiring layer (16), the gold has a drawback that it is excellent in conductivity but inferior in adhesion to the protective insulating film (14).
Therefore, in the invention of claim 5 , tantalum or tungsten titanium is used as a material for forming the fifth wiring layer (91).
Tantalum or tungsten titanium has a drawback that it has a large electric resistance with respect to gold, but has excellent adhesion to the protective insulating film (14) and is reliably connected to gold, which is a material for forming the second wiring layer (16). In addition to being able to obtain good conduction, and being excellent in corrosion resistance, it is suitable as a material for forming the fifth wiring layer (91).

請求項6:第6,第7実施形態に該当>
請求項6の発明において、保護絶縁膜(14)および第2配線層(16)との密着性に優れた材料を用いて第2接着層(61)を形成すれば、第2配線層(16)の形成材料に保護絶縁膜との密着性が低い導電材料を用いた場合でも、第2配線層と保護絶縁膜が第2接着層によって接着されるため、請求項1の発明の前記作用・効果と同様の作用・効果が得られる。
< Claim 6 : Corresponds to sixth and seventh embodiments>
In the invention of claim 6 , if the second adhesive layer (61) is formed using a material having excellent adhesion to the protective insulating film (14) and the second wiring layer (16), the second wiring layer (16 Even if a conductive material having low adhesion to the protective insulating film is used as the forming material of (), the second wiring layer and the protective insulating film are bonded together by the second adhesive layer. The same action and effect as the effect can be obtained.

ところで、請求項2の発明では、電極パッド(Pad)の表面が第4配線層(41)によって形成されている。それに対して、請求項3または請求項6の発明では、電極パッドの表面が第2配線層によって形成されている。
従って、請求項3または請求項6の発明では、電極パッドに接続される接続部材(ボンディングワイヤ、バンプ)が第2配線層に直接接触することから、請求項2の発明における第4配線層を設けた場合に比べて、接続部材と第2配線層の接触抵抗が低くなり、接続部材と第2配線層の接続部分の面積を小さくすることが可能になるため、基板(11)の表面上における電極パッドの占有面積を縮小して配線基板を小型化できる。
By the way, in the invention of claim 2 , the surface of the electrode pad (Pad) is formed by the fourth wiring layer (41). On the other hand, in the invention of claim 3 or claim 6 , the surface of the electrode pad is formed by the second wiring layer.
Therefore, in the invention of claim 3 or claim 6 , since the connection member (bonding wire, bump) connected to the electrode pad is in direct contact with the second wiring layer, the fourth wiring layer in the invention of claim 2 is provided. Since the contact resistance between the connection member and the second wiring layer is lower than that in the case where the connection member is provided, the area of the connection portion between the connection member and the second wiring layer can be reduced. The area occupied by the electrode pads can be reduced to reduce the size of the wiring board.

請求項7:第8実施形態に該当>
請求項7の発明では、電極パッド(Pad)に対してワイヤボンディング接続法を用いて接続されたボンディングワイヤ(51)を備えた配線基板を実現できる。
< Claim 7 : Corresponds to the eighth embodiment>
In the invention of claim 7 , it is possible to realize a wiring board provided with bonding wires (51) connected to the electrode pads (Pad) using the wire bonding connection method.

請求項8:第9実施形態に該当>
請求項8の発明では、電極パッド(Pad)に対してフリップチップ接続法を用いて接続されたバンプ(52)を備えた配線基板を実現できる。
< Claim 8 : Corresponds to the ninth embodiment>
According to the invention of claim 8 , it is possible to realize a wiring board including bumps (52) connected to the electrode pads (Pad) by using a flip chip connection method.

請求項9:第12,第13実施形態に該当>
MEMS技術を利用して作製された各種センサ(例えば、圧力センサ、加速度センサ、超音波センサなど)は腐食性ガス(例えば、酸性ガスやアルカリ性ガスなど)の雰囲気中(腐食環境)で使用される場合がある。
そして、センサを構成する半導体チップの配線を外部へ引き出すための接続部材(ボンディングワイヤ、バンプ)は、半導体チップの配線層に形成された電極パッドに接続されている。
< Claim 9 : Corresponds to the twelfth and thirteenth embodiments>
Various sensors (for example, a pressure sensor, an acceleration sensor, and an ultrasonic sensor) manufactured by using MEMS technology are used in an atmosphere (corrosive environment) of a corrosive gas (for example, an acid gas or an alkaline gas). There is a case.
Then, connection members (bonding wires, bumps) for drawing the wiring of the semiconductor chip constituting the sensor to the outside are connected to electrode pads formed on the wiring layer of the semiconductor chip.

そのため、センサを腐食性ガス雰囲気中で使用する際に、センサ本体が腐食性ガスに直接晒される場合には、電極パッドも腐食性ガスに直接晒されることから、電極パッドが腐食に耐え切れずに断線不良を起こすおそれがある。
しかし、請求項9の発明では、請求項1〜8のいずれか1項に記載の配線基板によってセンサを構成することにより、腐食性ガス雰囲気中に置かれても電極パッドの腐食を防止可能であると共に、機能を阻害せずコンパクトなセンサ(100,110)を実現できる。
Therefore, when the sensor is used in a corrosive gas atmosphere, if the sensor body is directly exposed to corrosive gas, the electrode pad is also directly exposed to corrosive gas. May cause disconnection failure.
However, in the invention of claim 9 , by constituting the sensor with the wiring board according to any one of claims 1 to 8 , corrosion of the electrode pad can be prevented even when placed in a corrosive gas atmosphere. In addition, a compact sensor (100, 110) can be realized without impairing the function.

請求項10:第20,第21実施形態に該当>
パワー素子(180,190,200)を使用した電子回路を腐食性ガスの雰囲気中で使用する際に、パワー素子が腐食性ガスに直接晒される場合には、パワー素子の電極も腐食性ガスに直接晒される。
そのため、従来のパワー素子(190)では電極(191,192)が腐食に耐え切れずに断線不良を起こすおそれがある。
< Claim 10 : Corresponds to 20th and 21st embodiments>
When an electronic circuit using a power element (180, 190, 200) is used in an atmosphere of corrosive gas, if the power element is directly exposed to corrosive gas, the electrode of the power element is also exposed to corrosive gas. Directly exposed.
For this reason, in the conventional power element (190), the electrodes (191, 192) may not withstand corrosion and may cause a disconnection failure.

しかし、請求項10の発明では、請求項1〜8のいずれか1項に記載の配線基板によってパワー素子を構成することにより、腐食性ガス雰囲気中に置かれても電極(15,16,Pad)の腐食を防止可能であると共に、機能を阻害せずコンパクトなパワー素子(180,200)を実現できる。

However, in the invention of the tenth aspect, the power element is constituted by the wiring board according to any one of the first to eighth aspects, so that the electrode (15, 16, Pad) is placed even in a corrosive gas atmosphere. ) Can be prevented, and a compact power element (180, 200) can be realized without impairing the function.

以下、本発明を具体化した各実施形態について図面を参照しながら説明する。尚、各実施形態において、同一の構成部材および構成要素については符号を等しくすると共に、同一内容の箇所については重複説明を省略してある。   Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. In each embodiment, the same constituent members and constituent elements are denoted by the same reference numerals, and redundant description of the same content is omitted.

<第1実施形態>
図1(A)は、センサを構成する第1実施形態の半導体チップ10における電極パッドPadの近傍を示す要部概略平面図である。
図1(B)は、第1実施形態の半導体チップ10における電極パッドPadの近傍を示す要部概略縦断面図であり、図1(A)に示すX−X線断面図である。
半導体チップ(配線基板)10は、シリコン基板(半導体基板)11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPadなどから構成されている。
<First Embodiment>
FIG. 1A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 10 of the first embodiment constituting the sensor.
FIG. 1B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 10 of the first embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 10 includes a silicon substrate (semiconductor substrate) 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, and the like. ing.

シリコン基板11の表面上には絶縁膜12が形成され、絶縁膜12の表面上には矩形状の第1配線層15が形成され、絶縁膜12および第1配線層15の表面上には層間絶縁膜13が形成され、層間絶縁膜13の表面上には矩形状の第2配線層16が形成されている。層間絶縁膜13および第2配線層16の表面上には、これらを覆うように保護絶縁膜14が形成されている。   An insulating film 12 is formed on the surface of the silicon substrate 11, a rectangular first wiring layer 15 is formed on the surface of the insulating film 12, and an interlayer is formed on the surfaces of the insulating film 12 and the first wiring layer 15. An insulating film 13 is formed, and a rectangular second wiring layer 16 is formed on the surface of the interlayer insulating film 13. A protective insulating film 14 is formed on the surfaces of the interlayer insulating film 13 and the second wiring layer 16 so as to cover them.

第1配線層15は配線層17に接続され、配線層17は絶縁膜12に形成されたコンタクトホール(図示略)を介してシリコン基板11に接続されている。尚、配線層17は第1配線層15と同一工程にて作成され、各配線層15,17は一体化されている。   The first wiring layer 15 is connected to the wiring layer 17, and the wiring layer 17 is connected to the silicon substrate 11 through a contact hole (not shown) formed in the insulating film 12. The wiring layer 17 is formed in the same process as the first wiring layer 15, and the wiring layers 15 and 17 are integrated.

各配線層15,16は、層間絶縁膜13に形成された矩形状のビアホール13aを介して接続されている。つまり、第1配線層15の上方の層間絶縁膜13にはビアホール13aが形成され、そのビアホール13aの内部には第2配線層16が充填され、ビアホール13aの底面から露出した第1配線層15の上面と、ビアホール13aの内部に充填された第2配線層16の下面とが接続されている。   Each wiring layer 15, 16 is connected through a rectangular via hole 13 a formed in the interlayer insulating film 13. That is, a via hole 13a is formed in the interlayer insulating film 13 above the first wiring layer 15, the second wiring layer 16 is filled in the via hole 13a, and the first wiring layer 15 exposed from the bottom surface of the via hole 13a. Are connected to the lower surface of the second wiring layer 16 filled in the via hole 13a.

第2配線層16は、第1配線層15の上方から層間絶縁膜13の表面上にて横方向(シリコン基板11の表面に対して水平方向)へ延出されている。その第2配線層16における延出部分16aの表面の一部は、保護絶縁膜14に開口形成された矩形状の開口部14aから露出されている。そして、保護絶縁膜14の開口部14aから露出した延出部分16aの表面によって電極パッドPadが形成されている。   The second wiring layer 16 extends in the lateral direction (horizontal with respect to the surface of the silicon substrate 11) on the surface of the interlayer insulating film 13 from above the first wiring layer 15. A part of the surface of the extended portion 16 a in the second wiring layer 16 is exposed from a rectangular opening 14 a formed in the protective insulating film 14. An electrode pad Pad is formed by the surface of the extended portion 16 a exposed from the opening 14 a of the protective insulating film 14.

電極パッドPadには、半導体チップ10の配線を外部へ引き出すための接続部材(図示略)が接続されている。尚、接続部材には、例えば、ワイヤボンディング(ボールボンディング)接続法で用いられるボンディングワイヤ(引出導線)や、フリップチップ(フェイスダウンボンディング)接続法で用いられるバンプなどがある。   A connection member (not shown) for drawing the wiring of the semiconductor chip 10 to the outside is connected to the electrode pad Pad. Examples of the connection member include a bonding wire (lead wire) used in a wire bonding (ball bonding) connection method and a bump used in a flip chip (face-down bonding) connection method.

ここで、各絶縁膜12〜14の形成材料には、密着性および絶縁性に優れるならば、どのような絶縁材料を用いてもよい。
その絶縁材料としては、例えば、CVD(Chemical Vapor Deposition)法によって形成された酸化シリコン,窒化シリコン,PSG(Phosphor Silicate Glass),BSG(Boron Silicate Glass),BPSG(Boron Phosphor Silicate Glass)や、SOG(Spin On Glass),ポリイミド,メチルシロキサン系ポリマーなどの塗布絶縁膜、TEOS(Tetra Ethyl Orso Silicate)などがある。
但し、保護絶縁膜14については、半導体チップ10が置かれる腐食性ガス(例えば、酸性ガスやアルカリ性ガスなど)の雰囲気に耐性がある絶縁材料を用いる必要がある。
Here, any insulating material may be used as a material for forming each of the insulating films 12 to 14 as long as it has excellent adhesion and insulating properties.
As the insulating material, for example, silicon oxide, silicon nitride, PSG (Phosphor Silicate Glass), BSG (Boron Silicate Glass), BPSG (Boron Phosphor Silicate Glass) formed by CVD (Chemical Vapor Deposition) method, SOG ( Spin On Glass), coating insulating films such as polyimide and methylsiloxane polymer, and TEOS (Tetra Ethyl Orso Silicate).
However, for the protective insulating film 14, it is necessary to use an insulating material that is resistant to an atmosphere of corrosive gas (for example, acid gas or alkaline gas) on which the semiconductor chip 10 is placed.

また、第1配線層15および配線層17は単層のアルミニウム系膜によって形成され、そのアルミニウム系膜の形成材料としては、例えば、アルミニウム単体、アルミニウムにシリコンを添加したシリコンアルミニウム合金などがあり、その形成方法にはPVD(Physical Vapor Deposition)法が用いられる。   Further, the first wiring layer 15 and the wiring layer 17 are formed of a single layer aluminum-based film. Examples of the material for forming the aluminum-based film include aluminum alone, a silicon aluminum alloy in which silicon is added to aluminum, and the like. As the formation method, a PVD (Physical Vapor Deposition) method is used.

また、第2配線層16の形成材料には、半導体チップ10が置かれる腐食性ガス雰囲気に耐性があり、各絶縁膜13,14との密着性に優れ、第1配線層15と確実に接続されて良好な導通が得られるならば、どのような導電材料を用いてもよい。
その導電材料としては、例えば、金(Au)、各種高融点金属(ニッケル、モリブデン、タングステン、タンタル、ハフニウム、ジルコニウム、ニオブ、チタン、バナジウム、レニウム、クロム、プラチナ、イリジウム、オスミウム、ロジウムなど)の単体または合金(タングステンチタン、窒化チタンなど)があり、その形成方法にはCVD法やPVD法が用いられる。
Further, the forming material of the second wiring layer 16 is resistant to the corrosive gas atmosphere where the semiconductor chip 10 is placed, has excellent adhesion to the insulating films 13 and 14, and is reliably connected to the first wiring layer 15. Any conductive material may be used as long as good conduction is obtained.
As the conductive material, for example, gold (Au), various high melting point metals (nickel, molybdenum, tungsten, tantalum, hafnium, zirconium, niobium, titanium, vanadium, rhenium, chromium, platinum, iridium, osmium, rhodium, etc.) There is a single substance or an alloy (tungsten titanium, titanium nitride, etc.), and a CVD method or a PVD method is used for the formation method.

[第1実施形態の作用・効果]
第1実施形態によれば、以下の作用・効果を得ることができる。
[Operations and effects of the first embodiment]
According to the first embodiment, the following actions and effects can be obtained.

[1−1]第1実施形態の半導体チップ10では、第1配線層15の表面が各絶縁膜13,14および第2配線層16によって覆われており、第1配線層15の表面が露出していない。
そのため、半導体チップ10が腐食性ガス雰囲気中に置かれても、第1配線層15が腐食性ガスに直接晒されることがなく、腐食性ガスによって腐食され易いアルミニウム系膜によって形成されているにも関わらず第1配線層15は腐食されない。
[1-1] In the semiconductor chip 10 of the first embodiment, the surface of the first wiring layer 15 is covered with the insulating films 13 and 14 and the second wiring layer 16, and the surface of the first wiring layer 15 is exposed. Not done.
Therefore, even if the semiconductor chip 10 is placed in a corrosive gas atmosphere, the first wiring layer 15 is not directly exposed to the corrosive gas, and is formed of an aluminum-based film that is easily corroded by the corrosive gas. Nevertheless, the first wiring layer 15 is not corroded.

そして、半導体チップ10では、第2配線層16が層間絶縁膜13のビアホール13aにて第1配線層15と接続され、その第2配線層16が第1配線層15から離れた位置まで延出されて引き出され、その第2配線層16の延出部分16aの一部が保護絶縁膜14の開口部14aから露出して電極パッドPadが形成されている。
そのため、半導体チップ10が腐食性ガス雰囲気中に置かれると、電極パッドPadが腐食性ガスに直接晒される。しかし、電極パッドPadは腐食性ガスに耐性のある形成材料を用いた第2配線層16の一部であるため、腐食性ガスにより電極パッドPadが腐食されることはなく、電極パッドPadの断線不良を防止できる。
In the semiconductor chip 10, the second wiring layer 16 is connected to the first wiring layer 15 through the via hole 13 a of the interlayer insulating film 13, and the second wiring layer 16 extends to a position away from the first wiring layer 15. As a result, a part of the extended portion 16a of the second wiring layer 16 is exposed from the opening 14a of the protective insulating film 14 to form an electrode pad Pad.
Therefore, when the semiconductor chip 10 is placed in a corrosive gas atmosphere, the electrode pad Pad is directly exposed to the corrosive gas. However, since the electrode pad Pad is a part of the second wiring layer 16 using a forming material resistant to corrosive gas, the electrode pad Pad is not corroded by the corrosive gas, and the electrode pad Pad is disconnected. Defects can be prevented.

[1−2]保護絶縁膜14の開口部14aとビアホール13aおよび第1配線層15とが上下方向に重なる場合には、半導体チップ10が腐食性ガス雰囲気中に置かれたときに、腐食性ガスが保護絶縁膜14の開口部14aからビアホール13aを通って第1配線層15に到達し、その腐食性ガスによって第1配線層15が腐食されるおそれがある。
尚、上下方向とは、シリコン基板11の板厚方向を指す。
[1-2] When the opening 14a of the protective insulating film 14, the via hole 13a, and the first wiring layer 15 overlap in the vertical direction, when the semiconductor chip 10 is placed in a corrosive gas atmosphere, it is corrosive. The gas may reach the first wiring layer 15 from the opening 14a of the protective insulating film 14 through the via hole 13a, and the corrosive gas may corrode the first wiring layer 15.
The vertical direction refers to the thickness direction of the silicon substrate 11.

しかし、第1実施形態では、第2配線層16が第1配線層15から離れた位置まで延出されて引き出され、その第2配線層における延出部分16aが保護絶縁膜14の開口部14aから露出されているため、保護絶縁膜14の開口部14aとビアホール13aおよび第1配線層15とが上下方向に重なることはない。換言すると、開口部14aとビアホール13aおよび第1配線層15とが上下方向に重ならない位置に形成されている。
従って、第1実施形態によれば、半導体チップ10が腐食性ガス雰囲気中に置かれたときに、腐食性ガスが保護絶縁膜14の開口部14aからビアホール13aを通って第1配線層15に到達することがなく、その腐食性ガスによって第1配線層15が腐食されるおそれもない。
However, in the first embodiment, the second wiring layer 16 is extended to a position away from the first wiring layer 15, and the extended portion 16 a in the second wiring layer is an opening 14 a of the protective insulating film 14. Therefore, the opening 14a of the protective insulating film 14, the via hole 13a, and the first wiring layer 15 do not overlap in the vertical direction. In other words, the opening 14a, the via hole 13a, and the first wiring layer 15 are formed at positions that do not overlap in the vertical direction.
Therefore, according to the first embodiment, when the semiconductor chip 10 is placed in a corrosive gas atmosphere, the corrosive gas passes from the opening 14a of the protective insulating film 14 to the first wiring layer 15 through the via hole 13a. There is no possibility that the first wiring layer 15 is corroded by the corrosive gas.

[1−3]第1実施形態の半導体チップ10を用いて圧力センサを構成した場合には、特許文献1のようにダイアフラムおよび圧力伝達液体を介して半導体チップに圧力を伝達させる必要が無く、腐食性ガス雰囲気中に置かれた半導体チップ10に圧力を直接印加可能であるため、前記した[問題点1]を解決できる。
すなわち、第1実施形態の半導体チップ10を用いて圧力センサを構成した場合には、圧力センサの機能であるセンサの感度の低下を防止可能になり、当該機能が阻害されない。
[1-3] When the pressure sensor is configured using the semiconductor chip 10 of the first embodiment, there is no need to transmit pressure to the semiconductor chip via the diaphragm and the pressure transmission liquid as in Patent Document 1, Since the pressure can be directly applied to the semiconductor chip 10 placed in the corrosive gas atmosphere, the above [Problem 1] can be solved.
That is, when a pressure sensor is configured using the semiconductor chip 10 of the first embodiment, it is possible to prevent a decrease in sensor sensitivity, which is a function of the pressure sensor, and the function is not hindered.

[1−4]第1実施形態の半導体チップ10を用いて各種センサ(例えば、圧力センサ、加速度センサ、超音波センサなど)を構成した場合には、特許文献1のようにダイアフラムおよび圧力伝達液体を設ける必要や、特許文献2のように熱可塑性樹脂を設ける必要が無く、センサの外形寸法が大きくならないため、前記した[問題点2]を解決できる。   [1-4] When various sensors (for example, a pressure sensor, an acceleration sensor, an ultrasonic sensor, etc.) are configured using the semiconductor chip 10 of the first embodiment, a diaphragm and a pressure transmission liquid as in Patent Document 1. It is not necessary to provide a thermoplastic resin as in Patent Document 2, and the outer dimensions of the sensor do not increase, so that [Problem 2] described above can be solved.

[1−5]第1実施形態の半導体チップ10を用いて前記した各種センサを構成した場合には、特許文献1のようにダイアフラムおよび圧力伝達液体を設ける必要や、特許文献2のように熱可塑性樹脂を設ける必要が無く、センサの製造コストが増大しないため、前記した[問題点3]を解決できる。   [1-5] When the above-described various sensors are configured using the semiconductor chip 10 of the first embodiment, it is necessary to provide a diaphragm and a pressure transmission liquid as in Patent Document 1, or heat as in Patent Document 2. Since there is no need to provide a plastic resin and the manufacturing cost of the sensor does not increase, the above [Problem 3] can be solved.

<第2実施形態>
図2(A)は、センサを構成する第2実施形態の半導体チップ20における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)20は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21などから構成されている。
Second Embodiment
FIG. 2A is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 20 of the second embodiment that constitutes the sensor.
The semiconductor chip (wiring substrate) 20 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, and the like. It is configured.

第2実施形態の半導体チップ20において、第1実施形態の半導体チップ10と異なるのは、第2配線層16の下側全面に第3配線層21が形成され、各配線層21,16が積層されている点だけである。
ここで、第3配線層21の形成材料には、層間絶縁膜13との密着性に優れ、各配線層15,16と確実に接続されて良好な導通が得られるならば、どのような導電材料を用いてもよい。
The semiconductor chip 20 of the second embodiment is different from the semiconductor chip 10 of the first embodiment in that a third wiring layer 21 is formed on the entire lower surface of the second wiring layer 16, and the wiring layers 21 and 16 are laminated. It is only a point that has been done.
Here, the material for forming the third wiring layer 21 may be any conductive material as long as it has excellent adhesion to the interlayer insulating film 13 and is reliably connected to the wiring layers 15 and 16 to obtain good conduction. Materials may be used.

第2実施形態によれば、第2配線層16の形成材料に層間絶縁膜13との密着性が低い導電材料を用いた場合でも、第3配線層21が第2配線層16と層間絶縁膜13を接着する接着層(密着層)として機能するため、第1実施形態の前記作用・効果と同様の作用・効果が得られる。   According to the second embodiment, even when a conductive material having low adhesion to the interlayer insulating film 13 is used as a material for forming the second wiring layer 16, the third wiring layer 21 is connected to the second wiring layer 16 and the interlayer insulating film. Since it functions as an adhesive layer (adhesion layer) for adhering 13, the same functions and effects as those of the first embodiment can be obtained.

例えば、第2配線層16の形成材料として金を用いた場合、金は導電性に優れるものの絶縁膜との密着性に劣るという欠点がある。
そこで、第3配線層21の形成材料として、層間絶縁膜13との密着性に優れ、第2配線層16の形成材料である金および第1配線層15の形成材料であるアルミニウム系膜と確実に接続されて良好な導通が得られると共に、耐腐食性に優れた導電材料を用いればよく、その形成材料には、例えば、タンタルやタングステンチタンなどがある。
すなわち、タンタルやタングステンチタンは、金に対して電気抵抗が大きいという欠点があるが、層間絶縁膜13との密着性に優れ、第2配線層16の形成材料である金と確実に接続されて良好な導通が得られる上に、耐腐食性に優れているため、第3配線層21の形成材料として好適である。
For example, when gold is used as a material for forming the second wiring layer 16, there is a drawback that gold is inferior in adhesion to the insulating film, although it is excellent in conductivity.
Therefore, as a material for forming the third wiring layer 21, it has excellent adhesion to the interlayer insulating film 13, and it is reliable to use gold as the material for forming the second wiring layer 16 and an aluminum-based film as the material for forming the first wiring layer 15. It is only necessary to use a conductive material that is connected to the substrate and has good electrical conductivity and is excellent in corrosion resistance. Examples of the forming material include tantalum and tungsten titanium.
That is, tantalum and tungsten titanium have a drawback that they have a large electrical resistance to gold, but have excellent adhesion to the interlayer insulating film 13 and are securely connected to gold, which is a material for forming the second wiring layer 16. It is suitable as a material for forming the third wiring layer 21 because good conduction is obtained and corrosion resistance is excellent.

<第3実施形態>
図2(B)は、センサを構成する第3実施形態の半導体チップ30における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)30は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第1接着層31などから構成されている。
<Third Embodiment>
FIG. 2B is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 30 according to the third embodiment constituting the sensor.
The semiconductor chip (wiring substrate) 30 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a first adhesive layer 31, and the like. It is configured.

第3実施形態の半導体チップ30において、第1実施形態の半導体チップ10と異なるのは、第1接着層31が設けられている点だけである。
第1接着層31は、ビアホール13aの内部を除く第2配線層16の下側に形成されている。そして、ビアホール13aの内部では各配線層15,16が直接接触している。
ここで、第1接着層31の形成材料には、層間絶縁膜13および第2配線層16との密着性に優れるならば、導電材料に限らずどのような材料を用いてもよい。
The semiconductor chip 30 of the third embodiment is different from the semiconductor chip 10 of the first embodiment only in that the first adhesive layer 31 is provided.
The first adhesive layer 31 is formed below the second wiring layer 16 excluding the inside of the via hole 13a. The wiring layers 15 and 16 are in direct contact with each other inside the via hole 13a.
Here, the material for forming the first adhesive layer 31 is not limited to the conductive material, and any material may be used as long as the adhesiveness between the interlayer insulating film 13 and the second wiring layer 16 is excellent.

第3実施形態によれば、第2配線層16の形成材料に層間絶縁膜13との密着性が低い導電材料を用いた場合でも、第2配線層16と層間絶縁膜13が第1接着層31によって接着されるため、第1実施形態の前記作用・効果と同様の作用・効果が得られる。   According to the third embodiment, even when a conductive material having low adhesion to the interlayer insulating film 13 is used as a material for forming the second wiring layer 16, the second wiring layer 16 and the interlayer insulating film 13 are formed of the first adhesive layer. Since it adhere | attaches by 31, the effect | action and effect similar to the said effect | action and effect of 1st Embodiment are obtained.

加えて、第3実施形態では、各配線層15,16が直接接触することから、第2実施形態の第3配線層21を設けた場合に比べて、各配線層15,16間の接触抵抗が低くなり、各配線層15,16の接触部分の面積を小さくすることが可能になるため、シリコン基板11の表面上におけるビアホール13aの占有面積を縮小して半導体チップ30を小型化できる。   In addition, in the third embodiment, since the wiring layers 15 and 16 are in direct contact with each other, the contact resistance between the wiring layers 15 and 16 is compared with the case where the third wiring layer 21 of the second embodiment is provided. Since the contact area between the wiring layers 15 and 16 can be reduced, the area occupied by the via hole 13a on the surface of the silicon substrate 11 can be reduced to reduce the size of the semiconductor chip 30.

<第4実施形態>
図3(A)は、センサを構成する第4実施形態の半導体チップ40における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)40は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21、第4配線層41などから構成されている。
<Fourth embodiment>
FIG. 3A is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 40 of the fourth embodiment constituting the sensor.
The semiconductor chip (wiring substrate) 40 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, 4 wiring layers 41 and the like.

第4実施形態の半導体チップ40において、第2実施形態の半導体チップ20と異なるのは、第2配線層16の上側全面に第4配線層41が形成され、各配線層21,16,41が積層されている点だけである。
ここで、第4配線層41の形成材料には、半導体チップ40が置かれる腐食性ガス雰囲気に耐性があり、保護絶縁膜14との密着性に優れ、第2配線層16と確実に接続されて良好な導通が得られるならば、どのような導電材料を用いてもよい。
The semiconductor chip 40 of the fourth embodiment is different from the semiconductor chip 20 of the second embodiment in that a fourth wiring layer 41 is formed on the entire upper surface of the second wiring layer 16, and each wiring layer 21, 16, 41 is It is only the point where it is laminated.
Here, the forming material of the fourth wiring layer 41 is resistant to a corrosive gas atmosphere in which the semiconductor chip 40 is placed, has excellent adhesion to the protective insulating film 14, and is reliably connected to the second wiring layer 16. Any conductive material may be used as long as good conduction can be obtained.

第4実施形態によれば、第2配線層16の形成材料に保護絶縁膜14との密着性が低い導電材料を用いた場合でも、第4配線層41が第2配線層16と保護絶縁膜14を接着する接着層として機能するため、第2実施形態の前記作用・効果と同様の作用・効果が得られる。   According to the fourth embodiment, even when a conductive material having low adhesion to the protective insulating film 14 is used as a material for forming the second wiring layer 16, the fourth wiring layer 41 is connected to the second wiring layer 16 and the protective insulating film. Since it functions as an adhesive layer for adhering 14, the same functions and effects as those of the second embodiment can be obtained.

ちなみに、第2配線層16の形成材料として金を用いた場合には、第4配線層41の形成材料として、保護絶縁膜14との密着性に優れ、第2配線層16の形成材料である金と確実に接続されて良好な導通が得られると共に、耐腐食性に優れた導電材料を用いればよく、その形成材料には、例えば、タンタルやタングステンチタンなどがある。
すなわち、タンタルやタングステンチタンは、金に対して電気抵抗が大きいという欠点があるが、保護絶縁膜14との密着性に優れ、第2配線層16の形成材料である金と確実に接続されて良好な導通が得られる上に、耐腐食性に優れているため、第4配線層41の形成材料として好適である。
Incidentally, when gold is used as the forming material of the second wiring layer 16, the forming material of the fourth wiring layer 41 is excellent in adhesion with the protective insulating film 14, and is a forming material of the second wiring layer 16. A conductive material that is reliably connected to gold and has good electrical conductivity and has excellent corrosion resistance may be used, and examples of the forming material include tantalum and tungsten titanium.
That is, tantalum and tungsten titanium have a drawback that they have a large electric resistance with respect to gold, but have excellent adhesion to the protective insulating film 14 and are securely connected to gold as a material for forming the second wiring layer 16. It is suitable as a material for forming the fourth wiring layer 41 because good conduction is obtained and corrosion resistance is excellent.

<第5実施形態>
図3(B)は、センサを構成する第5実施形態の半導体チップ50における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)50は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、接着層31、第4配線層41などから構成されている。
<Fifth Embodiment>
FIG. 3B is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 50 according to the fifth embodiment constituting the sensor.
The semiconductor chip (wiring substrate) 50 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, an adhesive layer 31, and a fourth wiring. It is composed of the layer 41 and the like.

第5実施形態の半導体チップ50において、第3実施形態の半導体チップ30と異なるのは、第2配線層16の上側全面に第4配線層41が形成され、各配線層16,41が積層されている点だけである。
従って、第5実施形態によれば、第2配線層16の形成材料に保護絶縁膜14との密着性が低い導電材料を用いた場合でも、第4配線層41が第2配線層16と保護絶縁膜14を接着する接着層として機能するため、第3実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 50 of the fifth embodiment is different from the semiconductor chip 30 of the third embodiment in that a fourth wiring layer 41 is formed on the entire upper surface of the second wiring layer 16 and the wiring layers 16 and 41 are laminated. It is only a point.
Therefore, according to the fifth embodiment, even when a conductive material having low adhesion to the protective insulating film 14 is used as a material for forming the second wiring layer 16, the fourth wiring layer 41 is protected from the second wiring layer 16. Since it functions as an adhesive layer that adheres the insulating film 14, the same functions and effects as those of the third embodiment can be obtained.

<第6実施形態>
図4(A)は、センサを構成する第6実施形態の半導体チップ60における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)60は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21、第2接着層61などから構成されている。
<Sixth Embodiment>
FIG. 4A is a schematic vertical sectional view showing a main part of the vicinity of the electrode pad Pad in the semiconductor chip 60 of the sixth embodiment constituting the sensor.
The semiconductor chip (wiring substrate) 60 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, 2 adhesive layers 61 and the like.

第6実施形態の半導体チップ60において、第2実施形態の半導体チップ20と異なるのは、第2接着層61が設けられている点だけである。
第2接着層61は、保護絶縁膜14の開口部14aの内部を除く第2配線層16の上側に形成されている。そして、保護絶縁膜14の開口部14aからは第2配線層16が直接露出している。
ここで、第2接着層61の形成材料には、保護絶縁膜14および第2配線層16との密着性に優れるならば、導電材料に限らずどのような材料を用いてもよい。
The semiconductor chip 60 of the sixth embodiment is different from the semiconductor chip 20 of the second embodiment only in that a second adhesive layer 61 is provided.
The second adhesive layer 61 is formed on the second wiring layer 16 excluding the inside of the opening 14 a of the protective insulating film 14. The second wiring layer 16 is directly exposed from the opening 14 a of the protective insulating film 14.
Here, the material for forming the second adhesive layer 61 is not limited to the conductive material, and any material may be used as long as the adhesiveness between the protective insulating film 14 and the second wiring layer 16 is excellent.

第6実施形態によれば、第2配線層16の形成材料に保護絶縁膜14との密着性が低い導電材料を用いた場合でも、第2配線層16と保護絶縁膜14が第2接着層61によって接着されるため、第2実施形態の前記作用・効果と同様の作用・効果が得られる。   According to the sixth embodiment, even when a conductive material having low adhesion to the protective insulating film 14 is used as a material for forming the second wiring layer 16, the second wiring layer 16 and the protective insulating film 14 are formed from the second adhesive layer. Since it adhere | attaches by 61, the effect | action and effect similar to the said effect | action and effect of 2nd Embodiment are acquired.

ところで、第4実施形態の半導体チップ40では、電極パッドPadの表面が第4配線層41によって形成されている。それに対して、第6実施形態の半導体チップ60では、電極パッドPadの表面が第2配線層16によって形成されている。
従って、第6実施形態では、電極パッドPadに接続される接続部材(図示略)が第2配線層16に直接接触することから、第4実施形態の第4配線層41を設けた場合に比べて、接続部材と第2配線層16の接触抵抗が低くなり、接続部材と第2配線層16の接続部分の面積を小さくすることが可能になるため、シリコン基板11の表面上における電極パッドPadの占有面積を縮小して半導体チップ60を小型化できる。
By the way, in the semiconductor chip 40 of the fourth embodiment, the surface of the electrode pad Pad is formed by the fourth wiring layer 41. On the other hand, in the semiconductor chip 60 of the sixth embodiment, the surface of the electrode pad Pad is formed by the second wiring layer 16.
Therefore, in the sixth embodiment, since the connection member (not shown) connected to the electrode pad Pad is in direct contact with the second wiring layer 16, compared to the case where the fourth wiring layer 41 of the fourth embodiment is provided. As a result, the contact resistance between the connection member and the second wiring layer 16 is reduced, and the area of the connection portion between the connection member and the second wiring layer 16 can be reduced. Therefore, the electrode pad Pad on the surface of the silicon substrate 11 can be reduced. The semiconductor chip 60 can be reduced in size by reducing the occupied area.

<第7実施形態>
図4(B)は、センサを構成する第7実施形態の半導体チップ70における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)70は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第1接着層31、第2接着層61などから構成されている。
すなわち、第7実施形態は、第6実施形態の第3配線層21を第3実施形態の第1接着層31に置き換えたものである。そのため、第7実施形態によれば、第3実施形態の作用・効果に加えて、第6実施形態の第2接着層61に関する作用・効果が得られる。
<Seventh embodiment>
FIG. 4B is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 70 of the seventh embodiment constituting the sensor.
The semiconductor chip (wiring substrate) 70 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a first adhesive layer 31, a first 2 adhesive layers 61 and the like.
That is, in the seventh embodiment, the third wiring layer 21 of the sixth embodiment is replaced with the first adhesive layer 31 of the third embodiment. Therefore, according to the seventh embodiment, in addition to the operations and effects of the third embodiment, the operations and effects relating to the second adhesive layer 61 of the sixth embodiment can be obtained.

<第8実施形態>
図5は、第5実施形態の半導体チップ50の電極パッドPadに対して、ワイヤボンディング接続法を用いてボンディングワイヤ51が接続された状態を示す第8実施形態の要部概略縦断面図である。
尚、電極パッドPadの表面を形成する第4配線層41の形成材料には、ボンディングワイヤ51と確実に接続されて良好な導通が得られる金が好適である。
<Eighth Embodiment>
FIG. 5 is a schematic vertical sectional view of a main part of the eighth embodiment showing a state in which the bonding wire 51 is connected to the electrode pad Pad of the semiconductor chip 50 of the fifth embodiment by using the wire bonding connection method. .
In addition, as a material for forming the fourth wiring layer 41 that forms the surface of the electrode pad Pad, gold that can be reliably connected to the bonding wire 51 to obtain good conduction is preferable.

<第9実施形態>
図6は、第5実施形態の半導体チップ50の電極パッドPadに対して、フリップチップ接続法を用いてバンプ52が接続された状態を示す第9実施形態の要部概略縦断面図である。
パッケージ化されていないベアチップ(ダイ)である半導体チップ50は、裏返された状態(フェイスダウン)で実装基板53に直接搭載されている。そして、半導体チップ50の電極パッドPadと実装基板53の表面上に形成された配線層54とが、バンプ52によって接続されている。
<Ninth Embodiment>
FIG. 6 is a schematic vertical sectional view of a main part of the ninth embodiment showing a state in which the bumps 52 are connected to the electrode pads Pad of the semiconductor chip 50 of the fifth embodiment by using a flip chip connection method.
The semiconductor chip 50 that is an unpackaged bare chip (die) is directly mounted on the mounting substrate 53 in an inverted state (face-down). The electrode pads Pad of the semiconductor chip 50 and the wiring layer 54 formed on the surface of the mounting substrate 53 are connected by bumps 52.

尚、バンプ52は、各種導電材料(例えば、ハンダ,金,銅,ニッケルなどの金属、導電性接着剤など)を用いて適宜な方法(例えば、メッキ法、スタッド法など)により形成すればよい。
また、電極パッドPadの表面を形成する第4配線層41の形成材料には、バンプ52と確実に接続されて良好な導通が得られる金が好適である。
The bump 52 may be formed by an appropriate method (for example, a plating method, a stud method, or the like) using various conductive materials (for example, metals such as solder, gold, copper, nickel, or conductive adhesive). .
The material for forming the fourth wiring layer 41 that forms the surface of the electrode pad Pad is preferably gold that can be reliably connected to the bumps 52 to obtain good conduction.

<第10実施形態>
図7は、センサを構成する第10実施形態の半導体チップ80における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)80は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21などから構成されている。
<Tenth Embodiment>
FIG. 7 is a schematic vertical cross-sectional view of the main part showing the vicinity of the electrode pad Pad in the semiconductor chip 80 of the tenth embodiment constituting the sensor.
The semiconductor chip (wiring substrate) 80 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, and the like. It is configured.

第10実施形態の半導体チップ80において、第2実施形態の半導体チップ20と異なるのは、ビアホール13aの内部に第3配線層21が充填されて埋め込まれ、ビアホール13aの上方における第3配線層21の表面が略平坦になっている点だけである。
第10実施形態では、第3配線層21の上側に形成する第2配線層16によってビアホール13aを充填する必要が無くなるため、第2配線層16の形成材料や形成方法として段差被覆性が低いものを使用した場合でも、第3配線層21を介して第1配線層15と第2配線層16との良好な導通が得られる。
従って、第10実施形態によれば、第2実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 80 of the tenth embodiment is different from the semiconductor chip 20 of the second embodiment in that the third wiring layer 21 is filled and embedded in the via hole 13a, and the third wiring layer 21 above the via hole 13a. It is only the point that the surface of is substantially flat.
In the tenth embodiment, it is not necessary to fill the via hole 13a with the second wiring layer 16 formed on the upper side of the third wiring layer 21, so that the step wiring coverage is low as the forming material and the forming method of the second wiring layer 16 Even when the first wiring layer 15 is used, good conduction between the first wiring layer 15 and the second wiring layer 16 can be obtained through the third wiring layer 21.
Therefore, according to the tenth embodiment, the same operations and effects as those of the second embodiment can be obtained.

<第11実施形態>
図8は、センサを構成する第11実施形態の半導体チップ90における電極パッドPadの近傍を示す要部概略縦断面図である。
半導体チップ(配線基板)90は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21、第5配線層91などから構成されている。
<Eleventh embodiment>
FIG. 8 is a schematic vertical cross-sectional view of the main part showing the vicinity of the electrode pad Pad in the semiconductor chip 90 of the eleventh embodiment constituting the sensor.
The semiconductor chip (wiring substrate) 90 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, 5 wiring layers 91 and the like.

第11実施形態の半導体チップ90において、第4実施形態の半導体チップ40と異なるのは、第4配線層41が第5配線層91に置き換えられている点だけである。
第5配線層91は、保護絶縁膜14の開口部14aの内部を除く第2配線層16の上側に形成されている。また、保護絶縁膜14の開口部14aの内周壁面に位置する第5配線層91の端面91aは、保護絶縁膜14によって覆われている。
そして、保護絶縁膜14の開口部14aからは第2配線層16が直接露出している。
ここで、第5配線層91の形成材料には、保護絶縁膜14との密着性に優れ、第2配線層16と確実に接続されて良好な導通が得られるならば、どのような導電材料を用いてもよい。
The semiconductor chip 90 of the eleventh embodiment is different from the semiconductor chip 40 of the fourth embodiment only in that the fourth wiring layer 41 is replaced with a fifth wiring layer 91.
The fifth wiring layer 91 is formed above the second wiring layer 16 except for the inside of the opening 14 a of the protective insulating film 14. The end surface 91 a of the fifth wiring layer 91 located on the inner peripheral wall surface of the opening 14 a of the protective insulating film 14 is covered with the protective insulating film 14.
The second wiring layer 16 is directly exposed from the opening 14 a of the protective insulating film 14.
Here, as a material for forming the fifth wiring layer 91, any conductive material can be used as long as it has excellent adhesion to the protective insulating film 14 and is reliably connected to the second wiring layer 16 to obtain good conduction. May be used.

第11実施形態によれば、第2配線層16の形成材料に保護絶縁膜14との密着性が低い導電材料を用いた場合でも、第5配線層91が第2配線層16と保護絶縁膜14を接着する接着層として機能するため、第4実施形態の前記作用・効果と同様の作用・効果が得られる。
そして、第11実施形態によれば、第5配線層91が保護絶縁膜14に覆われて露出せず、第5配線層91が腐食性ガスに晒されるおそれが無いため、第5配線層91の形成材料に耐腐食性が低いものを使用可能になる。
According to the eleventh embodiment, even when a conductive material having low adhesion to the protective insulating film 14 is used as a material for forming the second wiring layer 16, the fifth wiring layer 91 is formed of the second wiring layer 16 and the protective insulating film. Since it functions as an adhesive layer for adhering 14, the same functions and effects as those of the fourth embodiment can be obtained.
According to the eleventh embodiment, the fifth wiring layer 91 is covered with the protective insulating film 14 and is not exposed, and the fifth wiring layer 91 is not exposed to corrosive gas. A material having low corrosion resistance can be used as the forming material.

ちなみに、第2配線層16の形成材料として金を用いた場合には、第4配線層41と同様に、第5配線層91の形成材料として、例えば、タンタルやタングステンチタンなどを用いればよい。   Incidentally, when gold is used as the forming material of the second wiring layer 16, as in the fourth wiring layer 41, for example, tantalum, tungsten titanium, or the like may be used as the forming material of the fifth wiring layer 91.

<第12実施形態>
図9は、第10実施形態の半導体チップ80によって構成された第12実施形態の圧力センサ100の概略構造を示す要部概略縦断面図である。
半導体チップ80は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21などから構成されている。
<Twelfth embodiment>
FIG. 9 is a schematic vertical cross-sectional view of a main part showing a schematic structure of the pressure sensor 100 of the twelfth embodiment configured by the semiconductor chip 80 of the tenth embodiment.
The semiconductor chip 80 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, and the like. .

シリコン基板11の裏面側(背面側)には、開口部から底部へ向かって横断面積が小さくなる縦断面台形状の凹部11aが形成されている。
凹部11aの上方に位置するシリコン基板11の表面側には、ピエゾ抵抗素子101が形成されている。
尚、凹部11aが設けられているのは、ピエゾ抵抗素子101が形成されている部分におけるシリコン基板11の板厚を薄くすることにより、ピエゾ抵抗素子101の結晶格子に歪みを生じやすくするためである。
On the back surface side (back surface side) of the silicon substrate 11, a concave portion 11a having a trapezoidal cross section with a cross-sectional area that decreases from the opening toward the bottom is formed.
A piezoresistive element 101 is formed on the surface side of the silicon substrate 11 located above the recess 11a.
The reason why the recess 11a is provided is that the crystal lattice of the piezoresistive element 101 is easily distorted by reducing the thickness of the silicon substrate 11 in the portion where the piezoresistive element 101 is formed. is there.

p型単結晶シリコン基板11の表面側には、複数の不純物領域(n型埋込不純物領域、低濃度のn型不純物領域、高濃度のn型不純物領域、低濃度のp型不純物領域、高濃度のp型不純物領域など)102が形成されている。
各不純物領域102の表面上には絶縁膜12が形成され、絶縁膜12の表面上には複数の配線層103が形成されている。尚、各配線層103は、第1配線層15と同一工程にて作成されている。
On the surface side of the p-type single crystal silicon substrate 11, a plurality of impurity regions (n-type buried impurity region, low-concentration n-type impurity region, high-concentration n-type impurity region, low-concentration p-type impurity region, high-concentration region) A p-type impurity region or the like) 102 is formed.
An insulating film 12 is formed on the surface of each impurity region 102, and a plurality of wiring layers 103 are formed on the surface of the insulating film 12. Each wiring layer 103 is created in the same process as the first wiring layer 15.

各配線層103は、絶縁膜12に形成されたコンタクトホールを介してピエゾ抵抗素子101および各不純物領域102に接続されている。
そして、ピエゾ抵抗素子101および各不純物領域102が各配線層103によって接続されることにより、ピエゾ抵抗式の圧力センサ100を構成する電子回路が作成されている。
Each wiring layer 103 is connected to the piezoresistive element 101 and each impurity region 102 through a contact hole formed in the insulating film 12.
The piezoresistive element 101 and each impurity region 102 are connected by each wiring layer 103, whereby an electronic circuit constituting the piezoresistive pressure sensor 100 is created.

第1配線層15は、絶縁膜12に形成されたコンタクトホールを介して、シリコン基板11に形成された高濃度のn型不純物領域に接続されている。
また、第1配線層15は、第3配線層21を介して第2配線層16に接続されている。
そして、第2配線層16は層間絶縁膜13の表面上にて第1配線層15から離れた位置まで延出され、保護絶縁膜14の開口部14aから露出された第2配線層16の延出部分16aによって電極パッドPadが形成されている。
The first wiring layer 15 is connected to a high-concentration n-type impurity region formed in the silicon substrate 11 through a contact hole formed in the insulating film 12.
The first wiring layer 15 is connected to the second wiring layer 16 through the third wiring layer 21.
Then, the second wiring layer 16 extends to a position away from the first wiring layer 15 on the surface of the interlayer insulating film 13, and the extension of the second wiring layer 16 exposed from the opening 14 a of the protective insulating film 14. An electrode pad Pad is formed by the protruding portion 16a.

ピエゾ抵抗素子101が形成されている部分のシリコン基板11に圧力が印加されると、ピエゾ抵抗素子101の結晶格子に歪みを生じて抵抗値が変化する。
そのピエゾ抵抗素子101の抵抗値の変化は、各不純物領域102および各配線層103によって構成された電子回路によって電気信号に変換され、その電気信号は電極パッドPadから圧力センサ100の外部へ出力される。
When pressure is applied to the portion of the silicon substrate 11 where the piezoresistive element 101 is formed, the crystal lattice of the piezoresistive element 101 is distorted and the resistance value changes.
The change in the resistance value of the piezoresistive element 101 is converted into an electric signal by an electronic circuit constituted by each impurity region 102 and each wiring layer 103, and the electric signal is output from the electrode pad Pad to the outside of the pressure sensor 100. The

圧力センサ100を腐食性ガスの雰囲気中で使用する際に、センサ本体が腐食性ガスに直接晒される場合には、電極パッドPadも腐食性ガスに直接晒される。
しかし、第12実施形態によれば、第10実施形態の前記作用・効果により、圧力センサ100が腐食性ガス雰囲気中に置かれても電極パッドPadの腐食を防止可能であると共に、機能を阻害せずコンパクトな圧力センサ100を実現できる。
尚、圧力センサ100は、加速度センサとしても使用できる。
When the pressure sensor 100 is used in an atmosphere of corrosive gas, when the sensor body is directly exposed to the corrosive gas, the electrode pad Pad is also directly exposed to the corrosive gas.
However, according to the twelfth embodiment, the action and effect of the tenth embodiment can prevent the electrode pad Pad from being corroded even if the pressure sensor 100 is placed in a corrosive gas atmosphere, and inhibit the function. Thus, a compact pressure sensor 100 can be realized.
The pressure sensor 100 can also be used as an acceleration sensor.

<第13実施形態>
図10は、第10実施形態の半導体チップ80によって構成された第13実施形態の圧力センサ110の概略構造を示す要部概略縦断面図である。
半導体チップ80は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21などから構成されている。
<13th Embodiment>
FIG. 10 is a schematic vertical sectional view showing a main part of a schematic structure of the pressure sensor 110 according to the thirteenth embodiment, which is constituted by the semiconductor chip 80 according to the tenth embodiment.
The semiconductor chip 80 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, and the like. .

貼り合わせSOI(Silicon On Insulator)構造のセンサ本体111は、単結晶シリコン基板112、埋込酸化(BOX:Buried OXide )層113、単結晶シリコン基板11が下方から上方に向けてこの順番で積層されて形成され、絶縁層である埋込酸化層113の上にSOI層であるシリコン基板11が形成されたSOI構造を成している。
ここで、貼り合わせSOI構造のセンサ本体111は、例えば、貼り合わせる面(鏡面)を熱酸化して酸化膜を形成した2枚のウェハ同士を、その酸化膜を介して張り合わせた後、片側のウェハを所望の厚さになるように研削することで得られ、研磨したウェハがシリコン基板11になり、研磨していないウェハがシリコン基板112になり、前記酸化膜が埋込酸化層113になる。
A sensor body 111 having a bonded SOI (Silicon On Insulator) structure is formed by laminating a single crystal silicon substrate 112, a buried oxide (BOX) layer 113, and a single crystal silicon substrate 11 in this order from the bottom to the top. Thus, an SOI structure is formed in which a silicon substrate 11 as an SOI layer is formed on a buried oxide layer 113 as an insulating layer.
Here, the sensor body 111 having a bonded SOI structure is formed, for example, by bonding two wafers on which the bonded surfaces (mirror surfaces) are thermally oxidized to form an oxide film through the oxide film, Obtained by grinding the wafer to a desired thickness, the polished wafer becomes the silicon substrate 11, the unpolished wafer becomes the silicon substrate 112, and the oxide film becomes the buried oxide layer 113. .

MEMS技術を利用して作成された可動部材114は、高濃度に不純物が拡散されたシリコン基板11によって形成されている。
可動部材114は、櫛歯状を成す2つの部分(図示略)によって構成され、各部分は櫛歯が噛み合うように互いに離間して配置されている。
可動部材114の周囲にはトレンチ115が形成され、可動部材114の各部分はトレンチ115によって可動可能に独立されている。
The movable member 114 created using the MEMS technology is formed by the silicon substrate 11 in which impurities are diffused at a high concentration.
The movable member 114 is constituted by two parts (not shown) having a comb-teeth shape, and each part is arranged so as to be separated from each other so that the comb teeth are engaged with each other.
A trench 115 is formed around the movable member 114, and each part of the movable member 114 is movably independent by the trench 115.

各種(多結晶、非晶質、単結晶)シリコンのバルク材から成るキャップ116は、可動部材114を覆って保護するために設けられており、絶縁膜12の表面上に接着されている。尚、可動部材114の動きを妨げないように、キャップ116の内壁面と可動部材114との間には空隙が設けられている。   A cap 116 made of various (polycrystalline, amorphous, single crystal) silicon bulk material is provided to cover and protect the movable member 114, and is bonded onto the surface of the insulating film 12. A gap is provided between the inner wall surface of the cap 116 and the movable member 114 so as not to hinder the movement of the movable member 114.

p型単結晶シリコン基板11の表面側には、複数の不純物領域(低濃度のn型不純物領域、高濃度のn型不純物領域、低濃度のp型不純物領域、高濃度のp型不純物領域など)102が形成され、各不純物領域によって静電容量式の圧力センサ110を構成する電子回路が作成されている。   On the surface side of the p-type single crystal silicon substrate 11, a plurality of impurity regions (low-concentration n-type impurity region, high-concentration n-type impurity region, low-concentration p-type impurity region, high-concentration p-type impurity region, etc.) ) 102 is formed, and an electronic circuit constituting the capacitive pressure sensor 110 is created by each impurity region.

第1配線層15は、絶縁膜12に形成されたコンタクトホールを介して、シリコン基板11に形成された高濃度のn型不純物領域に接続されている。
また、第1配線層15は、第3配線層21を介して第2配線層16に接続されている。
そして、第2配線層16は層間絶縁膜13の表面上にて第1配線層15から離れた位置まで延出され、保護絶縁膜14の開口部14aから露出された第2配線層16の延出部分16aによって電極パッドPadが形成されている。
The first wiring layer 15 is connected to a high-concentration n-type impurity region formed in the silicon substrate 11 through a contact hole formed in the insulating film 12.
The first wiring layer 15 is connected to the second wiring layer 16 through the third wiring layer 21.
Then, the second wiring layer 16 extends to a position away from the first wiring layer 15 on the surface of the interlayer insulating film 13, and the extension of the second wiring layer 16 exposed from the opening 14 a of the protective insulating film 14. An electrode pad Pad is formed by the protruding portion 16a.

シリコン基板11に圧力が印加されると、可動部材114の各部分が動き、各部分間の距離が変化して静電容量値も変化する。
その可動部材114の各部分の静電容量値の変化は、各不純物領域102によって構成された電子回路によって電気信号に変換され、その電気信号は電極パッドPadから圧力センサ110の外部へ出力される。
When pressure is applied to the silicon substrate 11, each part of the movable member 114 moves, the distance between the parts changes, and the capacitance value also changes.
The change in the capacitance value of each part of the movable member 114 is converted into an electric signal by an electronic circuit constituted by each impurity region 102, and the electric signal is output from the electrode pad Pad to the outside of the pressure sensor 110. .

圧力センサ110を腐食性ガスの雰囲気中で使用する際に、センサ本体が腐食性ガスに直接晒される場合には、電極パッドPadも腐食性ガスに直接晒される。
しかし、第13実施形態によれば、第10実施形態の前記作用・効果により、圧力センサ110が腐食性ガス雰囲気中に置かれても電極パッドPadの腐食を防止可能であると共に、機能を阻害せずコンパクトな圧力センサ110を実現できる。
尚、圧力センサ110は、加速度センサとしても使用できる。
When the pressure sensor 110 is used in an atmosphere of corrosive gas, when the sensor body is directly exposed to the corrosive gas, the electrode pad Pad is also directly exposed to the corrosive gas.
However, according to the thirteenth embodiment, the action and effect of the tenth embodiment can prevent the electrode pad Pad from being corroded even if the pressure sensor 110 is placed in a corrosive gas atmosphere, and the function is hindered. Therefore, the compact pressure sensor 110 can be realized.
The pressure sensor 110 can also be used as an acceleration sensor.

<第14実施形態>
図11は、第10実施形態の半導体チップ80によって構成された第14実施形態の半導体装置120の概略構造を示す要部概略縦断面図である。
半導体チップ80は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第3配線層21などから構成されている。
<Fourteenth embodiment>
FIG. 11 is a main part schematic longitudinal sectional view showing a schematic structure of the semiconductor device 120 of the fourteenth embodiment constituted by the semiconductor chip 80 of the tenth embodiment.
The semiconductor chip 80 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a third wiring layer 21, and the like. .

p型単結晶シリコン基板11の表面側には、複数の不純物領域(n型埋込不純物領域、低濃度のn型不純物領域、高濃度のn型不純物領域、低濃度のp型不純物領域、高濃度のp型不純物領域など)121が形成されている。
各不純物領域121の表面上には絶縁膜122が形成され、絶縁膜122の表面上には複数の配線層123が形成されている。
絶縁膜122および各配線層123の表面上には保護絶縁膜124が形成され、シリコン基板11の表面側は保護絶縁膜124によって完全に覆われている。
On the surface side of the p-type single crystal silicon substrate 11, a plurality of impurity regions (n-type buried impurity region, low-concentration n-type impurity region, high-concentration n-type impurity region, low-concentration p-type impurity region, high-concentration region) 121 of a p-type impurity region, etc.).
An insulating film 122 is formed on the surface of each impurity region 121, and a plurality of wiring layers 123 are formed on the surface of the insulating film 122.
A protective insulating film 124 is formed on the surfaces of the insulating film 122 and each wiring layer 123, and the surface side of the silicon substrate 11 is completely covered with the protective insulating film 124.

各配線層123は、絶縁膜122に形成されたコンタクトホールを介して各不純物領域121に接続されている。
そして、各不純物領域121が各配線層123によって接続されることにより、半導体装置120を構成する電子回路が作成されている。
Each wiring layer 123 is connected to each impurity region 121 through a contact hole formed in the insulating film 122.
Each impurity region 121 is connected by each wiring layer 123, whereby an electronic circuit constituting the semiconductor device 120 is created.

シリコン基板11の裏面側にはトレンチ11bが形成され、シリコン基板11の表面側に形成された低濃度のn型不純物領域がトレンチ11bの底部から露出している。
トレンチ11bの内部には配線層125が充填されて埋め込まれ、配線層125は低濃度のn型不純物領域に接続されている。
トレンチ11bの内周壁面と配線層125との間には絶縁膜126が形成されており、シリコン基板11と配線層125とは絶縁膜126によって絶縁されている。
A trench 11b is formed on the back side of the silicon substrate 11, and a low-concentration n-type impurity region formed on the front side of the silicon substrate 11 is exposed from the bottom of the trench 11b.
The trench 11b is filled and filled with a wiring layer 125, and the wiring layer 125 is connected to the low-concentration n-type impurity region.
An insulating film 126 is formed between the inner peripheral wall surface of the trench 11 b and the wiring layer 125, and the silicon substrate 11 and the wiring layer 125 are insulated by the insulating film 126.

そして、シリコン基板11のトレンチ11bと配線層125および絶縁膜126によって貫通電極127が構成されている。
ここで、配線層125の形成材料には、例えば、銅、タングステンなどが用いられ、その形成方法にはCVD法やPVD法が用いられる。
また、絶縁膜126の形成材料には、例えば、CVD法によって形成された酸化シリコン、窒化シリコンなどが用いられる。
A through electrode 127 is configured by the trench 11 b of the silicon substrate 11, the wiring layer 125, and the insulating film 126.
Here, for example, copper, tungsten, or the like is used as a forming material of the wiring layer 125, and a CVD method or a PVD method is used as a forming method thereof.
In addition, as a material for forming the insulating film 126, for example, silicon oxide or silicon nitride formed by a CVD method is used.

絶縁膜12は、シリコン基板11の裏面側の表面上に形成されている。
第1配線層15は、絶縁膜12に形成されたビアホールを介して、貫通電極127の配線層125に接続されている。
また、第1配線層15は、第3配線層21を介して第2配線層16に接続されている。
そして、第2配線層16は層間絶縁膜13の表面上にて第1配線層15から離れた位置まで延出され、保護絶縁膜14の開口部14aから露出された第2配線層16の延出部分16aによって電極パッドPadが形成されている。
The insulating film 12 is formed on the back surface of the silicon substrate 11.
The first wiring layer 15 is connected to the wiring layer 125 of the through electrode 127 through a via hole formed in the insulating film 12.
The first wiring layer 15 is connected to the second wiring layer 16 through the third wiring layer 21.
Then, the second wiring layer 16 extends to a position away from the first wiring layer 15 on the surface of the interlayer insulating film 13, and the extension of the second wiring layer 16 exposed from the opening 14 a of the protective insulating film 14. An electrode pad Pad is formed by the protruding portion 16a.

第14実施形態の半導体装置120では、シリコン基板11の表面側に形成された不純物領域121と、シリコン基板11の裏面側に形成された電極パッドPadとが、各配線層15,21,16および貫通電極127を介して接続されている。
そして、各不純物領域121と絶縁膜122および各配線層123が形成されたシリコン基板11の表面側は、保護絶縁膜124によって完全に覆われている。
In the semiconductor device 120 according to the fourteenth embodiment, the impurity region 121 formed on the front surface side of the silicon substrate 11 and the electrode pad Pad formed on the back surface side of the silicon substrate 11 include the wiring layers 15, 21, 16 and They are connected through the through electrode 127.
The surface side of the silicon substrate 11 on which the impurity regions 121, the insulating film 122, and the wiring layers 123 are formed is completely covered with the protective insulating film 124.

従って、第14実施形態によれば、第10実施形態の前記作用・効果に加えて、半導体装置120の電極パッドPadをシリコン基板11の裏面側のみに設け、シリコン基板11の表面側を保護絶縁膜124によって完全に覆うことが可能になるため、シリコン基板11の表面側が腐食性ガスに直接晒された場合でも、シリコン基板11の表面側に形成された電子回路の機能が阻害されるのを確実に防止できる。   Therefore, according to the fourteenth embodiment, in addition to the operations and effects of the tenth embodiment, the electrode pad Pad of the semiconductor device 120 is provided only on the back surface side of the silicon substrate 11, and the surface side of the silicon substrate 11 is protected and insulated. Since the film 124 can be completely covered, even when the surface side of the silicon substrate 11 is directly exposed to the corrosive gas, the function of the electronic circuit formed on the surface side of the silicon substrate 11 is hindered. It can be surely prevented.

<第15実施形態>
図12は、第10実施形態の半導体チップ80によって構成された第15実施形態の半導体装置130の概略構造を示す要部概略縦断面図である。
第15実施形態の半導体装置130において、第14実施形態の半導体装置120と異なるのは、シリコン基板11の裏面側に各絶縁膜12〜14と各配線層15,21,16および電極Padが設けられていることに加え、シリコン基板11の表面側にも各絶縁膜12〜14と各配線層15,21,16および電極Padが設けられている点だけである。
<Fifteenth embodiment>
FIG. 12 is a main part schematic longitudinal sectional view showing a schematic structure of the semiconductor device 130 of the fifteenth embodiment constituted by the semiconductor chip 80 of the tenth embodiment.
The semiconductor device 130 according to the fifteenth embodiment is different from the semiconductor device 120 according to the fourteenth embodiment in that the insulating films 12 to 14, the wiring layers 15, 21, 16 and the electrode Pad are provided on the back side of the silicon substrate 11. In addition, the insulating films 12 to 14, the wiring layers 15, 21, 16 and the electrode Pad are also provided on the surface side of the silicon substrate 11.

すなわち、半導体装置130では、シリコン基板11の表面側に各不純物領域121が形成され、各不純物領域121の表面上には絶縁膜12が形成され、絶縁膜12の表面上には第1配線層15および各配線層123が形成され、絶縁膜12および各配線層15,123の表面上には層間絶縁膜13が形成され、層間絶縁膜13の表面上には第2配線層16が形成され、層間絶縁膜13および第2配線層16の表面上には保護絶縁膜14が形成されている。
各配線層123は、絶縁膜12に形成されたコンタクトホールを介して各不純物領域121に接続されている。
That is, in the semiconductor device 130, each impurity region 121 is formed on the surface side of the silicon substrate 11, the insulating film 12 is formed on the surface of each impurity region 121, and the first wiring layer is formed on the surface of the insulating film 12. 15 and each wiring layer 123 are formed, an interlayer insulating film 13 is formed on the surface of the insulating film 12 and each wiring layer 15, 123, and a second wiring layer 16 is formed on the surface of the interlayer insulating film 13. A protective insulating film 14 is formed on the surfaces of the interlayer insulating film 13 and the second wiring layer 16.
Each wiring layer 123 is connected to each impurity region 121 through a contact hole formed in the insulating film 12.

そして、半導体装置130では、シリコン基板11の表面側に形成された不純物領域121と、シリコン基板11の裏面側に形成された電極パッドPadとが、各配線層15,21,16および貫通電極127を介して接続されている。
加えて、半導体装置130では、シリコン基板11の表面側において、不純物領域121と電極パッドPadとが各配線層15,21,16を介して接続されている。
従って、第15実施形態によれば、第10実施形態の前記作用・効果に加えて、シリコン基板11の表裏両面側に電極パッドPadを設けた半導体装置130を実現できる。
In the semiconductor device 130, the impurity region 121 formed on the front surface side of the silicon substrate 11 and the electrode pad Pad formed on the back surface side of the silicon substrate 11 include the wiring layers 15, 21, 16 and the through electrode 127. Connected through.
In addition, in the semiconductor device 130, the impurity region 121 and the electrode pad Pad are connected via the wiring layers 15, 21, and 16 on the surface side of the silicon substrate 11.
Therefore, according to the fifteenth embodiment, in addition to the operations and effects of the tenth embodiment, the semiconductor device 130 in which the electrode pads Pad are provided on both front and back sides of the silicon substrate 11 can be realized.

<第16実施形態>
図13(A)は、センサを構成する第16実施形態の半導体チップ140における電極パッドPadの近傍を示す要部概略平面図である。
図13(B)は、第16実施形態の半導体チップ140における電極パッドPadの近傍を示す要部概略縦断面図であり、図13(A)に示すX−X線断面図である。
半導体チップ(配線基板)140は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPadなどから構成されている。
<Sixteenth Embodiment>
FIG. 13A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 140 of the sixteenth embodiment constituting the sensor.
FIG. 13B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 140 of the sixteenth embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 140 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, and the like.

第16実施形態の半導体チップ140において、第1実施形態の半導体チップ10と異なるのは以下の点である。   The semiconductor chip 140 of the sixteenth embodiment differs from the semiconductor chip 10 of the first embodiment in the following points.

[a]第1配線層15は、矩形リング状に形成されている。   [A] The first wiring layer 15 is formed in a rectangular ring shape.

[b]層間絶縁膜13において、第1配線層15を覆う部分は全て除去されている。そして、層間絶縁膜13に開口形成された矩形状の開口部13bから第1配線層15が完全に露出されている。   [B] In the interlayer insulating film 13, all portions covering the first wiring layer 15 are removed. The first wiring layer 15 is completely exposed from the rectangular opening 13 b formed in the interlayer insulating film 13.

[c]第2配線層16は、層間絶縁膜13の開口部13b全体を覆うことにより、第1配線層15の底面を除く全ての部分(上面および側壁面)を覆うように形成されている。そして、第1配線層15の上面および側壁面と、これらを覆う第2配線層16とが接続されている。   [C] The second wiring layer 16 is formed so as to cover all the openings (upper surface and side wall surfaces) except the bottom surface of the first wiring layer 15 by covering the entire opening 13 b of the interlayer insulating film 13. . And the upper surface and side wall surface of the 1st wiring layer 15 and the 2nd wiring layer 16 which covers these are connected.

[d]第2配線層16の中央部分は、保護絶縁膜14に開口形成された矩形状の開口部14bから露出されている。そして、保護絶縁膜14の開口部14bから露出した第2配線層16の中央部分の表面によって電極パッドPadが形成されている。   [D] A central portion of the second wiring layer 16 is exposed from a rectangular opening 14 b formed in the protective insulating film 14. An electrode pad Pad is formed by the surface of the central portion of the second wiring layer 16 exposed from the opening 14 b of the protective insulating film 14.

[e]保護絶縁膜14の開口部14bは、第1配線層15の上面の上方部分を除く部分に形成されている。すなわち、第1配線層15の上面の上方部分は保護絶縁膜14によって覆われており、保護絶縁膜14の開口部14bと第1配線層15とが上下方向に重なることはない。換言すると、保護絶縁膜14の開口部14bは、第1配線層15の矩形リング状の内側の上方部分に開口されている。   [E] The opening 14 b of the protective insulating film 14 is formed in a portion excluding the upper portion of the upper surface of the first wiring layer 15. That is, the upper part of the upper surface of the first wiring layer 15 is covered with the protective insulating film 14, and the opening 14b of the protective insulating film 14 and the first wiring layer 15 do not overlap in the vertical direction. In other words, the opening 14 b of the protective insulating film 14 is opened in the upper portion inside the rectangular ring shape of the first wiring layer 15.

[第16実施形態の作用・効果]
第16実施形態によれば、第1実施形態の前記[1−3]〜[1−5]の作用・効果に加えて、以下の作用・効果を得ることができる。
[Operations and effects of the sixteenth embodiment]
According to the sixteenth embodiment, in addition to the operations and effects of [1-3] to [1-5] of the first embodiment, the following operations and effects can be obtained.

[16−1]第16実施形態の半導体チップ140では、第1配線層15の表面が第2配線層16によって覆われており、第1配線層15の表面が露出していない。
そのため、半導体チップ10が腐食性ガス雰囲気中に置かれても、第1配線層15が腐食性ガスに直接晒されることがなく、腐食性ガスによって腐食され易いアルミニウム系膜によって形成されているにも関わらず第1配線層15は腐食されない。
[16-1] In the semiconductor chip 140 of the sixteenth embodiment, the surface of the first wiring layer 15 is covered with the second wiring layer 16, and the surface of the first wiring layer 15 is not exposed.
Therefore, even if the semiconductor chip 10 is placed in a corrosive gas atmosphere, the first wiring layer 15 is not directly exposed to the corrosive gas, and is formed of an aluminum-based film that is easily corroded by the corrosive gas. Nevertheless, the first wiring layer 15 is not corroded.

そして、半導体チップ140では、第2配線層16が第1配線層15の上面および側壁面を覆い、第2配線層16の中央部分が保護絶縁膜14の開口部14bから露出して電極パッドPadが形成されている。
そのため、半導体チップ140が腐食性ガス雰囲気中に置かれると、電極パッドPadが腐食性ガスに直接晒される。しかし、電極パッドPadは腐食性ガスに耐性のある形成材料を用いた第2配線層16の一部であるため、腐食性ガスにより電極パッドPadが腐食されることはなく、電極パッドPadの断線不良を防止できる。
In the semiconductor chip 140, the second wiring layer 16 covers the upper surface and the side wall surface of the first wiring layer 15, and the central portion of the second wiring layer 16 is exposed from the opening 14 b of the protective insulating film 14 to be exposed to the electrode pad Pad. Is formed.
Therefore, when the semiconductor chip 140 is placed in a corrosive gas atmosphere, the electrode pad Pad is directly exposed to the corrosive gas. However, since the electrode pad Pad is a part of the second wiring layer 16 using a forming material resistant to corrosive gas, the electrode pad Pad is not corroded by the corrosive gas, and the electrode pad Pad is disconnected. Defects can be prevented.

[16−2]保護絶縁膜14の開口部14bと第1配線層15とが上下方向に重なる場合には、半導体チップ140が腐食性ガス雰囲気中に置かれたときに、腐食性ガスが保護絶縁膜14の開口部14bから第2配線層16を通って第1配線層15に到達し、その腐食性ガスによって第1配線層15が腐食されるおそれがある。   [16-2] When the opening 14b of the protective insulating film 14 and the first wiring layer 15 overlap vertically, the corrosive gas is protected when the semiconductor chip 140 is placed in a corrosive gas atmosphere. The opening 14b of the insulating film 14 may reach the first wiring layer 15 through the second wiring layer 16, and the corrosive gas may corrode the first wiring layer 15.

しかし、第16実施形態では、第1配線層15の上面の上方部分は保護絶縁膜14によって覆われているため、保護絶縁膜14の開口部14bと第1配線層15とが上下方向に重なることはない。換言すると、開口部14bと第1配線層15とが上下方向に重ならない位置に形成されている。
従って、第16実施形態によれば、半導体チップ140が腐食性ガス雰囲気中に置かれたときに、腐食性ガスが保護絶縁膜14の開口部14bから第2配線層16を通って第1配線層15に到達することがなく、その腐食性ガスによって第1配線層15が腐食されるおそれもない。
However, in the sixteenth embodiment, since the upper part of the upper surface of the first wiring layer 15 is covered with the protective insulating film 14, the opening 14b of the protective insulating film 14 and the first wiring layer 15 overlap in the vertical direction. There is nothing. In other words, the opening 14b and the first wiring layer 15 are formed at positions that do not overlap in the vertical direction.
Therefore, according to the sixteenth embodiment, when the semiconductor chip 140 is placed in a corrosive gas atmosphere, the corrosive gas passes through the second wiring layer 16 from the opening 14b of the protective insulating film 14 and the first wiring. There is no possibility that the first wiring layer 15 is corroded by the corrosive gas without reaching the layer 15.

[16−3]第1実施形態では、第2配線層16が第1配線層15から離れた位置まで延出されて引き出され、その第2配線層16における延出部分16aが保護絶縁膜14の開口部14aから露出され、その開口部14aから露出された第2配線層16の延出部分16aによって電極パッドPadが形成されている。
そのため、第1実施形態では、シリコン基板11の表面上における各配線層15,16の占有面積が第2配線層16の延出部分16aの面積分だけ増大し、半導体チップ10の大型化を招くおそれがある。
[16-3] In the first embodiment, the second wiring layer 16 is extended to a position away from the first wiring layer 15, and the extended portion 16a in the second wiring layer 16 is the protective insulating film 14. The electrode pad Pad is formed by the extended portion 16a of the second wiring layer 16 exposed from the opening 14a.
Therefore, in the first embodiment, the occupied area of each wiring layer 15, 16 on the surface of the silicon substrate 11 is increased by the area of the extended portion 16 a of the second wiring layer 16, leading to an increase in the size of the semiconductor chip 10. There is a fear.

それに対して、第16実施形態では、第1配線層15が矩形リング状に形成され、第1配線層15を覆う第2配線層16の中央部分(第1配線層15の矩形リング状の内側の上方部分)が保護絶縁膜14の開口部14bから露出され、その開口部14bから露出された第2配線層16の中央部分によって電極パッドPadが形成されている。
そのため、電極パッドPadの面積が同じであれば、第1実施形態に比べて、第16実施形態では、シリコン基板11の表面上における各配線層15,16の占有面積を縮小して半導体チップ140を小型化できる。
In contrast, in the sixteenth embodiment, the first wiring layer 15 is formed in a rectangular ring shape, and the central portion of the second wiring layer 16 that covers the first wiring layer 15 (the inner side of the rectangular ring shape of the first wiring layer 15). Is exposed from the opening 14b of the protective insulating film 14, and an electrode pad Pad is formed by the central portion of the second wiring layer 16 exposed from the opening 14b.
Therefore, if the area of the electrode pad Pad is the same, in the sixteenth embodiment, the area occupied by the wiring layers 15 and 16 on the surface of the silicon substrate 11 is reduced as compared with the first embodiment, thereby reducing the semiconductor chip 140. Can be miniaturized.

[16−4]第1実施形態では、ビアホール13aの底面から露出した第1配線層15の上面と、ビアホール13aの内部に充填された第2配線層16の下面とが接続されているだけであるため、各配線層15,16の接触抵抗(接続抵抗)が大きい上に、各配線層15,16間には電流が一方向にしか流れないことから、各配線層15,16間の電気抵抗が増大する。
それに対して、第16実施形態では、第1配線層15が矩形リング状に形成され、第1配線層15の上面および側壁面が第2配線層16によって覆われているため、第1実施形態に比べて、各配線層15,16の接触面積を増大させて接触抵抗を低減できる上に、各配線層15,16間で電流を四方に広げて流すことができることから、各配線層15,16間の電気抵抗を低減できる。
[16-4] In the first embodiment, only the upper surface of the first wiring layer 15 exposed from the bottom surface of the via hole 13a and the lower surface of the second wiring layer 16 filled in the via hole 13a are connected. Therefore, since the contact resistance (connection resistance) of each wiring layer 15 and 16 is large and current flows between the wiring layers 15 and 16 only in one direction, the electric current between the wiring layers 15 and 16 can be reduced. Resistance increases.
On the other hand, in the sixteenth embodiment, the first wiring layer 15 is formed in a rectangular ring shape, and the upper surface and the side wall surface of the first wiring layer 15 are covered with the second wiring layer 16. In comparison with this, the contact area of each wiring layer 15, 16 can be increased and the contact resistance can be reduced, and the current can be spread in all directions between each wiring layer 15, 16. The electrical resistance between 16 can be reduced.

また、第1実施形態では、第1配線層15と電極パッドPadとが第2配線層16の延出部分16aを介して接続されているため、第1配線層15と電極パッドPadとの間の電気抵抗が、延出部分16aの配線抵抗の抵抗分だけ増大する。
それに対して、第16実施形態では、第2配線層16に延出部分16aが設けられていないため、第1実施形態に比べて、第1配線層15と電極パッドPadとの間の電気抵抗を低減できる。
In the first embodiment, since the first wiring layer 15 and the electrode pad Pad are connected via the extended portion 16a of the second wiring layer 16, the first wiring layer 15 and the electrode pad Pad are not connected. Is increased by the resistance of the wiring resistance of the extended portion 16a.
On the other hand, in the sixteenth embodiment, since the extended portion 16a is not provided in the second wiring layer 16, the electrical resistance between the first wiring layer 15 and the electrode pad Pad is smaller than that in the first embodiment. Can be reduced.

<第17実施形態>
図14(A)は、センサを構成する第17実施形態の半導体チップ150における電極パッドPadの近傍を示す要部概略平面図である。
図14(B)は、第17実施形態の半導体チップ150における電極パッドPadの近傍を示す要部概略縦断面図であり、図14(A)に示すX−X線断面図である。
半導体チップ(配線基板)150は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPadなどから構成されている。
<Seventeenth Embodiment>
FIG. 14A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 150 of the seventeenth embodiment constituting the sensor.
FIG. 14B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 150 of the seventeenth embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 150 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, and the like.

第17実施形態の半導体チップ150において、第16実施形態の半導体チップ140と異なるのは、第1配線層15が略U字状に形成されている点である。
従って、第17実施形態では、第1配線層15が矩形リング状に形成されている第16実施形態に比べて、各配線層15,16の接触面積が減少して接触抵抗が増大するものの、第1実施形態に比べれば各配線層15,16の接触抵抗を低減できるため、第16実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 150 of the seventeenth embodiment is different from the semiconductor chip 140 of the sixteenth embodiment in that the first wiring layer 15 is formed in a substantially U shape.
Therefore, in the seventeenth embodiment, although the contact area of each wiring layer 15 and 16 is reduced and the contact resistance is increased compared to the sixteenth embodiment in which the first wiring layer 15 is formed in a rectangular ring shape, Since the contact resistance of each of the wiring layers 15 and 16 can be reduced as compared with the first embodiment, the same operations and effects as those of the sixteenth embodiment can be obtained.

<第18実施形態>
図15(A)は、センサを構成する第18実施形態の半導体チップ160における電極パッドPadの近傍を示す要部概略平面図である。
図15(B)は、第18実施形態の半導体チップ160における電極パッドPadの近傍を示す要部概略縦断面図であり、図15(A)に示すX−X線断面図である。
半導体チップ(配線基板)160は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPadなどから構成されている。
<Eighteenth embodiment>
FIG. 15A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 160 of the eighteenth embodiment constituting the sensor.
FIG. 15B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 160 of the eighteenth embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 160 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, and the like.

第18実施形態の半導体チップ160において、第16実施形態の半導体チップ140と異なるのは、第1配線層15が略I字状に形成されている点である。
従って、第18実施形態では、第1配線層15が矩形リング状に形成されている第16実施形態に比べて、各配線層15,16の接触面積が減少して接触抵抗が増大するものの、第1実施形態に比べれば各配線層15,16の接触抵抗を低減できるため、第16実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 160 of the eighteenth embodiment is different from the semiconductor chip 140 of the sixteenth embodiment in that the first wiring layer 15 is formed in a substantially I shape.
Therefore, in the eighteenth embodiment, although the contact area of each wiring layer 15 and 16 is reduced and the contact resistance is increased compared to the sixteenth embodiment in which the first wiring layer 15 is formed in a rectangular ring shape, Since the contact resistance of each of the wiring layers 15 and 16 can be reduced as compared with the first embodiment, the same operations and effects as those of the sixteenth embodiment can be obtained.

<第19実施形態>
図16(A)は、センサを構成する第19実施形態の半導体チップ170における電極パッドPadの近傍を示す要部概略平面図である。
図16(B)は、第19実施形態の半導体チップ170における電極パッドPadの近傍を示す要部概略縦断面図であり、図16(A)に示すX−X線断面図である。
半導体チップ(配線基板)170は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPadなどから構成されている。
<Nineteenth embodiment>
FIG. 16A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 170 of the nineteenth embodiment constituting the sensor.
FIG. 16B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 170 of the nineteenth embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 170 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, and the like.

第19実施形態の半導体チップ170において、第16実施形態の半導体チップ140と異なるのは、第1配線層15が略L字状に形成されている点である。
従って、第19実施形態では、第1配線層15が矩形リング状に形成されている第16実施形態に比べて、各配線層15,16の接触面積が減少して接触抵抗が増大するものの、第1実施形態に比べれば各配線層15,16の接触抵抗を低減できるため、第16実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 170 of the nineteenth embodiment is different from the semiconductor chip 140 of the sixteenth embodiment in that the first wiring layer 15 is formed in a substantially L shape.
Therefore, in the nineteenth embodiment, compared to the sixteenth embodiment in which the first wiring layer 15 is formed in a rectangular ring shape, the contact area of each of the wiring layers 15 and 16 is reduced and the contact resistance is increased. Since the contact resistance of each of the wiring layers 15 and 16 can be reduced as compared with the first embodiment, the same operations and effects as those of the sixteenth embodiment can be obtained.

<第20実施形態>
図17は、第16実施形態の半導体チップ140によって構成された第20実施形態のパワーMOSトランジスタ180の概略構造を示す要部概略縦断面図であり、図18に示すX−X線断面図である。
図18(A)は、第20実施形態のパワーMOSトランジスタ180の要部概略平面図である。
図18(B)は、第20実施形態のパワーMOSトランジスタ180の要部概略底面図である。
半導体チップ140は、シリコン基板11、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPadなどから構成されている。
<20th Embodiment>
FIG. 17 is a main part schematic longitudinal sectional view showing a schematic structure of the power MOS transistor 180 of the twentieth embodiment constituted by the semiconductor chip 140 of the sixteenth embodiment, and is a sectional view taken along line XX shown in FIG. is there.
FIG. 18A is a schematic plan view of a main part of a power MOS transistor 180 according to the twentieth embodiment.
FIG. 18B is a schematic bottom view of the main part of the power MOS transistor 180 of the twentieth embodiment.
The semiconductor chip 140 includes a silicon substrate 11, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, and the like.

シリコン基板11には、高濃度のp型不純物領域181、低濃度のp型不純物領域182、n型不純物領域183が板厚方向に下方から上方に向けてこの順番で形成されている。
各不純物領域182,183には、トレンチ184が形成されている。
トレンチ184の内部には配線層185が充填されて埋め込まれている。
トレンチ184の内周壁面と配線層185との間には絶縁膜186が形成されており、各不純物領域182,183と配線層185とは絶縁膜186によって絶縁されている。
In the silicon substrate 11, a high concentration p-type impurity region 181, a low concentration p-type impurity region 182, and an n-type impurity region 183 are formed in this order from the bottom to the top in the thickness direction.
A trench 184 is formed in each of the impurity regions 182 and 183.
The trench 184 is filled and filled with a wiring layer 185.
An insulating film 186 is formed between the inner peripheral wall surface of the trench 184 and the wiring layer 185, and the impurity regions 182 and 183 and the wiring layer 185 are insulated from each other by the insulating film 186.

n型不純物領域183の表面には、トレンチ184および絶縁膜186を囲むように高濃度のp型不純物領域187が形成されている。
絶縁膜186は、トレンチ184を囲むp型不純物領域187の表面上にも形成されている。
p型不純物領域187とトレンチ184および絶縁膜186の表面上には絶縁膜188が形成されている。
A high-concentration p-type impurity region 187 is formed on the surface of the n-type impurity region 183 so as to surround the trench 184 and the insulating film 186.
The insulating film 186 is also formed on the surface of the p-type impurity region 187 surrounding the trench 184.
An insulating film 188 is formed on the surfaces of p-type impurity region 187, trench 184, and insulating film 186.

そして、pチャネルパワーMOSトランジスタ180では、配線層185によってゲート電極が形成され、絶縁膜186によってゲート絶縁膜が形成され、p型不純物領域187によってソース領域が形成され、p型不純物領域181によってドレイン領域が形成されている。
ここで、配線層185の形成材料には、例えば、CVD法によって形成された多結晶シリコンが用いられる。
In the p-channel power MOS transistor 180, the gate electrode is formed by the wiring layer 185, the gate insulating film is formed by the insulating film 186, the source region is formed by the p-type impurity region 187, and the drain is formed by the p-type impurity region 181. A region is formed.
Here, as a material for forming the wiring layer 185, for example, polycrystalline silicon formed by a CVD method is used.

第20実施形態では、シリコン基板11の表裏両面側にそれぞれ各配線層15,16、保護絶縁膜14、電極パッドPadが形成されている。
そこで、シリコン基板11の表面側に形成された部材には符号の末尾に「α」を付し、シリコン基板11の裏面側に形成された部材には符号の末尾に「β」を付すことにより、表面側の部材と裏面側の部材とを区別する。
In the twentieth embodiment, the wiring layers 15 and 16, the protective insulating film 14, and the electrode pad Pad are formed on the front and back surfaces of the silicon substrate 11, respectively.
Therefore, a member formed on the front surface side of the silicon substrate 11 is marked with “α” at the end of the symbol, and a member formed on the back surface side of the silicon substrate 11 is marked with “β” at the end of the symbol. A front side member and a back side member are distinguished.

第1配線層15αは、絶縁膜188に形成されたコンタクトホールを介してp型不純物領域187に接続されている。
また、第1配線層15αを覆う第2配線層16αの中央部分は保護絶縁膜14αの開口部14bから露出され、その開口部14bから露出された第2配線層16αの中央部分によって電極パッドPadαが形成されている。
そして、各配線層15α,16αによってパワーMOS(Metal Oxide Semiconductor)トランジスタ180のソース電極が形成されている。
The first wiring layer 15α is connected to the p-type impurity region 187 through a contact hole formed in the insulating film 188.
The central portion of the second wiring layer 16α covering the first wiring layer 15α is exposed from the opening 14b of the protective insulating film 14α, and the electrode pad Padα is exposed by the central portion of the second wiring layer 16α exposed from the opening 14b. Is formed.
A source electrode of a power MOS (Metal Oxide Semiconductor) transistor 180 is formed by the wiring layers 15α and 16α.

第1配線層15βは、p型不純物領域181の表面上に形成されてp型不純物領域181に接続されている。
また、第1配線層15βを覆う第2配線層16βの中央部分は保護絶縁膜14βの開口部14bから露出され、その開口部14bから露出された第2配線層16βの中央部分によって電極パッドPadβが形成されている。
そして、各配線層15β,16βによってパワーMOSトランジスタ180のドレイン電極が形成されている。
The first wiring layer 15β is formed on the surface of the p-type impurity region 181 and connected to the p-type impurity region 181.
Further, the central portion of the second wiring layer 16β covering the first wiring layer 15β is exposed from the opening 14b of the protective insulating film 14β, and the electrode pad Padβ is exposed by the central portion of the second wiring layer 16β exposed from the opening 14b. Is formed.
The drain electrode of the power MOS transistor 180 is formed by the wiring layers 15β and 16β.

図19(B)は、従来のパワーMOSトランジスタ190の概略構造を示す要部概略縦断面図であり、図19(A)(C)に示すX−X線断面図である。
図19(A)は、従来のパワーMOSトランジスタ190の要部概略平面図である。
図19(C)は、従来のパワーMOSトランジスタ190の要部概略底面図である。
FIG. 19B is a main part schematic longitudinal sectional view showing a schematic structure of a conventional power MOS transistor 190, and is a sectional view taken along the line XX shown in FIGS. 19A and 19C.
FIG. 19A is a schematic plan view of a main part of a conventional power MOS transistor 190.
FIG. 19C is a schematic bottom view of a main part of a conventional power MOS transistor 190.

従来のパワーMOSトランジスタ190において、第20実施形態のパワーMOSトランジスタ180と異なるのは、各不純物領域183,187の表面上に形成された配線層191によってソース電極が形成され、p型不純物領域181の表面上に形成された配線層192によってドレイン電極が形成されている点だけである。   The conventional power MOS transistor 190 is different from the power MOS transistor 180 of the twentieth embodiment in that the source electrode is formed by the wiring layer 191 formed on the surface of each impurity region 183 and 187, and the p-type impurity region 181. The only point is that the drain electrode is formed by the wiring layer 192 formed on the surface.

パワーMOSトランジスタ180,190を使用した電子回路を腐食性ガスの雰囲気中で使用する際に、パワーMOSトランジスタ180,190が腐食性ガスに直接晒される場合には、ソース電極およびドレイン電極も腐食性ガスに直接晒される。
従来のパワーMOSトランジスタ190では、ソース電極を形成する配線層191とドレイン電極を形成する配線層192とが腐食に耐え切れずに断線不良を起こすおそれがある。
When an electronic circuit using the power MOS transistors 180 and 190 is used in an atmosphere of corrosive gas, if the power MOS transistors 180 and 190 are directly exposed to the corrosive gas, the source electrode and the drain electrode are also corrosive. Direct exposure to gas.
In the conventional power MOS transistor 190, the wiring layer 191 that forms the source electrode and the wiring layer 192 that forms the drain electrode cannot withstand corrosion and may cause a disconnection failure.

しかし、第20実施形態によれば、第16実施形態の前記作用・効果により、パワーMOSトランジスタ190が腐食性ガス雰囲気中に置かれてもソース電極およびドレイン電極を形成する各電極パッドPadα,Padβの腐食を確実に防止可能であると共に、機能を阻害せずコンパクトなパワーMOSトランジスタ180を実現できる。   However, according to the twentieth embodiment, due to the operation and effect of the sixteenth embodiment, each electrode pad Padα, Padβ that forms the source electrode and the drain electrode even when the power MOS transistor 190 is placed in a corrosive gas atmosphere. Thus, the compact power MOS transistor 180 can be realized without impairing the function.

<第21実施形態>
図20は、第16実施形態の半導体チップ140によって構成された第21実施形態のパワーMOSトランジスタ200の概略構造を示す要部概略縦断面図である。
<Twenty-first embodiment>
FIG. 20 is a schematic vertical sectional view showing a main part of a schematic structure of a power MOS transistor 200 according to the twenty-first embodiment constituted by the semiconductor chip 140 according to the sixteenth embodiment.

第21実施形態のパワーMOSトランジスタ200において、第20実施形態のパワーMOSトランジスタ180と異なるのは、第2配線層16αが2層の配線層201,202によって形成され、第1配線層15βが3層の配線層203〜205によって形成され、第2配線層16βが2層の配線層206,207によって形成されている点だけである。
従って、第21実施形態においても、第20実施形態の前記作用・効果と同様の作用・効果が得られる。
The power MOS transistor 200 of the twenty-first embodiment differs from the power MOS transistor 180 of the twentieth embodiment in that the second wiring layer 16α is formed by two wiring layers 201 and 202, and the first wiring layer 15β is three. The second wiring layer 16 </ b> β is formed only by the two wiring layers 206 and 207.
Therefore, also in the twenty-first embodiment, the same actions and effects as those in the twentieth embodiment are obtained.

第1配線層15αを覆うように配線層201が形成され、配線層201の表面上には配線層202が形成されている。
例えば、第1配線層15αはアルミニウム系膜によって形成され、配線層201はタンタルによって形成され、配線層202は金によって形成されている。
p型不純物領域181の表面上には配線層203が形成され、配線層203の表面上には配線層204が形成され、配線層204の表面上には配線層205が形成されている。
例えば、配線層203はチタンによって形成され、配線層204はニッケルによって形成され、配線層202は金によって形成されている。
第1配線層15βを覆うように配線層206が形成され、配線層206の表面上には配線層207が形成されている。
例えば、配線層206はタンタルによって形成され、配線層207は金によって形成されている。
A wiring layer 201 is formed so as to cover the first wiring layer 15α, and a wiring layer 202 is formed on the surface of the wiring layer 201.
For example, the first wiring layer 15α is formed of an aluminum film, the wiring layer 201 is formed of tantalum, and the wiring layer 202 is formed of gold.
A wiring layer 203 is formed on the surface of the p-type impurity region 181, a wiring layer 204 is formed on the surface of the wiring layer 203, and a wiring layer 205 is formed on the surface of the wiring layer 204.
For example, the wiring layer 203 is made of titanium, the wiring layer 204 is made of nickel, and the wiring layer 202 is made of gold.
A wiring layer 206 is formed so as to cover the first wiring layer 15β, and a wiring layer 207 is formed on the surface of the wiring layer 206.
For example, the wiring layer 206 is made of tantalum, and the wiring layer 207 is made of gold.

<第22実施形態>
図21(A)は、センサを構成する第22実施形態の半導体チップ210における電極パッドPadの近傍を示す要部概略平面図である。
図21(B)は、第22実施形態の半導体チップ210における電極パッドPadの近傍を示す要部概略縦断面図であり、図21(A)に示すX−X線断面図である。
半導体チップ(配線基板)210は、シリコン基板11、絶縁膜12、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPadなどから構成されている。
<Twenty-second embodiment>
FIG. 21A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 210 of the twenty-second embodiment constituting the sensor.
FIG. 21B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 210 of the twenty-second embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 210 includes a silicon substrate 11, an insulating film 12, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, and the like.

第22実施形態の半導体チップ210において、第1実施形態の半導体チップ10と異なるのは、層間絶縁膜13が省かれ、第1配線層15の表面上に第2配線層16が形成され、各配線層15,16がビアホールを介すことなく直接接続されている点だけである。
従って、第22実施形態においても、第1実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 210 of the twenty-second embodiment differs from the semiconductor chip 10 of the first embodiment in that the interlayer insulating film 13 is omitted and the second wiring layer 16 is formed on the surface of the first wiring layer 15. The only point is that the wiring layers 15 and 16 are directly connected without via holes.
Therefore, also in the twenty-second embodiment, the same actions and effects as those in the first embodiment can be obtained.

<第23実施形態>
図22(A)は、センサを構成する第23実施形態の半導体チップ220における電極パッドPadの近傍を示す要部概略平面図である。
図22(B)は、第23実施形態の半導体チップ220における電極パッドPadの近傍を示す要部概略縦断面図であり、図22(A)に示すX−X線断面図である。
半導体チップ(配線基板)220は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第4配線層41などから構成されている。
<23rd Embodiment>
FIG. 22A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 220 of the twenty-third embodiment constituting the sensor.
FIG. 22B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 220 of the twenty-third embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 220 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a fourth wiring layer 41, and the like. It is configured.

第23実施形態の半導体チップ220において、第16実施形態の半導体チップ140と異なるのは、第2配線層16の上側全面に第4配線層41が形成され、各配線層16,41が積層されている点だけである。
従って、第23実施形態によれば、第16実施形態の前記作用・効果に加えて、第4実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 220 of the twenty-third embodiment differs from the semiconductor chip 140 of the sixteenth embodiment in that a fourth wiring layer 41 is formed on the entire upper surface of the second wiring layer 16 and the wiring layers 16 and 41 are laminated. It is only a point.
Therefore, according to the twenty-third embodiment, in addition to the actions and effects of the sixteenth embodiment, the actions and effects similar to the actions and effects of the fourth embodiment are obtained.

<第24実施形態>
図23(A)は、センサを構成する第24実施形態の半導体チップ230における電極パッドPadの近傍を示す要部概略平面図である。
図23(B)は、第24実施形態の半導体チップ230における電極パッドPadの近傍を示す要部概略縦断面図であり、図23(A)に示すX−X線断面図である。
半導体チップ(配線基板)230は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第2接着層61などから構成されている。
<24th Embodiment>
FIG. 23A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 230 of the twenty-fourth embodiment constituting the sensor.
FIG. 23B is a schematic vertical cross-sectional view of the main part showing the vicinity of the electrode pad Pad in the semiconductor chip 230 of the twenty-fourth embodiment, and is a cross-sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 230 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a second adhesive layer 61, and the like. It is configured.

第24実施形態の半導体チップ230において、第16実施形態の半導体チップ140と異なるのは、第2接着層61が設けられている点だけである。
第2接着層61は、保護絶縁膜14の開口部14bの内部を除く第2配線層16の上側に形成されている。そして、保護絶縁膜14の開口部14bからは第2配線層16が直接露出している。
従って、第24実施形態によれば、第16実施形態の前記作用・効果に加えて、第6実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 230 according to the twenty-fourth embodiment is different from the semiconductor chip 140 according to the sixteenth embodiment only in that the second adhesive layer 61 is provided.
The second adhesive layer 61 is formed on the second wiring layer 16 excluding the inside of the opening 14 b of the protective insulating film 14. The second wiring layer 16 is directly exposed from the opening 14 b of the protective insulating film 14.
Therefore, according to the twenty-fourth embodiment, in addition to the actions and effects of the sixteenth embodiment, the same actions and effects as the actions and effects of the sixth embodiment are obtained.

<第25実施形態>
図24(A)は、センサを構成する第25実施形態の半導体チップ240における電極パッドPadの近傍を示す要部概略平面図である。
図24(B)は、第25実施形態の半導体チップ240における電極パッドPadの近傍を示す要部概略縦断面図であり、図24(A)に示すX−X線断面図である。
半導体チップ(配線基板)240は、シリコン基板11、絶縁膜12、層間絶縁膜13、保護絶縁膜14、第1配線層15、第2配線層16、電極パッドPad、第5配線層91などから構成されている。
<25th Embodiment>
FIG. 24A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 240 of the twenty-fifth embodiment constituting the sensor.
FIG. 24B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 240 of the twenty-fifth embodiment, and is a sectional view taken along line XX shown in FIG.
The semiconductor chip (wiring substrate) 240 includes a silicon substrate 11, an insulating film 12, an interlayer insulating film 13, a protective insulating film 14, a first wiring layer 15, a second wiring layer 16, an electrode pad Pad, a fifth wiring layer 91, and the like. It is configured.

第25実施形態の半導体チップ240において、第16実施形態の半導体チップ140と異なるのは、第5配線層91が設けられている点だけである。
第5配線層91は、保護絶縁膜14の開口部14bの内部を除く第2配線層16の上側に形成されている。また、保護絶縁膜14の開口部14bの内周壁面に位置する第5配線層91の端面91aは、保護絶縁膜14によって覆われている。
そして、保護絶縁膜14の開口部14bからは第2配線層16が直接露出している。
従って、第25実施形態によれば、第16実施形態の前記作用・効果に加えて、第11実施形態の前記作用・効果と同様の作用・効果が得られる。
The semiconductor chip 240 of the 25th embodiment is different from the semiconductor chip 140 of the 16th embodiment only in that a fifth wiring layer 91 is provided.
The fifth wiring layer 91 is formed above the second wiring layer 16 excluding the inside of the opening 14 b of the protective insulating film 14. The end surface 91 a of the fifth wiring layer 91 located on the inner peripheral wall surface of the opening 14 b of the protective insulating film 14 is covered with the protective insulating film 14.
The second wiring layer 16 is directly exposed from the opening 14 b of the protective insulating film 14.
Therefore, according to the 25th embodiment, in addition to the operation / effect of the 16th embodiment, the same operation / effect as the operation / effect of the 11th embodiment can be obtained.

<別の実施形態>
本発明は上記各実施形態に限定されるものではなく、以下のように具体化してもよく、その場合でも、上記各実施形態と同等の作用・効果を得ることができる。
<Another embodiment>
The present invention is not limited to the above embodiments, and may be embodied as follows. Even in this case, the same operations and effects as those of the above embodiments can be obtained.

[1]第4,第6,第11実施形態において第3配線層21を省いてもよい。   [1] The third wiring layer 21 may be omitted in the fourth, sixth, and eleventh embodiments.

[2]第5,第7,第8,第9実施形態において第1接着層31を省いてもよい。   [2] In the fifth, seventh, eighth, and ninth embodiments, the first adhesive layer 31 may be omitted.

[3]第16〜第19,第23〜第25実施形態において層間絶縁膜13を省いてもよい。   [3] In the sixteenth to nineteenth and twenty-third to twenty-fifth embodiments, the interlayer insulating film 13 may be omitted.

[4]第12〜第15実施形態は、第10実施形態の半導体チップ80によって構成されている。しかし、第1〜第7,第11実施形態の半導体チップ10,20,30,40,50,60,70,90によって第12〜第15実施形態を構成してもよい。   [4] The twelfth to fifteenth embodiments are constituted by the semiconductor chip 80 of the tenth embodiment. However, the twelfth to fifteenth embodiments may be constituted by the semiconductor chips 10, 20, 30, 40, 50, 60, 70, 90 of the first to seventh and eleventh embodiments.

[5]第12,第13実施形態は圧力センサまたは加速度センサに適用しているが、本発明は、どのようなセンサに適用してもよく、例えば、超音波センサ、角速度センサ、エアフローセンサなどに適用してもよい。   [5] Although the twelfth and thirteenth embodiments are applied to a pressure sensor or an acceleration sensor, the present invention may be applied to any sensor, for example, an ultrasonic sensor, an angular velocity sensor, an air flow sensor, etc. You may apply to.

[6]第16実施形態において、第1配線層15は矩形リング状に形成されている。しかし、第16実施形態の第1配線層15は、どのような形状に形成してもよく、例えば、略S字状、略E字状などの形状に形成してもよい。   [6] In the sixteenth embodiment, the first wiring layer 15 is formed in a rectangular ring shape. However, the first wiring layer 15 of the sixteenth embodiment may be formed in any shape, for example, may be formed in a shape such as a substantially S shape or a substantially E shape.

[7]第20,第21実施形態は、第16実施形態の半導体チップ140によって構成されている。しかし、第1〜第9,第17〜第19,第23〜第25実施形態の半導体チップ10,20,30,40,50,60,70,80,90,150,160,170,220,230,240によって第20,第21実施形態を構成してもよい。   [7] The twentieth and twenty-first embodiments are constituted by the semiconductor chip 140 of the sixteenth embodiment. However, the semiconductor chips 10, 20, 30, 40, 50, 60, 70, 80, 90, 150, 160, 170, 220, of the first to ninth, 17th to 19th, and 23rd to 25th embodiments are provided. The twentieth and twenty-first embodiments may be configured by 230 and 240.

[8]第20,第21実施形態はパワーMOSトランジスタの電極構造に適用したものであるが、本発明は、どのようなパワー素子の電極構造に適用してもよく、例えば、バイポーラトランジスタ、IGBT(Insulated Gate Bipolar Transistor)、SIT(Static Induction Transistor)、サイリスタなどの電極構造に適用してもよい。   [8] Although the twentieth and twenty-first embodiments are applied to the electrode structure of a power MOS transistor, the present invention may be applied to any electrode structure of a power element, for example, a bipolar transistor, an IGBT. You may apply to electrode structures, such as (Insulated Gate Bipolar Transistor), SIT (Static Induction Transistor), and a thyristor.

[9]上記各実施形態はシリコン基板11上に作成したデバイスに適用したものであるが、その他の半導体基板(例えば、ガリウム・ヒ素基板、インジウム・ガリウム・ヒ素基板など)やSOI(Silicon On Insulator)基板の上に作成したデバイスに適用してもよい。
また、本発明は、半導体基板に限らず、どのような材質の配線基板に適用してもよく、例えば、プリント配線基板やハイブリッドIC(Integrated Circuit)の実装基板などに適用してもよい。そして、基板の表面が絶縁性の場合には、絶縁膜12を省いてもよい。
[9] Each of the above embodiments is applied to a device formed on the silicon substrate 11, but other semiconductor substrates (for example, gallium arsenide substrate, indium gallium arsenide substrate, etc.) or SOI (Silicon On Insulator) ) It may be applied to a device created on a substrate.
The present invention is not limited to a semiconductor substrate, and may be applied to a wiring substrate of any material, for example, a printed wiring substrate or a mounting substrate of a hybrid IC (Integrated Circuit). If the surface of the substrate is insulating, the insulating film 12 may be omitted.

図1(A)は、本発明を具体化した第1実施形態の半導体チップ10における電極パッドPadの近傍を示す要部概略平面図。図1(B)は、第1実施形態の半導体チップ10における電極パッドPadの近傍を示す要部概略縦断面図であり、図1(A)に示すX−X線断面図。FIG. 1A is a main part schematic plan view showing the vicinity of an electrode pad Pad in a semiconductor chip 10 according to a first embodiment embodying the present invention. FIG. 1B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 10 of the first embodiment, and is a sectional view taken along line XX shown in FIG. 図2(A)は、本発明を具体化した第2実施形態の半導体チップ20における電極パッドPadの近傍を示す要部概略縦断面図。図2(B)は、本発明を具体化した第3実施形態の半導体チップ30における電極パッドPadの近傍を示す要部概略縦断面図。FIG. 2A is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 20 of the second embodiment embodying the present invention. FIG. 2B is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 30 of the third embodiment embodying the present invention. 図3(A)は、本発明を具体化した第4実施形態の半導体チップ40における電極パッドPadの近傍を示す要部概略縦断面図。図3(B)は、本発明を具体化した第5実施形態の半導体チップ50における電極パッドPadの近傍を示す要部概略縦断面図。FIG. 3A is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 40 of the fourth embodiment embodying the present invention. FIG. 3B is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 50 according to the fifth embodiment embodying the present invention. 図4(A)は、本発明を具体化した第6実施形態の半導体チップ60における電極パッドPadの近傍を示す要部概略縦断面図。図4(B)は、本発明を具体化した第7実施形態の半導体チップ70における電極パッドPadの近傍を示す要部概略縦断面図。FIG. 4A is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 60 of the sixth embodiment embodying the present invention. FIG. 4B is a schematic vertical sectional view showing the main part of the vicinity of the electrode pad Pad in the semiconductor chip 70 of the seventh embodiment embodying the present invention. 本発明を具体化した第8実施形態の要部概略縦断面図。The principal part schematic longitudinal cross-sectional view of 8th Embodiment which actualized this invention. 本発明を具体化した第9実施形態の要部概略縦断面図。The principal part schematic longitudinal cross-sectional view of 9th Embodiment which actualized this invention. 本発明を具体化した第10実施形態の半導体チップ80における電極パッドPadの近傍を示す要部概略縦断面図。The principal part schematic longitudinal cross-sectional view which shows the vicinity of the electrode pad Pad in the semiconductor chip 80 of 10th Embodiment which actualized this invention. 本発明を具体化した第11実施形態の半導体チップ90における電極パッドPadの近傍を示す要部概略縦断面図。The principal part schematic longitudinal cross-sectional view which shows the vicinity of the electrode pad Pad in the semiconductor chip 90 of 11th Embodiment which actualized this invention. 本発明を具体化した第12実施形態の圧力センサ100の概略構造を示す要部概略縦断面図。The principal part schematic longitudinal cross-sectional view which shows schematic structure of the pressure sensor 100 of 12th Embodiment which actualized this invention. 本発明を具体化した第13実施形態の圧力センサ110の概略構造を示す要部概略縦断面図。The principal part schematic longitudinal cross-sectional view which shows schematic structure of the pressure sensor 110 of 13th Embodiment which actualized this invention. 本発明を具体化した第14実施形態の半導体装置120の概略構造を示す要部概略縦断面図。The principal part schematic longitudinal cross-sectional view which shows schematic structure of the semiconductor device 120 of 14th Embodiment which actualized this invention. 本発明を具体化した第15実施形態の半導体装置130の概略構造を示す要部概略縦断面図。The principal part schematic longitudinal cross-sectional view which shows schematic structure of the semiconductor device 130 of 15th Embodiment which actualized this invention. 図13(A)は、本発明を具体化した第16実施形態の半導体チップ140における電極パッドPadの近傍を示す要部概略平面図。図13(B)は、第16実施形態の半導体チップ140における電極パッドPadの近傍を示す要部概略縦断面図であり、図13(A)に示すX−X線断面図。FIG. 13A is a schematic plan view of the main part showing the vicinity of an electrode pad Pad in a semiconductor chip 140 according to a sixteenth embodiment that embodies the present invention. FIG. 13B is a schematic vertical cross-sectional view of the main part showing the vicinity of the electrode pad Pad in the semiconductor chip 140 of the sixteenth embodiment, and is a cross-sectional view taken along line XX shown in FIG. 図14(A)は、本発明を具体化した第17実施形態の半導体チップ150における電極パッドPadの近傍を示す要部概略平面図。図14(B)は、第17実施形態の半導体チップ150における電極パッドPadの近傍を示す要部概略縦断面図であり、図14(A)に示すX−X線断面図。FIG. 14A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 150 of the seventeenth embodiment embodying the present invention. FIG. 14B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 150 of the seventeenth embodiment, and is a sectional view taken along line XX shown in FIG. 図15(A)は、本発明を具体化した第18実施形態の半導体チップ160における電極パッドPadの近傍を示す要部概略平面図。図15(B)は、第18実施形態の半導体チップ160における電極パッドPadの近傍を示す要部概略縦断面図であり、図15(A)に示すX−X線断面図。FIG. 15A is a main part schematic plan view showing the vicinity of an electrode pad Pad in a semiconductor chip 160 according to an eighteenth embodiment embodying the present invention. FIG. 15B is a schematic vertical cross-sectional view of the main part showing the vicinity of the electrode pad Pad in the semiconductor chip 160 of the eighteenth embodiment, and is a cross-sectional view along the line XX shown in FIG. 図16(A)は、本発明を具体化した第19実施形態の半導体チップ170における電極パッドPadの近傍を示す要部概略平面図。図16(B)は、第19実施形態の半導体チップ170における電極パッドPadの近傍を示す要部概略縦断面図であり、図16(A)に示すX−X線断面図。FIG. 16A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 170 of the nineteenth embodiment embodying the present invention. FIG. 16B is a schematic vertical cross-sectional view of the main part showing the vicinity of the electrode pad Pad in the semiconductor chip 170 of the nineteenth embodiment, and is a cross-sectional view taken along line XX shown in FIG. 本発明を具体化した第16実施形態の半導体チップ140によって構成された第20実施形態のパワーMOSトランジスタ180の概略構造を示す要部概略縦断面図であり、図18に示すX−X線断面図。FIG. 19 is a schematic vertical sectional view of a main part showing a schematic structure of a power MOS transistor 180 according to a twentieth embodiment constituted by a semiconductor chip 140 according to a sixteenth embodiment embodying the present invention; Figure. 図18(A)は、第20実施形態のパワーMOSトランジスタ180の要部概略平面図。図18(B)は、第20実施形態のパワーMOSトランジスタ180の要部概略底面図。FIG. 18A is a schematic plan view of a main part of a power MOS transistor 180 according to the twentieth embodiment. FIG. 18B is a schematic bottom view of the main part of the power MOS transistor 180 of the twentieth embodiment. 図19(B)は、従来のパワーMOSトランジスタ190の概略構造を示す要部概略縦断面図であり、図19(A)(C)に示すX−X線断面図。図19(A)は、従来のパワーMOSトランジスタ190の要部概略平面図。図19(C)は、従来のパワーMOSトランジスタ190の要部概略底面図。FIG. 19B is a main part schematic longitudinal sectional view showing a schematic structure of a conventional power MOS transistor 190, and is a sectional view taken along line XX shown in FIGS. 19A and 19C. FIG. 19A is a schematic plan view of a main part of a conventional power MOS transistor 190. FIG. 19C is a schematic bottom view of a main part of a conventional power MOS transistor 190. 本発明を具体化した第21実施形態のパワーMOSトランジスタ200の概略構造を示す要部概略縦断面図。The principal part schematic longitudinal cross-sectional view which shows schematic structure of the power MOS transistor 200 of 21st Embodiment which actualized this invention. 図21(A)は、本発明を具体化した第22実施形態の半導体チップ210における電極パッドPadの近傍を示す要部概略平面図。図21(B)は、第22実施形態の半導体チップ210における電極パッドPadの近傍を示す要部概略縦断面図であり、図21(A)に示すX−X線断面図。FIG. 21A is a main part schematic plan view showing the vicinity of an electrode pad Pad in a semiconductor chip 210 of a twenty-second embodiment embodying the present invention. FIG. 21B is a schematic vertical cross-sectional view of the main part showing the vicinity of the electrode pad Pad in the semiconductor chip 210 of the 22nd embodiment, and is a cross-sectional view taken along line XX shown in FIG. 図22(A)は、本発明を具体化した第23実施形態の半導体チップ220における電極パッドPadの近傍を示す要部概略平面図。図22(B)は、第23実施形態の半導体チップ220における電極パッドPadの近傍を示す要部概略縦断面図であり、図22(A)に示すX−X線断面図。FIG. 22A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 220 of the twenty-third embodiment embodying the present invention. FIG. 22B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 220 of the twenty-third embodiment, and is a sectional view taken along line XX shown in FIG. 図23(A)は、本発明を具体化した第24実施形態の半導体チップ230における電極パッドPadの近傍を示す要部概略平面図。図23(B)は、第24実施形態の半導体チップ230における電極パッドPadの近傍を示す要部概略縦断面図であり、図23(A)に示すX−X線断面図。FIG. 23A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 230 of the twenty-fourth embodiment embodying the present invention. FIG. 23B is a schematic vertical sectional view showing the main part in the vicinity of the electrode pad Pad in the semiconductor chip 230 of the twenty-fourth embodiment, and is a sectional view taken along line XX shown in FIG. 図24(A)は、本発明を具体化した第25実施形態の半導体チップ240における電極パッドPadの近傍を示す要部概略平面図。図24(B)は、第25実施形態の半導体チップ240における電極パッドPadの近傍を示す要部概略縦断面図であり、図24(A)に示すX−X線断面図。FIG. 24A is a main part schematic plan view showing the vicinity of the electrode pad Pad in the semiconductor chip 240 of the twenty-fifth embodiment embodying the present invention. FIG. 24B is a main part schematic longitudinal sectional view showing the vicinity of the electrode pad Pad in the semiconductor chip 240 of the twenty-fifth embodiment, and is a sectional view taken along line XX shown in FIG. 図25(A)は、従来の半導体チップ300における電極パッドPadの近傍を示す要部概略縦断面図。図25(B)は、腐食性ガスに耐性がある保護配線層311,312で電極パッドPadを覆うようにした従来の半導体チップ310の要部概略縦断面図。FIG. 25A is a schematic vertical sectional view showing a main part of the vicinity of an electrode pad Pad in a conventional semiconductor chip 300. FIG. 25B is a schematic longitudinal sectional view of a main part of a conventional semiconductor chip 310 in which the electrode pad Pad is covered with protective wiring layers 311 and 312 resistant to corrosive gas.

符号の説明Explanation of symbols

10,20,30,40,50,60,70,80,90,140,150,160,170,210,220,230,240…半導体チップ(配線基板)
11…シリコン基板
12…絶縁膜
13…層間絶縁膜
13a…ビアホール
13b…層間絶縁膜13の開口部
14…保護絶縁膜
14a,14b…保護絶縁膜14の開口部
15(15α,15β)…第1配線層
16(16α,16β)…第2配線層
16a…第2配線層16における延出部分
21…第3配線層
31…第1接着層
41…第4配線層
51…ボンディングワイヤ
52…バンプ
53…実装基板
54…配線層
61…第2接着層
91…第5配線層
91a…第5配線層91の端面
100,110…圧力センサ
120.130…半導体装置
127…貫通電極
180,200…パワーMOSトランジスタ
Pad(Padα,Padβ)…電極パッド
10, 20, 30, 40, 50, 60, 70, 80, 90, 140, 150, 160, 170, 210, 220, 230, 240 ... semiconductor chip (wiring substrate)
DESCRIPTION OF SYMBOLS 11 ... Silicon substrate 12 ... Insulating film 13 ... Interlayer insulating film 13a ... Via hole 13b ... Opening part of interlayer insulating film 13 ... Protective insulating film 14a, 14b ... Opening part 15 (15 (alpha), 15 (beta)) ... 1st of protective insulating film 14 Wiring layer 16 (16α, 16β) ... second wiring layer 16a ... extended portion in the second wiring layer 16 ... third wiring layer 31 ... first adhesive layer 41 ... fourth wiring layer 51 ... bonding wire 52 ... bump 53 ... Mounting board 54 ... Wiring layer 61 ... Second adhesive layer 91 ... Fifth wiring layer 91a ... End face of fifth wiring layer 91 100, 110 ... Pressure sensor 120.130 ... Semiconductor device 127 ... Through electrode 180, 200 ... Power MOS Transistor
Pad (Padα, Padβ): Electrode pad

Claims (10)

基板の表面上に形成された第1配線層と、
その第1配線層の上方に形成された第2配線層と、
その第2配線層を覆うように形成された保護絶縁膜と、
その保護絶縁膜に形成された開口部と、
その開口部に配置された電極パッドと、
前記基板および前記第1配線層の表面上に形成された層間絶縁膜と、
その層間絶縁膜に形成されたビアホールと、
前記第2配線層の下側全面および前記層間絶縁膜の表面上に形成された第3配線層と
を備えた配線基板であって、
前記保護絶縁膜の開口部と前記第1配線層とが基板の板厚方向にて重ならない位置に形成され、
前記第2配線層は前記第1配線層から離れた位置まで延出されて引き出され、その第2配線層における延出部分は前記保護絶縁膜の開口部から露出され、その開口部から露出された第2配線層の延出部分によって前記電極パッドが形成され、
前記保護絶縁膜は、前記層間絶縁膜および前記第2配線層の表面上に形成され、
前記ビアホールの内部に前記第3配線層が充填されて埋め込まれ、
前記第1配線層と前記第3配線層とは前記ビアホールを介して接続され、
前記第1配線層と前記第2配線層とは、前記ビアホールの内部に充填された前記第3配線層を介して接続され、
前記第3配線層を介して前記層間絶縁膜と前記第2配線層が接着され、
前記第2配線層は金から成り、
前記第3配線層はタンタルから成ることを特徴とする配線基板。
A first wiring layer formed on the surface of the substrate;
A second wiring layer formed above the first wiring layer;
A protective insulating film formed to cover the second wiring layer;
An opening formed in the protective insulating film;
An electrode pad disposed in the opening;
An interlayer insulating film formed on the surface of the substrate and the first wiring layer;
Via holes formed in the interlayer insulating film;
A wiring board comprising a third wiring layer formed on the entire lower surface of the second wiring layer and on the surface of the interlayer insulating film ;
The opening of the protective insulating film and the first wiring layer are formed at positions that do not overlap in the thickness direction of the substrate,
The second wiring layer is extended to a position away from the first wiring layer, and an extended portion of the second wiring layer is exposed from the opening of the protective insulating film and exposed from the opening. The electrode pad is formed by the extended portion of the second wiring layer,
The protective insulating film is formed on the surface of the interlayer insulating film and the second wiring layer,
The third wiring layer is filled and embedded in the via hole,
The first wiring layer and the third wiring layer are connected via the via hole,
The first wiring layer and the second wiring layer are connected via the third wiring layer filled in the via hole,
The interlayer insulating film and the second wiring layer are bonded via the third wiring layer,
The second wiring layer is made of gold;
The wiring board, wherein the third wiring layer is made of tantalum.
請求項1に記載の配線基板において、
前記第2配線層の上側全面に形成された第4配線層を備え、
その第4配線層を介して前記第2配線層と前記保護絶縁膜が接着されることを特徴とする配線基板。
The wiring board according to claim 1,
A fourth wiring layer formed on the entire upper surface of the second wiring layer;
The wiring board, wherein the second wiring layer and the protective insulating film are bonded via the fourth wiring layer.
請求項1に記載の配線基板において、
前記保護絶縁膜の開口部の内部を除く前記第2配線層の上側に形成された第5配線層を備え、
その第5配線層を介して前記第2配線層と前記保護絶縁膜が接着され、
前記保護絶縁膜の開口部の内周壁面に位置する前記第5配線層の端面は前記保護絶縁膜によって覆われ、
前記保護絶縁膜の開口部から前記第2配線層が直接露出していることを特徴とする配線基板。
The wiring board according to claim 1,
A fifth wiring layer formed on the upper side of the second wiring layer excluding the inside of the opening of the protective insulating film;
The second wiring layer and the protective insulating film are bonded via the fifth wiring layer,
The end face of the fifth wiring layer located on the inner peripheral wall surface of the opening of the protective insulating film is covered with the protective insulating film,
The wiring board, wherein the second wiring layer is directly exposed from the opening of the protective insulating film.
請求項2に記載の配線基板において、
前記第4配線層はタンタルまたはタングステンチタンから成ることを特徴とする配線基板。
The wiring board according to claim 2,
The wiring board, wherein the fourth wiring layer is made of tantalum or tungsten titanium.
請求項3に記載の配線基板において、
前記第5配線層はタンタルまたはタングステンチタンから成ることを特徴とする配線基板。
The wiring board according to claim 3,
The wiring board according to claim 5, wherein the fifth wiring layer is made of tantalum or tungsten titanium.
請求項1に記載の配線基板において、
前記保護絶縁膜の開口部の内部を除く前記第2配線層の上側に形成された第2接着層を備え、
その第2接着層を介して前記第2配線層と前記保護絶縁膜が接着され、
前記保護絶縁膜の開口部から前記第2配線層が直接露出していることを特徴とする配線基板。
The wiring board according to claim 1,
A second adhesive layer formed on the upper side of the second wiring layer excluding the inside of the opening of the protective insulating film;
The second wiring layer and the protective insulating film are bonded via the second adhesive layer,
The wiring board, wherein the second wiring layer is directly exposed from the opening of the protective insulating film.
請求項1〜6のいずれか1項に記載の配線基板において、
前記電極パッドに対してワイヤボンディング接続法を用いて接続されたボンディングワイヤを備えたことを特徴とする配線基板。
In the wiring board according to any one of claims 1 to 6,
A wiring board comprising a bonding wire connected to the electrode pad using a wire bonding connection method.
請求項1〜6のいずれか1項に記載の配線基板において、
前記電極パッドに対してフリップチップ接続法を用いて接続されたバンプを備えたことを特徴とする配線基板。
In the wiring board according to any one of claims 1 to 6,
A wiring board comprising a bump connected to the electrode pad using a flip chip connection method.
請求項1〜8のいずれか1項に記載の配線基板において、
前記配線基板はセンサを構成することを特徴とする配線基板。
In the wiring board according to any one of claims 1 to 8,
The wiring board according to claim 1, wherein the wiring board constitutes a sensor.
請求項1〜8のいずれか1項に記載の配線基板において、
前記配線基板はパワー素子を構成することを特徴とする配線基板。
In the wiring board according to any one of claims 1 to 8,
The wiring board constitutes a power element.
JP2007157502A 2006-06-30 2007-06-14 Wiring board Expired - Fee Related JP5119756B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007157502A JP5119756B2 (en) 2006-06-30 2007-06-14 Wiring board
DE102007029873A DE102007029873B4 (en) 2006-06-30 2007-06-28 wiring substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006181483 2006-06-30
JP2006181483 2006-06-30
JP2007157502A JP5119756B2 (en) 2006-06-30 2007-06-14 Wiring board

Publications (2)

Publication Number Publication Date
JP2008034816A JP2008034816A (en) 2008-02-14
JP5119756B2 true JP5119756B2 (en) 2013-01-16

Family

ID=38859580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157502A Expired - Fee Related JP5119756B2 (en) 2006-06-30 2007-06-14 Wiring board

Country Status (2)

Country Link
JP (1) JP5119756B2 (en)
DE (1) DE102007029873B4 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212595B2 (en) * 2007-02-19 2013-06-19 セイコーエプソン株式会社 Semiconductor device and manufacturing method thereof
DE102009047352A1 (en) * 2009-12-01 2011-06-09 Robert Bosch Gmbh Layer structure for electrical contacting of semiconductor devices
US20120292770A1 (en) * 2011-05-19 2012-11-22 General Electric Company Method and device for preventing corrosion on sensors
JP6089481B2 (en) * 2012-07-30 2017-03-08 セイコーエプソン株式会社 Method for manufacturing electronic component and method for manufacturing electronic module
WO2015041153A1 (en) 2013-09-20 2015-03-26 株式会社村田製作所 Elastic wave device and method for manufacturing same
JP6621434B2 (en) * 2017-03-16 2019-12-18 日立オートモティブシステムズ株式会社 MEMS sensor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL159822B (en) * 1969-01-02 1979-03-15 Philips Nv SEMICONDUCTOR DEVICE.
US4394678A (en) * 1979-09-19 1983-07-19 Motorola, Inc. Elevated edge-protected bonding pedestals for semiconductor devices
JP3067135B2 (en) * 1989-06-28 2000-07-17 株式会社日立製作所 Method for manufacturing semiconductor device
JPH06177200A (en) * 1992-12-09 1994-06-24 Hitachi Ltd Formation of semiconductor integrated circuit device
US6124179A (en) * 1996-09-05 2000-09-26 Adamic, Jr.; Fred W. Inverted dielectric isolation process
JPH0964050A (en) * 1995-08-29 1997-03-07 Hitachi Ltd Semiconductor element and its manufacture
US5969424A (en) * 1997-03-19 1999-10-19 Fujitsu Limited Semiconductor device with pad structure
DE19820816B4 (en) * 1998-05-09 2006-05-11 Robert Bosch Gmbh Bondpad structure and corresponding manufacturing method
JPH11354563A (en) * 1998-06-11 1999-12-24 Citizen Watch Co Ltd Structure of semiconductor wiring
DE19908188A1 (en) * 1999-02-25 2000-09-07 Siemens Ag Integrated electronic circuit manufacturing method
JP3481899B2 (en) * 2000-03-08 2003-12-22 沖電気工業株式会社 Method for manufacturing semiconductor device
JP3548082B2 (en) * 2000-03-30 2004-07-28 三洋電機株式会社 Semiconductor device and manufacturing method thereof
JP2002050647A (en) * 2000-08-01 2002-02-15 Sharp Corp Semiconductor device and its manufacturing method
DE10062399B4 (en) * 2000-12-14 2013-10-31 Cree, Inc. High temperature suitable multilayer contact system
JP2003045877A (en) * 2001-08-01 2003-02-14 Sharp Corp Semiconductor device and its manufacturing method
JP2004006657A (en) * 2002-03-22 2004-01-08 Seiko Epson Corp Manufacturing method and machine for semiconductor device
DE10245867A1 (en) * 2002-09-30 2004-04-15 Siced Electronics Development Gmbh & Co. Kg Power semiconductor component, e.g. diode or metal oxide semiconductor field effect transistor, includes insulating layer with holes over terminals, onto which electrodes are deposited, making contact with terminals
JP4686962B2 (en) * 2003-07-18 2011-05-25 カシオ計算機株式会社 Manufacturing method of semiconductor device
JP4003780B2 (en) * 2004-09-17 2007-11-07 カシオ計算機株式会社 Semiconductor device and manufacturing method thereof
JP4868379B2 (en) * 2004-12-14 2012-02-01 カシオ計算機株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008034816A (en) 2008-02-14
DE102007029873A1 (en) 2008-01-31
DE102007029873B4 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5119756B2 (en) Wiring board
CN101312200B (en) Image sensing devices and methods for fabricating same
KR100778356B1 (en) Semiconductor device
JP3863171B2 (en) Semiconductor pressure sensor and manufacturing method thereof
CN106098645B (en) The encapsulating structure of semiconductor devices
JP2004311951A (en) Semiconductor device
US10147707B2 (en) Semiconductor device
TWI638461B (en) Semiconductor device and power converter
US20160282212A1 (en) Molded semiconductor package having enhanced local adhesion characteristics
US11417623B2 (en) Semiconductor chip and semiconductor device including a copper pillar and an intermediate layer
JP4924663B2 (en) Semiconductor device and manufacturing method thereof
WO2019058922A1 (en) Capacitor
JP2008182014A (en) Packaging board and its manufacturing method
US10597288B2 (en) MEMS-device manufacturing method, MEMS device, and MEMS module
JP2006337378A (en) Semiconductor pressure sensor and manufacturing method therefor
CN205959973U (en) Packaging structure of semiconductor device
US20230110154A1 (en) Semiconductor device
US7592672B2 (en) Grounding structure of semiconductor device including a conductive paste
KR100744700B1 (en) Semiconductor device
WO2023189480A1 (en) Semiconductor element and semiconductor device
US20190206785A1 (en) Electronic devices with bond pads formed on a molybdenum layer
WO2023189930A1 (en) Semiconductor element and semiconductor device
CN117246972B (en) Micro-electromechanical force sensor and preparation method thereof
CN117263139B (en) Piezoresistive pressure sensor and preparation method thereof
WO2023140046A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees