JP5119717B2 - Method for manufacturing rolling bearing component and rolling bearing - Google Patents

Method for manufacturing rolling bearing component and rolling bearing Download PDF

Info

Publication number
JP5119717B2
JP5119717B2 JP2007103881A JP2007103881A JP5119717B2 JP 5119717 B2 JP5119717 B2 JP 5119717B2 JP 2007103881 A JP2007103881 A JP 2007103881A JP 2007103881 A JP2007103881 A JP 2007103881A JP 5119717 B2 JP5119717 B2 JP 5119717B2
Authority
JP
Japan
Prior art keywords
mass
content
less
rolling bearing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007103881A
Other languages
Japanese (ja)
Other versions
JP2008260993A (en
Inventor
大輔 渡貫
秀幸 飛鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007103881A priority Critical patent/JP5119717B2/en
Publication of JP2008260993A publication Critical patent/JP2008260993A/en
Application granted granted Critical
Publication of JP5119717B2 publication Critical patent/JP5119717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

この発明は転がり軸受構成部材の製造方法に関する。   The present invention relates to a method for manufacturing a rolling bearing component.

転がり軸受の寿命を長くするための従来技術としては、軌道面の硬さと介在物に着目した方法が主である。軸受に用いられる鋼としては、そのまま焼入れを行って十分な表面強度が得られる高炭素鋼と、浸炭または浸炭窒化を行って表面を硬化する低炭素鋼(肌焼鋼)がある。大きな靱性や耐衝撃強度が求められる用途では、低炭素鋼を用いて表面を硬化する方法が採用されることが多い。   As a conventional technique for extending the life of a rolling bearing, a method focusing on the hardness of the raceway surface and inclusions is mainly used. As steel used for the bearing, there are high carbon steel that can be quenched as it is to obtain sufficient surface strength, and low carbon steel (hardened steel) that is hardened by carburizing or carbonitriding. In applications where high toughness and impact strength are required, a method of hardening the surface using low carbon steel is often employed.

下記の特許文献1には、鋼製ローラの支持軸受等の大型軸受のように、軌道面に浸炭窒化層を深く形成する必要がある場合に、希土類元素の存在下で浸炭を行うことで、浸炭時間を短くすることが記載されている。
下記の特許文献2には、多段圧延機のバックアップロール用転がり軸受について、内輪の酸化物系介在物の大きさと単位面積当たりの個数を特定することにより、内輪の損傷を抑え、軸受寿命を長くすることが記載されている。
特開2002−256411号公報 特開2004−84869号公報
In Patent Document 1 below, when it is necessary to form a carbonitriding layer deeply on the raceway surface, such as a large bearing such as a steel roller support bearing, carburizing in the presence of rare earth elements, It is described that the carburizing time is shortened.
Patent Document 2 below specifies the size of the oxide inclusions in the inner ring and the number per unit area of the rolling bearing for the backup roll of the multi-high rolling mill, thereby suppressing damage to the inner ring and extending the bearing life. It is described to do.
JP 2002-256411 A JP 2004-84869 A

外径が200mm以上である大型の転がり軸受では、厚さも大きく形成されるため、焼入れによる完全硬化層の深さが不十分となり、焼入れが不完全な部分に起因する疲労限界(無限回の繰り返しを与えても破壊しない応力の上限値)や寿命の低下が懸念される。特に、浸炭または浸炭窒化された場合には、硬化層と芯部との境界(切れ目)に引っ張りの残留応力が存在するため、この部分に応力集中元となる不完全焼入れ組織(ベイナイト)が存在すると、その部分が起点となって破壊が生じる恐れがある。   Large rolling bearings with an outer diameter of 200 mm or more have a large thickness, so that the depth of the completely hardened layer due to quenching becomes insufficient, and the fatigue limit due to incomplete quenching (infinite repetition) There is a concern that the upper limit of the stress that does not break even if the slag is applied) and a decrease in life. In particular, when carburized or carbonitrided, there is a residual tensile stress at the boundary (cut) between the hardened layer and the core, and therefore there is an incompletely quenched structure (bainite) that is the source of stress concentration in this part. Then, there is a possibility that destruction will occur starting from that part.

本発明の課題は、鋼からなる素材を所定形状に加工した後、浸炭または浸炭窒化処理を行い、次いで焼入れ焼戻しを行うことで製造される、転がり軸受の内輪、外輪、および転動体において、前述のような内部起点の破壊を抑制して、転がり軸受を長寿命化することにある。   An object of the present invention is to manufacture the inner ring, outer ring, and rolling element of a rolling bearing manufactured by processing a steel material into a predetermined shape, followed by carburizing or carbonitriding, followed by quenching and tempering. It is to extend the life of the rolling bearing by suppressing the destruction of the internal starting point.

上記課題を解決するために、本発明は、鋼からなる素材を所定形状に加工した後、浸炭または浸炭窒化処理を行い、次いで焼入れ焼戻しを行うことにより、転がり軸受の内輪、外輪、および転動体からなる構成部材を製造する方法において、下記の構成(a) と(b) を満たすことを特徴とする転がり軸受構成部材の製造方法を提供する。   In order to solve the above problems, the present invention provides an inner ring, an outer ring, and a rolling element of a rolling bearing by processing a raw material made of steel into a predetermined shape, followed by carburizing or carbonitriding, followed by quenching and tempering. In the method for manufacturing the constituent member, the following method (a) and (b) are satisfied, and a method for manufacturing the rolling bearing constituent member is provided.

[構成 (a)]
使用する鋼の炭素含有率〔C〕が0.10質量%以上0.20質量%以下、珪素含有率〔Si〕が0.10質量%以上0.50質量%以下、マンガン含有率〔Mn〕が0.20質量%以上0.60質量%以下、ニッケル含有率〔Ni〕が3.00質量%以上5.00質量%以下、クロム含有率〔Cr〕が0.50質量%以上1.50質量%以下、モリブデン含有率〔Mo〕が0.10質量%以上0.50質量%以下、銅含有率〔Cu〕が0.30質量%以下、酸素含有率〔O〕が0.01質量%以下で、残部が鉄(Fe)および不可避不純物からなる。
[Configuration (a)]
Carbon content [C] of the steel used is 0.10% by mass to 0.20% by mass, silicon content [Si] is 0.10% by mass to 0.50% by mass, manganese content [Mn] 0.20 mass% or more and 0.60 mass% or less, nickel content [Ni] is 3.00 mass% or more and 5.00 mass% or less, and chromium content [Cr] is 0.50 mass% or more and 1.50 mass%. Mass% or less, molybdenum content [Mo] is 0.10 mass% or more and 0.50 mass% or less, copper content [Cu] is 0.30 mass% or less, and oxygen content [O] is 0.01 mass%. Below, the remainder consists of iron (Fe) and inevitable impurities.

[構成 (b)]
下記の(1)式で表されるDI値と、前記構成部材の厚さt(mm)と、焼入れ時の冷却剤の温度T(℃)と、の関係が、下記の(2)式を満たすように、使用する鋼の組成と焼入れ時の冷却剤の温度を設定する。
DI=(0.2〔C〕+0.128)(1+0.7〔Si〕)(1+3.45〔Mn〕)(1+0.07〔Ni〕+0.27〔Ni〕〔Ni〕)(1+2〔Cr〕)(1+2.5〔Mo〕)(1+0.35〔Cu〕)‥‥(1)
(1.9−0.01T)DI/t≧0.45‥‥(2)
[Configuration (b)]
The relationship between the DI value represented by the following formula (1), the thickness t (mm) of the constituent member, and the temperature T (° C.) of the coolant during quenching is expressed by the following formula (2). The composition of the steel to be used and the coolant temperature during quenching are set so as to satisfy.
DI = (0.2 [C] +0.128) (1 + 0.7 [Si]) (1 + 3.45 [Mn]) (1 + 0.07 [Ni] +0.27 [Ni] [Ni]) (1 + 2 [Cr ] (1 + 2.5 [Mo]) (1 + 0.35 [Cu]) (1)
(1.9-0.01T) DI / t ≧ 0.45 (2)

[構成 (a)について]
〔C〕が0.10質量%以上0.20質量%以下の限定理由は以下の通りである。
炭素は組織をマルテンサイト化することで鋼を強化する元素である。本発明の方法では表面は浸炭または浸炭窒化で硬化するが、芯部に必要な強度を付与するために炭素含有率を0.10質量%以上とする。ただし、炭素含有率が0.20質量%を超えると、靱性および被削性が不十分となる。
[Configuration (a)]
The reason for limiting [C] to 0.10% by mass to 0.20% by mass is as follows.
Carbon is an element that strengthens steel by converting the structure to martensite. In the method of the present invention, the surface is hardened by carburizing or carbonitriding, but the carbon content is set to 0.10% by mass or more in order to give the core the necessary strength. However, if the carbon content exceeds 0.20 mass%, toughness and machinability become insufficient.

〔Si〕が0.10質量%以上0.50質量%以下の限定理由は以下の通りである。
珪素は、焼入れ後の組織を緻密化し、靱性、耐疲労性、および焼入れ性を向上させる作用を有する元素である。珪素含有率が0.10質量%未満であると、その作用が実質的に得られない。ただし、珪素含有率が0.50質量%を超えると、加工性(鍛造性や熱間加工性等)や被削性が不十分となる。
The reason for limiting [Si] to 0.10 mass% or more and 0.50 mass% or less is as follows.
Silicon is an element that has a function of densifying the structure after quenching and improving toughness, fatigue resistance, and hardenability. If the silicon content is less than 0.10% by mass, the action cannot be substantially obtained. However, if the silicon content exceeds 0.50% by mass, the workability (forgeability, hot workability, etc.) and machinability become insufficient.

〔Mn〕が0.20質量%以上0.60質量%以下の限定理由は以下の通りである。
マンガンは、製鋼時の脱酸剤および脱硫剤として作用するとともに、マトリックスに固溶して焼入れ性を向上させる元素である。マンガン含有率が0.20質量%未満であると、これらの作用が実質的に得られない。ただし、マンガン含有率が0.60質量%を超えると、加工性や被削性が不十分となる。
The reason for limiting [Mn] to 0.20 mass% or more and 0.60 mass% or less is as follows.
Manganese is an element that acts as a deoxidizing agent and a desulfurizing agent during steelmaking and improves the hardenability by dissolving in a matrix. When the manganese content is less than 0.20% by mass, these effects are not substantially obtained. However, if the manganese content exceeds 0.60% by mass, the workability and machinability become insufficient.

〔Ni〕が3.00質量%以上5.00質量%以下の限定理由は以下の通りである。
ニッケルは、鋼の焼入れ性および焼戻し後の靱性を向上させる作用を有する元素である。ニッケルの含有率が3.00質量%未満であると、その作用が実質的に得られない。ただし、ニッケルの含有率が5.00質量%を超えると、加工性や被削性が不十分となる。
The reason why Ni is 3.00 mass% or more and 5.00 mass% or less is as follows.
Nickel is an element having an effect of improving the hardenability of steel and the toughness after tempering. If the nickel content is less than 3.00% by mass, the effect is not substantially obtained. However, if the nickel content exceeds 5.00% by mass, workability and machinability become insufficient.

〔Cr〕が0.50質量%以上1.50質量%以下の限定理由は以下の通りである。
クロムは、マトリックスに固溶して焼入れ性、焼戻し軟化抵抗性を高める元素であり、転動疲労寿命を向上させる作用も有する。また、微細な炭化物や炭窒化物を形成して、靱性を向上させる作用も有する。クロム含有率が0.50質量%未満であると、これらの作用が実質的に得られない。ただし、クロム含有率が1.50質量%を超えると、表面に不動態膜が生じて浸炭を阻害する恐れがある。
The reason for limiting [Cr] to 0.50 mass% or more and 1.50 mass% or less is as follows.
Chromium is an element that improves the hardenability and temper softening resistance by solid solution in the matrix and also has the effect of improving the rolling fatigue life. Moreover, it has the effect | action which forms fine carbide | carbonized_material and carbonitride and improves toughness. When the chromium content is less than 0.50% by mass, these effects are not substantially obtained. However, if the chromium content exceeds 1.50% by mass, a passive film is formed on the surface, which may inhibit carburization.

〔Mo〕が0.10質量%以上0.50質量%以下の限定理由は以下の通りである。
モリブデンは、鋼の焼入れ性および焼戻し後の強度と靱性を向上させる作用を有する元素である。モリブデン含有率が0.10質量%未満であると、これらの作用が実質的に得られない。ただし、モリブデン含有率が0.50質量%を超えると、焼入れ性および被削性が不十分となる。
The reason for limiting [Mo] to 0.10 mass% or more and 0.50 mass% or less is as follows.
Molybdenum is an element that has the effect of improving the hardenability of steel and the strength and toughness after tempering. When the molybdenum content is less than 0.10% by mass, these effects cannot be substantially obtained. However, when the molybdenum content exceeds 0.50% by mass, the hardenability and machinability become insufficient.

〔Cu〕が0.30質量%以下の限定理由は以下の通りである。
銅は、焼入れ性および耐候性を向上させる作用を有する元素であるが、含有率が0.30質量%を超えると、加工性および靱性が不十分となる。また、高価であるため、コストも高くなる。
〔O〕が0.01質量%以下の限定理由は以下の通りである。
酸素の含有率が0.01質量%を超えると、SiO2 、Al2 3 等の大型介在物が増加して、転がり疲れ強さが不十分となる。
The reason for limiting [Cu] to 0.30% by mass or less is as follows.
Copper is an element having an effect of improving hardenability and weather resistance. However, when the content exceeds 0.30 mass%, workability and toughness become insufficient. Moreover, since it is expensive, cost also becomes high.
The reason for limiting [O] to 0.01% by mass or less is as follows.
When the oxygen content exceeds 0.01% by mass, large inclusions such as SiO 2 and Al 2 O 3 increase, and the rolling fatigue strength becomes insufficient.

この構成(a) により、本発明の方法で得られた転がり軸受構成部材(内輪、外輪、または転動体)は、浸炭または浸炭窒化された表層部以外の部分である芯部の硬度(ビッカース硬さ:Hv)の平均値Mと標準偏差σが下記の(3)式を満たす。
M−4σ≧400‥‥(3)
With this configuration (a), the rolling bearing component (inner ring, outer ring, or rolling element) obtained by the method of the present invention has a core hardness (Vickers hardness) that is a portion other than the carburized or carbonitrided surface layer portion. The average value M of Hv) and the standard deviation σ satisfy the following expression (3).
M-4σ ≧ 400 (3)

[構成 (b)について]
(1.9−0.01T)DI/t≧0.45‥‥(2)
(2)式の左辺の(1.9−0.01T)は、温度T(<190℃、通常はT≦90℃)が低いほど大きな値になるため、焼入れ時の冷却剤の温度Tを低くすることは、構成部材の厚さtを薄くすることの代りになる。
[Configuration (b)]
(1.9-0.01T) DI / t ≧ 0.45 (2)
Since (1.9-0.01T) on the left side of the equation (2) becomes larger as the temperature T (<190 ° C., usually T ≦ 90 ° C.) is lower, the temperature T of the coolant during quenching is Lowering is an alternative to reducing the thickness t of the component.

そして、(2)式を満たす鋼を用いて転がり軸受構成部材を作製することにより、硬化層と芯部との境界に、応力集中元となる不完全焼入れ組織(ベイナイト)が発生し難くなる。よって、この方法で作製された転がり軸受構成部材を用いて組み立てた転がり軸受に、前記境界を起点とした内部破壊が生じ難くなる。
また、鋼の組成を変えずに焼入れ時の冷却剤の温度Tを変えることで、前記(2)式を満たすようにすることができるため、合金成分を増加させることに伴う、脆化等の機械的強度の低下、結晶粒の粗大化、浸炭層における極端なオーステナイトの増加、コストの増加などが避けられる。
Then, by producing a rolling bearing component using steel that satisfies the formula (2), an incompletely quenched structure (bainite) that becomes a stress concentration source hardly occurs at the boundary between the hardened layer and the core. Therefore, the internal fracture starting from the boundary is less likely to occur in the rolling bearing assembled by using the rolling bearing component produced by this method.
In addition, by changing the temperature T of the coolant at the time of quenching without changing the steel composition, it is possible to satisfy the above formula (2). Reduction in mechanical strength, coarsening of crystal grains, extreme increase in austenite in the carburized layer, increase in cost, etc. can be avoided.

本発明はまた、本発明の方法で得られ、芯部の硬度(ビッカース硬さ:Hv)の平均値Mと標準偏差σが下記の(3)式を満たす内輪、外輪、または転動体を備えた転がり軸受を提供する。
M−4σ≧400‥‥(3)
The present invention also includes an inner ring, an outer ring, or a rolling element obtained by the method of the present invention, in which the average value M and the standard deviation σ of the core hardness (Vickers hardness: Hv) satisfy the following expression (3). A rolling bearing is provided.
M-4σ ≧ 400 (3)

本発明の転がり軸受構成部材の製造方法によれば、得られた部材(転がり軸受の内輪、外輪、および転動体)の内部起点の破壊を抑制して、転がり軸受を長寿命化することができる。   According to the method for manufacturing a rolling bearing constituent member of the present invention, it is possible to extend the life of the rolling bearing by suppressing breakage of the internal starting point of the obtained members (the inner ring, outer ring, and rolling element of the rolling bearing). .

以下、本発明の実施形態について説明する。
下記の表1に示す組成の鋼からなる素材を用意し、各素材を、図1に示す、呼び番号「NU228」の円筒ころ軸受(内径:140mm、外径:250mm、幅:42mm)の内輪1、外輪2、円筒ころ(転動体)3の各形状に通常の方法で加工した。
Hereinafter, embodiments of the present invention will be described.
Prepare materials made of steel having the composition shown in Table 1 below, and each material is an inner ring of a cylindrical roller bearing (inner diameter: 140 mm, outer diameter: 250 mm, width: 42 mm) having the identification number “NU228” shown in FIG. 1, each of the outer ring 2 and the cylindrical roller (rolling element) 3 was processed by an ordinary method.

次いで、以下の手順で熱処理を行った。
先ず、浸炭処理として、RXガス雰囲気中に、温度850〜1050℃で10〜120時間保持した後に、5〜300℃/minの冷却速度で冷却する。この浸炭処理により、表層部の炭素含有率0.90〜1.05質量%、浸炭深さ5〜7mmとなるようにした。次に、焼鈍処理として、600〜700℃で1〜5時間保持した後に放冷する。次に、焼入れ処理として、780〜900℃で1〜3時間保持した後に、表1の各温度(T)に保持された油(冷却剤)で冷却する。次に、焼戻し処理として、150〜240℃で2時間保持した後に放冷する。
Next, heat treatment was performed according to the following procedure.
First, as a carburizing treatment, after holding in an RX gas atmosphere at a temperature of 850 to 1050 ° C. for 10 to 120 hours, cooling is performed at a cooling rate of 5 to 300 ° C./min. By this carburizing treatment, the carbon content of the surface layer portion was 0.90 to 1.05% by mass, and the carburized depth was 5 to 7 mm. Next, as an annealing treatment, it is allowed to cool after being held at 600 to 700 ° C. for 1 to 5 hours. Next, as a quenching treatment, after holding at 780 to 900 ° C. for 1 to 3 hours, cooling is performed with oil (coolant) held at each temperature (T) in Table 1. Next, as a tempering treatment, it is allowed to cool after being held at 150 to 240 ° C. for 2 hours.

なお、焼入れは、冷却速度が、厚さが14.5mm、29.0mm、45.0mmのリングに対する焼入れを行った時の冷却速度と同じになるように、冷媒の温度を表1の各温度とするとともに、冷媒の攪拌条件を変えて行った。そのために、予め厚さが14.5mm、29.0mm、45.0mmのリングに対して、前記と同じ条件で熱処理を行って焼入れ時の芯部の冷却速度を測定した。これにより、各冷却速度で得られた内輪1、外輪2、円筒ころ3は、芯部の状態が前記各厚さのリングと同じになっている。表1の「t」はその厚さを示す。   In the quenching, the temperature of the refrigerant is set to each temperature shown in Table 1 so that the cooling rate is the same as the cooling rate when quenching is performed on a ring having a thickness of 14.5 mm, 29.0 mm, and 45.0 mm. And changing the stirring conditions of the refrigerant. Therefore, heat treatment was previously performed on rings having a thickness of 14.5 mm, 29.0 mm, and 45.0 mm under the same conditions as described above, and the cooling rate of the core during quenching was measured. As a result, the inner ring 1, the outer ring 2, and the cylindrical roller 3 obtained at each cooling rate have the same state of the core as the rings having the respective thicknesses. “T” in Table 1 indicates the thickness.

得られた内輪、外輪、円筒ころを用いて円筒ころ軸受を組み立てて、ラジアル荷重:P/C=0.6、回転速度:1000min-1、潤滑剤:Ro68の条件で、回転試験を行い、内輪1、外輪2、円筒ころ3のいずれかに剥離等の破壊が生じるまでの時間を軸受寿命とした。各サンプルによる寿命試験の結果から、サンプルNo. 1の寿命を「1」とした相対値を算出した。その結果も表1に併せて示す。 A cylindrical roller bearing is assembled using the obtained inner ring, outer ring, and cylindrical roller, and a rotation test is performed under the conditions of radial load: P / C = 0.6, rotation speed: 1000 min −1 , lubricant: Ro68, The time until the inner ring 1, the outer ring 2 or the cylindrical roller 3 was broken, such as peeling, was defined as the bearing life. From the results of the life test using each sample, a relative value with the life of sample No. 1 as “1” was calculated. The results are also shown in Table 1.

また、サンプルNo. 1〜16と同じ組成の鋼からなる素材を、50mm×100mmで厚さが14.5mm、29.0mm、45.0mmの試験片とし、各試験片に対して予め防炭メッキを施すことで浸炭がなされないようにした後に、サンプル毎に上記と同じ方法で熱処理を行った。これにより、得られた試験片は表面が芯部と同じ状態にされた。そして、得られた各試験片の中心部から直径8mmの平滑回転曲げ試験用の試験片を切り出した。この試験片を用いて回転曲げ試験を行い、疲労限界を測定した。その結果も下記の表1に併せて示す。   Moreover, the raw material which consists of steel of the same composition as sample No. 1-16 is made into the test piece of thickness 14.5mm, 29.0mm, and 45.0mm by 50 mm x 100 mm, and it is a carbon-proof beforehand with respect to each test piece. After preventing plating from being carburized by applying plating, each sample was heat-treated by the same method as described above. Thereby, the surface of the obtained test piece was made into the same state as a core part. And the test piece for smooth rotation bending tests with a diameter of 8 mm was cut out from the center part of each obtained test piece. Using this specimen, a rotating bending test was conducted to measure the fatigue limit. The results are also shown in Table 1 below.

また、得られた各試験片(回転曲げ試験用に切り出す前の試験片)の中心から4mm以内となる領域の30カ所以上について、試験荷重4900Nで芯部のビッカース硬度を測定し、その平均値(M)と標準偏差(σ)を求めた。そして、これらの結果からM−4σを算出した。その結果も下記の表1に併せて示す。
また、これらの結果を「M−4σ」と疲労限界との関係にまとめたグラフを図2に、疲労限界と軸受寿命との関係にまとめたグラフを図3に、「(1.9−0.01T)DI/t」と軸受寿命との関係にまとめたグラフを図4に示す。
In addition, the Vickers hardness of the core portion was measured at a test load of 4900 N at 30 points or more in the region within 4 mm from the center of each obtained test piece (test piece before cutting for the rotational bending test), and the average value thereof (M) and standard deviation (σ) were determined. And M-4σ was calculated from these results. The results are also shown in Table 1 below.
Also, a graph summarizing these results in the relationship between “M-4σ” and the fatigue limit is shown in FIG. 2, and a graph summarizing the relationship between the fatigue limit and the bearing life is shown in FIG. .01T) DI / t ”and a graph summarizing the relationship between bearing life and FIG.

この結果から分かるように、「(1.9−0.01T)DI/t」が0.45以上で「M−4σ」が400以上であるNo. 4〜8,11,12,15,16は、No. 1の2倍以上の寿命が得られた。
また、図2のグラフから、「M−4σ」が大きいほど疲労限界が高くなることが分かる。なお、靱性を確保するという観点からは、「M−4σ」を500以下にすることが好ましい。
As can be seen from this result, Nos. 4 to 8, 11, 12, 15, 16 in which “(1.9−0.01T) DI / t” is 0.45 or more and “M−4σ” is 400 or more. Has a lifespan more than twice that of No. 1.
Further, it can be seen from the graph of FIG. 2 that the fatigue limit increases as “M-4σ” increases. From the viewpoint of securing toughness, it is preferable to set “M-4σ” to 500 or less.

実施形態で作製した転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing produced in embodiment. 実施形態で行った試験の結果を「M−4σ」と疲労限界との関係にまとめたグラフである。It is the graph which put together the result of the test done in the embodiment in the relation between “M-4σ” and the fatigue limit. 実施形態で行った試験の結果を疲労限界と寿命との関係にまとめたグラフである。It is the graph which put together the result of the test done in the embodiment in the relation between fatigue limit and life. 実施形態で行った試験の結果を「(1.9−0.01T)DI/t」と寿命との関係にまとめたグラフである。It is the graph which put together the result of the test done in the embodiment in the relation between "(1.9-0.01T) DI / t" and life.

符号の説明Explanation of symbols

1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 円筒ころ(転動体)
4 保持器
1 inner ring 1a raceway surface 2 outer ring 2a raceway surface 3 cylindrical roller (rolling element)
4 Cage

Claims (2)

鋼からなる素材を所定形状に加工した後、浸炭または浸炭窒化処理を行い、次いで焼入れ焼戻しを行うことにより、転がり軸受の内輪、外輪、および転動体からなる構成部材を製造する方法において、
前記鋼は、炭素含有率〔C〕が0.10質量%以上0.20質量%以下、珪素含有率〔Si〕が0.10質量%以上0.50質量%以下、マンガン含有率〔Mn〕が0.20質量%以上0.60質量%以下、ニッケル含有率〔Ni〕が3.00質量%以上5.00質量%以下、クロム含有率〔Cr〕が0.50質量%以上1.50質量%以下、モリブデン含有率〔Mo〕が0.10質量%以上0.50質量%以下、銅含有率〔Cu〕が0.30質量%以下、酸素含有率〔O〕が0.01質量%以下で、残部が鉄(Fe)および不可避不純物からなり、
下記の(1)式で表されるDI値と、前記構成部材の厚さt(mm)と、焼入れ時の冷却剤の温度T(℃)と、の関係が、下記の(2)式を満たすように、使用する鋼の組成と焼入れ時の冷却剤の温度を設定することを特徴とする転がり軸受構成部材の製造方法。
DI=(0.2〔C〕+0.128)(1+0.7〔Si〕)(1+3.45〔Mn〕)(1+0.07〔Ni〕+0.27〔Ni〕〔Ni〕)(1+2〔Cr〕)(1+2.5〔Mo〕)(1+0.35〔Cu〕)‥‥(1)
(1.9−0.01T)DI/t≧0.45‥‥(2)
In a method of manufacturing a constituent member composed of an inner ring, an outer ring, and a rolling element of a rolling bearing by performing a carburizing or carbonitriding process after processing a material made of steel into a predetermined shape, followed by quenching and tempering,
The steel has a carbon content [C] of 0.10% by mass to 0.20% by mass, a silicon content [Si] of 0.10% by mass to 0.50% by mass, and a manganese content [Mn]. 0.20 mass% or more and 0.60 mass% or less, nickel content [Ni] is 3.00 mass% or more and 5.00 mass% or less, and chromium content [Cr] is 0.50 mass% or more and 1.50 mass%. Mass% or less, molybdenum content [Mo] is 0.10 mass% or more and 0.50 mass% or less, copper content [Cu] is 0.30 mass% or less, and oxygen content [O] is 0.01 mass%. Below, the balance consists of iron (Fe) and inevitable impurities,
The relationship between the DI value represented by the following formula (1), the thickness t (mm) of the constituent member, and the temperature T (° C.) of the coolant during quenching is expressed by the following formula (2). A method for manufacturing a rolling bearing component, wherein the composition of the steel used and the temperature of the coolant during quenching are set so as to satisfy the requirements.
DI = (0.2 [C] +0.128) (1 + 0.7 [Si]) (1 + 3.45 [Mn]) (1 + 0.07 [Ni] +0.27 [Ni] [Ni]) (1 + 2 [Cr ] (1 + 2.5 [Mo]) (1 + 0.35 [Cu]) (1)
(1.9-0.01T) DI / t ≧ 0.45 (2)
請求項1に記載の方法で得られ、浸炭または浸炭窒化された表層部以外の部分である芯部の硬度(ビッカース硬さ:Hv)の平均値Mと標準偏差σが下記の(3)式を満たす内輪、外輪、または転動体を備えた転がり軸受。
M−4σ≧400‥‥(3)
The average value M and the standard deviation σ of the core portion (Vickers hardness: Hv) obtained by the method according to claim 1 and being a portion other than the carburized or carbonitrided surface layer portion are represented by the following formula (3): Rolling bearings with inner ring, outer ring, or rolling elements that satisfy
M-4σ ≧ 400 (3)
JP2007103881A 2007-04-11 2007-04-11 Method for manufacturing rolling bearing component and rolling bearing Active JP5119717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103881A JP5119717B2 (en) 2007-04-11 2007-04-11 Method for manufacturing rolling bearing component and rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103881A JP5119717B2 (en) 2007-04-11 2007-04-11 Method for manufacturing rolling bearing component and rolling bearing

Publications (2)

Publication Number Publication Date
JP2008260993A JP2008260993A (en) 2008-10-30
JP5119717B2 true JP5119717B2 (en) 2013-01-16

Family

ID=39983689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103881A Active JP5119717B2 (en) 2007-04-11 2007-04-11 Method for manufacturing rolling bearing component and rolling bearing

Country Status (1)

Country Link
JP (1) JP5119717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266683A (en) * 2007-04-17 2008-11-06 Nsk Ltd Method for producing rolling bearing constituting member, and rolling bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251261B2 (en) * 2008-05-28 2013-07-31 日本精工株式会社 Carburized rolling bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614653B2 (en) * 1989-03-14 1997-05-28 株式会社神戸製鋼所 Manufacturing method of carburized parts with little heat treatment distortion
JPH1122733A (en) * 1997-07-01 1999-01-26 Nippon Seiko Kk Rolling bearing
JP2002206540A (en) * 2000-09-04 2002-07-26 Nsk Ltd Rolling bearing
JP3991901B2 (en) * 2003-03-28 2007-10-17 株式会社ジェイテクト Rolling bearing raceway and method for manufacturing the same
JP2005090680A (en) * 2003-09-19 2005-04-07 Koyo Seiko Co Ltd Rolling bearing part and method of manufacturing the same
JP2006299313A (en) * 2005-04-18 2006-11-02 Nsk Ltd Rolling supporter
JP2006328514A (en) * 2005-05-30 2006-12-07 Nsk Ltd Rolling supporting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266683A (en) * 2007-04-17 2008-11-06 Nsk Ltd Method for producing rolling bearing constituting member, and rolling bearing

Also Published As

Publication number Publication date
JP2008260993A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US10151010B2 (en) Soft nitrided induction hardened steel part
EP2966189B1 (en) Semi-finished material for induction hardened component and method for producing same
WO2013084800A1 (en) Rolling bearing and method for producing same
JP2002180203A (en) Needle bearing components, and method for producing the components
JP2012031456A (en) Rolling bearing
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
TWI630278B (en) Surface hardened steel
JP2006299313A (en) Rolling supporter
JP2008266683A (en) Method for producing rolling bearing constituting member, and rolling bearing
JP2011190921A (en) Thrust roller bearing
JP2010031307A (en) Roller bearing
KR100629217B1 (en) Steel for case hardening bearing excellent in toughness and rolling fatigue life in quasi-high temperature region
JP2005314794A (en) Rolling bearing
EP3480335A1 (en) Bearing steel and manufacturing method therefor
JP2007308739A (en) Method for manufacturing rolling bearing, and rolling bearing
JP5103987B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2006328514A (en) Rolling supporting device
JP2022170056A (en) steel
WO2015199103A1 (en) Pinion shaft and method for manufacturing same
JP2007308740A (en) Rolling bearing
JP2005337362A (en) Full type roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350