JP5119689B2 - Negative electrode material for alkaline storage battery and alkaline storage battery - Google Patents

Negative electrode material for alkaline storage battery and alkaline storage battery Download PDF

Info

Publication number
JP5119689B2
JP5119689B2 JP2007059439A JP2007059439A JP5119689B2 JP 5119689 B2 JP5119689 B2 JP 5119689B2 JP 2007059439 A JP2007059439 A JP 2007059439A JP 2007059439 A JP2007059439 A JP 2007059439A JP 5119689 B2 JP5119689 B2 JP 5119689B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
negative electrode
alloy powder
storage alloy
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007059439A
Other languages
Japanese (ja)
Other versions
JP2007294418A (en
Inventor
秀明 大山
恭子 仲辻
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007059439A priority Critical patent/JP5119689B2/en
Publication of JP2007294418A publication Critical patent/JP2007294418A/en
Application granted granted Critical
Publication of JP5119689B2 publication Critical patent/JP5119689B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は水素吸蔵合金を含むアルカリ蓄電池用負極材料に関し、より詳しくは金属酸化物の活用と新たな複合化形態による特性改善に関する。   The present invention relates to a negative electrode material for an alkaline storage battery containing a hydrogen storage alloy, and more particularly to utilization of a metal oxide and improvement of characteristics by a new composite form.

近年アルカリ蓄電池は電気自動車などの動力電源として注目を集めており、出力特性や保存特性の向上に対する要望は大きい。中でも水素吸蔵合金粉末を負極材料として用いるニッケル水素蓄電池は、水素を可逆的に吸蔵放出する反応を活用して充放電を行うので、ニッケルカドミウム蓄電池より理論容量が大きく、ニッケル亜鉛蓄電池のようにデンドライト形成による内部短絡の心配もない。実用的な理論容量と寿命特性とを兼ね備えた水素吸蔵合金粉末として、例えばMmNi5(Mmは希土類元素の混合物)のNiの一部をCo、Mn、Al、Cuなどで置換した合金のように、主にCaCu5型の結晶構造を有する水素吸蔵合金が用いられている。 In recent years, alkaline storage batteries have attracted attention as power sources for electric vehicles and the like, and there is a great demand for improvements in output characteristics and storage characteristics. Among them, nickel-metal hydride storage batteries using hydrogen storage alloy powder as negative electrode materials charge and discharge by utilizing a reaction that reversibly stores and releases hydrogen, so the theoretical capacity is larger than nickel cadmium storage batteries, and dendrites like nickel-zinc storage batteries. There is no worry of internal short circuit due to formation. As a hydrogen storage alloy powder having both practical theoretical capacity and life characteristics, for example, an alloy in which a part of Ni in MmNi 5 (Mm is a mixture of rare earth elements) is replaced with Co, Mn, Al, Cu, etc. A hydrogen storage alloy having a CaCu 5 type crystal structure is mainly used.

長寿命化に対する水素吸蔵合金の劣化モードの一つに、正極からの発生酸素や電解液中の残存酸素による酸化がある。この劣化を抑制する試みとして、水素吸蔵合金の表面に、酸素分子を原子状酸素に分解する触媒活性を有する導電性酸化物を存在させる方法が提案されている(例えば特許文献1)。この方法と併せて、水素吸蔵合金粒子内の結晶子サイズを小さくして合金粒子に多数の割れを発生させることにより表面積を大きくし、活性点の数を多くして初期出力特性を向上させる方法(例えば特許文献2参照)を活用できれば、電気自動車などの動力電源として魅力ある特性を得ることができると考えられる。
特開平08−170129号公報 特開平06−111815号公報
One of the deterioration modes of the hydrogen storage alloy for extending the life is oxidation due to oxygen generated from the positive electrode and residual oxygen in the electrolyte. As an attempt to suppress this deterioration, a method has been proposed in which a conductive oxide having catalytic activity for decomposing oxygen molecules into atomic oxygen is present on the surface of the hydrogen storage alloy (for example, Patent Document 1). In combination with this method, the crystallite size in the hydrogen storage alloy particles is reduced to generate a large number of cracks in the alloy particles, thereby increasing the surface area and increasing the number of active points to improve the initial output characteristics. If it can utilize (for example, refer patent document 2), it is thought that the characteristic attractive as motive power sources, such as an electric vehicle, can be acquired.
Japanese Patent Laid-Open No. 08-170129 Japanese Patent Laid-Open No. 06-111815

水素吸蔵合金粉末は充放電を繰り返すことにより微粉化するという性質を有する。しかるに特許文献1の方法では微粉化による新たな面(以下、新生面と称す)に対する対処がなされていないので、特に高温下において寿命特性が十分ではない。このような状況下で特許文献2の方法を併用しても、長期に亘り良好な電池特性を発揮させるのは困難である。   The hydrogen storage alloy powder has the property of being pulverized by repeated charge and discharge. However, since the method of Patent Document 1 does not deal with a new surface (hereinafter referred to as a new surface) due to pulverization, the life characteristics are not sufficient particularly at high temperatures. Under such circumstances, even if the method of Patent Document 2 is used in combination, it is difficult to exhibit good battery characteristics over a long period of time.

本発明は上記課題を解決するためのものであり、充放電の繰返しによる新生面の発生とその腐食という従来の課題を解決し、良好な高温寿命特性を発揮できるアルカリ蓄電池用負極材料およびアルカリ蓄電池を提供することを目的とする。   The present invention is for solving the above-described problems, and solves the conventional problem of generation and corrosion of a new surface due to repeated charge and discharge, and provides an alkaline storage battery and an alkaline storage battery capable of exhibiting good high-temperature life characteristics. The purpose is to provide.

上記課題を解決するために、本発明のアルカリ蓄電池用負極材料は、水素吸蔵合金粉末と融点が1500℃以上の金属酸化物とを複合化したものであって、水素吸蔵合金粉末の平均粒径を10nm〜100nmとし、金属酸化物によって複数の水素吸蔵合金粉末を一体化し、粒子状としたことを特徴とする。   In order to solve the above problems, the negative electrode material for an alkaline storage battery of the present invention is a composite of a hydrogen storage alloy powder and a metal oxide having a melting point of 1500 ° C. or more, and has an average particle size of the hydrogen storage alloy powder. 10 nm to 100 nm, and a plurality of hydrogen storage alloy powders are integrated with a metal oxide to form particles.

本発明のアルカリ蓄電池用負極材料は表面に金属酸化物を配置した複数個の水素吸蔵合金粉末を一体化したものである。水素吸蔵合金粉末の表面に配置された金属酸化物は水素吸蔵合金粉末の腐食を抑制するとともに、水素吸蔵合金粉末のさらなる微粉化を抑止する効果を有する。水素吸蔵合金粉末のさらなる微粉化を抑止できるのは、水素吸蔵合金粉末が予めナノサイズに調整されておりさらなる微粉化が起きにくくなっている一方で、複数
個の水素吸蔵合金粉末を一体化する過程で金属酸化物が周辺の水素吸蔵合金粉末を包括して微粉化し難くしているためと推測している。このような効果を金属酸化物に持たせるためには、一体化の過程で発生する熱に耐えうる性質(耐熱性)が必要であり、具体的には融点が1500℃以上である必要がある。このようなアルカリ蓄電池用負極材料はさらなる微粉化による新生面の発生を免れるため、アルカリ蓄電池の高温寿命特性を高めることができる。
The negative electrode material for an alkaline storage battery of the present invention is obtained by integrating a plurality of hydrogen storage alloy powders having a metal oxide disposed on the surface thereof. The metal oxide arranged on the surface of the hydrogen storage alloy powder has an effect of suppressing the corrosion of the hydrogen storage alloy powder and suppressing further pulverization of the hydrogen storage alloy powder. The further pulverization of the hydrogen storage alloy powder can be suppressed because the hydrogen storage alloy powder is pre-adjusted to a nano size so that further pulverization is less likely to occur, while a plurality of hydrogen storage alloy powders are integrated. It is presumed that the metal oxide is included in the surrounding hydrogen storage alloy powder and is difficult to be pulverized in the process. In order to give such an effect to the metal oxide, it is necessary to have a property (heat resistance) that can withstand the heat generated in the integration process, and specifically, the melting point needs to be 1500 ° C. or higher. . Such a negative electrode material for an alkaline storage battery avoids generation of a new surface due to further pulverization, and thus can improve the high-temperature life characteristics of the alkaline storage battery.

本発明のアルカリ蓄電池用負極材料は、充放電の繰返しによる新生面の発生とその腐食という従来の課題が解決できるので、良好な高温寿命特性を発揮できるアルカリ蓄電池を提供することが可能となる。   The negative electrode material for an alkaline storage battery of the present invention can solve the conventional problem of generation of a new surface due to repeated charge and discharge and its corrosion, and thus it is possible to provide an alkaline storage battery that can exhibit good high-temperature life characteristics.

以下、本発明を実施するための最良の形態について、図を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

第1の発明は、水素吸蔵合金粉末と融点が1500℃以上の金属酸化物とを複合化したものであって、水素吸蔵合金粉末の平均粒径を10nm〜100nmとし、金属酸化物によって複数の水素吸蔵合金粉末を一体化し、粒子状としたことを特徴とするアルカリ蓄電池用負極材料に関する。   A first invention is a composite of a hydrogen storage alloy powder and a metal oxide having a melting point of 1500 ° C. or more, wherein the hydrogen storage alloy powder has an average particle size of 10 nm to 100 nm, and a plurality of metal oxides depending on the metal oxide. The present invention relates to a negative electrode material for an alkaline storage battery, wherein the hydrogen storage alloy powder is integrated into a particulate form.

図1は本発明のアルカリ蓄電池用負極材料の表面近傍を表す模式断面図である。複数個の水素吸蔵合金粉末1の表面に1500℃以上の融点を有する金属酸化物2が配置され、かつ一体化されて本発明のアルカリ蓄電池用負極材料が構成されている。水素吸蔵合金粉末1の表面に配置された金属酸化物2は水素吸蔵合金粉末1の腐食を抑制するとともに、水素吸蔵合金粉末1のさらなる微粉化を抑止する効果を有する。水素吸蔵合金粉末1のさらなる微粉化を抑止できるのは、水素吸蔵合金粉末1が予めナノサイズに調整されておりさらなる微粉化が起きにくくなっている一方で、複数個の水素吸蔵合金粉末1を一体化する過程で金属酸化物2が周辺の水素吸蔵合金粉末1を包括して微粉化し難くしているためと推測している。このような効果を金属酸化物2に持たせるためには、一体化の過程で発生する熱に耐えうる性質(耐熱性)が必要であり、具体的には融点が1500℃以上である必要がある。このようなアルカリ蓄電池用負極材料はさらなる微粉化による新生面の発生を免れるため、アルカリ蓄電池の高温寿命特性を高めることができる。   FIG. 1 is a schematic cross-sectional view showing the vicinity of the surface of the negative electrode material for an alkaline storage battery of the present invention. A metal oxide 2 having a melting point of 1500 ° C. or higher is arranged on the surface of a plurality of hydrogen storage alloy powders 1 and integrated to constitute the negative electrode material for an alkaline storage battery of the present invention. The metal oxide 2 disposed on the surface of the hydrogen storage alloy powder 1 has an effect of suppressing corrosion of the hydrogen storage alloy powder 1 and suppressing further pulverization of the hydrogen storage alloy powder 1. The further pulverization of the hydrogen storage alloy powder 1 can be suppressed because the hydrogen storage alloy powder 1 is adjusted to a nano size in advance, and further pulverization is difficult to occur. It is presumed that the metal oxide 2 includes the surrounding hydrogen storage alloy powder 1 and makes it difficult to make fine powder in the process of integration. In order to give such an effect to the metal oxide 2, it is necessary to have a property (heat resistance) that can withstand the heat generated in the integration process, and specifically, the melting point must be 1500 ° C. or higher. is there. Such a negative electrode material for an alkaline storage battery avoids generation of a new surface due to further pulverization, and thus can improve the high-temperature life characteristics of the alkaline storage battery.

また金属酸化物2の間には粒界3が存在しているが、本発明においては水素吸蔵合金粉末1が小さいために粒界3を多く設けることができる。アルカリ蓄電池の充電反応に相当する水素吸蔵放出反応は、電解液中のプロトンが水素吸蔵合金粉末1の表面を介して内部に拡散される反応であるが、本発明においては粒界3が多く設けられているので、金属酸化物2が水素吸蔵合金粉末1の腐食を防ぐ一方で水素吸蔵放出反応は円滑に行われる。   Moreover, although the grain boundary 3 exists between the metal oxides 2, since the hydrogen storage alloy powder 1 is small in this invention, many grain boundaries 3 can be provided. The hydrogen storage / release reaction corresponding to the charging reaction of the alkaline storage battery is a reaction in which protons in the electrolyte are diffused inside through the surface of the hydrogen storage alloy powder 1, but in the present invention, a large number of grain boundaries 3 are provided. Therefore, while the metal oxide 2 prevents the corrosion of the hydrogen storage alloy powder 1, the hydrogen storage / release reaction is performed smoothly.

このようなアルカリ蓄電池用負極材料として好適な平均粒径は15〜35μmである。平均粒径が15μmを下回ると、極板形成のためにペースト化する際、ペースト性状が変化しバラツキが増加し、信頼性が低下する。35μmを上回ると電池特性において、抵抗成分が増加し、出力がやや低下するので好ましくない。   The average particle size suitable for such a negative electrode material for alkaline storage batteries is 15 to 35 μm. When the average particle size is less than 15 μm, the paste properties change and the variation increases when forming a paste for electrode plate formation, and the reliability decreases. When the thickness exceeds 35 μm, the resistance component increases in the battery characteristics, and the output is slightly lowered, which is not preferable.

ここで水素吸蔵合金粉末1の平均粒径が10nmを下回ると、水素吸蔵放出機能が不十分となって電池諸特性の低下を招く。逆に水素吸蔵合金粉末1の平均粒径が100nmを上回ると、膨張収縮による内部応力を吸収できずに、微粉化が顕著になる。なお水素吸蔵合金粉末1の平均粒径については、例えば走査型電子顕微鏡(SEM)観察や透過電子顕微鏡(TEM)にて10万倍以上の倍率で確認できる。   Here, when the average particle size of the hydrogen storage alloy powder 1 is less than 10 nm, the hydrogen storage / release function becomes insufficient, and the characteristics of the battery are deteriorated. Conversely, if the average particle size of the hydrogen storage alloy powder 1 exceeds 100 nm, internal stress due to expansion and contraction cannot be absorbed, and pulverization becomes remarkable. In addition, about the average particle diameter of the hydrogen storage alloy powder 1, it can confirm by the magnification of 100,000 times or more, for example with a scanning electron microscope (SEM) observation or a transmission electron microscope (TEM).

第1の発明のアルカリ蓄電池用負極材料を形成する方法は、特に限定されない。例えば、メカニカルアロイング法(機械合金法)、メカニカルミリング法、急冷凝固法(ロールスピニング法,メルトドラッグ法,直接鋳造圧延法,回転液中紡糸法,スプレイフォーミング法,ガス噴霧法、湿式噴霧法、スプラット法,急冷凝固薄帯粉砕法,ガス噴霧スプラット法,メルトエクストラクション法,メルトスピニング法,スプレイフォーミング法,回転電極法などで急冷凝固させる熱処理の方法)などを用いればよい。メカニカルアロイング法の具体例については、金属材料活用事典(産業調査会、870(1999))に記載がある。メカニカルアロイング法やメカニカルミリング法は、水素吸蔵合金の大きさの制御および結晶形の制御が容易であるという面で効果的な合成方法である。また、急冷凝固法を単独、あるいは、メカニカルアロイング法などと併用することができる。原料としては、目的の構成比率を有する水素吸蔵合金および酸化物、または構成元素単体を目的の構成比率に混合したものを用いる。またメカニカルアロイング法においては、合成時間などによって水素吸蔵合金粉末1の平均粒径を変化させることができる。   The method for forming the negative electrode material for an alkaline storage battery of the first invention is not particularly limited. For example, mechanical alloying method (mechanical alloy method), mechanical milling method, rapid solidification method (roll spinning method, melt drag method, direct casting and rolling method, spinning in spinning liquid, spray forming method, gas spray method, wet spray method , Splat method, rapid solidification pulverization method, gas spray splat method, melt extraction method, melt spinning method, spray forming method, heat treatment method for rapid solidification by the rotating electrode method, etc. may be used. Specific examples of the mechanical alloying method are described in the Metal Material Utilization Dictionary (Industry Research Council, 870 (1999)). The mechanical alloying method and the mechanical milling method are effective synthesis methods in terms of easy control of the size and crystal shape of the hydrogen storage alloy. The rapid solidification method can be used alone or in combination with the mechanical alloying method. As a raw material, a hydrogen storage alloy and oxide having a target constituent ratio, or a mixture of constituent elements alone in a target constituent ratio is used. In the mechanical alloying method, the average particle diameter of the hydrogen storage alloy powder 1 can be changed depending on the synthesis time.

第2の発明は、第1の発明の記載内容を前提として、金属酸化物2としてCaO、Y23 、ZrO2、TiO2、Dy23、Er23およびZnOよりなる群から少なくとも1種を選択したことを特徴とする。上述した金属酸化物2は水素吸蔵合金粉末1の腐食を抑制する効果があり好ましい。中でもY23、Er23およびDy23は上述した効果が顕著であり、より好ましい態様として挙げることができる。 On the premise of the description of the first invention, the second invention is based on the group consisting of CaO, Y 2 O 3 , ZrO 2 , TiO 2 , Dy 2 O 3 , Er 2 O 3 and ZnO as the metal oxide 2. At least one type is selected. The metal oxide 2 described above is preferable because it has an effect of suppressing the corrosion of the hydrogen storage alloy powder 1. Among these, Y 2 O 3 , Er 2 O 3, and Dy 2 O 3 have remarkable effects described above, and can be mentioned as more preferred embodiments.

第3の発明は、第1の発明の記載内容を前提として、金属酸化物2の含有割合を0.1〜3重量%としたことを特徴とする。本発明のアルカリ蓄電池用負極材料に対する金属酸化物2の含有割合が0.1重量%を下回ると水素吸蔵合金表面の酸化抑制が若干低下し、高温寿命特性がやや劣化する。逆に金属酸化物2の含有割合が3重量%を上回ると抵抗成分が増加するとともに粒界3が乏しくなり、電池諸特性がやや低下する。   The third invention is characterized in that the content ratio of the metal oxide 2 is 0.1 to 3% by weight on the premise of the description of the first invention. When the content ratio of the metal oxide 2 to the negative electrode material for alkaline storage batteries of the present invention is less than 0.1% by weight, the suppression of oxidation on the surface of the hydrogen storage alloy is slightly lowered, and the high-temperature life characteristics are slightly deteriorated. On the contrary, when the content ratio of the metal oxide 2 exceeds 3% by weight, the resistance component increases and the grain boundary 3 becomes poor, and the battery characteristics are slightly deteriorated.

第4の発明は、第1の発明の記載内容を前提として、水素吸蔵合金粉末1をCaCu5型の結晶構造を有するものとしたことを特徴とする。本発明では水素吸蔵合金粉末1として種々の結晶構造を有するものを選択できるが、CaCu5型(すなわちAB5型)の結晶構造を有するものは、常温で高い水素化反応性を有するので、電池反応性が高く活性化が容易であるので好ましい。 The fourth invention is characterized in that, based on the description of the first invention, the hydrogen storage alloy powder 1 has a CaCu 5 type crystal structure. In the present invention, the hydrogen storage alloy powder 1 having various crystal structures can be selected, but those having a CaCu 5 type (ie, AB 5 type) crystal structure have high hydrogenation reactivity at room temperature, so that the battery It is preferable because of its high reactivity and easy activation.

第5の発明は、第4の発明の記載内容を前提として、水素吸蔵合金粉末の組成に希土類元素、Co、MnおよびAlを含ませたことを特徴とする。この組成は簡略的にMm(NiCoMnAl)5と表すことができる。Mmで表される希土類元素の混合物は、安価であるという観点で好ましい。Coは水素吸蔵合金粉末1自身の耐食性を高める観点で好ましい。MnおよびAlは水素吸蔵反応を常圧下で行えるよう、水素吸蔵合金粉末1の平衡圧を下げる観点で好ましい。なおMm中には40〜50%のCeおよび20〜40%のLaを含ませ、さらにPrおよびNdを含ませるのが、耐食性と水素吸蔵反応の双方を高める観点から好ましい。なおMmの一部をNbやZrに置換するのも好ましい態様の1つである。 The fifth invention is characterized in that rare earth elements, Co, Mn and Al are included in the composition of the hydrogen storage alloy powder on the premise of the description of the fourth invention. This composition can be simply expressed as Mm (NiCoMnAl) 5 . A mixture of rare earth elements represented by Mm is preferable from the viewpoint of being inexpensive. Co is preferable from the viewpoint of enhancing the corrosion resistance of the hydrogen storage alloy powder 1 itself. Mn and Al are preferable from the viewpoint of lowering the equilibrium pressure of the hydrogen storage alloy powder 1 so that the hydrogen storage reaction can be performed under normal pressure. Mm preferably contains 40 to 50% Ce and 20 to 40% La, and further contains Pr and Nd from the viewpoint of improving both corrosion resistance and hydrogen storage reaction. In addition, it is one of the preferable embodiments that a part of Mm is substituted with Nb or Zr.

第6の発明は、第5の発明の記載内容を前提として、水素吸蔵合金粉末1の組成中のCo含有量を0.5〜6重量%としたことを特徴とする。Coにより水素吸蔵合金粉末1自身の耐食性を高める観点では含有量を0.5重量%以上にするのが好ましいが、含有量が6重量%を超過すると水素吸蔵合金粉末1の理論容量が不足し、見かけ上高温寿命特性が若干低下する。   The sixth invention is characterized in that the Co content in the composition of the hydrogen storage alloy powder 1 is 0.5 to 6% by weight on the premise of the description of the fifth invention. From the viewpoint of enhancing the corrosion resistance of the hydrogen storage alloy powder 1 by Co, the content is preferably 0.5% by weight or more. However, if the content exceeds 6% by weight, the theoretical capacity of the hydrogen storage alloy powder 1 is insufficient. Apparently, the high temperature life characteristics are slightly deteriorated.

第4〜6の発明の記載内容を踏まえた上で、本発明に好適な水素吸蔵合金粉末1の組成は、例えばLa0.8Nb0.2Ni2.5Co2.4Al0.1、La0.8Nb0.2Zr0.03Ni3.8Co
0.7Al0.5、MmNi3.65Co0.75Mn0.4Al0.3、MmNi2.5Co0.7Al0.8、Mm0.85Zr0.15Ni1.0Al0.80.2などである。
Based on the description of the fourth to sixth inventions, the composition of the hydrogen storage alloy powder 1 suitable for the present invention is, for example, La 0.8 Nb 0.2 Ni 2.5 Co 2.4 Al 0.1 , La 0.8 Nb 0.2 Zr 0.03 Ni 3.8 Co
0.7 Al 0.5 , MmNi 3.65 Co 0.75 Mn 0.4 Al 0.3 , MmNi 2.5 Co 0.7 Al 0.8 , Mm 0.85 Zr 0.15 Ni 1.0 Al 0.8 V 0.2, etc.

第7の発明は、第1の発明の記載内容を前提として、水素吸蔵合金粉末1をCaCu5型の結晶構造を有するものとしたことを特徴とする。本発明では水素吸蔵合金粉末1として種々の結晶構造を有するものを選択できるが、Ce2Ni7型の結晶構造を有するものは、常温で高い水素吸蔵量を有するので、高容量電池用途として好ましい。 The seventh invention is characterized in that, based on the description of the first invention, the hydrogen storage alloy powder 1 has a CaCu 5 type crystal structure. In the present invention, those having various crystal structures can be selected as the hydrogen storage alloy powder 1, but those having a Ce 2 Ni 7 type crystal structure have a high hydrogen storage amount at room temperature, and thus are preferable for high capacity battery applications. .

第8の発明は、第7の発明の記載内容を前提として、水素吸蔵合金粉末の組成に希土類元素、MgおよびAlを含ませたことを特徴とする。この組成は簡略的にMmMg(NiAl)3.3と表すことができる。Mmで表される希土類元素の混合物は、安価であるという観点で好ましい。Mgは水素吸蔵合金の水素吸蔵能力を高める観点で好ましい。Alは水素吸蔵合金粉末1自身の耐食性を高める観点で好ましい。なおMm中には40〜50%のCeおよび20〜40%のLaを含ませ、さらにPrおよびNdを含ませるのが、耐食性と水素吸蔵反応の双方を高める観点から好ましい。なおMmの一部をNbやZrに置換するのも好ましい態様の1つである。 The eighth invention is characterized in that rare earth elements, Mg and Al are included in the composition of the hydrogen storage alloy powder on the premise of the description of the seventh invention. This composition can simply be expressed as MmMg (NiAl) 3.3 . A mixture of rare earth elements represented by Mm is preferable from the viewpoint of being inexpensive. Mg is preferable from the viewpoint of increasing the hydrogen storage capacity of the hydrogen storage alloy. Al is preferable from the viewpoint of enhancing the corrosion resistance of the hydrogen storage alloy powder 1 itself. Mm preferably contains 40 to 50% Ce and 20 to 40% La, and further contains Pr and Nd from the viewpoint of improving both corrosion resistance and hydrogen storage reaction. In addition, it is one of the preferable embodiments that a part of Mm is substituted with Nb or Zr.

第9の発明は、第8の発明の記載内容を前提として、水素吸蔵合金粉末1の組成中のMg含有量を1.5〜3重量%としたことを特徴とする。Mgにより水素吸蔵合金の水素吸蔵能力を高める観点では含有量を1.5重量%以上にするのが好ましいが、含有量が3重量%を超過すると偏析が生じ、その偏析を基点に割れが生じやすくなり、耐久特性が低下する。   The ninth invention is characterized in that the Mg content in the composition of the hydrogen storage alloy powder 1 is 1.5 to 3% by weight on the premise of the description of the eighth invention. From the viewpoint of increasing the hydrogen storage capacity of the hydrogen storage alloy with Mg, the content is preferably 1.5% by weight or more. However, when the content exceeds 3% by weight, segregation occurs, and cracking occurs based on the segregation. It becomes easier and the durability characteristics are reduced.

第10の発明は、第8の発明の記載内容を前提として、水素吸蔵合金粉末1の組成中のAl含有量を0.5〜2重量%としたことを特徴とする。Alにより水素吸蔵合金の耐食性を高める観点では含有量を0.5重量%以上にするのが好ましいが、含有量が2重量%を超過すると水素吸蔵合金粉末1の理論容量が不足し、見かけ上耐久特性が低下する。   The tenth invention is characterized in that the Al content in the composition of the hydrogen storage alloy powder 1 is 0.5 to 2% by weight on the premise of the description of the eighth invention. From the viewpoint of enhancing the corrosion resistance of the hydrogen storage alloy with Al, the content is preferably 0.5% by weight or more. However, if the content exceeds 2% by weight, the theoretical capacity of the hydrogen storage alloy powder 1 is insufficient, and apparently Durability characteristics are reduced.

第7〜10の発明の記載内容を踏まえた上で、本発明に好適な水素吸蔵合金粉末1の組成は、例えばMm0.8Mg0.2Ni3.15Al0.15、La0.8Nb0.2Mg0.03Ni3.2Al0.1、Mm0.85Mg0.15Ni3.25Al0.05などである。 Based on the description of the seventh to tenth inventions, the composition of the hydrogen storage alloy powder 1 suitable for the present invention is, for example, Mm 0.8 Mg 0.2 Ni 3.15 Al 0.15 , La 0.8 Nb 0.2 Mg 0.03 Ni 3.2 Al 0.1 , Mm 0.85 Mg 0.15 Ni 3.25 Al 0.05 and the like.

第11の発明は、第1〜10の発明に記載したアルカリ蓄電池用負極材料を含む負極を用いたアルカリ蓄電池に関する。以下に本発明のアルカリ蓄電池の詳細な構成について記す。   The eleventh invention relates to an alkaline storage battery using a negative electrode including the negative electrode material for alkaline storage battery described in the first to tenth inventions. The detailed configuration of the alkaline storage battery of the present invention will be described below.

まず正極には、水酸化ニッケルを活物質とする公知の正極を用いることができる。   First, a known positive electrode using nickel hydroxide as an active material can be used for the positive electrode.

また本発明のアルカリ蓄電池用負極材料を含む負極には、別途導電剤、増粘剤および結着剤を加えることができる。   In addition, a conductive agent, a thickener and a binder can be added separately to the negative electrode including the negative electrode material for alkaline storage batteries of the present invention.

導電剤としては電子伝導性を有する材料が限定なく選定できるが、例えば天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類や、アセチレンブラック(以下、ABと略記)、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅などの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などが好ましく、中でも人造黒鉛、ケッチェンブラック、炭素繊維がより好ましい。これらの導電剤は複数種を混合して用いてもよく、本発明のアルカリ蓄電池用負極材料に表面被覆させてもよい。上記導電剤の添加量は特に限定されないが、アルカリ蓄電池用負極材料100重量部に対して1〜50重量部の範囲が好ましく、1〜30重量部の範囲がより好まし
い。
As the conductive agent, any material having electronic conductivity can be selected without limitation. For example, natural graphite (such as flake graphite), artificial graphite, graphite such as expanded graphite, acetylene black (hereinafter abbreviated as AB), ketjen Carbon blacks such as black, channel black, furnace black, lamp black and thermal black, conductive fibers such as carbon fiber and metal fiber, metal powders such as copper, organic conductive materials such as polyphenylene derivatives, etc. Among them, artificial graphite, ketjen black, and carbon fiber are more preferable. These conductive agents may be used in combination of a plurality of types, or may be surface-coated on the negative electrode material for alkaline storage batteries of the present invention. Although the addition amount of the said electrically conductive agent is not specifically limited, The range of 1-50 weight part is preferable with respect to 100 weight part of negative electrode materials for alkaline storage batteries, and the range of 1-30 weight part is more preferable.

増粘剤としては負極の前駆体である合剤ペーストに粘性を付与できる材料が限定なく選定できるが、例えばカルボキシメチルセルロース(以下、CMCと略記)およびその変性体、ポリビニルアルコール、メチルセルロース、ポリエチレンオキシドなどが好ましい。   As the thickener, a material capable of imparting viscosity to the mixture paste, which is a precursor of the negative electrode, can be selected without limitation. For example, carboxymethylcellulose (hereinafter abbreviated as CMC) and modified products thereof, polyvinyl alcohol, methylcellulose, polyethylene oxide, etc. Is preferred.

結着剤としては負極合剤を芯材に結着できる材料が限定なく選定できる。例えば熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよく、スチレン−ブタジエン共重合ゴム(以下、SBRと略記)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸共重合体Na+イオン架橋体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸共重合体Na+イオン架橋体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸メチル共重合体Na+イオン架橋体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体Na+イオン架橋体などを、単独あるいは混合して用いることができる。 As the binder, a material capable of binding the negative electrode mixture to the core material can be selected without limitation. For example, any of a thermoplastic resin and a thermosetting resin may be used. Styrene-butadiene copolymer rubber (hereinafter abbreviated as SBR), polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoro Ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer , Ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chloroto Fluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid copolymer Polymer Na + ion crosslinked body, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid copolymer Na + ion crosslinked body, ethylene-methyl acrylate copolymer, ethylene-methyl acrylate copolymer Na + ion crosslinked , Ethylene-methyl methacrylate copolymer, ethylene-methyl methacrylate copolymer Na + ion cross-linked body and the like can be used alone or in combination.

セパレータとしてはポリプロピレンなどのポリオレフィン製不織布を用いることができる。また 電解液としては、比重1.30近傍の水酸化カリウム水溶液に水酸化ナトリウムや水酸化リチウムを溶解させたものを用いることができる。以上の構成要素を組み合わせることにより、本発明のアルカリ蓄電池を構成することができる。   As the separator, a nonwoven fabric made of polyolefin such as polypropylene can be used. As the electrolytic solution, a solution obtained by dissolving sodium hydroxide or lithium hydroxide in a potassium hydroxide aqueous solution having a specific gravity of around 1.30 can be used. By combining the above components, the alkaline storage battery of the present invention can be configured.

以下に本発明を実施例に基づいて具体的に説明するが、この実施例は本発明を限定するものではない。   Hereinafter, the present invention will be specifically described based on examples, but the examples do not limit the present invention.

(実施例1−1)
(i)アルカリ蓄電池用負極材料の作製
Mm、NiおよびMnの単体を所定の割合で混合したものを高周波溶解炉で溶解し、組成がMmNi3.5Mn1.5の水素吸蔵合金のインゴットを作製した。このインゴットを1060℃のアルゴン雰囲気下で10時間加熱した後、粗粒子となるよう粉砕した。
(Example 1-1)
(I) Production of negative electrode material for alkaline storage battery A mixture of simple substances of Mm, Ni, and Mn in a predetermined ratio was melted in a high-frequency melting furnace to produce an ingot of a hydrogen storage alloy having a composition of MmNi 3.5 Mn 1.5 . The ingot was heated in an argon atmosphere at 1060 ° C. for 10 hours, and then pulverized into coarse particles.

(ii)アルカリ蓄電池用負極材料の作製
水素吸蔵合金粉末1と金属酸化物2であるY23との重量比が100:1となるように、水素吸蔵合金の粗粉とY23との混合物を1500℃以下で溶解し、その溶融物をロール急冷法で急冷し、凝固させた。この凝固物をボールミル容器に投入した後、この容器を遊星ボールミルに設置し、回転数2800rpmで、メカニカルアロイングを行った。この時、合成時間を20時間とした。そして、得られた粗粒子を、湿潤状態でメッシュ径が75μmの篩でふるい、平均粒径20μmのアルカリ蓄電池用負極材料を得た。
(Ii) Production of negative electrode material for alkaline storage battery Coarse powder of hydrogen storage alloy and Y 2 O 3 so that the weight ratio of hydrogen storage alloy powder 1 and metal oxide 2 Y 2 O 3 is 100: 1. The mixture was melted at 1500 ° C. or lower, and the melt was quenched by a roll quenching method and solidified. After the solidified product was put into a ball mill container, the container was placed in a planetary ball mill and mechanical alloying was performed at a rotation speed of 2800 rpm. At this time, the synthesis time was 20 hours. The obtained coarse particles were sieved with a sieve having a mesh diameter of 75 μm in a wet state to obtain a negative electrode material for an alkaline storage battery having an average particle diameter of 20 μm.

このようにして得られたアルカリ蓄電池用負極材料に占める金属酸化物2の量をICP分析法(例えばY23の場合、JiS K0116に規定)により分析した結果、1重量%であった。またこのアルカリ蓄電池用負極材料の形状をSEM観察した結果、図1で模
式的に示されるように粒子状であり、かつTEM観察にて確認した結果、水素吸蔵合金粉末1の平均粒径は30nmで、金属酸化物2の間には粒界3が存在していることが確認できた。
The amount of the metal oxide 2 in the thus obtained alkaline storage battery negative electrode material was analyzed by ICP analysis (for example, in the case of Y 2 O 3 , as defined in JiS K0116). As a result, it was 1% by weight. Further, as a result of SEM observation of the shape of the negative electrode material for an alkaline storage battery, as shown schematically in FIG. 1, it is particulate and as a result of confirmation by TEM observation, the average particle diameter of the hydrogen storage alloy powder 1 is 30 nm. Thus, it was confirmed that the grain boundary 3 was present between the metal oxides 2.

(iii)負極の作製
上述したアルカリ蓄電池用負極材料100重量部に対して0.15重量部のCMC(エーテル化度0.7、重合度1600)、0.3重量部のABおよび0.7重量部のSBRを加え、さらに水を添加して練合し、合剤ペーストを得た。この合剤ペーストを、ニッケルメッキを施した鉄製パンチングメタル(厚み60μm、孔径1mm、開孔率42%)からなる芯材の両面に塗着した。合剤ペースト層を乾燥した後、芯材とともにローラでプレスして切断し、厚み0.4mm、幅35mm、容量2200mAhの負極を得た。なお負極の長手方向に沿う一端部には、芯材の露出部を設けた。
(Iii) Production of negative electrode 0.15 parts by weight of CMC (degree of etherification 0.7, degree of polymerization 1600), 0.3 parts by weight of AB and 0.7 parts per 100 parts by weight of the negative electrode material for alkaline storage battery described above A part by weight of SBR was added, and water was further added and kneaded to obtain a mixture paste. This mixture paste was applied to both surfaces of a core material made of nickel-plated iron punching metal (thickness 60 μm, hole diameter 1 mm, hole area ratio 42%). After drying the mixture paste layer, it was pressed and cut with a roller together with the core material to obtain a negative electrode having a thickness of 0.4 mm, a width of 35 mm, and a capacity of 2200 mAh. In addition, the exposed part of the core material was provided in the one end part along the longitudinal direction of a negative electrode.

(iv)ニッケル水素蓄電池の作製
長手方向に沿う一端部に幅35mmの芯材の露出部を有する容量1500mAhの焼結式ニッケル正極を用い、4/5Aサイズで公称容量1500mAhのニッケル水素蓄電池を作製した。具体的には、正極と負極とを、スルホン化処理したポリプロピレン不織布からなるセパレータ(厚み100μm)を介して捲回し、円柱状の極板群を作製した。極板群では、正極合剤を担持しない正極芯材の露出部と、負極合剤を担持しない負極芯材の露出部とを、それぞれ反対側の端面に露出させた。正極芯材が露出する極板群の端面には正極集電板を溶接した。負極芯材が露出する極板群の端面に負極集電板を溶接する一方、正極リードを介して封口板と正極集電板とを導通させた。負極集電板を下方にして極板群を円筒形の有底缶からなる電池ケースに収容した後、負極集電板と接続された負極リードを電池ケースの底部と溶接した。さらに比重1.3の水酸化カリウム水溶液に40g/Lの濃度で水酸化リチウムを溶解させた電解液を注入した後、周縁にガスケットを具備する封口板にて電池ケースの開口部を封口し、ニッケル水素蓄電池を作製した。これを実施例1−1とする。
(Iv) Production of Nickel Metal Hydride Battery Using a sintered nickel positive electrode with a capacity of 1500 mAh having an exposed portion of a core material with a width of 35 mm at one end along the longitudinal direction, a nickel metal hydride battery with a nominal capacity of 1500 mAh is produced with a size of 4 / 5A. did. Specifically, the positive electrode and the negative electrode were wound through a separator (thickness: 100 μm) made of a sulfonated polypropylene nonwoven fabric to produce a cylindrical electrode plate group. In the electrode plate group, the exposed portion of the positive electrode core material that does not carry the positive electrode mixture and the exposed portion of the negative electrode core material that does not carry the negative electrode mixture were exposed on the opposite end surfaces. A positive electrode current collector plate was welded to the end face of the electrode plate group from which the positive electrode core material was exposed. While the negative electrode current collector plate was welded to the end face of the electrode plate group where the negative electrode core material was exposed, the sealing plate and the positive electrode current collector plate were made conductive through the positive electrode lead. The electrode plate group was accommodated in a battery case made of a cylindrical bottomed can with the negative electrode current collector plate facing downward, and the negative electrode lead connected to the negative electrode current collector plate was welded to the bottom of the battery case. Furthermore, after injecting an electrolytic solution in which lithium hydroxide was dissolved at a concentration of 40 g / L into a potassium hydroxide aqueous solution having a specific gravity of 1.3, the opening of the battery case was sealed with a sealing plate having a gasket on the periphery, A nickel metal hydride storage battery was produced. This is Example 1-1.

(実施例1−2〜4)
メカニカルアロイングの合成時間を16時間(実施例1−2)、13時間(実施例1−3)および10時間(実施例1−4)とし、水素吸蔵合金粉末1の平均粒径を50nm(実施例1−2)、70nm(実施例1−3)および100nm(実施例1−4)としたこと以外は、実施例1−1と同様に作製したニッケル水素蓄電池を、実施例1−2〜4とする。
(Examples 1-2 to 4)
The mechanical alloying synthesis time was 16 hours (Example 1-2), 13 hours (Example 1-3), and 10 hours (Example 1-4), and the hydrogen storage alloy powder 1 had an average particle size of 50 nm ( A nickel-metal hydride storage battery produced in the same manner as in Example 1-1 except that Example 1-2), 70 nm (Example 1-3), and 100 nm (Example 1-4) was used. ~ 4.

(比較例1−1〜2)
メカニカルアロイングの合成時間を23時間(比較例1−1)および5時間(比較例1−2)とし、水素吸蔵合金粉末1の平均粒径を8nm(比較例1−1)および120nm(比較例1−2)としたこと以外は、実施例1−1と同様に作製したニッケル水素蓄電池を、比較例1−1〜2とする。
(Comparative Examples 1-1 and 2)
The mechanical alloying synthesis time was 23 hours (Comparative Example 1-1) and 5 hours (Comparative Example 1-2), and the average particle size of the hydrogen storage alloy powder 1 was 8 nm (Comparative Example 1-1) and 120 nm (Comparative). Except having set it as Example 1-2), let the nickel hydride storage battery produced similarly to Example 1-1 be the comparative examples 1-1-2.

以上の各実施例および比較例を、以下に示す方法にて評価した。結果を(表1)に示す。   Each of the above examples and comparative examples were evaluated by the following methods. The results are shown in (Table 1).

(高温寿命特性)
各実施例および比較例のニッケル水素蓄電池を、40℃環境下にて10時間率(150mA)で15時間充電し、5時間率(300mA)で電池電圧が1.0Vになるまで放電した。この充放電サイクルを100回繰り返した。2サイクル目の放電容量に対する100サイクル目の放電容量の比率を、容量維持率として百分率で求め、(表1)に記した。
(High temperature life characteristics)
The nickel metal hydride storage batteries of each Example and Comparative Example were charged at a 10 hour rate (150 mA) for 15 hours in a 40 ° C. environment, and discharged at a 5 hour rate (300 mA) until the battery voltage reached 1.0V. This charge / discharge cycle was repeated 100 times. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the second cycle was obtained as a percentage as the capacity maintenance rate, and is shown in (Table 1).

Figure 0005119689
水素吸蔵合金粉末1の平均粒径が10nmを下回った比較例1−1は、水素吸蔵反応の起点となる合金層が乏しくなった影響で初期容量が低下した。逆に合成時間を短くし、平均粒径が100nmを上回った比較例1−2では、充放電による膨張収縮による割れが生じ、新生面の腐食により、電池反応性そのものが低下して見かけ上高温寿命特性が低下した。
Figure 0005119689
In Comparative Example 1-1 in which the average particle size of the hydrogen storage alloy powder 1 was less than 10 nm, the initial capacity was reduced due to the influence of the alloy layer that became the starting point of the hydrogen storage reaction. On the other hand, in Comparative Example 1-2 in which the synthesis time was shortened and the average particle size exceeded 100 nm, cracking due to expansion and contraction due to charge / discharge occurred, and the battery reactivity itself decreased due to corrosion of the new surface, and apparently high temperature life. The characteristics deteriorated.

これら比較例に対して、水素吸蔵合金粉末1の平均粒径を適正化した実施例1−1〜4は、比較的良好な高温寿命特性を示した。中でも水素吸蔵合金粉末1の平均粒径が50nmである実施例1−2は、粒子間の粒界が多く存在する影響で良好な高温寿命特性を示した。   In contrast to these comparative examples, Examples 1-1 to 1-4, in which the average particle diameter of the hydrogen storage alloy powder 1 was optimized, exhibited relatively good high-temperature life characteristics. Among them, Example 1-2 in which the average particle diameter of the hydrogen storage alloy powder 1 is 50 nm showed good high-temperature life characteristics due to the presence of many grain boundaries between the particles.

(実施例2−1〜6)
水素吸蔵合金粉末1の組成をMmNi4.1Mn0.4Al0.3Co0.4(組成中のNiが55重量%、Coが5重量%)とし、金属酸化物2としてCaO(実施例2−1)、ZrO2(実施例2−2)、TiO2(実施例2−3)、Dy23(実施例2−4)、Er23(実施例2−5)およびZnO(実施例2−6)を実施例1−2と同様の条件でアルカリ蓄電池用負極材料を作製した。その他は実施例1−2と同様にニッケル水素蓄電池を作製した。
(Examples 2-1 to 6)
The composition of the hydrogen storage alloy powder 1 is MmNi 4.1 Mn 0.4 Al 0.3 Co 0.4 (Ni in the composition is 55 wt%, Co is 5 wt%), and the metal oxide 2 is CaO (Example 2-1), ZrO 2 (Example 2-2), TiO 2 (Example 2-3), Dy 2 O 3 (Example 2-4), Er 2 O 3 (Example 2-5) and ZnO (Example 2-6) A negative electrode material for an alkaline storage battery was produced under the same conditions as in Example 1-2. Otherwise, a nickel-metal hydride storage battery was produced in the same manner as in Example 1-2.

(実施例2−7〜10)
水素吸蔵合金粉末1の組成をMmNi4.28Mn0.4Al0.3Co0.02(実施例2−7、組成中のNiが59重量%、Coが0.3%)、MmNi4.27Mn0.4Al0.3Co0.03(実施例2−8、組成中のNiが60重量%、Coが0.5%)、MmNi3.86Mn0.4Al0.3Co0.44(実施例2−9、組成中のNiが53重量%、Coが6%)およびMmNi3.78Mn0.4Al0.3Co0.52(実施例2−10、組成中のNiが52重量%、Coが7%)としたこと以外は実施例1−2と同様にニッケル水素蓄電池を作製した。
(Examples 2-7 to 10)
The composition of the hydrogen storage alloy powder 1 is MmNi 4.28 Mn 0.4 Al 0.3 Co 0.02 (Example 2-7, Ni in the composition is 59% by weight, Co is 0.3%), MmNi 4.27 Mn 0.4 Al 0.3 Co 0.03 (implementation) Example 2-8, Ni in composition is 60% by weight, Co is 0.5%), MmNi 3.86 Mn 0.4 Al 0.3 Co 0.44 (Example 2-9, Ni in composition is 53% by weight, Co is 6%) ) And MmNi 3.78 Mn 0.4 Al 0.3 Co 0.52 (Example 2-10, Ni in the composition was 52% by weight, Co was 7%) A nickel-metal hydride storage battery was produced in the same manner as in Example 1-2. .

(実施例2−11〜19)
水素吸蔵合金粉末1の組成をLa0.49Mg0.51Ni3.17Al0.13(実施例2−11、組成中のMgが3.5重量%、Niが52.8重量%、Alが1重量%)、La0.56Mg0.44Ni3.17Al0.13(実施例2−12、組成中のMgが3重量%、Niが52.8重量%、Alが1重量%)、La0.71Mg0.29Ni3.17Al0.13(実施例2−13、組成中のMgが2重量%、Niが52.8重量%、Alが1重量%)、La0.78Mg0.22Ni3.17Al0.13(実施例2−14、組成中のMgが1.5重量%、Niが52.8重量%、Alが1重量%)、La0.85Mg0.15Ni3.17Al0.13(実施例2−15、組成中のMgが1重量%、Niが52.8重量%、Alが1重量%)、La0.71Mg0.29Ni2.97Al0.33
実施例2−16、組成中のMgが2重量%、Niが49.5重量%、Alが2.5重量%)、La0.71Mg0.29Ni3.04Al0.26(実施例2−17、組成中のMgが2重量%、Niが50重量%、Alが2重量%)、La0.71Mg0.29Ni3.23Al0.07(実施例2−18、組成中のMgが2重量%、Niが53.9重量%、Alが0.5重量%)、La0.71Mg0.29Ni3.29Al0.01(実施例2−19、組成中のMgが2重量%、Niが54.8重量%、Alが0.1重量%)としたこと以外は実施例1−2と同様にニッケル水素蓄電池を作製した。
(Examples 2-11 to 19)
The composition of the hydrogen storage alloy powder 1 is La 0.49 Mg 0.51 Ni 3.17 Al 0.13 (Example 2-11, Mg in the composition is 3.5 wt%, Ni is 52.8 wt%, Al is 1 wt%), La 0.56 Mg 0.44 Ni 3.17 Al 0.13 (Example 2-12, Mg in composition is 3 wt%, Ni is 52.8 wt%, Al is 1 wt%), La 0.71 Mg 0.29 Ni 3.17 Al 0.13 (Example 2 -13, Mg in composition is 2% by weight, Ni is 52.8% by weight, Al is 1% by weight), La 0.78 Mg 0.22 Ni 3.17 Al 0.13 (Example 2-14, Mg in composition is 1.5%) Wt%, Ni 52.8 wt%, Al 1 wt%), La 0.85 Mg 0.15 Ni 3.17 Al 0.13 (Example 2-15, Mg in composition 1 wt%, Ni 52.8 wt%, 1 wt% Al), La 0.71 Mg 0.29 Ni 2.97 Al 0.33 (
Example 2-16, Mg in composition 2% by weight, Ni 49.5% by weight, Al 2.5% by weight), La 0.71 Mg 0.29 Ni 3.04 Al 0.26 (Example 2-17, in composition) Mg is 2 wt%, Ni is 50 wt%, Al is 2 wt%), La 0.71 Mg 0.29 Ni 3.23 Al 0.07 (Example 2-18, Mg in composition is 2 wt%, Ni is 53.9 wt%) , Al 0.5% by weight), La 0.71 Mg 0.29 Ni 3.29 Al 0.01 (Example 2-19, Mg in the composition is 2% by weight, Ni is 54.8% by weight, Al is 0.1% by weight) A nickel-metal hydride storage battery was produced in the same manner as in Example 1-2 except that.

以上の各実施例について、実施例1と同様の方法にて高温寿命特性を評価した。結果を(表2)に示す。   About each above Example, the high temperature life characteristic was evaluated by the method similar to Example 1. FIG. The results are shown in (Table 2).

Figure 0005119689
金属酸化物2としてDy23、Er23を用いた実施例2−4〜5は、Y23を用いた実施例1−2と同様、金属酸化物2として他のものを用いた実施例2−1〜3および実施例2−6と比較して、初期容量が高くかつ良好な高温寿命特性を示した。この理由として、Dy23、Er23およびY23は反応抵抗が低いため、電池反応が活発化したことが挙げられる。
Figure 0005119689
Examples 2-4 to 5 using Dy 2 O 3 and Er 2 O 3 as the metal oxide 2 are the same as those in Example 1-2 using Y 2 O 3. Compared with the used Examples 2-1 to 3 and Example 2-6, the initial capacity was high and good high-temperature life characteristics were exhibited. This is because Dy 2 O 3 , Er 2 O 3 and Y 2 O 3 have a low reaction resistance, and thus the battery reaction is activated.

水素吸蔵合金粉末1の組成中のCo含有量が0.5重量%を下回った実施例2−7は、水素吸蔵合金粉末1自身の耐食性がやや不足したことにより高温寿命特性が若干低下した。逆にCo含有量が6重量%を上回った実施例2−10は、水素吸蔵合金粉末1の理論容量が不足したことにより見かけ上高温寿命特性が若干低下した。以上の結果から、水素吸蔵合金粉末1の組成中のCo含有量の好適範囲は、0.5〜6重量%であることがわかる。   In Example 2-7, in which the Co content in the composition of the hydrogen storage alloy powder 1 was less than 0.5% by weight, the high temperature life characteristics were slightly deteriorated because the corrosion resistance of the hydrogen storage alloy powder 1 itself was slightly insufficient. On the contrary, in Example 2-10 in which the Co content exceeded 6% by weight, the high-temperature life characteristics apparently slightly decreased due to the lack of the theoretical capacity of the hydrogen storage alloy powder 1. From the above results, it can be seen that the preferred range of the Co content in the composition of the hydrogen storage alloy powder 1 is 0.5 to 6% by weight.

水素吸蔵合金粉末1の組成中のMg含有量が3重量%を上回った実施例2−11は、水素吸蔵合金粉末1自身の耐食性がやや不足したことにより高温寿命特性が若干低下した。
さらに、水素吸蔵合金粉末1の組成中のMg含有量が1.5重量%を下回った実施例2−15は水素吸蔵合金粉末1の理論容量が不足したことにより見かけ上高温寿命特性が若干低下した。以上の結果から、水素吸蔵合金粉末1の組成中のMg含有量の好適範囲は、1.5〜3重量%であることがわかる。また、水素吸蔵合金粉末1の組成中のAl含有量が2重量%を上回った実施例2−16は、水素吸蔵合金粉末1自身の理論容量が不足したことにより見かけ上高温寿命特性が若干低下した。さらに、水素吸蔵合金粉末1の組成中のMg含有量が0.5重量%を下回った実施例2−19は水素吸蔵合金粉末1の耐食性がやや不足したことにより高温寿命特性が若干低下した。水素吸蔵合金粉末1の組成中のAl含有量の好適範囲は、0.5〜2重量%であることがわかる。
In Example 2-11 in which the Mg content in the composition of the hydrogen storage alloy powder 1 exceeded 3% by weight, the high temperature life characteristics were slightly deteriorated due to a slight lack of the corrosion resistance of the hydrogen storage alloy powder 1 itself.
Further, in Example 2-15 in which the Mg content in the composition of the hydrogen storage alloy powder 1 was less than 1.5% by weight, the high temperature life characteristics seemed to be slightly reduced due to the lack of the theoretical capacity of the hydrogen storage alloy powder 1. did. From the above results, it is understood that the preferred range of the Mg content in the composition of the hydrogen storage alloy powder 1 is 1.5 to 3% by weight. Further, in Example 2-16 in which the Al content in the composition of the hydrogen storage alloy powder 1 exceeded 2% by weight, the high temperature life characteristics seemed to be slightly decreased due to the lack of the theoretical capacity of the hydrogen storage alloy powder 1 itself. did. Further, in Example 2-19 in which the Mg content in the composition of the hydrogen storage alloy powder 1 was less than 0.5% by weight, the high temperature life characteristics were slightly deteriorated due to the slightly insufficient corrosion resistance of the hydrogen storage alloy powder 1. It turns out that the suitable range of Al content in the composition of the hydrogen storage alloy powder 1 is 0.5 to 2% by weight.

(実施例3−1〜5)
23の量をアルカリ蓄電池用負極材料に対して0.05重量%(実施例3−1)、0.1重量%(実施例3−2)、1.5重量%(実施例3−3)、3重量%(実施例3−4)および3.2重量%(実施例3−5)としたこと以外は、実施例1−2と同様にニッケル水素蓄電池を作製した。
(Examples 3-1 to 5)
The amount of Y 2 O 3 is 0.05% by weight (Example 3-1), 0.1% by weight (Example 3-2), 1.5% by weight (Example 3) based on the negative electrode material for alkaline storage batteries. -3) A nickel-metal hydride storage battery was produced in the same manner as in Example 1-2, except that the content was 3% by weight (Example 3-4) and 3.2% by weight (Example 3-5).

Figure 0005119689
23の量が0.1重量%を下回った実施例3−1は、その全体量が不足して耐食効果が低減し、水素吸蔵合金粉末の腐食がやや早まったために高温寿命特性が若干低下した。逆にY23の量が3重量%を上回った実施例3−5は、その全体量が過剰になって水素吸蔵反応がやや低下し、見かけ上高温寿命特性が若干低下した。以上の結果から、酸化物2の量の好適範囲は、アルカリ蓄電池用負極材料に対して0.5〜3重量%であることがわかる。
Figure 0005119689
In Example 3-1, in which the amount of Y 2 O 3 was less than 0.1% by weight, the total amount was insufficient, the corrosion resistance was reduced, and the corrosion of the hydrogen storage alloy powder was slightly accelerated, so that the high temperature life characteristics were high. Slightly decreased. On the contrary, in Example 3-5 in which the amount of Y 2 O 3 exceeded 3% by weight, the total amount thereof was excessive, the hydrogen storage reaction was slightly reduced, and the high-temperature life characteristics were slightly deteriorated. From the above results, it can be seen that the preferable range of the amount of oxide 2 is 0.5 to 3% by weight with respect to the negative electrode material for alkaline storage batteries.

なお各実施例のニッケル水素蓄電池の一部を高温寿命特性評価前に分解したところ、金属酸化物の一部は酸化物から水酸化物に転じていることが明らかになった。このことから、アルカリ蓄電池用負極材料の金属酸化物は、酸化物・水酸化物のいずれであってもその効果は同じであることがわかる。   In addition, when a part of the nickel metal hydride storage battery of each example was decomposed before the high-temperature life characteristics evaluation, it became clear that a part of the metal oxide was changed from the oxide to the hydroxide. This shows that the effect of the metal oxide of the negative electrode material for alkaline storage batteries is the same regardless of whether the metal oxide is an oxide or a hydroxide.

本発明を活用することにより、アルカリ蓄電池の高温寿命特性を大幅に改善できるので、あらゆる機器の電源として利用可能性がある上に、過酷な環境下で使用されるハイブリッド自動車用電源などの分野において多大な効果をもたらすことが期待できる。   By utilizing the present invention, the high-temperature life characteristics of alkaline storage batteries can be greatly improved, so that it can be used as a power source for all devices and in the field of power sources for hybrid vehicles used in harsh environments. It can be expected to bring about a great effect.

本発明のアルカリ蓄電池用負極材料の表面近傍を表す模式断面図Model sectional drawing showing the surface vicinity of the negative electrode material for alkaline storage batteries of this invention

符号の説明Explanation of symbols

1 水素吸蔵合金粉末
2 金属酸化物
3 粒界
1 Hydrogen storage alloy powder 2 Metal oxide 3 Grain boundary

Claims (11)

水素吸蔵合金粉末と融点が1500℃以上の金属酸化物とを複合化したアルカリ蓄電池用負極材料であって、
前記水素吸蔵合金粉末の平均粒径を10nm〜100nmとし、
前記金属酸化物によって複数の前記水素吸蔵合金粉末を一体化し、粒子状としたことを特徴とするアルカリ蓄電池用負極材料。
A negative electrode material for an alkaline storage battery in which a hydrogen storage alloy powder and a metal oxide having a melting point of 1500 ° C. or more are combined,
The hydrogen storage alloy powder has an average particle size of 10 nm to 100 nm,
A negative electrode material for an alkaline storage battery, wherein the plurality of hydrogen storage alloy powders are integrated with the metal oxide to form particles.
前記金属酸化物としてCaO、Y23 、ZrO2、TiO2、Dy23、Er23およびZnOよりなる群から少なくとも1種を選択した請求項1記載のアルカリ蓄電池用負極材料。 2. The negative electrode material for an alkaline storage battery according to claim 1, wherein at least one selected from the group consisting of CaO, Y 2 O 3 , ZrO 2 , TiO 2 , Dy 2 O 3 , Er 2 O 3 and ZnO is selected as the metal oxide. 前記金属酸化物の含有割合を0.1〜3重量%とした請求項1記載のアルカリ蓄電池用負極材料。 The negative electrode material for an alkaline storage battery according to claim 1, wherein the content ratio of the metal oxide is 0.1 to 3% by weight. 前記水素吸蔵合金粉末をCaCu5型の結晶構造を有するものとした請求項1記載のアルカリ蓄電池用負極材料。 The negative electrode material for an alkaline storage battery according to claim 1, wherein the hydrogen storage alloy powder has a CaCu5 type crystal structure. 前記水素吸蔵合金粉末の組成に希土類元素、Co、MnおよびAlを含ませた請求項4記載のアルカリ蓄電池用負極材料。 The negative electrode material for alkaline storage batteries according to claim 4, wherein the composition of the hydrogen storage alloy powder contains rare earth elements, Co, Mn and Al. 前記水素吸蔵合金粉末の組成中のCoの含有量を0.5〜6重量%とした請求項5記載のアルカリ蓄電池用負極材料。 The negative electrode material for an alkaline storage battery according to claim 5, wherein the Co content in the composition of the hydrogen storage alloy powder is 0.5 to 6% by weight. 前記水素吸蔵合金粉末をCe2Ni7型の結晶構造を有するものとした請求項1記載のアルカリ蓄電池用負極材料。 The negative electrode material for an alkaline storage battery according to claim 1, wherein the hydrogen storage alloy powder has a Ce 2 Ni 7 type crystal structure. 前記水素吸蔵合金粉末の組成に希土類元素、MgおよびAlを含ませた請求項7記載のアルカリ蓄電池用負極材料。 The negative electrode material for alkaline storage batteries according to claim 7, wherein the composition of the hydrogen storage alloy powder contains rare earth elements, Mg and Al. 前記水素吸蔵合金粉末の組成中のMgの含有量を1.5〜3重量%とした請求項8記載のアルカリ蓄電池用負極材料。 The negative electrode material for alkaline storage batteries according to claim 8, wherein the content of Mg in the composition of the hydrogen storage alloy powder is 1.5 to 3% by weight. 前記水素吸蔵合金粉末の組成中のAlの含有量を0.5〜2重量%とした請求項8記載のアルカリ蓄電池用負極材料。 The negative electrode material for an alkaline storage battery according to claim 8, wherein the content of Al in the composition of the hydrogen storage alloy powder is 0.5 to 2% by weight. 請求項1〜10記載のアルカリ蓄電池用負極材料を含む負極を用いたアルカリ蓄電池。 The alkaline storage battery using the negative electrode containing the negative electrode material for alkaline storage batteries of Claims 1-10.
JP2007059439A 2006-03-31 2007-03-09 Negative electrode material for alkaline storage battery and alkaline storage battery Expired - Fee Related JP5119689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059439A JP5119689B2 (en) 2006-03-31 2007-03-09 Negative electrode material for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006098836 2006-03-31
JP2006098836 2006-03-31
JP2007059439A JP5119689B2 (en) 2006-03-31 2007-03-09 Negative electrode material for alkaline storage battery and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007294418A JP2007294418A (en) 2007-11-08
JP5119689B2 true JP5119689B2 (en) 2013-01-16

Family

ID=38764804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059439A Expired - Fee Related JP5119689B2 (en) 2006-03-31 2007-03-09 Negative electrode material for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5119689B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738841B1 (en) 2011-07-28 2018-09-12 GS Yuasa International Ltd. Negative electrode for alkaline storage battery and alkaline storage battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138658A (en) * 1994-09-12 1996-05-31 Furukawa Battery Co Ltd:The Hydrogen storage alloy-based electrode
JP3516312B2 (en) * 1994-11-25 2004-04-05 松下電器産業株式会社 Method for producing hydrogen storage alloy electrode
JP3098940B2 (en) * 1995-06-23 2000-10-16 信越化学工業株式会社 Method for producing hydrogen storage alloy powder for electrode
JPH097590A (en) * 1995-06-23 1997-01-10 Shin Etsu Chem Co Ltd Manufacture of hydrogen absorbing alloy powder for electrode

Also Published As

Publication number Publication date
JP2007294418A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5648772B1 (en) Alkaline secondary battery
JP5302890B2 (en) Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery using the same, and method for treating negative electrode active material for nickel metal hydride battery
JP5909683B2 (en) Alloy powder for electrode, negative electrode for alkaline storage battery and alkaline storage battery using the same
JP5217826B2 (en) Nickel metal hydride storage battery
JP5169050B2 (en) Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery, and method for treating negative electrode active material for nickel metal hydride battery
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP6152952B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
JPWO2011111699A1 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP5148553B2 (en) COMPOSITE MATERIAL FOR ELECTRODE, PROCESS FOR PRODUCING THE SAME AND ALKALINE STORAGE BATTERY USING THE SA
JP2011058082A (en) Hydrogen storage alloy and nickel-hydrogen storage battery
JP5481803B2 (en) Nickel metal hydride storage battery
JP6422017B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP5114875B2 (en) Alkaline storage battery, electrode composite material, and method for producing the same
JP5119689B2 (en) Negative electrode material for alkaline storage battery and alkaline storage battery
JP5861099B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP2004269929A (en) Hydrogen storage alloy, and electrode using the same
JP5532390B2 (en) Nickel metal hydride storage battery
JP2010182684A (en) Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery
WO2016051688A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP2011018493A (en) Nickel hydrogen secondary battery
JP2010262763A (en) Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery
WO2016157669A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP2010050011A (en) Nickel-hydrogen storage battery and manufacturing method therefor
KR20120079340A (en) Process for producing sn-based nanocomposite anode material for lithium secondary battery and lithium secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees