JP5119589B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5119589B2
JP5119589B2 JP2005321226A JP2005321226A JP5119589B2 JP 5119589 B2 JP5119589 B2 JP 5119589B2 JP 2005321226 A JP2005321226 A JP 2005321226A JP 2005321226 A JP2005321226 A JP 2005321226A JP 5119589 B2 JP5119589 B2 JP 5119589B2
Authority
JP
Japan
Prior art keywords
region
semiconductor region
conductivity type
contact
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005321226A
Other languages
English (en)
Other versions
JP2007129098A (ja
Inventor
達也 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005321226A priority Critical patent/JP5119589B2/ja
Publication of JP2007129098A publication Critical patent/JP2007129098A/ja
Application granted granted Critical
Publication of JP5119589B2 publication Critical patent/JP5119589B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

この発明は、半導体装置に関し、特にIGBT(絶縁ゲート型バイポーラトランジスタ)を構成するパワー半導体装置に関する。
従来、IGBTについては、これまで数多くの改良によって、その性能の向上が図られてきている。ここで、IGBTの性能とは、オフ時には、電圧を保持して電流を完全に遮断し、一方、オン時には、できる限り小さい電圧降下、すなわち、できる限り小さいオン抵抗で電流を流すというスイッチとしての性能のことである。なお、IGBTの動作の本質に鑑みて、本明細書では、コレクタを「アノード」と表記し、エミッタを「カソード」と表記する。
ここで、IGBTの構造の一例について示す。図7は、IGBTの構成について示す説明図である。図7において、ドリフト層となるn-単結晶シリコン基板129の第1の主面上に、例えば酸化膜121が選択的に形成されている。そして、この酸化膜121の表面と、n-単結晶シリコン基板129の、酸化膜121によって覆われていない部分は、n-単結晶シリコン基板129よりも高濃度にn型ドープされたカソード膜124によって覆われている。
カソード膜124は、カソード膜124の、n-単結晶シリコン基板129と接触する部分は、n+バッファ領域125となる。カソード膜124において、n+バッファ領域125に隣接する部分には、選択的にp型にドープされたpベース領域127が設けられている。また、pベース領域127の内部には、n+ソース領域126が設けられている。
また、カソード膜124の表面には、n+バッファ領域125の上を覆い、かつpベース領域127の一部を覆うように選択的にゲート酸化膜123が形成されている。ゲート酸化膜123上には、ゲート電極となるポリシリコン(以下、ゲートポリシリコンとする)122が堆積されている。ゲートポリシリコン122は、その周囲が層間絶縁膜128により覆われている。この層間絶縁膜128によりゲートポリシリコン122は、エミッタ電極130から絶縁されている。
層間絶縁膜128、n+ソース領域126、pベース領域127には、エミッタ電極130となるアルミニウム層が形成されている。エミッタ電極130は、n+ソース領域126の一部とコンタクト(接触)している。
また、n-単結晶シリコン基板129の第2の主面には、p+アノード層131が形成されている。p+アノード層131の表面には、アノード電極132となるアルミニウム層が形成されている。
つぎに、図8〜図15を参照して、図7に示したIGBTの製造方法を示す。図8〜図15は、図7に示したIGBTの製造方法を示す断面図である。n-単結晶シリコン基板129として、例えば30Ωcmのn型FZシリコン基板を用意する。そして、熱酸化をおこない、その基板のミラー研磨面に例えば0.1μmの厚さの酸化膜121を成長させる(図8)。次いで、パターニングおよびエッチングをおこなって、酸化膜121の一部を除去する(図9)。
次いで、酸化膜121およびn-単結晶シリコン基板129の、酸化膜121の窓部において露出する部分の上に、例えば1×1016cm-3の濃度でn型にドープされたポリシリコンを例えば0.25μmの厚さに堆積する。このポリシリコンは、カソード膜124であり、後にソース領域、チャネル領域およびバッファ領域となる(図10)。次いで、熱酸化をおこなって、カソード膜124の表面を酸化し、例えば0.1μmの厚さのゲート酸化膜123を形成する。その際、ポリシリコンが例えば0.05μmほど膜減りするので、カソード膜124の厚さは、例えば0.2μmとなる。
次いで、ゲート酸化膜123の上に、ゲート電極となるゲートポリシリコン122を例えば0.5μmの厚さに堆積する。そして、例えばPOCl3雰囲気中で900℃の熱処理をおこない、ゲートポリシリコン122を高濃度n型にドープする(図11)。次いで、パターニングおよびエッチングをおこなって、ゲートポリシリコン122の一部を除去する。残ったゲートポリシリコン122をマスクとして、カソード膜124に、例えば5×1014cm-2のドーズ量のボロンと、例えば1×1015cm-2のドーズ量の砒素をイオン注入する。そして、例えば窒素雰囲気中で1150℃、2時間のドライブをおこない、チャネル領域となるpベース領域127とn+ソース領域126を形成する(図12)。
次いで、層間絶縁膜128として例えば1μmの厚さのBPSGを堆積し、パターニングおよびエッチングをおこなって、層間絶縁膜128およびゲート酸化膜123を貫通するコンタクトホールを形成する。次いで、層間絶縁膜128の上に、アルミニウム等の金属を例えば5μmの厚さにスパッタする。そして、アルミニウム等の金属のパターニングおよびエッチングをおこない、エミッタ電極130を形成する(図13)。次いで、n-単結晶シリコン基板129の裏面を研削して、ウェハ厚を例えば100μmにする。その後、その研削面に、例えば1×1014cm-2のドーズ量のボロンをイオン注入する。そして、例えば380℃で1時間のアニールをおこない、p+アノード層131を形成する(図14)。
次いで、p+アノード層131の表面にアルミニウム等の金属を蒸着し、アノード電極132を形成する(図15)。なお、アニールをおこなう前に、n-単結晶シリコン基板129の裏面の研削面に、リン等のn型不純物をイオン注入してもよい。そうすれば、アニールによって、p+アノード層131とともに、n-ドリフト層とp+アノード層131との間にn+バッファ層が形成される。最後に、ウェハをダイシングしてチップが完成する。
(IGBT性能のトレードオフについて)
つぎに、IGBTの特性等について説明する。まず、IGBT性能のトレードオフについて説明する。IGBTの保持可能な最大電圧、すなわち耐圧の大きさと、オン時の電圧降下との間には、二律背反の関係(いわゆるトレードオフ関係)が存在し、高耐圧のIGBTほどオン電圧が高くなる。最終的には、このトレードオフ関係の限界値は、シリコンの物性で決まる。このトレードオフを限界まで向上させるためには、電圧保持時に局所的な電界集中が生じるのを防ぐなど、設計面での工夫が必要である。
また、IGBTの性能を表すもう一つの重要な指標として、オン電圧とスイッチング損失(特に、ターンオフ損失)のトレードオフ関係がある。IGBTは、スイッチングデバイスであるため、オンからオフまたはオフからオンの動作をおこなう。このスイッチング動作の瞬間に、時間当たり大きな損失が発生する。一般に、オン電圧の低いIGBTほどターンオフが遅いので、ターンオフ損失が大きい。以上のようなトレードオフ関係を改善することによって、IGBTの性能の向上を図ることができる。なお、ターンオン損失のオン電圧に対する依存性は小さい。ターンオン損失は、IGBTと組み合わせて使われる還流ダイオードの特性に大きく左右される。
(卜レードオフの改善について)
オン電圧とターンオフ損失のトレードオフ関係(以下、オン電圧−ターンオフ損失の関係とする)を最適化するには、IGBTがオン状態のときの内部の過剰キャリア分布を最適化することが有効である。オン電圧を下げるには、過剰キャリア量を増やしてドリフト層の抵抗値を下げればよい。しかし、ターンオフ時には、この過剰キャリアをすべてデバイスの外に掃き出すか、または、電子−ホール再結合により消滅させる必要がある。そのため、過剰キャリア量を増やすと、ターンオフ損失が増加してしまう。従って、このトレードオフ関係を最適化するには、同じオン電圧でターンオフ損失を最小にすればよい。
最適なトレードオフを実現するには、アノード側のキャリア濃度を下げるとともに、カソード側のキャリア濃度を上げることによって、アノード側とカソード側のキャリア濃度の比率が1:5程度になるようにすればよい。さらに、ドリフト層のキャリアライフタイムをできるだけ大きく保つことによって、ドリフト層内の平均キャリア濃度が高くなるようにすればよい。
IGBTのターンオフ時には、空乏層は、カソード側のpn接合からドリフト層内部に拡がり、裏面のアノード層へ向かって進展する。その際、ドリフト層内の過剰キャリアのうち、ホールは、電界によって空乏層端から引き抜かれる。このようにして電子過剰状態となり、余った電子は、中性領域を抜けてp型のアノード層に注入される。そして、アノ
ード側pn接合がやや順バイアスされることになるので、注入された電子に応じてホールが逆注入される。この逆注入されたホールは、上述した電界によって引き抜かれるホールと合流して、空乏層に入っていく。
電荷の担い手であるキャリア(ここでは、ホール)が電界領域を通過してカソード側に抜けるため、電界はキャリアに対して仕事をすることになる。キャリアが電界から受けた仕事は、最終的には、シリコンなどの結晶格子との衝突による格子振動となり、熱として散逸する。この散逸するエネルギーがターンオフ損失となる。ところで、空乏層が伸びきらないうちに引き抜かれるキャリアによって散逸するエネルギーは、空乏層が伸びきったときに引き抜かれるキャリアによって散逸するエネルギーよりも小さい。これは、空乏層が伸びきっていないと、キャリアが空乏層を通過する際の電位差が小さいため、空乏層の電界から受ける仕事が少ないからである。
ミクロの観点で見ると以上のようになる。これを、デバイスの端子電圧というマクロの観点で見ると、アノード−カソード間電圧が上がり終わる前、すなわち上昇中に流れる電流の方が、上がり終わった後に流れる電流よりも、電圧と電流の積(電圧×電流)で表される損失に対する寄与が少ないということを意味する。以上のことから、後述するIE効果によりカソード側に偏重したキャリア分布は、低電圧で引き抜かれるキャリアの割合が多く、オン電圧が同じであるという条件下では、アノード側偏重のキャリア分布よりもターンオフ損失が小さいということがわかる。
アノード側のキャリア濃度を下げるには、アノード層の総不純物量を下げればよい。これ自体は、特に困難なことではない。ただし、600Vなどのように定格耐圧の低いIGBTでは、アノード層の総不純物量を下げるためには、製造工程中に、100μm程度の厚さ、あるいはそれよりも薄いウェハを扱う必要があるため、生産技術上の困難が存在する。一方、カソード側のキャリア濃度を上げるメカニズムは、IE効果と呼ばれている。
IE効果の大きいカソード構造として、プレーナ構造のpベースを囲むように高濃度n層を挿入したHiGT構造などが提案されている(例えば、特許文献1、特許文献2参照。)。また、トレンチゲート構造において、隣り合うトレンチ間のメサ部に、ドリフト層よりも高濃度のn層を挿入したCSTBT構造や、IEGT(インジェクション エンハンスメント ゲート トランジスタ)構造などが提案されている(例えば、特許文献3、非特許文献1参照。)。一般に、トレンチ型におけるIE効果の方がプレーナ型におけるIE効果よりも大きい。
(IE効果について)
IE効果については、その本質が議論され、報告されている(例えば、非特許文献2参照。)。よく描かれるIGBTの等価回路は、MOSFET(金属−酸化膜−半導体構造を有する絶縁ゲート型電界効果トランジスタ)とバイポーラトランジスタの組み合わせである。しかし、実際のデバイス動作を考えると、図16に示す等価回路のように、MOSFET161とpnpバイポーラトランジスタ162とpinダイオード163の組み合わせであると考えられる。
図17は、プレーナ型IGBTの要部の構成を示す断面図である。図17において、符号174はpnpバイポーラトランジスタ領域(以下、pnp−BJT領域とする)であり、符号175はpinダイオード領域である。また、図17において、実線の矢印は電子電流の流れを表し、点線の矢印はホール電流の流れを表す。なお、本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、n+またはp+の領域(層を含む)は、それぞれ「+」が付されていないnまたはpの領域(層を含む)よりも高不純物濃度であることを意味する。さらに、n++領域(層を含む)は、n+領域(層を含む)よりも高不純物濃度であることを意味する。
図17に示すように、電子は、MOS部の表面のn++領域176から、n++領域176を囲むp層177の表面のn+反転層178と、n-ドリフト層179の表面のn+電子蓄積層180を経由して、裏面のpアノード層181に向かって流れる。この電子電流の一部は、pnp−BJT領域174のベース電流となる。pnp−BJT領域174では、pアノード層181から拡散またはドリフトによって流れてきたホールがp層177に流れ込むだけであり、そのpn接合部は、若干逆バイアスされている。従って、そのpn接合部付近のn-ドリフト層179中の少数キャリア、すなわちホールの濃度は、極めて低い。
一方、pinダイオード領域175のnカソードは、n-ドリフト層179の表面のn+電子蓄積層180である。このn+/n-接合は、若干順バイアスされているので、n-ドリフト層179中に電子が注入される。大電流時には、電子濃度は、n-ドリフト層179のドーピング濃度よりも遥かに高くなる(高注入状態)。そして、電荷中性条件を満たすため、電子と同じ濃度のホールも存在する。従って、n+/n-接合付近のn-ドリフト層179中の少数キャリア、すなわちホールの濃度は、極めて高い。
IGBTにおいて、カソード側偏重の最適キャリア分布を実現するためには、pnp−BJT領域を減らして、pinダイオード領域を増やすことが重要である。また、n+
-順バイアス量を増やして、電子注入を促進することが非常に重要である。これまで提
案されたIE効果を有する構造では、pinダイオード領域の比率を増やすと同時に、n+/n-順バイアス量の増加も実現されている。
ところで、プレーナ構造において、セルピッチに占めるpベースの比率が小さくなると、オン電圧が低減する。これは、pinダイオード領域の比率が大きくなることに加えて、表面付近での横方向電流密度が高くなり、電圧降下が大きくなることによって、n+
-接合の順バイアスが大きくなる効果が大きいと考えられる。n+/n-接合の順バイア
スが大きくなる理由は、n+層は低抵抗であるため、その電位がカソード電位に等しいが
、n-層は高抵抗であるため、その電位が大電流により持ち上がるからである。
同様に、トレンチ構造において、pnp−BJT領域の比率を減らすことによって、IE効果を高めることができる。pnp−BJT領域の比率を減らすには、例えば一部のメサ部において、pベース領域をフローティング状態とすればよい。また、トレンチを深くして、トレンチ底部をpn接合から離すことによっても、IE効果が大きくなる。さらに、メサ部の幅を狭くすることによっても、IE効果が大きくなる。これらは、いずれの場合も、メサ部を流れるホール電流密度が大きくなり、電圧降下によるn+/n-順バイアスが強くなるためと考えられる。
ここで、ドリフト層のドーピング濃度をNdとし、n+/n-接合にかかる順バイアスをVnとすると、n+/n-接合のn-層側の電子濃度nは、次式で表される。ただし、kはボルツマン定数であり、Tは絶対温度である。
n=Nd*exp(Vn/kT)
上記式より明らかなように、n+/n-接合に印加される順バイアスに応じて、カソード側の電子濃度nは、指数関数的に増大する。順バイアス量を増やす手段として、上述したように、大電流による電圧降下を利用するものがある。また、上記特許文献1〜3に記載されているように、n+濃度を増やすことによっても、順バイアス量を増やすことができる。ただし、特許文献1に記載されているHiGT構造は、プレーナ構造であるため、表面側のn+バッファ層の濃度が高すぎると、順耐圧が大きく低下してしまう。
一方、特許文献3に記載されているCSTBT構造では、表面側のn+バッファ層は、
トレンチゲート酸化膜により挟まれており、そのゲート酸化膜を介してポリシリコン電位へと続いている。そのため、順電圧保持時、すなわちブロッキングモード時には、表面側のn+バッファ層は、pn接合だけでなく、両側のトレンチゲート酸化膜との境界からも
空乏化するので、低い順バイアスで完全に空乏化する。従って、表面側のn+バッファ層
は高濃度であるにもかかわらず、その内部の電界は緩和されている。順バイアスをさらに上げても、トレンチ間のメサ部の電界が緩和されていることによって、局所的なピーク電界が現れにくい。
これは、一様、かつ単一の導電型層よりなるドリフト層の代わりに、不純物濃度を高めた縦形層状のn型領域と縦形層状のp型領域を交互に繰り返し接合した並列pn構造をドリフト部に備える超接合構造のMOSFETの原理にも通ずるものである。このように、CSTBT構造は、IE効果を高めつつも、順耐圧が低下しにくいという特性を有する。表面側のn+バッファ層は、n-ドリフト層との間に拡散電位を作り、ホールにとっての電位障壁となるので、ドリフト層中のホール濃度が上昇する。
もう一つの説明として、表面側のn+バッファ層とn-層との間が順バイアスされるので、n+層から電子が注入されるからであるということができる。つまり、n+/n-接合において、n+層が高濃度であれば、電子注入効率が向上するので、n+層に入るホール電流に対して、n-層に注入される電子電流の比率が大きくなる。ホールがn+層中を少数キャリアとして拡散して流れるためには、n+/n-接合が順バイアスされる必要がある。n+層濃度が高いほど、熱平衡状態における少数キャリアとしてのホール濃度が小さいため、同じホール電流を流すためには、より高い順バイアス量が必要となる。順バイアス量が大きいと、n-層に流れ込む電子電流が増えるので、電子濃度が増える。この第2の説明は、物理的には、先の第1の説明を言い換えたものである。
特開2003−347549号公報 特表2002−532885号公報 特開平8−316479号公報 アイ.オームラ(I.Omura)、他3名、「キャリア インジェクション エンハンスメント エフェクト オブ ハイ ボルテージ MOS デバイシズ −デバイス フィジックス アンド デザイン コンセプト−(Carrier injection enhancement effect of high voltage MOS devices −Device physics and design concept−)」(独国)、ISPSD'97、p.217−220 フロリン・ウドレア、他1名、「ア ユニファイド アナリティカル モデル フォア ザ キャリア ダイナミクス イン トレンチ インシュレイテッド ゲート バイポーラ トランジスタズ(TIGBT)(A unified analytical model for the carrier dynamics in Trench Insulated Gate Bipolar Transistors (TIGBT))」、ISPSD'95、p.190−195
オン電圧とターンオフ損失のトレードオフを改善するデバイスとしてトップゲート型パワーデバイスが検討されている。しかしながら、トップゲート型パワーデバイスでは、オン電圧とターンオフ損失のトレードオフを改善することはできるが、ホール電流がカソード層内の非常に狭い領域で流れるため、ラッチアップ耐量が十分に確保できないという問題点が一例として挙げられる。
また、ラッチアップ耐量を確保するために、カソード層を厚くするなどの手段も考えられるが、カソード膜を厚くすると、オン電圧が上昇したり、あるいは耐圧が低下し、デバイス特性が悪化するという問題点が一例として挙げられる。
この発明は、上述した従来技術による問題点を解消するため、ラッチアップ耐量低下を防ぐことができる半導体装置を提供することを目的とする。
上述した課題を解決し、目的を達成するため、この発明にかかる半導体装置は、第1導電型の半導体基板と、前記半導体基板の上に設けられ、交互に配列された第2導電型の半導体領域および前記第1導電型の半導体領域を有する半導体膜と、前記半導体膜の上に絶縁膜を介して設けられる多結晶半導体領域と、前記半導体膜の前記第2導電型の半導体領域および前記第1導電型の半導体領域に接触するように設けられる電極と、を備え、前記第2導電型の半導体領域に対する前記電極の第1接触領域は、前記第1導電型の半導体領域に対する前記電極の第2接触領域よりも前記多結晶半導体領域に近い位置であることを特徴とする。
また、この発明にかかる半導体装置は、上記の発明において、前記第1接触領域は、前記第2接触領域よりも面積が大きいことを特徴とする。
また、この発明にかかる半導体装置は、上記の発明において、前記第1接触領域と前記第2接触領域の位置の差が、前記多結晶半導体領域に対して1μm以上であることを特徴とする。
これらの発明によれば、第1の接触領域を第2接触領域よりも半導体装置の内側に形成することができる。そのため、ホール電流が流れやすくなり、ラッチアップ耐量低下を小さくすることができる。
本発明にかかる半導体装置によれば、トップゲート型パワーデバイスのオン電圧や耐圧の特性を低下させることなく、トップゲート型パワーデバイス特有の問題であるラッチアップ耐量低下を防ぐことができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。
(実施の形態1)
まず、この発明の実施の形態1にかかる半導体装置について説明する。図1は、この発明の実施の形態1にかかる半導体装置の構成について示す説明図である。図1に示すように、ドリフト層となるn-単結晶シリコン基板(第1導電型の半導体基板)29の第1の主面上に、例えば酸化膜21が選択的に形成されている。
この絶縁膜となる酸化膜21の表面と、n-単結晶シリコン基板29の、酸化膜21によって覆われていない部分は、ドリフト層(n-単結晶シリコン基板29)よりも高濃度にn型ドープされたカソード膜(半導体膜)24によって覆われている。カソード膜24は、例えばポリシリコンでできていてもよいし、n-単結晶シリコン基板29の、酸化膜21で覆われていない部分からエピタキシャル成長したn型の単結晶シリコンでできていてもよい。カソード膜24の、n-単結晶シリコン基板29と接触する部分は、n+バッファ領域25となる。
カソード膜24において、n+バッファ領域25に隣接する部分には、選択的にp型にドープされたpベース領域27が設けられている。また、カソード膜24の、n+バッファ領域25から離れた部分には、pベース領域27よりも高濃度のp+ベース領域33(第2導電型の半導体領域)が設けられている。また、p+ベース領域33は、ストライプセルの上から見て、不連続な島状(長方形状)に形成されている。
そして、n++ソース領域26(第1導電型の半導体領域)が、ストライプセルの上から見て、p+ベース領域33の島と島に接触し、挟まれるように形成されている。また、カソード膜24の表面には、n+バッファ領域25の上を覆い、かつpベース領域27の一部を覆うように選択的にゲート酸化膜23が形成されている。ゲート酸化膜23上には、ゲート電極となるポリシリコン(ゲートポリシリコン)22(多結晶半導体領域)が堆積されている。ゲートポリシリコン22は、その周囲が層間絶縁膜(不図示)により覆われている。
層間絶縁膜、n++ソース領域26、pベース領域27、およびp+ベース領域33の上には、電極として、たとえばエミッタ電極(不図示)となるアルミニウム層が形成されている。エミッタ電極は、n++ソース領域26の一部とコンタクト(接触)しているとともに、p+ベース領域33の一部とコンタクト(接触)している。エミッタ電極は、p+ベース領域33の上では、第1接触領域30aで接している。
また、n++ソース領域26およびp+ベース領域33の一部では、第2接触領域30bで接している。第1接触領域30aと、第2接触領域30bは、p+ベース領域33とn++ソース領域26が形成配列されている方向(第1の方向)に垂直な方向に対して段差を有している。具体的には、第1接触領域30aは、p+ベース領域33上でpベース領域27に近い位置に形成されている。つまり、第1接触領域30aは第2接触領域30bよりもゲートポリシリコン22に近い位置に形成されている。
このとき、第1接触領域30aと第2接触領域30bとの段差は、マスク誤差を考慮したうえで確実に段差が形成されるよう1μm以上であることが好ましい。このように、第1接触領域30aを第2接触領域30bよりもゲートポリシリコン22に近い位置、即ちpベース領域27に近い位置に形成することにより、ホール電流が流れやすくなる。
また、n-単結晶シリコン基板29の第2の主面(不図示)には、p+アノード層が形成されている。p+アノード層の表面には、アノード電極となるアルミニウム層が形成されている。なお、特に図示しないが、ドリフト層とp+アノード層との間に、ドリフト層(n-単結晶シリコン基板29)よりも高不純物濃度のn+バッファ層が設けられていてもよい。
以上説明したように、実施の形態1によれば、第1接触領域をゲートポリシリコン側、即ちpベース領域に近いホール電流が集中する側とした。そのため、ホール電流を流れやすくすることができる。
(実施の形態2)
つぎに、この発明の実施の形態2にかかる半導体装置の構成について説明する。図2は、この発明の実施の形態2にかかる半導体装置の構成を示す説明図である。実施の形態1との違いは、第1接触領域30aの、p+ベース領域33とpベース領域27とが形成されている方向(第2の方向)の幅が、広くなっていることである。これにより、第1の接触領域30aの面積は、第2の接触領域30bの面積よりも大きくなっている。
また、pベース領域27の一部を覆っているゲートポリシリコン22の側面が、第2の方向に後退している。pベース領域27の表面の露出される領域が増加している。そして、第1接触領域30aはp+ベース領域33と、pベース領域27との両方に接している。そして、実施の形態1と同様に、第1接触領域30aは、第2接触領域30bよりもゲートポリシリコン22に近い位置に形成されている。
具体的には、第1接触領域30aは、第2接触領域30bよりもゲートポリシリコン22側に形成されている。その他は、図1の構成と同様のため、説明を省略する。
以上説明したように、この発明の実施の形態2によれば、第1接触領域を、ホール電流が集中するゲートポリシリコン側とした。そのため、ホール電流を流れやすくすることができる。
つぎに、上述した実施の形態1および2の半導体装置の特性を比較するために用いられる半導体装置の構成について説明する。図3は、実施の形態1および2の半導体装置の特性の比較に用いる半導体装置の構成について示す説明図(その1)である。図3において、実施の形態1との違いは、ストライプセルの上から見て、n++ソース領域26が不連続な島状(長方形状)に形成されている点である。
そして、n++ソース領域26の一部がエミッタ電極(不図示)の下側へ伸びてエミッタ電極と接触し、またn++ソース領域26の島と島の間の部分でベース領域27にエミッタ電極が接触するようにしたものである。また、接触部は、第1接触領域30aと第2接触領域30bとが一直線状に形成されている。その他は、実施の形態1と同様のため説明を省略する。
つぎに、上述した実施の形態1および2の半導体装置の特性を比較するために用いられる半導体装置の他の構成について説明する。図4は、実施の形態1および2の半導体装置の特性の比較に用いる半導体装置の構成について示す説明図(その2)である。図4において、実施の形態1との違いは、第1接触領域30aと第2接触領域30bとが一直線状に形成されていることである。その他は、実施の形態1と同様のため説明を省略する。
(測定結果1)
つぎに、測定結果1として、カソード電極の接触領域の位置関係について示し、カソード電極の接触領域の位置を変化させた際のアノード−カソード間に印加した電圧(Vak)に対するアノード電流の特性について示す。
図5−1は、カソード電極(第1接触領域)の位置関係について示す説明図である。図5−1では、図3に示した半導体装置を例として説明する。図5−1には、図3に示した半導体装置の各部分に相当する箇所には、図3と同じ符号を付している。また、図5−1において、縦軸は半導体装置の厚さ方向の距離を示しており、横軸は、第2方向のp+ベース領域33の一端からの距離を示している。ここで、横軸では、p+ベース領域33の一端部をゼロとする。
符号50は、エミッタ電極がp+ベース領域33と接触する第1接触領域30aを示している。また、図5−1では、便宜上第1接触領域30aに厚みを持たせて表示している。本実施例1では、第1接触領域30aの幅を0.6μmとする。以下、図5−1および図5−2の説明では、第1接触領域30aが形成される位置を区別するために、各第1接触領域に符号51〜57を付している。
具体的には、符号51〜56は、半導体装置のp+ベース領域33の一端から第2の方向へ0.3μmごとにゲートポリシリコン22側にずらして形成された第1接触領域である。具体的には、第1接触領域51は、p+ベース領域33の一端(0μm)〜0.6μm間に形成されている。また、第1接触領域52は、p+ベース領域33の外側の端から0.3〜0.9μmの範囲に形成されている。
また、第1接触領域57は、実施の形態2に示した第1接触領域30aである。具体的には、符号57は、p+ベース領域33の一端から0.6μm〜3.0μmの範囲に形成されている。また、第1接触領域30a(51〜57)は、p+ベース領域33の表面で接触しているが、図5−1では、各接触領域が重なってしまうため、便宜上厚さ方向に対して段差を付けて表示している。
つぎに、上述した各接触電極の位置を変化させて、アノード−カソード間に印加した電圧(Vak)に対するアノード電流の特性について示す。図5−2は、アノード−カソード間に印加した電圧(Vak)に対するアノード電流の特性について示すグラフである。図5−2において、縦軸は、Ia(アノード電流)(A/cm2)を示しており、横軸は、アノード−カソード間に印加された電圧(Vak)(V)を示している。また、波形60は、第1接触領域30aが形成されていない場合を示し、符号61〜67は、接触領域が0〜0.6μm、0.3〜0.9μm、0.6〜1.2μm、0.9〜1.8μm、1.5〜2.1μm、0.6〜3.0μmに形成されている場合のアノード電流の特性である。アノード電流は、ゲート電圧15Vとし、125℃で測定をおこなった。
また、符号68は、従来のIGBT(オン電圧=2.58V)のアノード電流の特性である。図5−2に示されるように、第1接触領域30aがp+ベース領域33の一端からよりゲートポリシリコン22側に近づくにつれて、アノード電流が急峻に増加する電圧の値が大きくなっている。このように、第1接触領域30aがp+ベース領域33の一端からよりゲートポリシリコン22側に近づくほどラッチアップ耐量が増加することがわかる。
(測定結果2)
つぎに、測定結果2として、上述した図1〜図4に示した半導体装置のアノード−カソード間に印加した電圧(Vak)に対するアノード電流の特性について示す。図6は、アノード−カソード間に印加された電圧に対するアノード電流の特性を示すグラフである。
図6において、縦軸は、Ia(アノード電流)(A/cm2)を示しており、横軸は、アノード−カソード間に印加された電圧(Vak)(V)を示している。また、アノード電流は、ゲート電圧15Vとし、125℃で測定をおこなった。さらに、定格電圧は1200V、定格電流は100A/cm2である。波形71は実施の形態1(図1)、波形72は実施の形態2(図2)、波形73は図3、および波形74は図4の半導体装置の電流特性である。
また、参考として、波形75に従来技術のプレーナ型IGBTのアノード電流特性を示す。図6に示すように、波形73および波形74では、アノード−カソード間の電圧が10V程度から、アノード電流が増加し、ラッチアップしている。これに対して、波形71では、アノード−カソード間に印加される電圧が、500V程度から大きく増加するようになっており、ラッチアップ耐量が改善されている。さらに、波形74では、さらにラッチアップ耐量が改善されている。
トップゲート型のデバイスでは、プレーナIGBT、トレンチIGBTと比べて、ホール電流を流れる経路が狭くなっている。そのため、電流が集中しラッチアップしやすくなってしまう。図6のグラフに示したように、図3に示した構成の半導体装置の場合、十分なラッチアップ耐量は得られていない。また、図4に示した構成の半導体装置では、チャネルを間引いた構造となっており、図3の半導体装置の構成と比べるとラッチアップ耐量は上昇している。
それに対して、実施の形態1(図1)では、ホール電流が集中する側(ゲートポリシリコン22が形成されている側)でp+ベース領域33とカソード電極とを接触させることにより、ホール電流の引き出しをおこなっている。そのため、図3および図4の半導体装置に比べて、ラッチアップ耐量が上昇している。さらに、図2に示す半導体装置では、さらに半導体装置の内側でホール電流を引き出すために、カソード電極をp+ベース領域33およびpベース領域27に接触させている。これにより、ラッチアップ耐量を波形75に示す従来技術に近い値となった。
以上説明したように、この発明の半導体装置によれば、トップゲート型パワーデバイスのオン電圧や耐圧の特性を低下させることなく、トップゲート型パワーデバイス特有の問題であるラッチアップ耐量低下を防ぐことができる。
以上のように、この発明にかかる半導体装置は、電力変換装置などに使用されるパワー半導体装置に有用であり、特に、IGBTに適している。
この発明の実施の形態1にかかる半導体装置の構成について示す説明図である。 この発明の実施の形態2にかかる半導体装置の構成を示す説明図である。 実施の形態1および2の半導体装置の特性の比較に用いる半導体装置の構成について示す説明図(その1)である。 実施の形態1および2の半導体装置の特性の比較に用いる半導体装置の構成について示す説明図(その2)である。 カソード電極(第1接触領域)の位置関係について示す説明図である。 アノード−カソード間に印加された電圧(Vak)に対するアノード電流の特性について示すグラフである。 アノード−カソード間に印加された電圧に対するアノード電流の特性を示すグラフである。 IGBTの構成について示す説明図である。 図7に示したIGBTの製造方法を示す断面図である。 図7に示したIGBTの製造方法を示す断面図である。 図7に示したIGBTの製造方法を示す断面図である。 図7に示したIGBTの製造方法を示す断面図である。 図7に示したIGBTの製造方法を示す断面図である。 図7に示したIGBTの製造方法を示す断面図である。 図7に示したIGBTの製造方法を示す断面図である。 図7に示したIGBTの製造方法を示す断面図である。 IGBTの等価回路を示す説明図である。 プレーナ型IGBTの要部の構成を示す断面図である。
符号の説明
21 酸化膜
22 ゲートポリシリコン
23 ゲート絶縁膜
24 カソード膜
25 n+バッファ領域
26 n++ソース領域
27 pベース領域
29 n-単結晶シリコン基板
30a 第1接触領域
30b 第2接触領域
33 p+ベース領域

Claims (1)

  1. 第1導電型の半導体基板の第1の主面を選択的に覆いストライプ状に延在する第1の絶縁膜と、
    前記第1の絶縁膜の間で当該第1の絶縁膜で覆われていない部分で前記第1導電型の半導体基板と接触し当該第1の絶縁膜の延在する方向に沿って延在する第1の第1導電型半導体領域と、当該第1の第1導電型半導体領域の延在する方向に延在し当該第1の第1導電型半導体領域と接する第1の第2導電型半導体領域と、当該第1の第2導電型半導体領域内の当該第1の第2導電型半導体領域が延在する方向であって、当該第1の第2導電型半導体領域によって前記第1の第1導電型半導体領域から離間される位置で交互に配列された第2の第1導電型半導体領域と第2の第2導電型半導体領域と、から構成される前記第1の絶縁膜の上に設けられた半導体膜と、
    前記第の第1導電型半導体領域と前記第2の第2導電型半導体領域と接し、かつ前記第の第1導電型半導体領域と前記第2の第2導電型半導体領域が交互に配列された方向に延在する前記第1の絶縁膜の突出部と、
    前記半導体膜の上に絶縁膜を介して、前記第1の第1導電型半導体領域の延びる方向に、前記第1の第1導電型半導体領域上および第1の第2導電型半導体領域上に設けられる多結晶半導体領域と、
    前記半導体膜の前記第2の第2導電型半導体領域および前記第2の第1導電型半導領域に接触するように設けられる電極と、を備え、
    前記多結晶半導体領域の側面が、前記第2の第1導電型半導体領域に対向する位置より前記第2の第2導電型半導体領域に対向する位置が前記第1の第1導電型半導体領域側に後退しており、
    前記第2の第2導電型半導体領域に対する前記電極の第1接触領域は、前記第2の第1導電型半導体領域に対する前記電極の第2接触領域よりも前記多結晶半導体領域に近い位置であり、前記第1接触領域は、前記第2接触領域よりも面積が大きいことを特徴とする半導体装置。
JP2005321226A 2005-11-04 2005-11-04 半導体装置 Expired - Fee Related JP5119589B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321226A JP5119589B2 (ja) 2005-11-04 2005-11-04 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321226A JP5119589B2 (ja) 2005-11-04 2005-11-04 半導体装置

Publications (2)

Publication Number Publication Date
JP2007129098A JP2007129098A (ja) 2007-05-24
JP5119589B2 true JP5119589B2 (ja) 2013-01-16

Family

ID=38151486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321226A Expired - Fee Related JP5119589B2 (ja) 2005-11-04 2005-11-04 半導体装置

Country Status (1)

Country Link
JP (1) JP5119589B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040106B2 (ja) * 2005-12-02 2012-10-03 富士電機株式会社 Mos型半導体装置
JP5461599B2 (ja) * 2012-02-15 2014-04-02 三菱電機株式会社 電力用半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507820A1 (fr) * 1981-06-16 1982-12-17 Thomson Csf Transistor bipolaire a commande par effet de champ au moyen d'une grille isolee
JPH02278880A (ja) * 1989-04-20 1990-11-15 Nippondenso Co Ltd 絶縁ゲート型バイポーラトランジスタ
JPH02312280A (ja) * 1989-05-26 1990-12-27 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ
US6075259A (en) * 1994-11-14 2000-06-13 North Carolina State University Power semiconductor devices that utilize buried insulating regions to achieve higher than parallel-plane breakdown voltages
US5654562A (en) * 1995-03-03 1997-08-05 Motorola, Inc. Latch resistant insulated gate semiconductor device
JPH09153609A (ja) * 1995-11-29 1997-06-10 Nec Yamagata Ltd 縦型絶縁ゲート電界効果トランジスタ
JPH09270513A (ja) * 1996-03-29 1997-10-14 Toyota Central Res & Dev Lab Inc 絶縁ゲート型半導体装置およびその製造方法
GB9625839D0 (en) * 1996-12-12 1997-01-29 Westinghouse Brake & Signal Semiconductor switching devices
JP2005268679A (ja) * 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2007129098A (ja) 2007-05-24

Similar Documents

Publication Publication Date Title
US10418441B2 (en) Semiconductor device and method for manufacturing the semiconductor device
US10109725B2 (en) Reverse-conducting semiconductor device
JP5787853B2 (ja) 電力用半導体装置
US9337185B2 (en) Semiconductor devices
US20020179968A1 (en) Power semiconductor component, compensation component, power transistor, and method for producing power semiconductor components
US7569431B2 (en) Semiconductor device and manufacturing method thereof
US20110073938A1 (en) Field-effect semiconductor device and method of producing the same
US20130248882A1 (en) Semiconductor device
US10629725B2 (en) Semiconductor device having semiconductor regions with an interval therebetween in a gate pad region
CN112201690A (zh) Mosfet晶体管
CN111129135B (zh) 半导体装置
US10692995B2 (en) Insulated-gate bipolar transistor structure and method for manufacturing the same
US20060076583A1 (en) Semiconductor device and manufacturing method thereof
JP5114832B2 (ja) 半導体装置およびその製造方法
CN116404039B (zh) 一种功率半导体器件及其制造方法
JP5028749B2 (ja) 半導体装置の製造方法
JP5119589B2 (ja) 半導体装置
JP5135668B2 (ja) 半導体装置および半導体装置の製造方法
JP2008288350A (ja) 半導体装置の製造方法
CN213459746U (zh) Mosfet晶体管
JP5040106B2 (ja) Mos型半導体装置
JP2022002290A (ja) 半導体装置
KR20150061973A (ko) 전력 반도체 소자
JP2009158643A (ja) 半導体装置
JP2007324540A (ja) Mos型半導体装置およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees