JP5119580B2 - Plasma processing method - Google Patents

Plasma processing method Download PDF

Info

Publication number
JP5119580B2
JP5119580B2 JP2005245597A JP2005245597A JP5119580B2 JP 5119580 B2 JP5119580 B2 JP 5119580B2 JP 2005245597 A JP2005245597 A JP 2005245597A JP 2005245597 A JP2005245597 A JP 2005245597A JP 5119580 B2 JP5119580 B2 JP 5119580B2
Authority
JP
Japan
Prior art keywords
gas
processed
plasma
processing
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005245597A
Other languages
Japanese (ja)
Other versions
JP2007059306A5 (en
JP2007059306A (en
Inventor
光央 齋藤
智洋 奥村
清彦 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005245597A priority Critical patent/JP5119580B2/en
Publication of JP2007059306A publication Critical patent/JP2007059306A/en
Publication of JP2007059306A5 publication Critical patent/JP2007059306A5/ja
Application granted granted Critical
Publication of JP5119580B2 publication Critical patent/JP5119580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大気圧近傍の圧力下でプラズマを用い、プリント基板、電子部品、半導体、光学部品関連、ディスプレイ、とりわけ被処理面が平面でない被処理物に対して、被処理面を均一にエッチング、成膜および表面処理するためのプラズマ処理方法および装置に関するものである。   The present invention uses plasma under a pressure near atmospheric pressure to uniformly etch a surface to be processed on a printed circuit board, an electronic component, a semiconductor, an optical component, a display, particularly an object to be processed that is not flat. The present invention relates to a plasma processing method and apparatus for film formation and surface treatment.

大気圧近傍の圧力下で生成するプラズマ(以下、大気圧プラズマと称する)を用いたプラズマ処理方法および装置は、装置コスト削減、省スペース、および省エネなどの理由から、例えばプリント基板、電子部品、半導体、光学部品などの製造工程におけるエッチング、成膜および表面処理工程の一部において、減圧装置を用いたプラズマからの転換が図られている。   A plasma processing method and apparatus using plasma generated under a pressure close to atmospheric pressure (hereinafter referred to as atmospheric pressure plasma) is, for example, a printed circuit board, an electronic component, In some of the etching, film formation and surface treatment processes in the manufacturing process of semiconductors, optical components, etc., conversion from plasma using a decompression device is attempted.

第1の従来例としてのプラズマ処理方法および装置を、図17を用いて説明する。   A plasma processing method and apparatus as a first conventional example will be described with reference to FIG.

図17におけるプラズマ処理装置は、上部電極1と下部電極2を設け、下部電極2上に被処理物3を載置可能な構造となっており、処理ガス供給装置4、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、被処理物3に対して処理ガスを供給可能な構造となっている。また、上部電極1には高周波電源9を連結し下部電極2を接地電位とすることで両電極間に高周波電力を印加可能な構造となっている。   The plasma processing apparatus in FIG. 17 has a structure in which an upper electrode 1 and a lower electrode 2 are provided and an object to be processed 3 can be placed on the lower electrode 2, and a processing gas supply device 4, a gas flow path 5 and a gas are provided. A processing gas can be supplied to the workpiece 3 through the ejection plate 6, the gas ejection surface 7 on the gas ejection plate 6, and a plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It has a simple structure. Further, a high frequency power source 9 is connected to the upper electrode 1 and the lower electrode 2 is set to a ground potential so that high frequency power can be applied between both electrodes.

この装置によるプラズマ処理の一例として、下部電極2上に被処理物3を載置し、処理ガス供給装置4より処理ガスとしてHe=970sccm、O2=30sccmを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成でき、被処理面を処理できる。 As an example of plasma processing by this apparatus, an object 3 to be processed is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied as processing gases from the processing gas supply device 4, and power is supplied from the high-frequency power source 9. By supplying 80 W, plasma 10 can be generated between the upper electrode 1 and the workpiece 3 and the surface to be processed can be processed.

また、上記プラズマ処理方法により、被処理面上にフォトレジスト膜を塗布した被処理物3をプラズマ処理することが可能である。   In addition, by the plasma processing method, it is possible to perform plasma processing on the processing object 3 in which a photoresist film is applied on the processing surface.

図17は、特許文献1に開示されているプラズマ処理方法および装置を基本としており、一方に固体誘電体を設けた一対の電極間にプラズマを生成し、被処理物を電極間に載置することで被処理面をプラズマ処理する方法である。この方法は、一般にダイレクト方式と呼ばれ、次の2つの利点により、様々な被処理物に適用されている。   FIG. 17 is based on the plasma processing method and apparatus disclosed in Patent Document 1, in which plasma is generated between a pair of electrodes provided with a solid dielectric on one side, and an object to be processed is placed between the electrodes. In this way, the surface to be processed is plasma processed. This method is generally called a direct method, and is applied to various objects to be processed due to the following two advantages.

▲1▼被処理物のサイズに合わせて電極のサイズを大きくすることで、容易に、被処理面全体に安定なプラズマを生成することができ、処理時間を短くできる。   (1) By increasing the size of the electrode in accordance with the size of the object to be processed, stable plasma can be easily generated on the entire surface to be processed, and the processing time can be shortened.

▲2▼比較的容易な構造で安定にプラズマを生成でき、装置コストを低減できる。   (2) Plasma can be stably generated with a relatively easy structure, and the cost of the apparatus can be reduced.

次に、第2の従来例としてのプラズマ処理方法および装置を、図18を用いて説明する。プラズマ処理方法および装置は第1の従来例と同様であるが、被処理物として被処理面が平面でない、異形被処理物11−aを用いている。異形被処理物の形状は、図示したように、球面(凸形状)をなしている。   Next, a plasma processing method and apparatus as a second conventional example will be described with reference to FIG. The plasma processing method and apparatus are the same as those in the first conventional example, but a deformed workpiece 11-a having a non-planar surface to be processed is used as the workpiece. As shown in the figure, the deformed workpiece has a spherical surface (convex shape).

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−aを載置し、処理ガス供給装置4より処理ガスとしてHe=970sccm、O2=30sccmを供給し、高周波電源9より電力を80W供給することで、上部電極1と異形被処理物11−aの間にプラズマ10を生成でき、被処理面を処理できる。 As an example of the plasma processing by this apparatus, an irregular workpiece 11-a is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied as processing gases from the processing gas supply device 4, and the high frequency power source 9 By supplying more power of 80 W, the plasma 10 can be generated between the upper electrode 1 and the irregular workpiece 11-a, and the surface to be processed can be processed.

また、上記プラズマ処理方法により、被処理面上にフォトレジスト膜を塗布した異形被処理物11−aをプラズマ処理することが可能である。   Further, by the above plasma processing method, it is possible to perform plasma processing on the irregularly processed object 11-a in which a photoresist film is applied on the surface to be processed.

次に、第3の従来例としてのプラズマ処理方法および装置を、図19を用いて説明する。処理方法および装置は第1の従来例と同様であるが、被処理物として被処理面が平面でない、異形被処理物11−bを用いている。異形被処理物の形状は、図示したように、逆円錐面(凹形状)をなしている。   Next, a plasma processing method and apparatus as a third conventional example will be described with reference to FIG. The processing method and apparatus are the same as those of the first conventional example, but a deformed workpiece 11-b whose processing surface is not flat is used as the processing target. As shown in the figure, the deformed workpiece has an inverted conical surface (concave shape).

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−bを載置し、処理ガス供給装置4より処理ガスとしてHe=970sccm、O2=30sccmを供給し、高周波電源9より電力を80W供給することで、上部電極1と異形被処理物11−bの間にプラズマ10を生成でき、被処理面を処理できる。 As an example of the plasma processing by this apparatus, a deformed object 11-b is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied as processing gases from the processing gas supply device 4, and the high frequency power source 9 By supplying more power of 80 W, the plasma 10 can be generated between the upper electrode 1 and the irregular workpiece 11-b, and the surface to be processed can be processed.

また、上記プラズマ処理方法により、被処理面上にフォトレジスト膜を塗布した異形被処理物11−bをプラズマ処理することが可能である。   Further, by the above plasma processing method, it is possible to perform plasma processing on the irregularly processed object 11-b in which a photoresist film is applied on the surface to be processed.

次に、第4の従来例としてのプラズマ処理方法および装置を、図20を用いて説明する。被処理物は異形被処理物11−aを用いている。処理方法および装置は第1の従来例とほぼ同様であるが、ガス噴出面7が被処理面と同等の曲面をもつ凹形状をなしている点で異なる。   Next, a plasma processing method and apparatus as a fourth conventional example will be described with reference to FIG. As the object to be processed, the deformed object 11-a is used. The processing method and apparatus are substantially the same as those of the first conventional example, except that the gas ejection surface 7 has a concave shape having a curved surface equivalent to the surface to be processed.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−aを載置し、処理ガス供給装置4より処理ガスとしてHe=970sccm、O2=30sccmを供給し、高周波電源9より電力を80W供給することで、上部電極1と異形被処理物11−aの間にプラズマ10を生成でき、被処理面を処理できる。 As an example of the plasma processing by this apparatus, an irregular workpiece 11-a is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied as processing gases from the processing gas supply device 4, and the high frequency power source 9 By supplying more power of 80 W, the plasma 10 can be generated between the upper electrode 1 and the irregular workpiece 11-a, and the surface to be processed can be processed.

また、上記プラズマ処理方法により、被処理面上にフォトレジスト膜を塗布した異形被処理物11−aをプラズマ処理することが可能である。
特許第2138895号公報
Further, by the above plasma processing method, it is possible to perform plasma processing on the irregularly processed object 11-a in which a photoresist film is applied on the surface to be processed.
Japanese Patent No. 2138895

第1の従来例としてのプラズマ処理方法および装置にて被処理面上にフォトレジスト膜を塗布した被処理物をプラズマ処理した結果を次に示す。   The results of plasma treatment of an object to be processed with a photoresist film coated on the surface to be processed by the plasma processing method and apparatus as the first conventional example are shown below.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.20μm/min、面内均一性は±3.1%と非常に高速で均一性よくプラズマ処理することができた。   With an average of 5 points, the ashing rate was 1.20 μm / min and the in-plane uniformity was ± 3.1%, so that the plasma treatment could be performed at a very high speed with good uniformity.

しかしながら、被処理面が平面でない、異形被処理物を処理する場合、従来例では以下の問題点があった。   However, when processing an irregularly processed object whose surface to be processed is not flat, the conventional example has the following problems.

図18および図19のように被処理面と電極のなす距離が小さい箇所にプラズマが集中し、被処理面と電極のなす距離が大きい箇所では処理速度が著しく小さくなった。すなわち、第2の従来例のように、被処理面が凸形状であれば被処理面の極大部(図では中央部)に集中してプラズマが生成し、第3の従来例のように、被処理面が凹形状であれば被処理面の外周部に集中してプラズマが生成した。従って、被処理面全面を一括で処理できない、あるいは全面処理するのに莫大な時間がかかるといった問題があった。   As shown in FIG. 18 and FIG. 19, the plasma is concentrated at a position where the distance between the surface to be processed and the electrode is small, and the processing speed is remarkably reduced at a position where the distance between the surface to be processed and the electrode is large. That is, as in the second conventional example, if the surface to be processed is convex, plasma is generated in a concentrated manner at the maximum portion (center portion in the figure) of the surface to be processed, and as in the third conventional example, If the surface to be processed was concave, plasma was generated concentrated on the outer periphery of the surface to be processed. Therefore, there has been a problem that the entire surface to be processed cannot be processed at once, or it takes an enormous amount of time to process the entire surface.

またこの状態で、プラズマ生成領域を拡大するために高周波電力を大きくするなどした場合、未生成領域へプラズマが充分に拡散される前に放電モードがアーク放電に移行してしまうといった問題があった。   In this state, if the high frequency power is increased to expand the plasma generation region, there is a problem that the discharge mode shifts to arc discharge before the plasma is sufficiently diffused to the non-generation region. .

これに対し、図20のようにガス噴出面7を被処理面と同等の形状に作製することで、被処理面を一括で均一に処理することが可能となる。しかしこの場合、被処理面の形状に合わせてガス噴出板6を作製しなければならないが、ガス噴出板6は、基本的にセラミックで作製されるため、曲面やテーパを要する加工にはコストがかかるといった問題があった。   On the other hand, as shown in FIG. 20, by manufacturing the gas ejection surface 7 in the same shape as the surface to be processed, the surface to be processed can be uniformly processed at once. In this case, however, the gas ejection plate 6 must be manufactured in accordance with the shape of the surface to be processed. However, since the gas ejection plate 6 is basically made of ceramic, it is costly for processing that requires a curved surface or a taper. There was such a problem.

さらに、生産現場で被処理面の形状が複数種類ある場合、それぞれの形状に合わせたガス噴出板を作製する必要があり、さらにコストがかかるといった問題があった。   Furthermore, when there are a plurality of types of surfaces to be processed at the production site, there is a problem that it is necessary to produce gas ejection plates in accordance with the respective shapes, which further increases costs.

本発明は、上記従来の問題点に鑑み、平面でない被処理面に対して、全面を均一に一括処理することで処理時間を短縮できるプラズマ処理方法および装置、また簡易的な構造あるいは汎用性の高い構造とすることで装置コストを低減できるプラズマ処理装置を提供することを目的としている。   In view of the above-mentioned conventional problems, the present invention provides a plasma processing method and apparatus capable of reducing the processing time by uniformly processing the entire surface of a non-planar surface to be processed, and has a simple structure or versatility. An object of the present invention is to provide a plasma processing apparatus capable of reducing the apparatus cost by adopting a high structure.

本願発明のプラズマ処理方法は、一対の電極間の少なくとも一方に誘電体を設け、一方の電極上に少なくとも非平面形状の被処理面を有する被処理物を載置し、前記電極間にヘリウムガスを含む処理用ガスを供給しつつ電極間に高周波電力を供給することで、電極間に大気圧近傍の圧力下でプラズマを生成させ、前記被処理物を処理するプラズマ処理方法において、前記処理用ガスは酸素ガスを含み同径の複数系統から前記電極間に供給され、1つ以上のガス系統でガスの供給流量が異なり、かつ、前記被処理面と電極とのなす距離が大きい領域ではプラズマ状態の前記ヘリウムガスの流速を大きくし、前記被処理面と電極とのなす距離が小さい領域ではプラズマ状態の前記ヘリウムガスの流速を小さくすると共に前記被処理面と電極とのなす距離が大きい領域に比べ前記酸素ガスに対する前記ヘリウムガスの濃度も個々のガス系統より供給する前記酸素ガスと前記ヘリウムガスの比を変化させることで小さくし前記被処理物を処理することを特徴とする。 In the plasma processing method of the present invention, a dielectric is provided on at least one of a pair of electrodes, an object to be processed having at least a non-planar surface to be processed is placed on one electrode, and a helium gas is interposed between the electrodes. In the plasma processing method for processing the object to be processed, plasma is generated between the electrodes under a pressure near atmospheric pressure by supplying a high-frequency power between the electrodes while supplying a processing gas containing the processing gas. Gas is supplied between the electrodes from a plurality of systems having the same diameter and containing oxygen gas, and plasma is supplied in a region where the gas supply flow rate is different in one or more gas systems and the distance between the surface to be processed and the electrode is large. increasing the flow rate of the helium gas in the state, the I and the surface to be processed and the electrode while reducing the flow rate of the helium gas in the plasma state in the region makes the distance is small between the surface to be processed and the electrodes Characterized in that the distance is the processing the density of the helium gas also by varying the ratio of the oxygen gas and the helium gas supplied from each of the gas system small comb before serial processing object against oxygen gas than in larger area And

このような構成により、平面でない被処理面に対して、全面を一括処理することで処理時間を短縮することが実現可能となる。   With such a configuration, it is possible to reduce the processing time by collectively processing the entire surface to be processed which is not flat.

以上のように、本発明のプラズマ処理方法および装置によれば、平面でない被処理面に対して、全面を均一に一括処理することで処理時間を短縮できるプラズマ処理方法および装置、また、簡易的な構造あるいは汎用性の高い構造とすることで装置コストを低減できるプラズマ処理装置を提供することが可能となる。   As described above, according to the plasma processing method and apparatus of the present invention, a plasma processing method and apparatus capable of reducing the processing time by uniformly processing the entire surface of a non-planar surface to be processed, and a simple process. It becomes possible to provide a plasma processing apparatus capable of reducing the apparatus cost by adopting a simple structure or a highly versatile structure.

(実施の形態1)
以下、本発明の第1実施形態について、図1を参照して説明する。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.

図1は本発明の第1実施形態におけるプラズマ処理装置の構成を示す断面図である。図1において、上部電極1と下部電極2を設け、下部電極2上に異形被処理物11−aを載置可能な構造となっており、処理ガス供給装置4−a乃至4−f、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−aに対して処理ガスを供給可能な構造となっている。また、上部電極1には高周波電源9を連結し下部電極2を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−aの被処理面にプラズマ10を生成できる。   FIG. 1 is a cross-sectional view showing the configuration of the plasma processing apparatus in the first embodiment of the present invention. In FIG. 1, an upper electrode 1 and a lower electrode 2 are provided, and a deformed object 11-a can be placed on the lower electrode 2, and processing gas supply devices 4-a to 4-f, gas The odd-shaped object 11-a passes through the flow path 5, the gas ejection plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It is the structure which can supply process gas with respect to. In addition, a high frequency power source 9 is connected to the upper electrode 1 and the lower electrode 2 is set to the ground potential so that a high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-a.

なお、処理ガス供給装置4−a乃至4−fは、各々が独立したガス経路となっており、供給するガス種、ガス比率およびガス流量を別々に設定できる構造となっている。   Each of the processing gas supply devices 4-a to 4-f is an independent gas path, and has a structure in which the type of gas to be supplied, the gas ratio, and the gas flow rate can be set separately.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−aを載置し、表1に示すように各々の処理ガス供給装置より供給する流量を変えて処理ガスを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−aをプラズマ処理した。   As an example of the plasma processing by this apparatus, a deformed object 11-a is placed on the lower electrode 2, and the processing gas is supplied by changing the flow rate supplied from each processing gas supply apparatus as shown in Table 1. By supplying power of 80 W from the high frequency power source 9, a plasma 10 is generated between the upper electrode 1 and the object to be processed 3, and a deformed object 11-a having a photoresist film coated on the surface to be processed is plasma. Processed.

Figure 0005119580
Figure 0005119580

なお、図1では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは1.5mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−aにおける被処理面の最大高低差Mは1mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−aの外周はΦ40mmとした。   Although simplified in FIG. 1, in practice, the size of the opening of the gas ejection port 8 is Φ0.5 mm, and several tens to several hundreds are provided in the gas ejection plate 6. Further, the gas reservoir height K which is a part of the gas flow path 5 is 1.5 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-a. Was 1 mm, the distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer periphery of the irregularly processed object 11-a was Φ40 mm.

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−aの被処理面全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it is possible to generate the plasma 10 over the entire surface to be processed of the irregular workpiece 11-a.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.33μm/min、面内均一性は±4.2%と非常に高速で均一性よくプラズマ処理することができた。   With an average of 5 points, the ashing rate was 1.33 μm / min, and the in-plane uniformity was ± 4.2%, so that the plasma treatment could be performed at a very high speed with good uniformity.

(実施の形態2)
以下、本発明の第2実施形態について説明する。
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described.

図2は本発明の第2実施形態におけるプラズマ処理装置の構成を示す断面図である。図2において、上部電極1と下部電極2を設け、下部電極2上に異形被処理物11−bを載置可能な構造となっており、処理ガス供給装置4−a乃至4−f、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−bに対して処理ガスを供給可能な構造となっている。また、上部電極1には高周波電源9を連結し下部電極2を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−bの被処理面にプラズマ10を生成できる。   FIG. 2 is a cross-sectional view showing the configuration of the plasma processing apparatus in the second embodiment of the present invention. In FIG. 2, an upper electrode 1 and a lower electrode 2 are provided, and a deformed object 11-b can be placed on the lower electrode 2, and processing gas supply devices 4-a to 4-f, gas The odd-shaped workpiece 11-b passes through the flow path 5, the gas ejection plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It is the structure which can supply process gas with respect to. In addition, a high frequency power source 9 is connected to the upper electrode 1 and the lower electrode 2 is set to the ground potential so that a high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-b.

なお、処理ガス供給装置4−a乃至4−fは、各々が独立したガス経路となっており、供給するガス種、ガス比率およびガス流量を別々に設定できる構造となっている。   Each of the processing gas supply devices 4-a to 4-f is an independent gas path, and has a structure in which the type of gas to be supplied, the gas ratio, and the gas flow rate can be set separately.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−bを載置し、表2に示すように各々の処理ガス供給装置より供給する流量を変えて処理ガスを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−bをプラズマ処理した。   As an example of plasma processing by this apparatus, a deformed object 11-b is placed on the lower electrode 2, and processing gas is supplied by changing the flow rate supplied from each processing gas supply apparatus as shown in Table 2. By supplying power of 80 W from the high frequency power source 9, plasma 10 is generated between the upper electrode 1 and the object 3 to be processed, and the deformed object 11-b having a photoresist film coated on the surface to be processed is plasma. Processed.

Figure 0005119580
Figure 0005119580

なお、図2では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは1.5mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−bにおける被処理面の最大高低差Mは1.5mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−bの外周はΦ40mmとした。   Although simplified in FIG. 2, in practice, the size of the opening of the gas ejection port 8 is Φ0.5 mm, and several tens to several hundreds are provided in the gas ejection plate 6. Further, the gas reservoir height K which is a part of the gas flow path 5 is 1.5 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-b. Was 1.5 mm, the distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer periphery of the irregularly processed object 11-b was Φ40 mm.

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−aの被処理面全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it is possible to generate the plasma 10 over the entire surface to be processed of the irregular workpiece 11-a.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.50μm/min、面内均一性は±4.9%と非常に高速で均一性よくプラズマ処理することができた。   With an average of five points, the ashing rate was 1.50 μm / min, and the in-plane uniformity was ± 4.9%, so that the plasma treatment could be performed at a very high speed with good uniformity.

(実施の形態3)
以下、本発明の第3実施形態について、図1を参照して説明する。
(Embodiment 3)
Hereinafter, a third embodiment of the present invention will be described with reference to FIG.

本発明の第3実施形態におけるプラズマ処理装置の構成、および異形被処理物11−aは第1発明と同様のものを用いた。   The configuration of the plasma processing apparatus in the third embodiment of the present invention and the modified workpiece 11-a were the same as those in the first invention.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−aを載置し、表3に示すように各々の処理ガス供給装置より供給するガス比を変えて処理ガスを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−aをプラズマ処理した。   As an example of the plasma processing by this apparatus, an irregularly shaped object 11-a is placed on the lower electrode 2, and the processing gas is supplied by changing the gas ratio supplied from each processing gas supply apparatus as shown in Table 3. Then, by supplying power of 80 W from the high-frequency power source 9, a plasma 10 is generated between the upper electrode 1 and the object to be processed 3, and the deformed object 11-a having a photoresist film applied on the surface to be processed is obtained. Plasma treatment was performed.

Figure 0005119580
Figure 0005119580

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−aの被処理面全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it is possible to generate the plasma 10 over the entire surface to be processed of the irregular workpiece 11-a.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.22μm/min、面内均一性は±3.2%と非常に高速で均一性よくプラズマ処理することができた。   With an average of 5 points, the ashing rate was 1.22 μm / min and the in-plane uniformity was ± 3.2%, which was a very high speed and could be plasma-processed with good uniformity.

(実施の形態4)
以下、本発明の第4実施形態について、図2を参照して説明する。
(Embodiment 4)
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.

本発明の第4実施形態におけるプラズマ処理装置の構成、および異形被処理物11−bは第2発明と同様のものを用いた。   The configuration of the plasma processing apparatus in the fourth embodiment of the present invention and the modified workpiece 11-b were the same as those in the second invention.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−bを載置し、表4に示すように各々の処理ガス供給装置より供給するガス比を変えて処理ガスを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−bをプラズマ処理した。   As an example of the plasma processing by this apparatus, the deformed object 11-b is placed on the lower electrode 2, and the processing gas is supplied by changing the gas ratio supplied from each processing gas supply apparatus as shown in Table 4. Then, by supplying power of 80 W from the high-frequency power source 9, a plasma 10 is generated between the upper electrode 1 and the object to be processed 3, and the deformed object 11-b having a photoresist film coated on the surface to be processed is obtained. Plasma treatment was performed.

Figure 0005119580
Figure 0005119580

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−bの被処理面全面でプラズマ10を生成することが可能となった。   With the above plasma processing method and apparatus, it has become possible to generate the plasma 10 over the entire surface of the irregularly processed object 11-b.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.39μm/min、面内均一性は±3.6%と非常に高速で均一性よくプラズマ処理することができた。   With an average of five points, the ashing rate was 1.39 μm / min, and the in-plane uniformity was ± 3.6%, so that the plasma treatment could be performed at a very high speed with good uniformity.

以上、第1乃至第4実施形態で示したように、本論の課題が改善された理由は、電極間ギャップ(もしくは電極と被処理物間のギャップ)の大きい箇所でも充分なプラズマ密度を確保でき、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたからである。   As described above, as described in the first to fourth embodiments, the reason for the improvement of the subject is that a sufficient plasma density can be secured even in a portion where the gap between electrodes (or the gap between the electrode and the object to be processed) is large. This is because the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be treated which is not flat.

ここで、大気圧近傍の圧力下で、かつ被処理面内において電極間ギャップ(もしくは電極と被処理物間のギャップ)が異なる場合に、プラズマ密度の均一性が保たれない原因は次の2点であると考えられる。   Here, when the gap between the electrodes (or the gap between the electrode and the object to be processed) is different under the pressure near the atmospheric pressure and within the surface to be processed, there are the following two reasons why the uniformity of the plasma density cannot be maintained. It is considered a point.

▲1▼パッシェンの法則で知られるように、電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほど放電開始電圧が高くなり、プラズマ密度が低下する。   (1) As is known from Paschen's law, the larger the interelectrode gap (or the gap between the electrode and the object to be processed), the higher the discharge start voltage and the lower the plasma density.

▲2▼電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほどアーク放電に移行しやすく、均一なプラズマが生成し難い。   (2) The larger the gap between electrodes (or the gap between the electrode and the object to be processed), the easier it is to shift to arc discharge, and it is difficult to generate uniform plasma.

これらより、電極間ギャップの大きい箇所では大気圧下でも放電開始電圧が低く、他のガス種に比べてプラズマ密度を向上させやすい不活性ガスのガス密度を高くすることが必要となる。   From these, it is necessary to increase the gas density of the inert gas which is easy to improve the plasma density as compared with other gas types because the discharge starting voltage is low even at atmospheric pressure at a location where the gap between the electrodes is large.

また、電極間ギャップの大きい箇所では電極表面を冷却することで、アーク放電への移行を抑制することが必要となる。   Moreover, it is necessary to suppress the transition to arc discharge by cooling the electrode surface at a location where the gap between the electrodes is large.

したがって本実施形態のように、電極間ギャップの大きい箇所でガス流速(ここではガス流量)もしくは不活性ガス濃度を大きくすることにより、不活性ガス濃度の向上および電極表面の冷却に寄与し、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたと考えられる。   Therefore, as in this embodiment, by increasing the gas flow rate (in this case, the gas flow rate) or the inert gas concentration at a location where the gap between the electrodes is large, it contributes to the improvement of the inert gas concentration and the cooling of the electrode surface. It is considered that the plasma treatment could be carried out with a uniform plasma density over the entire surface to be treated.

(実施の形態5)
以下、本発明の第5実施形態について、図3および図4を参照して説明する。
(Embodiment 5)
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIGS. 3 and 4.

図3は本発明の第5実施形態におけるプラズマ処理装置の構成を示す断面図である。図3において、上部電極1と下部電極2を設け、下部電極2上に異形被処理物11−aを載置可能な構造となっており、処理ガス供給装置4、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−aに対して処理ガスを供給可能な構造となっている。また、上部電極1には高周波電源9を連結し下部電極2を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−aの被処理面にプラズマ10を生成できる。   FIG. 3 is a cross-sectional view showing the configuration of the plasma processing apparatus in the fifth embodiment of the present invention. In FIG. 3, an upper electrode 1 and a lower electrode 2 are provided, and a modified object 11-a can be placed on the lower electrode 2. A processing gas supply device 4, a gas flow path 5, and a gas jet The processing gas is supplied to the deformed object 11-a through the plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It has a structure that can be supplied. In addition, a high frequency power source 9 is connected to the upper electrode 1 and the lower electrode 2 is set to the ground potential so that a high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-a.

図4はガス噴出口8を拡大したものを示す。図4のようにガス噴出口8は、中央部から外周部に向かって段階的に直径、かつ開口断面積を大きくしている。このガス噴出口8の直径および開口断面積の値を表5に示す。   FIG. 4 shows an enlarged view of the gas outlet 8. As shown in FIG. 4, the gas ejection port 8 has a diameter and an opening cross-sectional area that are gradually increased from the central portion toward the outer peripheral portion. Table 5 shows values of the diameter and opening cross-sectional area of the gas outlet 8.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−aを載置し、処理ガス供給装置4よりHe=970sccm、O2=30sccmを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−aをプラズマ処理した。 As an example of plasma processing by this apparatus, an irregular workpiece 11-a is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied from the processing gas supply device 4, and power is supplied from the high-frequency power source 9. By supplying 80 W, plasma 10 was generated between the upper electrode 1 and the workpiece 3, and the irregular workpiece 11-a having a photoresist film applied on the surface to be processed was plasma-treated.

Figure 0005119580
Figure 0005119580

なお、図3および図4では簡略化しているが、実際には、ガス噴出口8はガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは20mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−aにおける被処理面の最大高低差Mは1mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−aの外周はΦ40mmとした。   Although simplified in FIGS. 3 and 4, in practice, several tens to several hundreds of gas ejection ports 8 are provided in the gas ejection plate 6. Moreover, the gas reservoir height K which is a part of the gas flow path 5 is 20 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-a is 1 mm. The distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer periphery of the irregularly processed object 11-a was Φ40 mm.

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−aの被処理面全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it is possible to generate the plasma 10 over the entire surface to be processed of the irregular workpiece 11-a.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.20μm/min、面内均一性は±6.1%と非常に高速で均一性よくプラズマ処理することができた。   With an average of five points, the ashing rate was 1.20 μm / min, and the in-plane uniformity was ± 6.1%, so that the plasma treatment could be performed at a very high speed with good uniformity.

(実施の形態6)
以下、本発明の第6実施形態について、図5および図6を参照して説明する。
(Embodiment 6)
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIGS. 5 and 6.

図5は本発明の第6実施形態におけるプラズマ処理装置の構成を示す断面図である。図5において、上部電極1と下部電極2を設け、下部電極2上に異形被処理物11−aを載置可能な構造となっており、処理ガス供給装置4、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−aに対して処理ガスを供給可能な構造となっている。また、上部電極1には高周波電源9を連結し下部電極2を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−aの被処理面にプラズマ10を生成できる。   FIG. 5 is a cross-sectional view showing the configuration of the plasma processing apparatus in the sixth embodiment of the present invention. In FIG. 5, an upper electrode 1 and a lower electrode 2 are provided, and a deformed object 11-a can be placed on the lower electrode 2, and a processing gas supply device 4, a gas flow path 5 and a gas jet are formed. The processing gas is supplied to the deformed object 11-a through the plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It has a structure that can be supplied. In addition, a high frequency power source 9 is connected to the upper electrode 1 and the lower electrode 2 is set to the ground potential so that a high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-a.

図6はガス流路5のガス噴出板6近傍を拡大したものを示す。図6のようにガス流路5の流路長さは、中央部から外周部に向かって段階的に小さくした。このガス流路5の流路長さの値を表6に示す。   FIG. 6 shows an enlarged view of the vicinity of the gas ejection plate 6 in the gas flow path 5. As shown in FIG. 6, the channel length of the gas channel 5 was reduced stepwise from the center toward the outer periphery. Table 6 shows values of the channel length of the gas channel 5.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−aを載置し、処理ガス供給装置4よりHe=970sccm、O2=30sccmを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−aをプラズマ処理した。 As an example of plasma processing by this apparatus, an irregular workpiece 11-a is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied from the processing gas supply device 4, and power is supplied from the high-frequency power source 9. By supplying 80 W, plasma 10 was generated between the upper electrode 1 and the workpiece 3, and the irregular workpiece 11-a having a photoresist film applied on the surface to be processed was plasma-treated.

Figure 0005119580
Figure 0005119580

なお、図5および図6では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは20mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−aにおける被処理面の最大高低差Mは1mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−aの外周はΦ40mmとした。   Although simplified in FIGS. 5 and 6, in practice, the size of the opening of the gas outlet 8 is Φ0.5 mm, and several tens to several hundreds are provided in the gas ejection plate 6. Moreover, the gas reservoir height K which is a part of the gas flow path 5 is 20 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-a is 1 mm. The distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer periphery of the irregularly processed object 11-a was Φ40 mm.

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−aの被処理面全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it is possible to generate the plasma 10 over the entire surface to be processed of the irregular workpiece 11-a.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.25μm/min、面内均一性は±5.5%と非常に高速で均一性よくプラズマ処理することができた。   With an average of five points, the ashing rate was 1.25 μm / min, the in-plane uniformity was ± 5.5%, and the plasma treatment was very fast and uniform.

以上、第5乃至第6実施形態で示したように、本論の課題が改善された理由は、電極間ギャップ(もしくは電極と被処理物間のギャップ)の大きい箇所でも充分なプラズマ密度を確保でき、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたからである。   As described above in the fifth to sixth embodiments, the reason for the improvement of the subject of this paper is that a sufficient plasma density can be secured even in a portion where the gap between electrodes (or the gap between the electrode and the object to be processed) is large. This is because the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be treated which is not flat.

ここで、大気圧近傍の圧力下で、かつ被処理面内において電極間ギャップ(もしくは電極と被処理物間のギャップ)が異なる場合に、プラズマ密度の均一性が保たれない原因は次の2点であると考えられる。   Here, when the gap between the electrodes (or the gap between the electrode and the object to be processed) is different under the pressure near the atmospheric pressure and within the surface to be processed, there are the following two reasons why the uniformity of the plasma density cannot be maintained. It is considered a point.

▲1▼パッシェンの法則で知られるように、電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほど放電開始電圧が高くなり、プラズマ密度が低下する。   (1) As is known from Paschen's law, the larger the interelectrode gap (or the gap between the electrode and the object to be processed), the higher the discharge start voltage and the lower the plasma density.

▲2▼電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほどアーク放電に移行しやすく、均一なプラズマが生成し難い。   (2) The larger the gap between electrodes (or the gap between the electrode and the object to be processed), the easier it is to shift to arc discharge, and it is difficult to generate uniform plasma.

これらより、電極間ギャップの大きい箇所では大気圧下でも放電開始電圧が低く、他のガス種に比べてプラズマ密度を向上させやすい不活性ガスのガス密度を高くすることが必要となる。   From these, it is necessary to increase the gas density of the inert gas which is easy to improve the plasma density as compared with other gas types because the discharge starting voltage is low even at atmospheric pressure at a location where the gap between the electrodes is large.

したがって本実施形態のように、電極間ギャップの大きい箇所でガス噴出口の開口断面積を大きくする、またはガス流路長さを小さくしてコンダクタンスを大きくすることにより、結果としてガス流量もしくは不活性ガス濃度を大きくすることができ、不活性ガス濃度の向上および電極表面の冷却に寄与し、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたと考えられる。   Therefore, as in this embodiment, increasing the conductance by increasing the opening cross-sectional area of the gas outlet at a location where the gap between the electrodes is large or reducing the gas flow path length to increase the gas flow rate or inertness as a result. The gas concentration can be increased, which contributes to the improvement of the inert gas concentration and the cooling of the electrode surface, and it is considered that the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be processed which is not flat.

(実施の形態7)
以下、本発明の第7実施形態について、図7を参照して説明する。
(Embodiment 7)
Hereinafter, a seventh embodiment of the present invention will be described with reference to FIG.

図7は本発明の第7実施形態におけるプラズマ処理装置の構成を示す断面図である。図7において、上部電極1と下部電極2を設け、下部電極2上に異形被処理物11−aを載置可能な構造となっており、処理ガス供給装置4、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−aに対して処理ガスを供給可能な構造となっている。   FIG. 7 is a sectional view showing the structure of the plasma processing apparatus in the seventh embodiment of the present invention. In FIG. 7, an upper electrode 1 and a lower electrode 2 are provided, and a modified object 11-a can be placed on the lower electrode 2, and a processing gas supply device 4, a gas flow path 5, and a gas jet The processing gas is supplied to the deformed object 11-a through the plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It has a structure that can be supplied.

なお、上部電極1にはモーターユニット12を連結し、被処理物に対して上部電極1かつガス噴出板6を回転運動できるようになっている。   A motor unit 12 is connected to the upper electrode 1 so that the upper electrode 1 and the gas ejection plate 6 can rotate with respect to the object to be processed.

また、下部電極2には高周波電源9を連結し上部電極1を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−aの被処理面にプラズマ10を生成できる。   Further, the high frequency power source 9 is connected to the lower electrode 2 and the upper electrode 1 is set to the ground potential so that high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-a.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−aを載置し、処理ガス供給装置よりAr=985sccm、O2=15sccmを供給し、モーターユニット12により上部電極1かつガス噴出板6を120rpmで回転させつつ、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−aをプラズマ処理した。 As an example of plasma processing by this apparatus, a deformed object 11-a is placed on the lower electrode 2, Ar = 985 sccm and O 2 = 15 sccm are supplied from the processing gas supply device, and the upper electrode 1 is supplied by the motor unit 12. In addition, by supplying 80 W of power from the high frequency power supply 9 while rotating the gas ejection plate 6 at 120 rpm, plasma 10 is generated between the upper electrode 1 and the object 3 to be processed, and a photoresist film is formed on the surface to be processed. The applied deformed workpiece 11-a was plasma treated.

なお、図7では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは2.5mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−aにおける被処理面の最大高低差Mは1mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−aの外周はΦ40mmとした。   Although simplified in FIG. 7, the size of the opening of the gas ejection port 8 is actually Φ0.5 mm, and several tens to several hundreds are provided in the gas ejection plate 6. Further, the gas reservoir height K which is a part of the gas flow path 5 is 2.5 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-a. Was 1 mm, the distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer periphery of the irregularly processed object 11-a was Φ40 mm.

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−aの被処理面のほぼ全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it has become possible to generate the plasma 10 over substantially the entire surface to be processed of the irregular workpiece 11-a.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは0.92μm/min、面内均一性は±7.1%と非常に高速で均一性よくプラズマ処理することができた。   With an average of 5 points, the ashing rate was 0.92 μm / min, and the in-plane uniformity was ± 7.1%, so that the plasma treatment could be performed at a very high speed with good uniformity.

(実施の形態8)
以下、本発明の第8実施形態について、図8を参照して説明する。
(Embodiment 8)
Hereinafter, an eighth embodiment of the present invention will be described with reference to FIG.

図8は本発明の第8実施形態におけるプラズマ処理装置の構成を示す断面図である。図8において、上部電極1と下部電極2を設け、下部電極2上に異形被処理物11−bを載置可能な構造となっており、処理ガス供給装置4、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−bに対して処理ガスを供給可能な構造となっている。   FIG. 8 is a sectional view showing the structure of the plasma processing apparatus in the eighth embodiment of the present invention. In FIG. 8, an upper electrode 1 and a lower electrode 2 are provided, and a workpiece 11-b having a deformed shape can be placed on the lower electrode 2, and a processing gas supply device 4, a gas flow path 5, and a gas jet The processing gas is supplied to the deformed workpiece 11-b through the plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It has a structure that can be supplied.

なお、上部電極1にはモーターユニット12を連結し、被処理物に対して上部電極1かつガス噴出板6を回転運動できるようになっている。   A motor unit 12 is connected to the upper electrode 1 so that the upper electrode 1 and the gas ejection plate 6 can rotate with respect to the object to be processed.

また、下部電極2には高周波電源9を連結し上部電極1を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−bの被処理面にプラズマ10を生成できる。   Further, the high frequency power source 9 is connected to the lower electrode 2 and the upper electrode 1 is set to the ground potential so that high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-b.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−bを載置し、処理ガス供給装置よりHe=970sccm、O2=30sccmを供給し、モーターユニット12により上部電極1かつガス噴出板6を120rpmで回転させつつ、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−bをプラズマ処理した。 As an example of the plasma processing by this apparatus, a deformed object 11-b is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied from the processing gas supply device, and the upper electrode 1 is supplied by the motor unit 12. In addition, by supplying 80 W of power from the high frequency power supply 9 while rotating the gas ejection plate 6 at 120 rpm, plasma 10 is generated between the upper electrode 1 and the object 3 to be processed, and a photoresist film is formed on the surface to be processed. The applied deformed workpiece 11-b was plasma treated.

なお、図8では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは2.5mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−aにおける被処理面の最大高低差Mは1.5mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−aの外周はΦ40mmとした。   Although simplified in FIG. 8, in practice, the size of the opening of the gas ejection port 8 is Φ0.5 mm, and several tens to several hundreds are provided in the gas ejection plate 6. Further, the gas reservoir height K which is a part of the gas flow path 5 is 2.5 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-a. Was 1.5 mm, the distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer periphery of the irregularly processed object 11-a was Φ40 mm.

なお、図11は第1乃至第8実施形態および第1乃至第3の従来例でのガス噴出面7の平面の模式図を示したものであり、各実施形態および従来例におけるプラズマ処理装置の断面図は、図中AAにおける断面図である。   FIG. 11 is a schematic plan view of the gas ejection surface 7 in the first to eighth embodiments and the first to third conventional examples. The plasma processing apparatus in each embodiment and the conventional example is shown in FIG. The cross-sectional view is a cross-sectional view at AA in the drawing.

上記のプラズマ処理方法および装置により、異形被処理物11−bの被処理面のほぼ全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it has become possible to generate the plasma 10 over almost the entire surface to be processed of the deformed object 11-b.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは1.00μm/min、面内均一性は±7.8%と非常に高速で均一性よくプラズマ処理することができた。   With an average of five points, the ashing rate was 1.00 μm / min, and the in-plane uniformity was ± 7.8%, so that the plasma treatment could be performed at a very high speed with good uniformity.

以上、第7乃至第8実施形態で示したように、本論の課題が改善された理由は、電極間ギャップ(もしくは電極と被処理物間のギャップ)の大きい箇所でも充分なプラズマ密度を確保でき、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたからである。   As described above in the seventh to eighth embodiments, the reason for the improvement of the subject of this paper is that a sufficient plasma density can be secured even in a portion where the gap between electrodes (or the gap between the electrode and the object to be processed) is large. This is because the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be treated which is not flat.

ここで、大気圧近傍の圧力下で、かつ被処理面内において電極間ギャップ(もしくは電極と被処理物間のギャップ)が異なる場合に、プラズマ密度の均一性が保たれない原因は次の2点であると考えられる。   Here, when the gap between the electrodes (or the gap between the electrode and the object to be processed) is different under the pressure near the atmospheric pressure and within the surface to be processed, there are the following two reasons why the uniformity of the plasma density cannot be maintained. It is considered a point.

▲1▼パッシェンの法則で知られるように、電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほど放電開始電圧が高くなり、プラズマ密度が低下する。   (1) As is known from Paschen's law, the larger the interelectrode gap (or the gap between the electrode and the object to be processed), the higher the discharge start voltage and the lower the plasma density.

▲2▼電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほどアーク放電に移行しやすく、均一なプラズマが生成し難い。   (2) The larger the gap between electrodes (or the gap between the electrode and the object to be processed), the easier it is to shift to arc discharge, and it is difficult to generate uniform plasma.

これらより、電極間ギャップの大きい箇所では大気圧下でも放電開始電圧が低く、他のガス種に比べてプラズマ密度を向上させやすい不活性ガスのガス密度を高くすることが必要となる。   From these, it is necessary to increase the gas density of the inert gas which is easy to improve the plasma density as compared with other gas types because the discharge starting voltage is low even at atmospheric pressure at a location where the gap between the electrodes is large.

したがって本実施形態のように、中央部の電極間ギャップが小さい場合は比重の大きい不活性ガス(例えばArガス)とそれより比重の小さい反応ガス(例えばO2ガス)を組み合わせ、中央部の電極間ギャップが大きい場合は比重の小さい不活性ガス(例えばHeガス)とそれより比重の大きい反応ガス(例えばO2ガス)を組み合わせ、上部電極かつガス噴出板を回転させて処理ガスを遠心分離させることにより、結果として電極間ギャップの大きい箇所で不活性ガス濃度を大きくすることができ、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたと考えられる。 Therefore, as in the present embodiment, when the gap between the electrodes at the center is small, an inert gas (for example, Ar gas) having a high specific gravity and a reaction gas (for example, O 2 gas) having a specific gravity lower than that are combined. When the gap is large, an inert gas (eg, He gas) having a low specific gravity and a reactive gas (eg, O 2 gas) having a higher specific gravity are combined, and the processing gas is centrifuged by rotating the upper electrode and the gas ejection plate. As a result, it can be considered that the inert gas concentration can be increased at a portion where the gap between the electrodes is large, and the plasma processing can be performed in a state where the plasma density is uniform over the entire surface to be processed which is not flat.

(実施の形態9)
以下、本発明の第9実施形態について、図9および図10を参照して説明する。
(Embodiment 9)
The ninth embodiment of the present invention will be described below with reference to FIGS.

図9は本発明の第9実施形態におけるプラズマ処理装置の構成を示す断面図である。図9において、上部電極1と下部電極2を設け、下部電極2上に異形被処理物11−bを載置可能な構造となっており、処理ガス供給装置4、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−bに対して処理ガスを供給可能な構造となっている。また、上部電極1には高周波電源9を連結し下部電極2を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−bの被処理面にプラズマ10を生成できる。   FIG. 9 is a sectional view showing the structure of the plasma processing apparatus in the ninth embodiment of the present invention. In FIG. 9, an upper electrode 1 and a lower electrode 2 are provided, and a deformed object 11-b can be placed on the lower electrode 2, and a processing gas supply device 4, a gas flow path 5, and a gas jet The processing gas is supplied to the deformed workpiece 11-b through the plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. It has a structure that can be supplied. In addition, a high frequency power source 9 is connected to the upper electrode 1 and the lower electrode 2 is set to the ground potential so that a high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-b.

図10はガス噴出面7の平面の模式図を示す。図10のようにガス噴出口8を中央部で密にし、外周部で粗にして、ガス噴出面内で中央部から外周部に向かって段階的に疎になるようにしている。また、第9実施形態におけるプラズマ処理装置の断面図は、図中BBにおける断面図である。   FIG. 10 is a schematic plan view of the gas ejection surface 7. As shown in FIG. 10, the gas outlets 8 are made dense at the central portion and roughened at the outer peripheral portion so as to gradually become sparse from the central portion toward the outer peripheral portion in the gas ejection surface. Moreover, the cross-sectional view of the plasma processing apparatus in the ninth embodiment is a cross-sectional view taken along the line BB in the drawing.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−bを載置し、処理ガス供給装置4よりHe=970sccm、O2=30sccmを供給し、高周波電源9より電力を80W供給することで、上部電極1と被処理物3の間にプラズマ10を生成し、被処理面上にフォトレジスト膜を塗布した異形被処理物11−bをプラズマ処理した。 As an example of plasma processing by this apparatus, a deformed object 11-b is placed on the lower electrode 2, He = 970 sccm and O 2 = 30 sccm are supplied from the processing gas supply device 4, and power is supplied from the high-frequency power source 9. By supplying 80 W, plasma 10 was generated between the upper electrode 1 and the workpiece 3, and the irregular workpiece 11-b having a photoresist film applied on the surface to be processed was plasma-treated.

なお、図9および図10では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出口8はガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは20mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−bにおける被処理面の最大高低差Mは1mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−bの外周はΦ40mmとした。   Although simplified in FIGS. 9 and 10, the size of the opening of the gas outlet 8 is actually Φ0.5 mm, and the gas outlet 8 is in the gas ejection plate 6 from several tens to several hundreds. Provided. Moreover, the gas reservoir height K which is a part of the gas flow path 5 is 20 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-b is 1 mm. The distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer periphery of the irregularly processed object 11-b was Φ40 mm.

上記のプラズマ処理方法および装置により、異形被処理物11−bの被処理面全面でプラズマ10を生成することが可能となった。   With the above plasma processing method and apparatus, it has become possible to generate the plasma 10 over the entire surface of the irregularly processed object 11-b.

処理速度と面内均一性を評価するために、被処理面の中央部とΦ38mm位置の外周部4点の計5点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 5 points, that is, the central part of the surface to be processed and the outer peripheral part at the φ38 mm position.

5点測定の平均で、アッシングレートは0.93μm/min、面内均一性は±4.9%と非常に高速で均一性よくプラズマ処理することができた。   With an average of 5 points, the ashing rate was 0.93 μm / min, and the in-plane uniformity was ± 4.9%, so that the plasma treatment could be performed at a very high speed with good uniformity.

以上、第9の実施形態で示したように、本論の課題が改善された理由は、電極間ギャップ(もしくは電極と被処理物間のギャップ)の大きい箇所でも充分なプラズマ密度を確保でき、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたからである。   As described above in the ninth embodiment, the reason why the subject of the present invention has been improved is that a sufficient plasma density can be secured even in a portion where the gap between electrodes (or the gap between the electrode and the object to be processed) is large, This is because the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be treated.

ここで、大気圧近傍の圧力下で、かつ被処理面内において電極間ギャップ(もしくは電極と被処理物間のギャップ)が異なる場合に、プラズマ密度の均一性が保たれない原因は次の2点であると考えられる。   Here, when the gap between the electrodes (or the gap between the electrode and the object to be processed) is different under the pressure near the atmospheric pressure and within the surface to be processed, there are the following two reasons why the uniformity of the plasma density cannot be maintained. It is considered a point.

▲1▼パッシェンの法則で知られるように、電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほど放電開始電圧が高くなり、プラズマ密度が低下する。   (1) As is known from Paschen's law, the larger the interelectrode gap (or the gap between the electrode and the object to be processed), the higher the discharge start voltage and the lower the plasma density.

▲2▼電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほどアーク放電に移行しやすく、均一なプラズマが生成し難い。   (2) The larger the gap between electrodes (or the gap between the electrode and the object to be processed), the easier it is to shift to arc discharge, and it is difficult to generate uniform plasma.

これらより、電極間ギャップの大きい箇所では大気圧下でも放電開始電圧が低く、他のガス種に比べてプラズマ密度を向上させやすい不活性ガスのガス密度を高くすることが必要となる。   From these, it is necessary to increase the gas density of the inert gas which is easy to improve the plasma density as compared with other gas types because the discharge starting voltage is low even at atmospheric pressure at a location where the gap between the electrodes is large.

したがって本実施形態のように、電極間ギャップの大きい箇所でガス噴出口の数を密にして、電極間ギャップの小さい箇所でガス噴出口の数を疎にすることにより、結果としてガス流量もしくは不活性ガス濃度を大きくすることができ、不活性ガス濃度の向上および電極表面の冷却に寄与し、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたと考えられる。   Therefore, as in the present embodiment, the number of gas outlets is made dense at locations where the interelectrode gap is large and the number of gas jets is made sparse at locations where the interelectrode gap is small. It is considered that the active gas concentration can be increased, contributes to the improvement of the inert gas concentration and the cooling of the electrode surface, and the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be processed which is not flat.

(実施の形態10)
以下、本発明の第10実施形態について、図12乃至図14を参照して説明する。
(Embodiment 10)
Hereinafter, a tenth embodiment of the present invention will be described with reference to FIGS.

図12は本発明の第10実施形態におけるプラズマ処理装置の構成を示す断面図である。図12において、上部電極1と下部電極2を設け、下部電極2上に、反りを有するガラス基板としての異形被処理物11−cを載置可能な構造となっており、処理ガス供給装置4、ガス流路5およびガス噴出板6と、ガス噴出板6上のガス噴出面7と、ガス噴出面7の面内に設けた複数のガス噴出口8を経由して、異形被処理物11−cに対して処理ガスを供給可能な構造となっている。また、上部電極1には高周波電源9を連結し下部電極2を接地電位とすることで両電極間に高周波電力を印加可能な構造となっており、高周波電源9より電力を供給することで、異形被処理物11−cの被処理面にプラズマ10を生成できる。この時、プラズマ10より発生する光を、下部電極2に設けた透光窓13を介して検出器14で検出でき、発光分光ユニット15により発光強度を算出することができる。また、レール16上で検出器14を走査し、任意の場所で発光を検出することにより、ある特定の波長の発光強度分布を得ることができる。   FIG. 12 is a sectional view showing the structure of the plasma processing apparatus in the tenth embodiment of the present invention. In FIG. 12, an upper electrode 1 and a lower electrode 2 are provided, and a modified object 11-c as a glass substrate having warpage can be placed on the lower electrode 2. The deformed workpiece 11 passes through the gas flow path 5 and the gas ejection plate 6, the gas ejection surface 7 on the gas ejection plate 6, and the plurality of gas ejection ports 8 provided in the surface of the gas ejection surface 7. The structure is such that process gas can be supplied to -c. In addition, a high frequency power source 9 is connected to the upper electrode 1 and the lower electrode 2 is set to the ground potential so that a high frequency power can be applied between both electrodes. By supplying power from the high frequency power source 9, Plasma 10 can be generated on the surface to be processed of the deformed object 11-c. At this time, the light generated from the plasma 10 can be detected by the detector 14 through the transparent window 13 provided in the lower electrode 2, and the emission intensity can be calculated by the emission spectroscopic unit 15. Further, the light intensity distribution of a specific wavelength can be obtained by scanning the detector 14 on the rail 16 and detecting light emission at an arbitrary place.

また、図12に示したプラズマ処理装置は、ガス流路5において、第1実施形態で用いたプラズマ処理装置と異なっており、各ガス流路5−a乃至5−fの間に仕切りを備えることで各ガス供給装置4から供給される処理ガスが、ガス噴出口8より噴出されるまで混合されない構造になっている。   The plasma processing apparatus shown in FIG. 12 is different from the plasma processing apparatus used in the first embodiment in the gas flow path 5 and includes a partition between the gas flow paths 5-a to 5-f. Thus, the processing gas supplied from each gas supply device 4 is not mixed until it is ejected from the gas ejection port 8.

なお、図13は第10実施形態でのガス噴出面7の平面の模式図を示したものであり、ほぼ正方形となっている。また図12は、図中CCにおける断面図である。   FIG. 13 is a schematic plan view of the gas ejection surface 7 in the tenth embodiment, which is substantially square. FIG. 12 is a cross-sectional view taken along CC in the drawing.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−cを載置し、全ての処理ガス供給装置4よりHe=1000sccmを供給し、高周波電源9より電力を120W供給することで、上部電極1と被処理物3の間にプラズマ10を生成した。次に、検出器14をX方向走査しつつ、プラズマ10からの発光のうち706nmの波長を検出し、図14に示すような検出時間に対する波長706nmの発光強度分布を描いた。さらに、図14の凸型の分布をフラットにするように、ガス供給装置4から供給するガス流量を表7に示す値に再調節し(この時にHeガスだけでなく、O2ガスも供給し)、被処理面上にフォトレジスト膜を塗布した異形被処理物11−cをプラズマ処理した。このようにして、検出器14がX方向に走査した後でZ方向にある距離だけ移動し、再びX方向に走査して、発光強度分布を描いてガス流量を再調節するという動作を繰り返すことで、ガス流量を再調整しつつ異形被処理物11−cの全面をプラズマ処理した。 As an example of plasma processing by this apparatus, an irregular workpiece 11-c is placed on the lower electrode 2, He = 1000 sccm is supplied from all the processing gas supply devices 4, and 120 W is supplied from the high frequency power supply 9. Thus, a plasma 10 was generated between the upper electrode 1 and the workpiece 3. Next, while scanning the detector 14 in the X direction, a wavelength of 706 nm was detected from the light emitted from the plasma 10, and a light emission intensity distribution of a wavelength of 706 nm with respect to the detection time as shown in FIG. 14 was drawn. Furthermore, the gas flow rate supplied from the gas supply device 4 is readjusted to the values shown in Table 7 so that the convex distribution in FIG. 14 is flat (at this time, not only He gas but also O 2 gas is supplied). ) Plasma processing was performed on the deformed object 11-c having a photoresist film coated on the surface to be processed. In this way, after the detector 14 scans in the X direction, the detector 14 moves by a certain distance in the Z direction, scans in the X direction again, and draws the emission intensity distribution to readjust the gas flow rate. Then, the entire surface of the irregular workpiece 11-c was plasma-treated while the gas flow rate was readjusted.

Figure 0005119580
Figure 0005119580

なお、図12および図13では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出口8はガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは20mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−cにおける被処理面の最大高低差Mは0.5mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−cの外形は□100mmとした。   Although simplified in FIGS. 12 and 13, in practice, the size of the opening of the gas outlet 8 is set to Φ0.5 mm, and the gas outlet 8 is located in the gas ejection plate 6 from several tens to several hundreds. Provided. Further, the gas reservoir height K which is a part of the gas flow path 5 is 20 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-c is 0. 0.5 mm, the distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer shape of the irregularly processed object 11-c was □ 100 mm.

上記のプラズマ処理方法および装置により、異形被処理物11−cの被処理面全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it has become possible to generate the plasma 10 over the entire surface to be processed of the irregularly processed object 11-c.

処理速度と面内均一性を評価するために、被処理面の中央部と□90mm位置の外周部8点の計9点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 9 points, that is, the central part of the surface to be processed and the outer peripheral part at the □ 90 mm position.

9点測定の平均で、アッシングレートは1.28μm/min、面内均一性は±2.9%と非常に高速で均一性よくプラズマ処理することができた。   With an average of 9 points, the ashing rate was 1.28 μm / min, the in-plane uniformity was ± 2.9%, and the plasma treatment was very fast and uniform.

以上、第10実施形態で示したように、本論の課題が改善された理由は、電極間ギャップ(もしくは電極と被処理物間のギャップ)の大きい箇所でも充分なプラズマ密度を確保でき、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたからである。   As described above in the tenth embodiment, the reason why the subject of the present invention has been improved is that a sufficient plasma density can be secured even in a portion where the gap between electrodes (or the gap between the electrode and the object to be processed) is large, and it is not a plane. This is because the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be processed.

ここで、大気圧近傍の圧力下で、かつ被処理面内において電極間ギャップ(もしくは電極と被処理物間のギャップ)が異なる場合に、プラズマ密度の均一性が保たれない原因は次の2点であると考えられる。   Here, when the gap between the electrodes (or the gap between the electrode and the object to be processed) is different under the pressure near the atmospheric pressure and within the surface to be processed, there are the following two reasons why the uniformity of the plasma density cannot be maintained. It is considered a point.

▲1▼パッシェンの法則で知られるように、電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほど放電開始電圧が高くなり、プラズマ密度が低下する。   (1) As is known from Paschen's law, the larger the interelectrode gap (or the gap between the electrode and the object to be processed), the higher the discharge start voltage and the lower the plasma density.

▲2▼電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほどアーク放電に移行しやすく、均一なプラズマが生成し難い。   (2) The larger the gap between electrodes (or the gap between the electrode and the object to be processed), the easier it is to shift to arc discharge, and it is difficult to generate uniform plasma.

これらより、電極間ギャップの大きい箇所では大気圧下でも放電開始電圧が低く、他のガス種に比べてプラズマ密度を向上させやすい不活性ガスのガス密度を高くすることが必要となる。   From these, it is necessary to increase the gas density of the inert gas which is easy to improve the plasma density as compared with other gas types because the discharge starting voltage is low even at atmospheric pressure at a location where the gap between the electrodes is large.

したがって本実施形態のように、電極間ギャップの大きい箇所でガス噴出口の数を密にして、電極間ギャップの小さい箇所でガス噴出口の数を疎にすることにより、結果としてガス流量もしくは不活性ガス濃度を大きくすることができ、不活性ガス濃度の向上および電極表面の冷却に寄与し、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたと考えられる。   Therefore, as in the present embodiment, the number of gas outlets is made dense at locations where the interelectrode gap is large and the number of gas jets is made sparse at locations where the interelectrode gap is small. It is considered that the active gas concentration can be increased, contributes to the improvement of the inert gas concentration and the cooling of the electrode surface, and the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be processed which is not flat.

(実施の形態11)
以下、本発明の第11実施形態について、図12および図15を参照して説明する。
(Embodiment 11)
Hereinafter, an eleventh embodiment of the present invention will be described with reference to FIGS.

本発明の第11実施形態におけるプラズマ処理装置の構成は第10実施形態と同等のものであり、その断面図を図12に示す。また、図12における装置の説明は第10実施形態と同等であるため、ここでは省略する。   The configuration of the plasma processing apparatus in the eleventh embodiment of the present invention is the same as that of the tenth embodiment, and a cross-sectional view thereof is shown in FIG. Further, the description of the apparatus in FIG. 12 is the same as that of the tenth embodiment, and is omitted here.

また、図15は第11実施形態でのガス噴出面7の平面の模式図を示したものであり、第10実施形態と異なり、Z方向の長さを小さくした長方形となっている。なお図12は、図中DDにおける断面図である。   FIG. 15 is a schematic plan view of the gas ejection surface 7 in the eleventh embodiment. Unlike the tenth embodiment, the shape is a rectangle with a reduced length in the Z direction. FIG. 12 is a cross-sectional view taken along DD in the drawing.

この装置によるプラズマ処理の一例として、下部電極2上に異形被処理物11−cを載置し、全ての処理ガス供給装置4よりHe=1000sccmを供給し、高周波電源9より電力を120W供給することで、上部電極1と被処理物3の間にプラズマ10を生成した。次に、第10実施形態と同様にして検出器14をX方向走査しつつ、プラズマ10からの発光のうち706nmの波長を検出し、検出時間に対する波長706nmの発光強度分布を描いた。さらに、発光強度分布をフラットにするように、ガス供給装置4から供給するガス流量を表8に示す値に再調節し(この時にHeガスだけでなく、O2ガスも供給し)、被処理面上にフォトレジスト膜を塗布した異形被処理物11−cをプラズマ処理した。なお本発明では、上記のような発光強度の検出とガス流量の再調節を定期的に繰り返しつつ、プラズマ源を10mm/sの速度でZ方向に移動することで、異形被処理物11−cの全面をプラズマ処理した。 As an example of plasma processing by this apparatus, an irregular workpiece 11-c is placed on the lower electrode 2, He = 1000 sccm is supplied from all the processing gas supply devices 4, and 120 W is supplied from the high frequency power supply 9. Thus, a plasma 10 was generated between the upper electrode 1 and the workpiece 3. Next, while the detector 14 was scanned in the X direction in the same manner as in the tenth embodiment, a wavelength of 706 nm was detected from the light emitted from the plasma 10, and an emission intensity distribution with a wavelength of 706 nm with respect to the detection time was drawn. Further, the gas flow rate supplied from the gas supply device 4 is readjusted to the values shown in Table 8 so that the emission intensity distribution is flat (at this time, not only He gas but also O 2 gas is supplied), Plasma processing was performed on the irregular workpiece 11-c having a photoresist film coated on the surface. In the present invention, the irregular workpiece 11-c is obtained by moving the plasma source in the Z direction at a speed of 10 mm / s while periodically detecting the emission intensity and re-adjusting the gas flow rate as described above. The entire surface of was plasma treated.

Figure 0005119580
Figure 0005119580

なお、図12および図15では簡略化しているが、実際には、ガス噴出口8の開口部のサイズをΦ0.5mmとしており、ガス噴出口8はガス噴出板6内に数十から数百個設けている。また、ガス流路5の一部であるガス溜り高さKは20mm、ガス噴出板6の厚さLは0.75mm、異形被処理物11−cにおける被処理面の最大高低差Mは0.5mm、ガス噴出面7と被処理面のなす距離Nは0.5mmとし、異形被処理物11−cの外形は□100mmとした。   Although simplified in FIGS. 12 and 15, in practice, the size of the opening of the gas outlet 8 is set to Φ0.5 mm, and the gas outlet 8 is in the gas ejection plate 6 from several tens to several hundreds. Provided. Further, the gas reservoir height K which is a part of the gas flow path 5 is 20 mm, the thickness L of the gas ejection plate 6 is 0.75 mm, and the maximum height difference M of the surface to be processed in the deformed object 11-c is 0. 0.5 mm, the distance N between the gas ejection surface 7 and the surface to be processed was 0.5 mm, and the outer shape of the irregularly processed object 11-c was □ 100 mm.

上記のプラズマ処理方法および装置により、異形被処理物11−cの被処理面全面でプラズマ10を生成することが可能となった。   With the plasma processing method and apparatus described above, it has become possible to generate the plasma 10 over the entire surface to be processed of the irregularly processed object 11-c.

処理速度と面内均一性を評価するために、被処理面の中央部と□90mm位置の外周部8点の計9点において、フォトレジストのアッシングレートを測定した。   In order to evaluate the processing speed and in-plane uniformity, the ashing rate of the photoresist was measured at a total of 9 points, that is, the central part of the surface to be processed and the outer peripheral part at the □ 90 mm position.

9点測定の平均で、アッシングレートは1.33μm/min、面内均一性は±3.8%と非常に高速で均一性よくプラズマ処理することができた。   With an average of 9 points, the ashing rate was 1.33 μm / min, and the in-plane uniformity was ± 3.8%, so that the plasma treatment could be performed at a very high speed with good uniformity.

また、プラズマ源を移動させつつプラズマ処理を実施しても、被処理物表面を均一にプラズマ処理することができた。   Further, even if the plasma treatment was performed while moving the plasma source, the surface of the workpiece could be uniformly plasma treated.

以上、第11実施形態で示したように、本論の課題が改善された理由は、電極間ギャップ(もしくは電極と被処理物間のギャップ)の大きい箇所でも充分なプラズマ密度を確保でき、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたからである。   As described above in the eleventh embodiment, the reason why the subject of the present invention has been improved is that a sufficient plasma density can be ensured even in a portion where the gap between electrodes (or the gap between the electrode and the object to be processed) is large, and it is not flat This is because the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be processed.

ここで、大気圧近傍の圧力下で、かつ被処理面内において電極間ギャップ(もしくは電極と被処理物間のギャップ)が異なる場合に、プラズマ密度の均一性が保たれない原因は次の2点であると考えられる。   Here, when the gap between the electrodes (or the gap between the electrode and the object to be processed) is different under the pressure near the atmospheric pressure and within the surface to be processed, there are the following two reasons why the uniformity of the plasma density cannot be maintained. It is considered a point.

▲1▼パッシェンの法則で知られるように、電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほど放電開始電圧が高くなり、プラズマ密度が低下する。   (1) As is known from Paschen's law, the larger the interelectrode gap (or the gap between the electrode and the object to be processed), the higher the discharge start voltage and the lower the plasma density.

▲2▼電極間ギャップ(もしくは電極と被処理物間のギャップ)が大きいほどアーク放電に移行しやすく、均一なプラズマが生成し難い。   (2) The larger the gap between electrodes (or the gap between the electrode and the object to be processed), the easier it is to shift to arc discharge, and it is difficult to generate uniform plasma.

これらより、電極間ギャップの大きい箇所では大気圧下でも放電開始電圧が低く、他のガス種に比べてプラズマ密度を向上させやすい不活性ガスのガス密度を高くすることが必要となる。   From these, it is necessary to increase the gas density of the inert gas which is easy to improve the plasma density as compared with other gas types because the discharge starting voltage is low even at atmospheric pressure at a location where the gap between the electrodes is large.

したがって本実施形態のように、電極間ギャップの大きい箇所でガス噴出口の数を密にして、電極間ギャップの小さい箇所でガス噴出口の数を疎にすることにより、結果としてガス流量もしくは不活性ガス濃度を大きくすることができ、不活性ガス濃度の向上および電極表面の冷却に寄与し、平面でない被処理面全面にわたって、プラズマ密度が均一な状態でプラズマ処理を実施できたと考えられる。   Therefore, as in the present embodiment, the number of gas outlets is made dense at locations where the interelectrode gap is large and the number of gas jets is made sparse at locations where the interelectrode gap is small. It is considered that the active gas concentration can be increased, contributes to the improvement of the inert gas concentration and the cooling of the electrode surface, and the plasma treatment can be performed in a state where the plasma density is uniform over the entire surface to be processed which is not flat.

以上、本発明の実施形態において、被処理物として中央部にただ1つの極大もしくは極小を有する場合のみ例示したが、これに限らず、極大および極小部が中心から外れていても本実施形態と同等の効果を得ることができる。また、極大および極小部がただ1つである場合、簡単で安価な部材で装置を構成できる点で好ましいが、これに限らず、極大および極小部が複数ある場合においても本実施形態と同等の効果を得ることができる。さらに、被処理面が平面であっても本発明を用いることができる。この場合、被処理物面を所望の分布を持って不均一に処理することに格別の効果を奏する。   As described above, in the embodiment of the present invention, only the case where there is only one maximum or minimum in the central portion as the object to be processed is illustrated, but not limited to this, even if the maximum and minimum portions are deviated from the center. The same effect can be obtained. Further, when there is only one local maximum and local minimum, it is preferable in that the apparatus can be configured with simple and inexpensive members. However, the present invention is not limited to this, and even when there are a plurality of local maximums and local minimums, the present embodiment is equivalent to this embodiment. An effect can be obtained. Further, the present invention can be used even when the surface to be processed is a flat surface. In this case, there is a special effect in processing the surface of the object to be processed non-uniformly with a desired distribution.

また、本発明の実施形態において、不活性ガス濃度が95%以上の処理ガスの場合のみ例示したが、不活性ガスが少なすぎるとプラズマ密度の著しい低下を招くため、不活性ガス濃度は概ね50%以上がよい。また、不活性ガスが多すぎると化学反応性に乏しくなり処理速度が著しく低下するため、不活性ガス濃度は概ね99.9%以下がよい。   Further, in the embodiment of the present invention, only the case of a processing gas having an inert gas concentration of 95% or more has been illustrated, but if the amount of the inert gas is too small, the plasma density is significantly lowered, and therefore the inert gas concentration is approximately 50%. % Or more is good. Further, if there is too much inert gas, the chemical reactivity becomes poor and the processing speed is remarkably reduced. Therefore, the inert gas concentration is preferably about 99.9% or less.

本発明の実施形態において、ガス噴出口の開口断面積の大きさが0.031mm2から0.503mm2の範囲で例示したが、断面積が大きすぎると面内で流量差および濃度差を生成させることが困難になるため、開口断面積は概ね4.000mm2以下がよい。また、小さすぎると作製段階での加工が困難になるため、開口断面積は概ね0.007mm2以上がよい。 In the embodiment of the present invention, the size of the opening cross-sectional area of the gas outlet is exemplified in the range of 0.031 mm 2 to 0.503 mm 2 , but if the cross-sectional area is too large, a flow rate difference and a concentration difference are generated in the plane. Therefore, the opening cross-sectional area is preferably about 4.000 mm 2 or less. Moreover, since the process in a manufacture stage will become difficult when it is too small, about 0.007 mm < 2 > or more is good for an opening cross-sectional area.

また、本発明の実施形態において、ガス流路の長さが1.0mmから3.0mmの範囲で例示したが、長過ぎると面内で流量差および濃度差を生成させることが困難になるため、ガス流路長さは概ね10.0mm以下がよい。また、小さすぎると作製段階での加工が困難になるため、ガス流路長さは概ね0.5mm以上がよい。   In the embodiment of the present invention, the length of the gas flow path is exemplified in the range of 1.0 mm to 3.0 mm. However, if the length is too long, it is difficult to generate a flow rate difference and a concentration difference in the plane. The gas flow path length is preferably about 10.0 mm or less. Moreover, since the process in a manufacture stage will become difficult if it is too small, about 0.5 mm or more is good for gas channel length.

また、本発明の実施形態において、被処理面がフォトレジストの場合のみ例示したが、これに限らず、有機物を主成分とした物質の除去やクリーニング、シリコンやシリコン酸化物などの無機物や金属物質の加工、成膜および表面処理など、様々な被処理面へのプラズマ処理に対して本発明と同等の効果を得ることができる。   Further, in the embodiment of the present invention, the case where the surface to be processed is a photoresist has been exemplified. However, the present invention is not limited to this, and the removal and cleaning of substances mainly composed of organic substances, inorganic substances such as silicon and silicon oxide, and metal substances The same effects as those of the present invention can be obtained for plasma processing on various surfaces to be processed such as processing, film formation and surface treatment.

また、本発明の実施形態において、被処理物として中央部にただ1つの極大もしくは極小を有する形状を例示したが、これは例えば、MgやAlからなる金属成形品、および樹脂や酸化物からなる光学成形品などの金型に対して格別の効果を奏する。また、部品を実装する前後のプリント基板、特にはんだ接合部の表面処理、あるいは、デジタルマイクロミラーデバイスやシリコンマイクといったMEMSデバイス、さらには、薄型プリント基板やディスプレイパネルのように比較的平面度の低い被処理物(反り、ねじれの大きい被処理物)などにも適用でき、本発明と同等の効果を得ることができる。   Further, in the embodiment of the present invention, the shape having only one maximum or minimum in the central portion is exemplified as the object to be processed, but this is, for example, a metal molded product made of Mg or Al, and a resin or oxide. It has a special effect on molds such as optical molded products. Also, printed circuit boards before and after mounting components, especially surface treatment of solder joints, MEMS devices such as digital micromirror devices and silicon microphones, and relatively low flatness such as thin printed boards and display panels The present invention can also be applied to an object to be processed (an object to be processed having a large amount of warping or twisting), and the same effect as the present invention can be obtained.

なお、本発明の実施形態において、ガス噴出面と被処理面のなす距離(電極と被処理物間のギャップ)を0.5mm以上の場合を例示したが、一般的に大気圧下で安定なプラズマを生成するためには、この距離は概ね0.05mm以上5mm以下がよい。さらに、本発明の実施形態において、被処理面の高低差が1.0mmから1.5mmの範囲のみ例示したが、高低差が小さすぎると本発明を用いなくとも均一な処理が実現できるため、被処理面の高低差は概ね0.3mm以上がよい。また大きすぎるとプラズマを安定に生成し難くなるため、概ね5mm以下がよい。   In the embodiment of the present invention, the case where the distance between the gas ejection surface and the surface to be processed (gap between the electrode and the object to be processed) is 0.5 mm or more is exemplified, but generally stable at atmospheric pressure. In order to generate plasma, this distance is preferably about 0.05 mm to 5 mm. Furthermore, in the embodiment of the present invention, the height difference of the surface to be processed is exemplified only in the range of 1.0 mm to 1.5 mm, but if the height difference is too small, uniform processing can be realized without using the present invention. The height difference of the surface to be processed is preferably about 0.3 mm or more. Moreover, since it will become difficult to produce | generate plasma stably when too large, 5 mm or less is good in general.

なお、本発明の実施形態において、プラズマからの発光をモニタリングし、ガス流量を再調節して均一なプラズマを生成する際に、基板が凸型に反った被処理物のみについて例示したが、これに限らない。発光分光法などでプラズマ密度分布に相当する量をモニタリングすることと、ガス流量、流速および濃度などを独立した複数ガス系統で調節することにより、様々な形状の被処理物に対して、迅速に、均一なプラズマを生成することができ、本発明と同等の効果を得ることができる。   In the embodiment of the present invention, when the emission from the plasma is monitored and the gas flow rate is readjusted to generate a uniform plasma, only the workpiece whose substrate is warped is illustrated. Not limited to. By monitoring the amount corresponding to the plasma density distribution using emission spectroscopy, etc., and adjusting the gas flow rate, flow rate, concentration, etc., with multiple independent gas systems, it is possible to quickly process objects of various shapes. Uniform plasma can be generated, and the same effect as the present invention can be obtained.

なお、本発明の実施形態において、プラズマからの発光をモニタリングし、ガス流量を再調節して均一なプラズマを生成する際に、基板がガラスである場合についてのみ例示したが、これに限らない。例えば、波長150nmから950nmの間のいずれかの波長における光の透過率が30%以上であれば、本発明と同等の効果を得ることができる。なおこの場合、特定の波長しか透過しないような材料においても、その波長を放出しうるガスを選定し、不活性ガスに添加することでプラズマからの光として検出できる。   In the embodiment of the present invention, when the emission from the plasma is monitored and the gas flow rate is readjusted to generate a uniform plasma, only the case where the substrate is glass is exemplified, but the present invention is not limited thereto. For example, if the light transmittance at any wavelength between 150 nm and 950 nm is 30% or more, the same effect as the present invention can be obtained. In this case, even a material that transmits only a specific wavelength can be detected as light from plasma by selecting a gas that can emit that wavelength and adding it to an inert gas.

なお、本発明の実施形態においてプラズマからの発光をモニタリングし、ガス流量を再調節して均一なプラズマを生成する際に、プラズマ源が平行平板電極による容量結合型の場合についてのみ例示したが、これに限らず他の方式のプラズマ源を用いてもよい。例えば、図16に示すような、コイル電極による誘導結合型においても、ノズルを複数用いて、且つ各々のノズルのガス流量、流速および濃度を独立に調節することにより、様々な形状の被処理物に対して、迅速に、均一なプラズマを生成することができ、本発明と同等の効果を得ることができる。   In the embodiment of the present invention, when the emission from the plasma is monitored and the gas flow rate is readjusted to generate a uniform plasma, only the case where the plasma source is a capacitively coupled type using parallel plate electrodes is illustrated. However, the present invention is not limited to this, and other types of plasma sources may be used. For example, even in an inductive coupling type using a coil electrode as shown in FIG. 16, by using a plurality of nozzles and independently adjusting the gas flow rate, flow rate and concentration of each nozzle, various shapes of objects to be processed On the other hand, uniform plasma can be generated quickly, and the same effect as the present invention can be obtained.

本発明のプラズマ処理方法および装置は、平面でない被処理面に対して、全面を均一に一括処理することで処理時間を短縮でき、簡易的な構造あるいは汎用性の高い構造とすることで装置コストを低減できるプラズマ処理方法および装置を提供でき、プリント基板、電子部品、半導体、光学部品関連、ディスプレイ、とりわけ被処理面が平面でない被処理物に対して、被処理面を均一にエッチング、成膜および表面処理するといった用途にも適用できる。   The plasma processing method and apparatus of the present invention can reduce the processing time by uniformly processing the entire surface of a non-planar surface to be processed, and can reduce the apparatus cost by providing a simple structure or a highly versatile structure. Plasma processing method and apparatus can be provided, and the processing surface can be uniformly etched and formed on a printed circuit board, an electronic component, a semiconductor, an optical component, a display, particularly a processing object whose processing surface is not flat. It can also be applied to applications such as surface treatment.

本発明の第1および第3実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 1st and 3rd embodiment of this invention 本発明の第2および第4実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 2nd and 4th embodiment of this invention 本発明の第5実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 5th Embodiment of this invention. 本発明の第5実施形態におけるプラズマ処理装置の断面拡大図The cross-sectional enlarged view of the plasma processing apparatus in 5th Embodiment of this invention. 本発明の第6実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 6th Embodiment of this invention 本発明の第6実施形態におけるプラズマ処理装置の断面拡大図The cross-sectional enlarged view of the plasma processing apparatus in 6th Embodiment of this invention. 本発明の第7実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 7th Embodiment of this invention 本発明の第8実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 8th Embodiment of this invention. 本発明の第9実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 9th Embodiment of this invention 本発明の第9実施形態におけるガス噴出面の模式図The schematic diagram of the gas ejection surface in 9th Embodiment of this invention 本発明の実施形態および従来例におけるガス噴出面の模式図Schematic diagram of gas ejection surface in embodiment and conventional example of the present invention 本発明の第10実施形態におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in 10th Embodiment of this invention. 本発明の第10実施形態におけるガス噴出面の模式図The schematic diagram of the gas ejection surface in 10th Embodiment of this invention 本発明の第10実施形態における発光強度分布を示す図The figure which shows the light emission intensity distribution in 10th Embodiment of this invention. 本発明の第11実施形態におけるガス噴出面の模式図The schematic diagram of the gas ejection surface in 11th Embodiment of this invention 誘導結合型プラズマ源におけるプラズマ処理装置の断面図Cross section of plasma processing equipment in inductively coupled plasma source 第1の従来例におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in the first conventional example 第2の従来例におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in a 2nd prior art example 第3の従来例におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in a 3rd prior art example 第4の従来例におけるプラズマ処理装置の断面図Sectional drawing of the plasma processing apparatus in a 4th prior art example

符号の説明Explanation of symbols

1 上部電極
2 下部電極
3 被処理物
4 処理ガス供給装置
5 ガス流路
6 ガス噴出板
7 ガス噴出面
8 ガス噴出口
9 高周波電源
10 プラズマ
11 異形被処理物
12 モーターユニット
DESCRIPTION OF SYMBOLS 1 Upper electrode 2 Lower electrode 3 Processed object 4 Process gas supply apparatus 5 Gas flow path 6 Gas ejection plate 7 Gas ejection surface 8 Gas ejection port 9 High frequency power supply 10 Plasma 11 Deformed object 12 Motor unit

Claims (1)

一対の電極間の少なくとも一方に誘電体を設け、一方の電極上に少なくとも非平面形状の被処理面を有する被処理物を載置し、前記電極間にヘリウムガスを含む処理用ガスを供給しつつ電極間に高周波電力を供給することで、電極間に大気圧近傍の圧力下でプラズマを生成させ、前記被処理物を処理するプラズマ処理方法において、
前記処理用ガスは酸素ガスを含み同径の複数系統から前記電極間に供給され、1つ以上のガス系統でガスの供給流量が異なり、かつ、前記被処理面と電極とのなす距離が大きい領域ではプラズマ状態の前記ヘリウムガスの流速を大きくし、前記被処理面と電極とのなす距離が小さい領域ではプラズマ状態の前記ヘリウムガスの流速を小さくすると共に前記被処理面と電極とのなす距離が大きい領域に比べ前記酸素ガスに対する前記ヘリウムガスの濃度も個々のガス系統より供給する前記酸素ガスと前記ヘリウムガスの比を変化させることで小さくし前記被処理物を処理すること
を特徴とするプラズマ処理方法。
A dielectric is provided on at least one of the pair of electrodes, an object to be processed having at least a non-planar surface to be processed is placed on one of the electrodes, and a processing gas containing helium gas is supplied between the electrodes. In the plasma processing method of generating plasma under pressure near the atmospheric pressure between the electrodes by supplying high-frequency power between the electrodes while processing the object to be processed,
The processing gas contains oxygen gas and is supplied between the electrodes from a plurality of systems having the same diameter, the gas supply flow rate is different in one or more gas systems, and the distance between the surface to be processed and the electrode is large In the region, the flow rate of the helium gas in the plasma state is increased, and in the region where the distance between the surface to be processed and the electrode is small, the flow rate of the helium gas in the plasma state is decreased and the distance between the surface to be processed and the electrode and wherein processing the oxygen concentration of the helium gas to the gas also by changing the ratio of the oxygen gas supplied from individual gas system the helium gas small comb before serial processing object compared to the area is large A plasma processing method.
JP2005245597A 2005-08-26 2005-08-26 Plasma processing method Expired - Fee Related JP5119580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245597A JP5119580B2 (en) 2005-08-26 2005-08-26 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245597A JP5119580B2 (en) 2005-08-26 2005-08-26 Plasma processing method

Publications (3)

Publication Number Publication Date
JP2007059306A JP2007059306A (en) 2007-03-08
JP2007059306A5 JP2007059306A5 (en) 2008-06-26
JP5119580B2 true JP5119580B2 (en) 2013-01-16

Family

ID=37922596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245597A Expired - Fee Related JP5119580B2 (en) 2005-08-26 2005-08-26 Plasma processing method

Country Status (1)

Country Link
JP (1) JP5119580B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143689B2 (en) * 2007-09-27 2013-02-13 シャープ株式会社 Vapor phase growth apparatus and semiconductor device manufacturing method
JP5088159B2 (en) * 2008-02-08 2012-12-05 ウシオ電機株式会社 Plasma generator
JP6030994B2 (en) * 2013-05-15 2016-11-24 東京エレクトロン株式会社 Plasma etching apparatus and plasma etching method
JP6485270B2 (en) * 2015-07-28 2019-03-20 三菱マテリアル株式会社 Electrode plate for plasma processing equipment
CN113451168A (en) * 2020-04-14 2021-09-28 重庆康佳光电技术研究院有限公司 Dry etching gas control system
EP4299789A1 (en) * 2021-02-26 2024-01-03 FUJIFILM Corporation Film-forming method and atmospheric pressure plasma film-forming device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245029A (en) * 1985-08-22 1987-02-27 Matsushita Electric Ind Co Ltd Forming and removing device of thin film
JP2594448B2 (en) * 1988-01-25 1997-03-26 東京エレクトロン株式会社 Method for etching the object to be processed
JP2652676B2 (en) * 1988-08-10 1997-09-10 住友電気工業株式会社 Thin film forming equipment
JPH02198138A (en) * 1989-01-27 1990-08-06 Nec Corp Electrode plate of parallel plate type dry etching apparatus
JPH06204181A (en) * 1992-12-29 1994-07-22 Ibiden Co Ltd Electrode plate for plasma etching
JPH07326491A (en) * 1994-05-31 1995-12-12 Hitachi Ltd Plasma measuring device
JP3181501B2 (en) * 1995-10-31 2001-07-03 東京エレクトロン株式会社 Processing device and processing method
JPH1064831A (en) * 1996-08-20 1998-03-06 Fujitsu Ltd Chemical vapor deposition apparatus
KR100252210B1 (en) * 1996-12-24 2000-04-15 윤종용 Dry etching facility for manufacturing semiconductor devices
JPH1116888A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Etching device and operation method therefor
KR100279963B1 (en) * 1997-12-30 2001-04-02 윤종용 Gas diffuser for semiconductor device manufacturing and reactor installed
JP2001176851A (en) * 1999-12-15 2001-06-29 Matsushita Electric Ind Co Ltd Dry etching system and method for detecting end point of dry etching
JP3440941B2 (en) * 2000-06-06 2003-08-25 松下電工株式会社 Plasma processing apparatus and plasma processing method
JP2002038274A (en) * 2000-07-26 2002-02-06 Toppan Printing Co Ltd Plasma treatment apparatus
JP3890590B2 (en) * 2002-04-26 2007-03-07 コニカミノルタホールディングス株式会社 Discharge treatment apparatus and discharge treatment method
JP4427974B2 (en) * 2003-06-12 2010-03-10 コニカミノルタホールディングス株式会社 Thin film forming method, thin film forming apparatus, and highly functional thin film
JP2005174879A (en) * 2003-12-15 2005-06-30 Matsushita Electric Works Ltd Plasma processing method and plasma processing apparatus

Also Published As

Publication number Publication date
JP2007059306A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
KR101485140B1 (en) Plasma processing apparatus
TW202138617A (en) Substrate support plate, substrate processing apparatus, and substrate processing method
US7988814B2 (en) Plasma processing apparatus, plasma processing method, focus ring, and focus ring component
JP5119580B2 (en) Plasma processing method
JP5214451B2 (en) Apparatus and method for removing fluorinated polymer from a substrate
JP4956080B2 (en) Plasma etching equipment
US10418224B2 (en) Plasma etching method
JP7458195B2 (en) Mounting table, plasma processing device, and cleaning processing method
KR20120022705A (en) Plasma etching apparatus
KR101898079B1 (en) Plasma processing apparatus
JP2002217171A (en) Etching equipment
KR20120046072A (en) Showerhead configurations for plasma reactors
JP2009238837A (en) Plasma processing apparatus and method
KR20080000112A (en) Upper electrode of dry etching apparatus and dry etching apparatus having the same
US7686971B2 (en) Plasma processing apparatus and method
KR100803825B1 (en) Plasma etching system
US20170229309A1 (en) Flow distribution plate for surface fluorine reduction
KR101138609B1 (en) Plasma generation apparatus for making radical effectively
JP2017054943A (en) Plasma processing device
JP2007184163A (en) Plasma processing apparatus
KR100725614B1 (en) Plasma processing apparatus
JP3927863B2 (en) Atmospheric pressure plasma processing equipment
KR101262904B1 (en) Plasma etching apparatus
KR102575677B1 (en) Plasma Etching Apparatus for Etching Multiple Composite Materials
JP2005302319A (en) Plasma treatment device and plasma treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees