JP5116267B2 - Method for producing aluminum alloy plate for lithographic printing plate - Google Patents

Method for producing aluminum alloy plate for lithographic printing plate Download PDF

Info

Publication number
JP5116267B2
JP5116267B2 JP2006209962A JP2006209962A JP5116267B2 JP 5116267 B2 JP5116267 B2 JP 5116267B2 JP 2006209962 A JP2006209962 A JP 2006209962A JP 2006209962 A JP2006209962 A JP 2006209962A JP 5116267 B2 JP5116267 B2 JP 5116267B2
Authority
JP
Japan
Prior art keywords
rolling
amount
temperature
plate
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006209962A
Other languages
Japanese (ja)
Other versions
JP2007092170A (en
Inventor
彰男 上杉
宏和 澤田
博史 扇
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, Sumitomo Light Metal Industries Ltd filed Critical Fujifilm Corp
Priority to JP2006209962A priority Critical patent/JP5116267B2/en
Priority to CN2006800319491A priority patent/CN101253279B/en
Priority to PCT/JP2006/316437 priority patent/WO2007026574A1/en
Priority to US11/990,905 priority patent/US20090252642A1/en
Publication of JP2007092170A publication Critical patent/JP2007092170A/en
Application granted granted Critical
Publication of JP5116267B2 publication Critical patent/JP5116267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、平版印刷版用アルミニウム合金板、とくに電気化学的エッチング処理により表面を均一に粗面化することができるとともに、優れた強度と耐熱軟化性をそなえた平版印刷版用アルミニウム合金板の製造方法に関する。 The present invention relates to an aluminum alloy plate for a lithographic printing plate, particularly an aluminum alloy plate for a lithographic printing plate that can be uniformly roughened by an electrochemical etching process and has excellent strength and heat softening resistance . It relates to a manufacturing method.

平版印刷版(オフセット印刷版を含む)の支持体としては、一般にアルミニウム合金板が使用されており、支持体については、感光膜の密着性向上と非画像部の保水性向上の観点から粗面化処理が行われる。粗面化処理法としては、従来、ボールグレイニング、ブラシグレイニング、ワイヤーグレイニングなどの機械的粗面化法が行われていたが、近年、製版適性や印刷性能が優れていること、コイル材での連続処理が可能なことなどから、支持体用アルミニウム合金板の表面を電気化学的エッチング処理により粗面化する手法が急速に発展している。   In general, an aluminum alloy plate is used as a support for lithographic printing plates (including offset printing plates), and the support is rough from the viewpoint of improving the adhesion of the photosensitive film and improving the water retention of the non-image area. Processing is performed. Conventionally, as the surface roughening method, mechanical surface roughening methods such as ball graining, brush graining, and wire graining have been carried out. Since a continuous treatment with a material is possible, a method for roughening the surface of an aluminum alloy plate for a support by an electrochemical etching process has been rapidly developed.

電気化学的エッチング処理は、電解液として、塩酸または塩酸を主体とする電解液(以下、塩酸系電解液)や硝酸または硝酸を主体とする電解液(以下、硝酸系電解液)を用いるもので、比較的均一な電解粗面化が得られるA1050(アルミニウム純度99.5%)相当材が支持体として適用されており、支持体の上に塗布される感光層を適切に選択することによって10万枚にも及ぶ鮮明な印刷物を得ることが可能となる。   The electrochemical etching treatment uses an electrolytic solution mainly composed of hydrochloric acid or hydrochloric acid (hereinafter referred to as a hydrochloric acid-based electrolytic solution) or an electrolytic solution mainly composed of nitric acid or nitric acid (hereinafter referred to as a nitric acid-based electrolytic solution). A material equivalent to A1050 (aluminum purity 99.5%), which can obtain a relatively uniform electrolytic surface roughening, is applied as a support, and 10 can be obtained by appropriately selecting a photosensitive layer coated on the support. It is possible to obtain tens of thousands of clear printed materials.

また、印刷版の耐刷性の向上のために、アルミニウム合金板を支持体とする印刷版を通常の方法で露光、現像処理した後、高温で加熱処理(バーニング処理)することにより画像部を強化することが行われている。バーニング処理は、通常、加熱温度200〜290℃、加熱時間3〜9分の条件で行われているから、バーニング処理時に支持体の強度が低下することのない耐熱性(耐バーニング性)が求められている。   In addition, in order to improve the printing durability of the printing plate, the printing plate having an aluminum alloy plate as a support is exposed and developed by a normal method, and then heat-treated at a high temperature (burning treatment). Strengthening has been done. Since the burning treatment is usually performed under the conditions of a heating temperature of 200 to 290 ° C. and a heating time of 3 to 9 minutes, heat resistance (burning resistance) is required so that the strength of the support does not decrease during the burning treatment. It has been.

さらに、最近では、印刷技術の進歩に伴って印刷速度が速くなり、印刷機の版胴の両側に機械的に固定される印刷版に加わる応力が増大したことに対応して、支持体に対する強度要求が大きくなっており、支持体強度が不足すると、その固定部分が変形または破損して印刷ずれなどの支障が生じるため、前記の耐バーニング性とともに、支持体強度の向上が不可欠となっている。   In addition, recently, with the advance of printing technology, the printing speed has increased and the strength against the support has increased in response to the increased stress applied to the printing plates that are mechanically fixed to both sides of the printing press cylinder. When the demand is increasing and the support strength is insufficient, the fixed portion is deformed or damaged, resulting in troubles such as printing misalignment. Therefore, it is indispensable to improve the strength of the support along with the above-mentioned burning resistance. .

このような要求を満たすために、A1050相当材をベースとして添加成分を調整したアルミニウム合金支持体が提案されている(例えば、特許文献1参照)。また、A1050相当材をベースとして添加成分を調整するとともに、板表面のオイルピットの深さを調整することにより目的を達成しようとする試みも行われている(特許文献2参照)。
特開2005−15912号公報 特開2004−35936号公報
In order to satisfy such requirements, an aluminum alloy support in which additive components are adjusted based on an A1050 equivalent material has been proposed (for example, see Patent Document 1). Attempts have also been made to achieve the object by adjusting the additive components based on the A1050 equivalent material and adjusting the oil pit depth on the plate surface (see Patent Document 2).
JP 2005-15912 A JP 2004-35936 A

発明者らは、上記提案のものをさらに改良するために、A1050相当材をベースとするアルミニウム合金支持体を用い、最終的に冷間圧延された圧延板の表面の性状と電解粗面化処理により得られるエッチングピットとの関係について検討を重ねた。その過程において、圧延板表面に残存するアルミパウダーがエッチングピットの形成に影響し、アルミパウダー量を規制することにより、均一なピットパターンが得られることを見出した。   In order to further improve the above-mentioned proposals, the inventors used an aluminum alloy support based on a material equivalent to A1050, and finally the surface properties and electrolytic surface roughening treatment of the cold-rolled rolled sheet. The relationship with the etching pit obtained by this was repeatedly investigated. In the process, it was found that the aluminum powder remaining on the surface of the rolled plate affects the formation of etching pits, and a uniform pit pattern can be obtained by regulating the amount of aluminum powder.

本発明は、上記の知見に基づいてさらに試験、検討を加えた結果としてなされたものであり、その目的は、電気化学的粗面化処理によりさらに均一なピットが形成され一層優れた感光膜との密着性、保水性を得ることができ、耐熱軟化性(耐バーニング性)に優れた平版印刷版用アルミニウム合金板の製造方法を提供することにある。 The present invention was made as a result of further examination and examination based on the above findings, and its purpose is to provide a more excellent photosensitive film in which more uniform pits are formed by electrochemical surface roughening treatment. It is an object to provide a method for producing an aluminum alloy plate for a lithographic printing plate that can achieve high adhesion and water retention and is excellent in heat softening resistance (burning resistance).

上記の目的を達成するための請求項1による平版印刷版用アルミニウム合金板の製造方法は、Mg:0.1〜1.5%(質量%、以下同じ)、Fe:0.1〜0.6%、Si:0.03〜0.15%、Cu:0.0001〜0.1%、Ti:0.0001〜0.1%を含有し、さらにPb、In、SnおよびGaから選ばれた1種以上の元素を、総量が0.005〜0.05%の範囲内で含有し、許容されるZn含有量を0.5%以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金を造塊し、得られた鋳塊の圧延面表層を3〜15mm面削した後、20〜60℃/hrの昇温速度で450〜580℃の温度域に加熱して3hr以上保持する均質化処理を行い、ついで開始温度を400〜520℃、終了温度を320〜400℃とし、終了時の厚さを5mm以下とする熱間圧延を行い、中間焼鈍を行うことなく冷間圧延し、最終冷間圧延において、ロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度が1〜6cStで、Mg含有量(Mg%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、−2×Mg%+2≦ρ≦−2×Mg%+8を満足するとともに、Mg含有量(Mg%)と圧延油の粘度ρとの関係が、ρ≦2×Mg+4を満足する圧延油を使用して、板表面のアルミパウダー量が0.1〜3.0mg/mに調整され、板表面において直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100,000個/mm 分散しており、板表面において、直径(円相当直径)が30μm以上のオイルピットの数が50個/mm 以下であり、板表面からみた圧延方向に直交する方向の平均結晶粒長が100μm以下であり、板表面からみた圧延方向と平行する方向の平均結晶粒長が、圧延方向に直交する方向の平均結晶粒長の2〜20倍であるアルミニウム合金板とすることを特徴とする。 The method for producing an aluminum alloy plate for a lithographic printing plate according to claim 1 for achieving the above object is as follows : Mg: 0.1-1.5% (mass%, the same applies hereinafter), Fe : 0.1-0. 6%, Si: 0.03-0.15%, Cu: 0.0001-0.1%, Ti: 0.0001-0.1%, further selected from Pb, In, Sn and Ga In addition, the composition contains at least one element in a total amount of 0.005 to 0.05%, an allowable Zn content of 0.5% or less, and a balance aluminum and inevitable impurities. After ingot-making an aluminum alloy and chamfering the rolled surface of the resulting ingot by 3 to 15 mm, it is heated to a temperature range of 450 to 580 ° C. at a temperature increase rate of 20 to 60 ° C./hr and held for 3 hours or more. Homogenization treatment is performed, then the start temperature is 400 to 520 ° C. and the end The degree of rolling is set to 320 to 400 ° C., the thickness at the end is 5 mm or less, cold rolling is performed without intermediate annealing, and the roll surface roughness is the arithmetic average roughness in the final cold rolling. Ra: A roll having a thickness of 0.2 to 0.5 μm, a viscosity of 1 to 6 cSt, and a relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil used in the final cold rolling is −2 ×. While satisfying Mg% + 2 ≦ ρ ≦ −2 × Mg% + 8, using a rolling oil in which the relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil satisfies ρ ≦ 2 × Mg + 4, The amount of aluminum powder on the plate surface was adjusted to 0.1 to 3.0 mg / m 2, and 10,000 to 100,000 precipitates having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm on the plate surface. mm 2 are dispersed in the plate surface, the diameter (circle equivalent diameter) of more than 30μm The number of Irupitto is at 50 / mm 2 or less, the average crystal grain length in the direction perpendicular to the rolling direction as viewed from the plate surface 100μm or less, average grain length in the direction parallel to the rolling direction as viewed from the plate surface The aluminum alloy plate is 2 to 20 times the average crystal grain length in the direction orthogonal to the rolling direction .

請求項2による平版印刷版用アルミニウム合金板の製造方法は、Mg:0.1〜1.5%、Fe:0.1〜0.6%、Si:0.03〜0.15%、Cu:0.0001〜0.1%、Ti:0.0001〜0.1%を含有し、さらにPb、In、SnおよびGaから選ばれた1種以上の元素を、総量が0.005〜0.05%の範囲内で含有し、許容されるZn含有量を0.5%以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金を造塊し、得られた鋳塊の圧延面表層を3〜15mm面削した後、20〜60℃/hrの昇温速度で450〜580℃の温度域に加熱して3hr以上保持する均質化処理を行い、その後、一旦常温まで降温し、ついで350〜500℃の温度に加熱して熱間圧延を開始し、終了温度を300〜380℃とし、終了時の厚さを5mm以下とする熱間圧延を行い、中間焼鈍を行うことなく冷間圧延し、最終冷間圧延において、ロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度が1〜6cStで、Mg含有量(Mg%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、−2×Mg%+2≦ρ≦−2×Mg%+8を満足するとともに、Mg含有量(Mg%)と圧延油の粘度ρとの関係が、ρ≦2×Mg+4を満足する圧延油を使用して、板表面のアルミパウダー量が0.1〜3.0mg/m に調整され、板表面において直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100,000個/mm 分散しており、板中のFeの固溶量が20〜100ppmであり、板表面において、直径(円相当直径)が30μm以上のオイルピットの数が50個/mm 以下であり、板表面からみた圧延方向に直交する方向の平均結晶粒長が100μm以下であり、板表面からみた圧延方向と平行する方向の平均結晶粒長が、圧延方向に直交する方向の平均結晶粒長の2〜20倍であるアルミニウム合金板とすることを特徴とする。 The method for producing an aluminum alloy plate for a lithographic printing plate according to claim 2 includes Mg: 0.1-1.5%, Fe: 0.1-0.6%, Si: 0.03-0.15%, Cu : 0.0001 to 0.1%, Ti: 0.0001 to 0.1%, and one or more elements selected from Pb, In, Sn and Ga, and the total amount is 0.005 to 0 0.05% of the range, the allowable Zn content is 0.5% or less, and an aluminum alloy having a composition composed of the balance aluminum and unavoidable impurities is ingoted, and the rolled surface of the resulting ingot After chamfering the surface layer by 3 to 15 mm, a homogenization treatment is performed by heating to a temperature range of 450 to 580 ° C. at a temperature increase rate of 20 to 60 ° C./hr and holding for 3 hours or more. Then, the hot rolling is started by heating to a temperature of 350 to 500 ° C., The final temperature is 300 to 380 ° C., the thickness at the end is 5 mm or less, the hot rolling is performed without intermediate annealing, and the roll surface roughness is an arithmetic average roughness in the final cold rolling. Ra: A roll having a thickness of 0.2 to 0.5 μm, a viscosity of 1 to 6 cSt, and a relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil used in the final cold rolling is −2 Using a rolling oil satisfying xMg + 2 ≦ ρ ≦ −2 × Mg% + 8 and the relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil satisfying ρ ≦ 2 × Mg + 4 The aluminum powder amount on the plate surface is adjusted to 0.1 to 3.0 mg / m 2, and 10,000 to 100,000 precipitates having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm on the plate surface. / mm 2 is dispersed, solid solution amount of Fe in the plate is 20 to 100 ppm, In the surface, and a number of diameter (circle equivalent diameter) of more than 30μm oil pits 50 / mm 2 or less, the average crystal grain length in the direction perpendicular to the rolling direction as viewed from the sheet surface is not more 100μm or less, the sheet surface The aluminum alloy sheet is characterized in that the average crystal grain length in the direction parallel to the rolling direction is 2 to 20 times the average crystal grain length in the direction orthogonal to the rolling direction.

請求項3による平版印刷版用アルミニウム合金板の製造方法は、Mg:0.1〜1.5%、Fe:0.1〜0.6%、Si:0.03〜0.15%、Cu:0.0001〜0.1%、Ti:0.0001〜0.1%を含有し、さらにPb、In、SnおよびGaから選ばれた1種以上の元素を、総量が0.005〜0.05%の範囲内で含有し、許容されるZn含有量を0.5%以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金を造塊し、得られた鋳塊の圧延面表層を3〜15mm面削した後、20〜60℃/hrの昇温速度で450〜580℃の温度域に加熱して3hr以上保持する均質化処理を行い、該保持温度から熱間圧延開始温度まで20〜60℃/hrの降温速度で降温し、ついで開始温度を400〜500℃、終了温度を300〜400℃とし、終了時の厚さを5mm以下とする熱間圧延を行い、中間焼鈍を行うことなく冷間圧延し、最終冷間圧延において、ロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度が1〜6cStで、Mg含有量(Mg%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、−2×Mg%+2≦ρ≦−2×Mg%+8を満足するとともに、Mg含有量(Mg%)と圧延油の粘度ρとの関係が、ρ≦2×Mg+4を満足する圧延油を使用して、板表面のアルミパウダー量が0.1〜3.0mg/m に調整され、板表面において直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100,000個/mm 分散しており、板中のFeの固溶量が20〜100ppmであり、成分元素の一部または全部が金属間化合物を形成しており、金属間化合物を形成しているFe量が全Fe量の50〜99.8%、金属間化合物を形成しているSi量が全Si量の5〜40%で、Al−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)が0.9以下であり、板表面において、直径(円相当直径)が30μm以上のオイルピットの数が50個/mm 以下であり、板表面からみた圧延方向に直交する方向の平均結晶粒長が100μm以下であり、板表面からみた圧延方向と平行する方向の平均結晶粒長が、圧延方向に直交する方向の平均結晶粒長の2〜20倍であるアルミニウム合金板とすることを特徴とする。 The method for producing an aluminum alloy plate for a lithographic printing plate according to claim 3 includes Mg: 0.1-1.5%, Fe: 0.1-0.6%, Si: 0.03-0.15%, Cu : 0.0001 to 0.1%, Ti: 0.0001 to 0.1%, and one or more elements selected from Pb, In, Sn and Ga, and the total amount is 0.005 to 0 0.05% of the range, the allowable Zn content is 0.5% or less, and an aluminum alloy having a composition composed of the balance aluminum and unavoidable impurities is ingoted, and the rolled surface of the resulting ingot After chamfering the surface layer by 3 to 15 mm, a homogenization treatment is performed by heating to a temperature range of 450 to 580 ° C. at a temperature increase rate of 20 to 60 ° C./hr and holding for 3 hours or more, and hot rolling starts from the holding temperature The temperature is lowered to a temperature at a temperature lowering rate of 20 to 60 ° C./hr, and then the starting temperature Is 400 to 500 ° C., the end temperature is 300 to 400 ° C., the thickness at the end is 5 mm or less, the cold rolling is performed without intermediate annealing, and the roll surface in the final cold rolling Using a rolling roll having an arithmetic mean roughness Ra of 0.2 to 0.5 μm, the viscosity is 1 to 6 cSt, the Mg content (Mg%), and the viscosity ρ of the rolling oil used in the final cold rolling Satisfies the relationship −2 × Mg% + 2 ≦ ρ ≦ −2 × Mg% + 8, and the relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil satisfies ρ ≦ 2 × Mg + 4. Using the rolling oil, the amount of aluminum powder on the plate surface is adjusted to 0.1 to 3.0 mg / m 2, and a precipitate having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm is 10 on the plate surface. 000~100,000 pieces / mm 2 is dispersed, solid solution amount of Fe in the plates 20 100 ppm, part or all of the component elements form an intermetallic compound, the amount of Fe forming the intermetallic compound is 50 to 99.8% of the total amount of Fe, and the intermetallic compound is formed. The amount of Fe forming the Al—Fe—Si intermetallic compound with respect to the amount of Fe (A%) forming the Al—Fe intermetallic compound is 5 to 40% of the total Si amount ( B%) ratio (B% / A%) is 0.9 or less, and the number of oil pits having a diameter (equivalent circle diameter) of 30 μm or more on the plate surface is 50 pieces / mm 2 or less. The average crystal grain length in the direction orthogonal to the rolling direction is 100 μm or less, and the average crystal grain length in the direction parallel to the rolling direction viewed from the plate surface is 2 to 2 of the average crystal grain length in the direction orthogonal to the rolling direction. The aluminum alloy plate is 20 times larger .

請求項による平版印刷版用アルミニウム合金板の製造方法は、請求項1〜3のいずれかにおいて、前記アルミニウム合金板が、さらにMn:0.05%を超え0.3%以下を含有することを特徴とする。 The method for producing an aluminum alloy plate for a lithographic printing plate according to claim 4 is the method according to any one of claims 1 to 3 , wherein the aluminum alloy plate further contains Mn: more than 0.05% and not more than 0.3%. It is characterized by.

請求項による平版印刷版用アルミニウム合金板の製造方法は、請求項1〜4のいずれかにおいて、270℃で7分間の熱処理後の0.2%耐力が120MPa以上であることを特徴とする。 The method for producing an aluminum alloy plate for a lithographic printing plate according to claim 5 is characterized in that in any one of claims 1 to 4 , the 0.2% proof stress after heat treatment at 270 ° C for 7 minutes is 120 MPa or more. .

本発明によれば、電気化学的粗面化処理によりさらに均一なピットが形成され一層優れた感光膜との密着性、保水性を得ることができ、さらに改善された画像鮮明性および耐刷性を達成することを可能とする強度および耐熱軟化性に優れた平版印刷版用アルミニウム合金板の製造方法が提供される。 According to the present invention, more uniform pits are formed by the electrochemical surface roughening treatment, and it is possible to obtain better adhesion to the photosensitive film and water retention, and further improved image sharpness and printing durability. There is provided a method for producing an aluminum alloy plate for a lithographic printing plate, which is excellent in strength and heat softening resistance, which makes it possible to achieve the above.

本発明の平版印刷版用アルミニウム合金板における含有成分の意義および限定理由について説明すると、Mgは、大部分がアルミニウムに固溶して、強度および耐熱軟化性を向上させるよう機能する。強度とは、印刷版用支持体としての常温における引張り強さのことであり、160MPa以上が実用上好ましい範囲である。耐熱軟化性は、耐バーニング性ともいわれ、280℃程度の温度で加熱された後の0.2%耐力のことであり、90MPa以上が実用上望ましい範囲である。Mgの好ましい含有量は0.1〜1.5%の範囲であり、0.1%未満ではその効果が十分でなく、1.5%を超えると、粗面化処理におけるピットの均一性が低下し非画像部の汚れが生じ易くなる。   The significance and reasons for limitation of the components contained in the aluminum alloy plate for lithographic printing plates of the present invention will be described. Most of Mg functions as a solid solution in aluminum to improve strength and heat softening resistance. The strength is the tensile strength at normal temperature as a printing plate support, and 160 MPa or more is a practically preferable range. Heat softening resistance, also called burning resistance, is 0.2% proof stress after being heated at a temperature of about 280 ° C., and 90 MPa or more is a practically desirable range. The preferable content of Mg is in the range of 0.1 to 1.5%. If the content is less than 0.1%, the effect is not sufficient. It becomes low and the stain | pollution | contamination of a non-image part tends to arise.

Znは、Mgと同様、大部分がアルミニウムに固溶するが、Mgのように強度および耐熱軟化性の向上に寄与することはなく、アルミニウム表面に形成される酸化皮膜に影響を与える。アルミニウム表面に形成される酸化皮膜には、室温に放置された場合に形成される酸化皮膜(自然酸化皮膜)と製造過程での熱処理時に形成される酸化皮膜があるが、Znはその両方に影響を与える。   Zn, like Mg, is mostly dissolved in aluminum, but does not contribute to the improvement of strength and heat-softening properties like Mg, and affects the oxide film formed on the aluminum surface. The oxide film formed on the aluminum surface includes an oxide film formed when left at room temperature (natural oxide film) and an oxide film formed during heat treatment in the manufacturing process, but Zn affects both. give.

すなわち、Mgを含有するアルミニウム合金においては、とくに均質化処理、熱間圧延時の加熱、中間焼鈍などの熱処理によりMg酸化物(MgO系酸化物)を主体とする酸化皮膜が形成され易く、この酸化皮膜は活性且つポーラスであるため、電解粗面化処理において処理液との濡れ性が良くなり粗面化が促進される反面、ピットが不均一になり易い。Znの含有は、この粗面化構造の不均一性を改善するものであり、Mg酸化物による活性化を抑制するよう機能する。0.5%を超えて含有すると、Mg酸化物による活性化抑制効果が大きくなって粗面化が不均一となり、また、粗大な金属間化合物が生成し易くなって電解処理時に粗大なピットが形成され、粗面化の均一性がさらに阻害されるから、許容されるZn含有量は0.5%以下とする。 That is, in an aluminum alloy containing Mg, an oxide film mainly composed of Mg oxide (MgO-based oxide) is easily formed by heat treatment such as homogenization treatment, heating during hot rolling, and intermediate annealing. Since the oxide film is active and porous, the wettability with the treatment liquid is improved in the electrolytic surface-roughening treatment and the surface roughening is promoted, but the pits are likely to be non-uniform. The inclusion of Zn improves the unevenness of the roughened structure and functions to suppress activation by Mg oxide . If the content exceeds 0.5%, the effect of suppressing activation by Mg oxide is increased, resulting in uneven surface roughness, and coarse intermetallic compounds are easily formed, resulting in coarse pits during electrolytic treatment. Since it is formed and the uniformity of roughening is further hindered , the allowable Zn content is 0.5% or less.

Feは、Al−Fe系金属間化合物を生成し、またSiと共存してAl−Fe−Si系金属間化合物を生成し、これらの化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時にピットの形成を均一にし且つピットを微細に分布させる。Feの好ましい含有量は0.1〜0.6%の範囲であり、0.1%未満では化合物の分布が不均一となって、電解処理時に未エッチング部が発生し、ピットの形成を不均一にする。0.6%を超えると、粗大な化合物が生成し、粗面化構造の均一性が低下する。   Fe produces an Al—Fe-based intermetallic compound, and coexists with Si to produce an Al—Fe—Si-based intermetallic compound. The dispersion of these compounds refines the recrystallized structure. The compound serves as a starting point of pit generation, uniformizing pit formation during the electrolytic treatment, and finely distributing the pits. The preferable content of Fe is in the range of 0.1 to 0.6%. If the content is less than 0.1%, the distribution of the compound becomes non-uniform, and unetched portions are generated during the electrolytic treatment, thus preventing the formation of pits. Make uniform. If it exceeds 0.6%, a coarse compound is produced, and the uniformity of the roughened structure is lowered.

Siは、Feと共存してAl−Fe−Si系金属間化合物を生成し、該化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時のピットの形成を均一にし且つピットを微細に分布させる。Siの好ましい含有量は0.03〜0.15%の範囲であり、0.03%未満では化合物の分布が不均一となって、電解処理時に未エッチング部が発生し、ピットの形成を不均一にする。0.15%を超えると、粗大化合物が生成し、また単体のSiの析出が生じ易くなって粗面化構造の均一性が低下する。   Si coexists with Fe to produce an Al—Fe—Si intermetallic compound, and the dispersion of the compound refines the recrystallized structure, and these compounds serve as starting points for pit generation during the electrolytic treatment. Uniform formation of pits and fine distribution of pits. The preferable content of Si is in the range of 0.03 to 0.15%. If it is less than 0.03%, the distribution of the compound becomes non-uniform, and unetched portions are generated during the electrolytic treatment, thus preventing the formation of pits. Make uniform. If it exceeds 0.15%, a coarse compound is produced, and precipitation of simple Si is likely to occur, and the uniformity of the roughened structure is lowered.

Cuは、アルミニウムに固溶し易く、0.0001〜0.10%の含有範囲でピットを微細化する効果を有する。0.10%を超えて含有すると、電解処理時のピットを粗大且つ不均一にし易くなり、未エッチング部が発生し易くなる。し易くなる。なお、本発明において、前記のFeおよびSiの含有量を得るために採用される地金から混入されるCu量は5〜100ppm(0.0005〜0.01%)程度である。   Cu is easily dissolved in aluminum and has an effect of refining pits in a content range of 0.0001 to 0.10%. If the content exceeds 0.10%, pits during electrolytic treatment are likely to be coarse and non-uniform, and unetched portions are likely to occur. It becomes easy to do. In addition, in this invention, the amount of Cu mixed from the metal | base metal employ | adopted in order to obtain content of the said Fe and Si is about 5-100 ppm (0.0005-0.01%).

Tiは、鋳塊組織を微細にし、また結晶粒を微細化し、その結果、電解処理時のピット形成を均一にして、印刷版としての処理を行ったときのストリークの発生を防止する。Tiの好ましい含有量は0.0001〜0.05%の範囲であり、0.0001%未満ではその効果が小さく、0.05%を超えて含有すると、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となり易い。なお、鋳塊組織の微細化のために、TiとともにBを添加する場合には、Tiを0.01%以下の範囲で含有させるのが好ましい。   Ti refines the ingot structure and refines the crystal grains. As a result, pit formation during the electrolytic treatment is made uniform, and streaks are prevented when processing as a printing plate is performed. The preferable content of Ti is in the range of 0.0001 to 0.05%. When the content is less than 0.0001%, the effect is small. When the content exceeds 0.05%, a coarse Al-Ti compound is formed. As a result, the roughened structure tends to be non-uniform. In addition, when adding B with Ti for refinement | miniaturization of an ingot structure | tissue, it is preferable to contain Ti in 0.01% or less of range.

Mnは、強度および耐熱軟化性を向上させるよう機能する。Mnの好ましい含有量は0.05%を超え0.3%の範囲であり、0.05%以下ではその効果が小さく、0.3%を超えると、粗大なAl−Fe−Mn系あるいはAl−Fe−Mn−Si系の金属間化合物が生成し易く、電解処理時の粗面化が不均一となる。Mnのより好ましい含有範囲は0.06〜0.3%である。   Mn functions to improve strength and heat softening resistance. The preferable content of Mn is in the range of more than 0.05% and 0.3%, and the effect is small at 0.05% or less, and when it exceeds 0.3%, a coarse Al—Fe—Mn system or Al -Fe-Mn-Si-based intermetallic compounds are likely to be formed, and the surface roughening during the electrolytic treatment becomes non-uniform. A more preferable content range of Mn is 0.06 to 0.3%.

本発明による平版印刷版用アルミニウム合金板には、Pb、In、SnおよびGaのうちの1種以上を、総量で0.005〜0.05%添加することにより、電解グレーニング性をさらに向上させることができ、少ない電気量で所望のピットパターンを得ることができる。Pb、In、Sn及びGaからなる群から選択された1種以上の元素の総量が0.005%より少ない場合はその効果が十分でなく、0.05%を超えるとピットの形状が崩れ易くなる。   The aluminum alloy plate for a lithographic printing plate according to the present invention further improves electrolytic graining properties by adding 0.005 to 0.05% of one or more of Pb, In, Sn and Ga in a total amount. The desired pit pattern can be obtained with a small amount of electricity. If the total amount of one or more elements selected from the group consisting of Pb, In, Sn, and Ga is less than 0.005%, the effect is not sufficient, and if it exceeds 0.05%, the shape of the pit tends to collapse. Become.

本発明による平版印刷版用アルミニウム合金板は、前記アルミニウム合金の鋳塊を連続鋳造などにより造塊し、得られた鋳塊を均質化処理後、熱間圧延、冷間圧延することにより製造されるが、最終冷間圧延後の圧延板表面のアルミパウダー量を0.1〜3.0mg/mに調整することが重要である。アルミパウダーは、最終冷間圧延中にアルミニウム合金圧延材から生じた圧延後の板表面に残存するアルミニウム合金の粉体であり、Mgを含有する本発明のアルミニウム合金の場合には、アルミパウダー量が0.1mg/m未満では、最終冷間圧延後にコイルとして巻き取られた時、コイル内の擦れ傷防止効果が十分でなく、3.0mg/mを超えると、脱脂過程においてアルミパウダーが十分に除去されず板面に残留し、電解粗面化処理時に、アルミパウダーが残留している部分のピット形成が不十分または不均一となり、電解グレーニング後に未エッチング部やムラ模様による外観不良が生じる原因となる。また、過剰なアルミパウダーはライン汚染の原因ともなる。 An aluminum alloy plate for a lithographic printing plate according to the present invention is produced by ingot-making the aluminum alloy ingot by continuous casting or the like, and homogenizing the obtained ingot, followed by hot rolling and cold rolling. However, it is important to adjust the amount of aluminum powder on the surface of the rolled sheet after the final cold rolling to 0.1 to 3.0 mg / m 2 . The aluminum powder is a powder of an aluminum alloy remaining on the surface of the rolled sheet generated from the aluminum alloy rolled material during the final cold rolling, and in the case of the aluminum alloy of the present invention containing Mg, the amount of aluminum powder If it is less than 0.1 mg / m 2 , when wound as a coil after the final cold rolling, the effect of preventing scratches in the coil is insufficient, and if it exceeds 3.0 mg / m 2 , aluminum powder is used in the degreasing process. Is not sufficiently removed and remains on the plate surface, and during the electrolytic surface roughening treatment, the pit formation is insufficient or uneven in the portion where the aluminum powder remains, and the appearance due to unetched parts and uneven patterns after electrolytic graining It causes a defect. Excessive aluminum powder can also cause line contamination.

最終冷間圧延後における板表面のアルミパウダー量を上記の範囲に調整するためには、前記成分への調整とともに、組成に応じて最終冷間圧延加工度、圧延油の性状、圧延油の供給量を調整することが必要である。とくに、最終冷間圧延の圧延油の粘度は重要で、粘度1〜6cStの圧延油を使用するのが好ましい。粘度が1cSt未満では、圧延ロールと圧延材との間に導入される圧延油量が少なくなって潤滑不良が生じ、過剰なアルミパウダーが生じ易くなる。粘度が6cStを超えると、圧延ロールと圧延材との間に導入される圧延油量が過剰となって、アルミパウダーの発生が少なくなる傾向がある。   In order to adjust the amount of aluminum powder on the surface of the plate after the final cold rolling to the above range, in addition to adjustment to the above components, the final cold rolling degree of processing, the properties of the rolling oil, the supply of the rolling oil according to the composition It is necessary to adjust the amount. In particular, the viscosity of the rolling oil in the final cold rolling is important, and it is preferable to use a rolling oil having a viscosity of 1 to 6 cSt. If the viscosity is less than 1 cSt, the amount of rolling oil introduced between the rolling roll and the rolled material is reduced, resulting in poor lubrication, and excessive aluminum powder is likely to occur. When the viscosity exceeds 6 cSt, the amount of rolling oil introduced between the rolling roll and the rolled material becomes excessive, and the generation of aluminum powder tends to be reduced.

また、最終冷間圧延における圧延油としては、アルミニウム合金中のMg含有量(Mg%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、(−2×Mg%+2)>ρでは、変形抵抗が小さく、また圧延ロールと圧延材との間に導入される圧延油量が少ないため、アルミパウダーが過剰に生じ易くなる。ρ>(―2×Mg%+8)では、変形抵抗が大きくなり、圧延ロールと圧延材との間に導入される圧延油量が過剰となって、アルミパウダーの発生が少なくなる傾向がある。   As the rolling oil in the final cold rolling, the relationship between the Mg content (Mg%) in the aluminum alloy and the viscosity ρ of the rolling oil used in the final cold rolling is (−2 × Mg% + 2)> At ρ, since the deformation resistance is small and the amount of rolling oil introduced between the rolling roll and the rolled material is small, aluminum powder tends to be excessively generated. When ρ> (− 2 × Mg% + 8), the deformation resistance increases, the amount of rolling oil introduced between the rolling roll and the rolling material becomes excessive, and the generation of aluminum powder tends to be reduced.

本発明においては、板表面において、直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100,000個/mm分散させることにより、電解処理においてより均一なエッチピットを形成することができる。析出物が10,000個/mm2未満では析出物の数が少ないため未エッチング部が生じ易く、粗大ピットが多く形成されるようになり、また100,000個/mm2を超えると、析出物の数が多くなって均一なピット形成が困難となり、平版印刷用支持体として適したアルミニウム合金板が得難くなる。 In the present invention, on the surface of the plate, precipitates having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm are dispersed by 10,000 to 100,000 / mm 2 , so that more uniform etch pits can be obtained in the electrolytic treatment. Can be formed. If the number of precipitates is less than 10,000 pieces / mm 2 , the number of precipitates is small, so that an unetched portion is likely to occur, and a large number of coarse pits are formed. If the number of precipitates exceeds 100,000 pieces / mm 2 , the number of precipitates As a result, it becomes difficult to form uniform pits, and it becomes difficult to obtain an aluminum alloy plate suitable as a support for lithographic printing.

本発明においては、また、Fe固溶量を20〜100ppmとすることにより、バーニング強度を維持し、電解処理により均一なエッチピットを形成することができる。Fe固溶量が20ppm未満ではバーニング強度の低下が生じ易く、Fe固溶量が100ppmを超えると、電解粗面化性が低下するためピットパターンが不均一となり、平版印刷版用支持体として適したアルミニウム合金板が得難くなる。   In the present invention, by setting the amount of Fe solid solution to 20 to 100 ppm, the burning strength can be maintained and uniform etch pits can be formed by electrolytic treatment. If the Fe solid solution amount is less than 20 ppm, the burning strength is likely to decrease. If the Fe solid solution amount exceeds 100 ppm, the electrolytic surface roughening property decreases, and the pit pattern becomes uneven, making it suitable as a support for lithographic printing plates. It becomes difficult to obtain an aluminum alloy plate.

また、本発明を構成するアルミニウム合金板の成分元素の一部または全部が金属間化合物を形成しており、金属間化合物を形成しているFe量が全Fe量の50〜99.8%、金属間化合物を形成しているSi量が全Si量の5〜40%で、Al−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)を0.9以下とすることにより、電解処理においてより均一なピットを形成することができる。   Further, a part or all of the constituent elements of the aluminum alloy plate constituting the present invention form an intermetallic compound, and the amount of Fe forming the intermetallic compound is 50 to 99.8% of the total amount of Fe, The amount of Si forming the intermetallic compound is 5 to 40% of the total amount of Si, and the Al—Fe—Si based intermetallic compound with respect to the amount of Fe (A%) forming the Al—Fe based intermetallic compound is By setting the ratio (B% / A%) of the amount of Fe (B%) formed to 0.9 or less, more uniform pits can be formed in the electrolytic treatment.

金属間化合物を形成しているFe量が全Fe量の50%未満では、ピットの起点としての金属間化合物が十分に得られないため粗大なピットが生じ易くなり、金属間化合物を形成しているFe量が全Fe量の99.8%を超えると、金属間化合物が過剰に形成されるため均一なピットパターンを得るのが困難となる。金属間化合物を形成しているSi量が全Si量の5%未満では、Siの固溶量が多くなりマトリックスと金属間化合物との電位差が小さくなって電気化学的溶解性が低下する。また、単体Siが多く析出してインキ汚れが生じ易くなる。金属間化合物を形成しているSi量が全Si量の40%を超えると、金属間化合物が過剰に形成されるため均一なピットパターンを得るのが困難となる。   If the amount of Fe forming the intermetallic compound is less than 50% of the total amount of Fe, the intermetallic compound as the starting point of the pit cannot be sufficiently obtained, so that coarse pits are likely to be formed, and the intermetallic compound is formed. If the amount of Fe exceeds 99.8% of the total amount of Fe, it is difficult to obtain a uniform pit pattern because an intermetallic compound is excessively formed. If the amount of Si forming the intermetallic compound is less than 5% of the total amount of Si, the amount of solid solution of Si increases, the potential difference between the matrix and the intermetallic compound decreases, and the electrochemical solubility decreases. Also, a large amount of simple substance Si is deposited, and ink stains are likely to occur. When the amount of Si forming the intermetallic compound exceeds 40% of the total amount of Si, it becomes difficult to obtain a uniform pit pattern because the intermetallic compound is excessively formed.

Al−Fe系金属間化合物は、Al−Fe−Si系金属間化合物より電気化学的溶解性が高く、ピットの起点としての作用が強い。Al−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)が0.9より大きい場合には、ピットの発生効率が低下して粗大なピットが生じ易くなる。   The Al—Fe-based intermetallic compound has higher electrochemical solubility than the Al—Fe—Si-based intermetallic compound, and has a strong effect as a starting point of pits. The ratio (B% / A%) of the Fe amount (B%) forming the Al-Fe-Si intermetallic compound to the Fe amount (A%) forming the Al-Fe based intermetallic compound is 0. If it is larger than .9, the generation efficiency of pits is reduced and coarse pits are likely to be generated.

さらに、本発明においては、最終冷間圧延後のアルミニウム合金板の表面において、直径(円相当直径)が30μm以上のオイルピットの数を50個/mm以下に調整することにより、電解粗面化処理において形成されるエッチングピットをより均一にすることができる。本発明のアルミニウム合金はMgを含有するため、直径30μm以上の大きなオイルピットは、電解グレーニング後も粗大なピットとして残留し易く、このような粗大なピットが50個/mmを超えると、電解粗面化処理で形成されるエッチングピットが不均一となり易い。 Furthermore, in the present invention, by adjusting the number of oil pits having a diameter (equivalent circle diameter) of 30 μm or more to 50 pieces / mm 2 or less on the surface of the aluminum alloy plate after the final cold rolling, the electrolytic rough surface Etching pits formed in the crystallization process can be made more uniform. Since the aluminum alloy of the present invention contains Mg, large oil pits having a diameter of 30 μm or more tend to remain as coarse pits even after electrolytic graining. When such coarse pits exceed 50 pieces / mm 2 , Etching pits formed by the electrolytic surface roughening treatment tend to be non-uniform.

直径(円相当直径)が30μm以上のオイルピットの数を50個/mm以下に調整するためには、最終冷間圧延加工度、圧延ロール面の形態、圧延油の性状、圧延油の供給量を調整することが必要である。本発明のように、Mgを含有し、変形抵抗が比較的大きいアルミニウム合金の場合には、最終冷間圧延においてロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度1〜6cStの圧延油を使用して冷間圧延を行うことが望ましい。 In order to adjust the number of oil pits having a diameter (equivalent circle diameter) of 30 μm or more to 50 / mm 2 or less, the final cold rolling degree, the form of the rolling roll surface, the properties of the rolling oil, the supply of the rolling oil It is necessary to adjust the amount. In the case of an aluminum alloy containing Mg and having a relatively large deformation resistance as in the present invention, a roll having a roll surface roughness of arithmetic average roughness Ra: 0.2 to 0.5 μm in the final cold rolling. It is desirable to perform cold rolling using a rolling oil having a viscosity of 1 to 6 cSt.

ロール面粗度が算術平均粗さRaが0.5μmを超えると、接触弧長内での局部的な面圧が高くなり、油膜が切れて金属接触領域が増大するため潤滑不良が生じ易くなる。Raが0.2μm未満では、圧延ロールと圧延材との間に導入される圧延油量が過剰となり大きなオイルピットの数が増加する。圧延油の粘度が1cSt未満では、圧延ロールと圧延材との間に導入される圧延油量が少なくなって潤滑不良が生じ易く、6cStを超えると、圧延ロールと圧延材との間に導入される圧延油量が過剰となり大きなオイルピットの数が増加する。   When the roll surface roughness exceeds the arithmetic average roughness Ra of 0.5 μm, the local surface pressure within the contact arc length increases, the oil film is cut and the metal contact area is increased, and lubrication failure is likely to occur. . If Ra is less than 0.2 μm, the amount of rolling oil introduced between the rolling roll and the rolled material becomes excessive, and the number of large oil pits increases. If the viscosity of the rolling oil is less than 1 cSt, the amount of rolling oil introduced between the rolling roll and the rolled material is reduced, and lubrication is likely to occur. If the viscosity exceeds 6 cSt, the rolling oil is introduced between the rolling roll and the rolled material. The amount of rolling oil becomes excessive and the number of large oil pits increases.

また、最終冷間圧延における圧延油として、アルミニウム合金板中のMg含有量(Mg%)と圧延油の粘度ρとの関係が、ρ≦2×Mg+4を満足する圧延油を使用するのが好ましい。ρ>(2×Mg+4)では、変形抵抗が小さく、また、圧延ロールと圧延材との間に導入される圧延油量が多くなるため、粗大なピットが過剰に形成され易くなる。   As the rolling oil in the final cold rolling, it is preferable to use a rolling oil in which the relationship between the Mg content (Mg%) in the aluminum alloy sheet and the viscosity ρ of the rolling oil satisfies ρ ≦ 2 × Mg + 4. . When ρ> (2 × Mg + 4), the deformation resistance is small, and the amount of rolling oil introduced between the rolling roll and the rolled material increases, so that coarse pits are easily formed excessively.

本発明においては、さらに、板表面から見た結晶粒径を特定することによって、面質ムラやストリークスなどの電解グレーニング後の外観不良発生を抑制することができる。すなわち、板表面から見た圧延方向に直交する方向の平均結晶粒長を100μm以下とし、板表面から見た圧延方向と平行な方向の平均結晶粒長を圧延方向と直交する方向の平均結晶粒長の2〜20倍とする。板表面から見た圧延方向に直行する方向の平均結晶粒長が100μmを超えると面質ムラが生じるようになる。圧延方向に平行な方向の平均結晶粒長が圧延方向に直交する方向の平均結晶粒長の2倍未満では印刷版用支持体として強度不足となり、20倍を超えるとストリークスが生じる。   In the present invention, by further specifying the crystal grain size as viewed from the plate surface, it is possible to suppress the appearance defects after electrolytic graining such as uneven surface quality and streak. That is, the average crystal grain length in the direction orthogonal to the rolling direction viewed from the plate surface is 100 μm or less, and the average crystal grain length in the direction parallel to the rolling direction viewed from the plate surface is the average crystal grain in the direction orthogonal to the rolling direction. 2 to 20 times the length. When the average crystal grain length in the direction perpendicular to the rolling direction as viewed from the plate surface exceeds 100 μm, surface quality unevenness occurs. If the average crystal grain length in the direction parallel to the rolling direction is less than twice the average crystal grain length in the direction perpendicular to the rolling direction, the strength becomes insufficient as a support for a printing plate, and if it exceeds 20 times, streak occurs.

本発明による平版印刷版用アルミニウム合金板の製造は、前記アルミニウム合金の鋳塊を連続鋳造などにより造塊し、得られた鋳塊を均質化処理後、熱間圧延、冷間圧延することにより行われる。   The production of an aluminum alloy plate for a lithographic printing plate according to the present invention is performed by ingot-making the aluminum alloy ingot by continuous casting or the like, and homogenizing the obtained ingot, followed by hot rolling and cold rolling. Done.

鋳塊の圧延面表層は、片面について3〜15mmづつ面削するのが好ましい。3mm/片面未満では、鋳塊表層付近の粗大な結晶粒(粗大晶)が除去され難く、面削面が不均一な組織となるため、ストリークスの原因となる。面削量が15mm/片面を超えると得率が低下するため非経済的である。   The rolled surface of the ingot is preferably chamfered by 3 to 15 mm on one side. If it is less than 3 mm / single side, coarse crystal grains (coarse crystals) in the vicinity of the ingot surface layer are difficult to remove, and the chamfered surface has a non-uniform structure, which causes streak. If the amount of chamfering exceeds 15 mm / single side, the yield decreases, which is uneconomical.

板表面において直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100、000個/mm分散している前記のアルミニウム合金板を製造するための鋳塊均質化処理から熱間圧延終了までの好ましい実施態様は以下のとおりである。 Ingot homogenization treatment for producing the above aluminum alloy sheet in which precipitates having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm are dispersed at 10,000 to 100,000 pieces / mm 2 on the plate surface A preferred embodiment from the end of hot rolling to the end of hot rolling is as follows.

均質化処理時の鋳塊の昇温速度は20〜60℃/hrが好ましく、前記所定の析出物分布を得るために効果的に作用する。20℃/hr未満では、析出が進行し、析出物が直径1μmを超える大きさに成長し易く析出物数が減少するうえ、加熱に時間を要するため経済的でない。60℃/hrを超える昇温速度では、加熱が速すぎて析出が進行せず所定の析出物が得難くなる。   The temperature rising rate of the ingot during the homogenization treatment is preferably 20 to 60 ° C./hr, and effectively acts to obtain the predetermined precipitate distribution. If it is less than 20 ° C./hr, the precipitation proceeds, the precipitate is likely to grow to a size exceeding 1 μm in diameter, and the number of precipitates is reduced. At a temperature increase rate exceeding 60 ° C./hr, heating is too fast and precipitation does not proceed, making it difficult to obtain a predetermined precipitate.

均質化処理は、450〜580℃の温度で1hr以上保持する条件で行うのが好ましく、この均質化処理により、過飽和に固溶しているFe、Siを均一に析出させ、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。均質化処理温度が450℃未満では、ピット発生の起点となるFe、Siの析出が十分でなく、電解処理時に未エッチング部が形成され、ピットパターンが不均一になり易い。580℃を超える温度で均質化処理を行うと、Feの固溶量が増大するため、結果的にピット発生の起点となる微細な析出物が減少する。均質化処理の保持時間が1hr未満では、Fe、Siの析出が不十分となりピットパターンが不均一となる。   The homogenization treatment is preferably performed under the condition that the temperature is maintained at 450 to 580 ° C. for 1 hour or longer. By this homogenization treatment, Fe and Si that are supersaturated in solid solution are uniformly deposited, and formed during the electrolytic treatment. Etching pits become fine circles and printing durability is improved. When the homogenization treatment temperature is less than 450 ° C., the precipitation of Fe and Si that is the starting point of pit generation is not sufficient, and unetched portions are formed during the electrolytic treatment, and the pit pattern tends to be non-uniform. When the homogenization treatment is performed at a temperature exceeding 580 ° C., the amount of Fe dissolved increases, and as a result, fine precipitates that are the starting point of pit generation decrease. If the holding time of the homogenization treatment is less than 1 hr, the precipitation of Fe and Si becomes insufficient and the pit pattern becomes non-uniform.

熱間圧延は400℃〜520℃の温度で開始するのが好ましい。400℃未満では、ピット発生の起点となるFe、Siの析出が十分でなく、電解処理時に未エッチング部が形成され、ピットパターンが不均一になり易い。また、変形抵抗が大きいため1回当たりの加工度を大きくすることができず、圧延のパス回数が多くなり経済的でない。520℃を超える温度で熱間圧延を開始すると、熱間圧延中に粗大な再結晶粒が生じて筋状の不均一組織によるストリークが生じ易くなる。   Hot rolling is preferably started at a temperature of 400 ° C to 520 ° C. When the temperature is lower than 400 ° C., the precipitation of Fe and Si that is the starting point of pit generation is not sufficient, and an unetched portion is formed during the electrolytic treatment, and the pit pattern tends to be nonuniform. In addition, since the deformation resistance is large, it is not possible to increase the degree of processing per process, and the number of rolling passes increases, which is not economical. When hot rolling is started at a temperature exceeding 520 ° C., coarse recrystallized grains are generated during hot rolling, and streaks due to streak-like non-uniform structures tend to occur.

熱間圧延の終了温度は320〜400℃が好ましい。320℃未満では再結晶が部分的にしか生じず、非再結晶部分がストリークスの原因となる。また最終冷間圧延後の歪蓄積量が増大するため再結晶温度が低下し、バーニング強度が低下する。400℃を超えると、再結晶は全面に生じるが粗大化するためストリークスの原因となる。熱間圧延の終了時の板厚は5mm以下が好ましい。5mm以上では、熱間圧延時の圧下率が不十分で歪導入量が少なくなるため再結晶粒が粗大化し易くなる。   The end temperature of hot rolling is preferably 320 to 400 ° C. Below 320 ° C., recrystallization occurs only partially, and the non-recrystallized portion causes streaks. In addition, since the amount of strain accumulation after the final cold rolling increases, the recrystallization temperature decreases and the burning strength decreases. If the temperature exceeds 400 ° C., recrystallization occurs on the entire surface, but becomes coarse and causes streak. The plate thickness at the end of hot rolling is preferably 5 mm or less. If it is 5 mm or more, the reduction ratio during hot rolling is insufficient and the amount of strain introduced is reduced, so that the recrystallized grains are likely to be coarsened.

Feの固溶量を20〜100ppmとした前記のアルミニウム合金板を製造するための鋳塊均質化処理から熱間圧延終了までの好ましい実施態様は以下のとおりである。   Preferred embodiments from the ingot homogenization treatment to the end of hot rolling for producing the above aluminum alloy sheet in which the solid solution amount of Fe is 20 to 100 ppm are as follows.

均質化処理時の鋳塊の昇温速度は20〜60℃/hrが好ましく、前記所定の固溶状態を得るために効果的に作用する。20℃/hr未満では、析出量が増加し、固溶量が大幅に減少するうえ、加熱に時間を要するため経済的でない。60℃/hrを超える昇温速度では、加熱が速すぎて析出が進行せず所定の固溶状態が得難くなる。   The temperature rising rate of the ingot during the homogenization treatment is preferably 20 to 60 ° C./hr, and acts effectively to obtain the predetermined solid solution state. If it is less than 20 ° C./hr, the amount of precipitation increases, the amount of solid solution decreases greatly, and it takes time for heating, which is not economical. At a rate of temperature increase exceeding 60 ° C./hr, heating is too fast and precipitation does not proceed, making it difficult to obtain a predetermined solid solution state.

均質化処理は、450〜580℃の温度で1hr以上保持する条件で行うのが好ましく、この均質化処理により、過飽和に固溶しているFe、Siの固溶量を調整することにより、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。均質化処理温度が450℃未満では、Fe、Siの析出、即ち固溶量の減少が十分でないため、ピットパターンが不均一になり易い。580℃を超える温度で均質化処理を行うと、Feの固溶量が過度に増大するため、ピットパターンが不均一となる。均質化処理の保持時間が1hr未満では、長手方向および幅方向でのFe、Siの固溶状態が不均一となりピットパターンが不均一となる。   The homogenization treatment is preferably carried out under the condition that the temperature is maintained at 450 to 580 ° C. for 1 hour or longer. By this homogenization treatment, the amount of Fe and Si dissolved in supersaturation is adjusted, and electrolysis is performed. Etching pits formed at the time of processing become a fine circle, and printing durability is improved. If the homogenization temperature is less than 450 ° C., the precipitation of Fe and Si, that is, the decrease in the amount of solid solution is not sufficient, and therefore the pit pattern tends to be non-uniform. When the homogenization process is performed at a temperature exceeding 580 ° C., the amount of solid solution of Fe increases excessively, so that the pit pattern becomes non-uniform. If the holding time of the homogenization treatment is less than 1 hr, the solid solution state of Fe and Si in the longitudinal direction and the width direction becomes non-uniform and the pit pattern becomes non-uniform.

均質化処理後、一旦常温まで降温することにより、FeおよびSiの析出を制御し、目標とする固溶状態を得ることができる。   After the homogenization treatment, the temperature is once lowered to room temperature, whereby the precipitation of Fe and Si can be controlled to obtain a target solid solution state.

熱間圧延は350〜500℃の温度で開始するのが好ましい。350℃未満では、変形抵抗が大きいため1回当たりの加工度を大きくすることができず、圧延のパス回数が多
くなり経済的でない。500℃を超える温度で熱間圧延を開始すると、熱間圧延中に粗大な再結晶粒が生じて筋状の不均一組織によるストリークが生じ易くなる。
Hot rolling is preferably started at a temperature of 350 to 500 ° C. If it is less than 350 ° C., since the deformation resistance is large, the degree of work per one time cannot be increased, and the number of rolling passes increases, which is not economical. When hot rolling is started at a temperature exceeding 500 ° C., coarse recrystallized grains are generated during hot rolling, and streaks due to streak-like non-uniform structures tend to occur.

熱間圧延の終了温度は300〜380℃とするのが好ましい。300℃未満では再結晶が部分的にしか生じず、非再結晶部分がストリークスの原因となる。また最終冷間圧延後の歪蓄積量が増大するため再結晶温度が低下し、バーニング強度が低下する。380℃を超えると、再結晶は全面に生じるが粗大化するためストリークスの原因となる。熱間圧延の終了時の板厚は5mm以下が好ましい。5mm以上では、熱間圧延時の圧下率が不十分で歪導入量が少なくなるため再結晶粒が粗大化し易くなる。   The end temperature of hot rolling is preferably 300 to 380 ° C. Below 300 ° C., recrystallization occurs only partially, and the non-recrystallized portion causes streak. In addition, since the amount of strain accumulation after the final cold rolling increases, the recrystallization temperature decreases and the burning strength decreases. When the temperature exceeds 380 ° C., recrystallization occurs on the entire surface, but becomes coarse and causes streak. The plate thickness at the end of hot rolling is preferably 5 mm or less. If it is 5 mm or more, the reduction ratio during hot rolling is insufficient and the amount of strain introduced is reduced, so that the recrystallized grains are likely to be coarsened.

成分元素の一部または全部が金属間化合物を形成しており、金属間化合物を形成しているFe量が全Fe量の50〜99.8%、金属間化合物を形成しているSi量が全Si量の5〜40%で、Al−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)が0.9以下である前記のアルミニウム合金板を製造するための鋳塊均質化処理から熱間圧延終了までの好ましい実施態様は以下のとおりである。   Part or all of the component elements form an intermetallic compound, the amount of Fe forming the intermetallic compound is 50 to 99.8% of the total amount of Fe, and the amount of Si forming the intermetallic compound is The amount of Fe (B%) forming the Al—Fe—Si intermetallic compound with respect to the amount of Fe (A%) forming the Al—Fe intermetallic compound in 5 to 40% of the total Si amount. Preferred embodiments from the ingot homogenization process to the end of hot rolling for producing the aluminum alloy sheet having a ratio (B% / A%) of 0.9 or less are as follows.

均質化処理は、450〜580℃の温度で3hr以上保持する条件で行うのが好ましく、この均質化処理により、過飽和に固溶しているFe、Siを均一に析出させることにより、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。均質化処理温度が450℃未満では、ピットの起点としての作用が弱いAl−Fe−Si系金属間化合物の析出が進行するため、ピットの発生効率が低下して粗大なピットが生じ、ピットパターンが不均一になり易い。580℃を超える温度で均質化処理を行うと、Feの固溶量が増大するため、結果的にピットの起点としての作用が強いAl−Fe系金属間化合物の析出が減少する。均質化処理の保持時間が3hr未満では、Fe、Siの析出が不十分となりピットパターンが不均一となる。   The homogenization treatment is preferably performed under the condition that the temperature is maintained at 450 to 580 ° C. for 3 hours or more. By this homogenization treatment, Fe and Si dissolved in supersaturation are uniformly precipitated, so that during the electrolytic treatment. The formed etching pit becomes a fine circle, and the printing durability is improved. If the homogenization temperature is less than 450 ° C., the precipitation of Al—Fe—Si intermetallic compound, which has a weak action as the starting point of pits, proceeds, so that the generation efficiency of pits decreases and coarse pits are generated, resulting in a pit pattern Tends to be non-uniform. When the homogenization treatment is performed at a temperature exceeding 580 ° C., the amount of Fe dissolved increases, and as a result, precipitation of Al—Fe-based intermetallic compounds having a strong effect as a starting point of pits decreases. If the holding time of the homogenization treatment is less than 3 hr, the precipitation of Fe and Si becomes insufficient and the pit pattern becomes non-uniform.

熱間圧延は、均質化処理後、熱間圧延開始温度まで20〜60℃/hrの降温速度で降温し、400〜500℃の温度で開始するのが好ましい。均質化処理後の降温中に析出が進行する。とくに、400〜450℃まで降温すると、FeだけでなくSiの析出も進行する。降温速度が20℃/hr未満では、Al−Fe−Si系金属間化合物の析出が進行するため、その析出量が増加し、析出がさらに進行して析出物が直径1μmを超える大きさに成長し析出物数が減少する。さらに、加熱に時間を要するため経済的でない。降温速度が60℃/hrを超えると、析出進行のための時間が十分でなく、また鋳塊の温度が場所により不均一となるため、Fe、Siの析出が不均一となり、これに起因して、続いて行われる熱間圧延中の再結晶が場所により不均一となってストリークスが生じ易くなる。   It is preferable that the hot rolling is started at a temperature of 400 to 500 ° C. after the homogenization treatment, the temperature is lowered at a temperature lowering rate of 20 to 60 ° C./hr to the hot rolling start temperature. Precipitation proceeds during the temperature drop after homogenization. In particular, when the temperature is lowered to 400 to 450 ° C., precipitation of Si as well as Fe proceeds. When the temperature lowering rate is less than 20 ° C./hr, precipitation of the Al—Fe—Si intermetallic compound proceeds, so that the amount of precipitation increases, and the precipitation further progresses so that the precipitate grows to a size exceeding 1 μm in diameter. The number of precipitates decreases. Furthermore, since it takes time to heat, it is not economical. When the rate of temperature drop exceeds 60 ° C./hr, the time for the progress of precipitation is not sufficient, and the temperature of the ingot becomes non-uniform depending on the location, resulting in non-uniform precipitation of Fe and Si. Thus, recrystallization during the subsequent hot rolling is uneven depending on the location, and streaks are likely to occur.

熱間圧延は400〜500℃の温度で開始するのが好ましい。400℃未満では、変形抵抗が大きいため1回当たりの加工度を大きくすることができず、圧延のパス回数が多くなり経済的でない。500℃を超える温度で熱間圧延を開始すると、熱間圧延中に粗大な再結晶粒が生じて筋状の不均一組織によるストリークが生じ易くなる。   Hot rolling is preferably started at a temperature of 400 to 500 ° C. If it is less than 400 ° C., the deformation resistance is large, so the degree of processing per one time cannot be increased, and the number of rolling passes increases, which is not economical. When hot rolling is started at a temperature exceeding 500 ° C., coarse recrystallized grains are generated during hot rolling, and streaks due to streak-like non-uniform structures tend to occur.

熱間圧延の終了温度は300〜400℃とするのが好ましい。300℃未満では再結晶が部分的にしか生じず、非再結晶部分がストリークスの原因となる。また最終冷間圧延後の歪蓄積量が増大するため再結晶温度が低下し、バーニング強度が低下する。400℃を超えると、再結晶は全面に生じるが粗大化するためムラ模様やストリークスの原因となる。熱間圧延の終了時の板厚は5mm以下が好ましい。5mm以上では、熱間圧延時の圧下率が不十分で歪導入量が少なくなるため再結晶粒が粗大化し易くなる。   The end temperature of hot rolling is preferably 300 to 400 ° C. Below 300 ° C., recrystallization occurs only partially, and the non-recrystallized portion causes streak. In addition, since the amount of strain accumulation after the final cold rolling increases, the recrystallization temperature decreases and the burning strength decreases. If the temperature exceeds 400 ° C., recrystallization occurs on the entire surface, but becomes coarse and causes uneven patterns and streaks. The plate thickness at the end of hot rolling is preferably 5 mm or less. If it is 5 mm or more, the reduction ratio during hot rolling is insufficient and the amount of strain introduced is reduced, so that the recrystallized grains are likely to be coarsened.

以上のように熱間圧延を終了したアルミニウム合金板はいずれも、中間焼鈍を行うことなく冷間圧延される。熱間圧延後の冷間圧延は、当該アルミニウム合金板を平版印刷用支持体として適用した場合に、支持体を版胴に巻き付けるときのくわえ切れを防止する強度を与えるとともに、熱間圧延中もしくは熱間圧延直後に生成された結晶粒の圧延方向に平行な方向の長さを調整するために行われる。好ましい圧延加工度は50〜98%の範囲であり、50%未満では、版胴に巻き付ける時のくわえ切れを防止するのに十分な強度を与えることが難しく、98%を超えると、熱間圧延後に生成された結晶粒が圧延方向に平行な方向に長く伸び過ぎて、ストリークスが発生し易くなる。なお、冷間圧延後、表面に特殊模様を刻設した圧延ロールを使用して仕上げ冷間圧延を行い、例えば、算術平均粗さRa:0.15〜0.30μm、圧延直角方向の凹凸の平均長さRSm:50μm以下、最大谷深さRv:1μm以下、最大高さRz:1.5〜2.5μmの表面粗さを有するアルミニウム合金板とすることもできる。   Any of the aluminum alloy sheets that have been hot-rolled as described above are cold-rolled without intermediate annealing. Cold rolling after hot rolling gives strength to prevent gripping when the support is wound around a plate cylinder when the aluminum alloy plate is applied as a support for lithographic printing, and during hot rolling or This is performed in order to adjust the length of the crystal grains generated immediately after hot rolling in the direction parallel to the rolling direction. The preferable degree of rolling work is in the range of 50 to 98%, and if it is less than 50%, it is difficult to give sufficient strength to prevent the gripping when it is wound around the plate cylinder, and if it exceeds 98%, hot rolling is performed. The crystal grains generated later extend too long in the direction parallel to the rolling direction, and streaks are likely to occur. In addition, after cold rolling, finish cold rolling is performed using a rolling roll having a special pattern engraved on the surface. For example, arithmetic average roughness Ra: 0.15 to 0.30 μm, unevenness in the direction perpendicular to the rolling direction An aluminum alloy plate having an average length RSm of 50 μm or less, a maximum valley depth Rv of 1 μm or less, and a maximum height Rz of 1.5 to 2.5 μm can also be used.

上記の組成と製造工程の組み合わせにより、前記の板表面のアルミパウダー量、析出物分布、Fe固溶量、金属間化合物とFe量、Si量の関係、オイルピット分布、および前記特定された結晶粒長が得られ、270℃で7分間の熱処理後の0.2%耐力が120MPa以上の強度特性が達成される。この強度特性は、印刷版支持体として重要なものであり、120MPa未満では、印刷時に版の固定部分に変形あるいは破損が生じ易く、印刷ずれなどの原因となる。   Depending on the combination of the above composition and manufacturing process, the amount of aluminum powder on the plate surface, the distribution of precipitates, the amount of Fe solid solution, the amount of intermetallic compound and Fe, the amount of Si, the oil pit distribution, and the specified crystal A grain length is obtained and a strength characteristic is achieved in which the 0.2% proof stress after heat treatment at 270 ° C. for 7 minutes is 120 MPa or more. This strength characteristic is important as a printing plate support, and if it is less than 120 MPa, the fixed portion of the plate is likely to be deformed or damaged during printing, which causes printing misalignment.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の好ましい一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one preferred embodiment of the present invention, and the present invention is not limited thereto.

実施例1、比較例1
試験材用アルミニウム合金として、表1に示す組成を有するアルミニウム合金を溶解、鋳造した。得られた鋳塊の圧延面を5mm/片面づつ面削して厚さ500mmとし、鋳塊を35℃/hrの昇温速度で530℃の温度に加熱し、この温度に3.5hr保持することにより均質化処理を行った。
Example 1 and Comparative Example 1
As an aluminum alloy for a test material, an aluminum alloy having the composition shown in Table 1 was melted and cast. The rolled surface of the resulting ingot is chamfered by 5 mm / single side to a thickness of 500 mm, the ingot is heated to a temperature of 530 ° C. at a temperature increase rate of 35 ° C./hr, and this temperature is maintained for 3.5 hours. The homogenization process was performed.

ついで、530℃の均質化処理温度から35℃/hrの降温速度で熱間圧延開始温度の515℃まで降温し、板厚3mmまで熱間圧延し、346℃の温度で熱間圧延を終了した。熱間圧延後、中間焼鈍を施すことなしに冷間圧延を行って板厚を0.3mmとした。なお、冷間圧延において使用したロールの面粗度は算術平均粗さRa:0.3μm、圧延油の粘度は3cStであった。なお、表1において、本発明の条件を外れたものには下線を付した。 Next, the temperature was lowered from the homogenization temperature of 530 ° C. to a hot rolling start temperature of 515 ° C. at a temperature lowering rate of 35 ° C./hr, hot rolled to a plate thickness of 3 mm, and hot rolling was completed at a temperature of 346 ° C. . After hot rolling, cold rolling was performed without intermediate annealing, and the plate thickness was set to 0.3 mm. In addition, the surface roughness of the roll used in cold rolling was arithmetic average roughness Ra: 0.3 μm, and the viscosity of the rolling oil was 3 cSt. In Table 1, those outside the conditions of the present invention are underlined .

得られたアルミニウム合金板(試験材)について、以下の方法により、冷間圧延後の板表面のアルミパウダー量、直径0.1〜1.0μmの析出物数、板表面の直径が30μm以上のオイルピットの数、結晶粒長を測定した。結果を表2に示す。また、耐バーニング性を評価し、冷間圧延後に巻き取られたコイル内で生じた擦れ疵の有無を観察した。結果を表3に示す。なお、表2において、結晶長さは板表面から見た圧延方向と平行な方向の結晶粒長(GL)、結晶幅は圧延方向と直交する方向の結晶粒長(GT)、比はこれらの比(GL/GT)を示す。また、本発明の条件を外れたものには下線を付した。   About the obtained aluminum alloy plate (test material), the amount of aluminum powder on the plate surface after cold rolling, the number of precipitates having a diameter of 0.1 to 1.0 μm, and the plate surface diameter of 30 μm or more are obtained by the following method. The number of oil pits and the crystal grain length were measured. The results are shown in Table 2. Moreover, the burning resistance was evaluated, and the presence or absence of rubbing flaws generated in the coil wound up after the cold rolling was observed. The results are shown in Table 3. In Table 2, the crystal length is the crystal grain length (GL) in the direction parallel to the rolling direction as viewed from the plate surface, the crystal width is the crystal grain length (GT) in the direction orthogonal to the rolling direction, and the ratio is The ratio (GL / GT) is shown. Moreover, the thing under the conditions of this invention was underlined.

アルミパウダー量の測定:板表面の残留摩耗粉の定量分析として、板表面の一定面積を溶剤で浸した脱脂綿で拭き取り、脱脂綿中のアルミニウム含有量を測定した。拭き取り方法を図1に示す。   Measurement of the amount of aluminum powder: As a quantitative analysis of residual abrasion powder on the plate surface, a certain area of the plate surface was wiped off with absorbent cotton soaked in a solvent, and the aluminum content in the absorbent cotton was measured. The wiping method is shown in FIG.

直径(円相当直径)0.1〜1.0μmの析出物数の測定:アルミニウム合金板の表面を脱脂洗浄後、硝酸、フッ酸および塩酸を混合した水溶液(ケラー氏液)で10秒間エッチングし、光学顕微鏡で1000倍に拡大した写真を撮影し、析出物の粒径分布を画像解析装置((株)ニレコ製ルーゼクス500)を用いて測定した。この場合、析出物の直径は、円相当直径すなわち写真における析出物の面積と同じ面積を有する円の直径として換算し、この結果から金属間化合物の分布密度を求めた。   Measurement of the number of precipitates having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm: After degreasing and cleaning the surface of the aluminum alloy plate, etching is performed for 10 seconds with an aqueous solution (Keller solution) mixed with nitric acid, hydrofluoric acid and hydrochloric acid. The photograph magnified 1000 times with an optical microscope was taken, and the particle size distribution of the precipitates was measured using an image analyzer (Lusex 500 manufactured by Nireco Corporation). In this case, the diameter of the precipitate was converted as the equivalent circle diameter, that is, the diameter of a circle having the same area as the area of the precipitate in the photograph, and the distribution density of the intermetallic compound was determined from this result.

オイルピット数の測定:アルミニウム合金板の表面を脱脂洗浄後、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、切断法によりオイルピットの数および分布量を測定した。   Measurement of the number of oil pits: After degreasing and cleaning the surface of the aluminum alloy plate, the surface was observed at a magnification of 500 times using a scanning electron microscope (SEM), and the number and distribution of oil pits were measured by a cutting method.

結晶粒長の測定:アルミニウム合金板の表面を脱脂洗浄後、鏡面研磨した後、パーカー氏液で陽極酸化し、光学顕微鏡の偏光モードで結晶粒観察を行って、圧延方向に直交または平行な方向の結晶粒長を切断法により求めた。   Measurement of crystal grain length: After degreasing and cleaning the surface of the aluminum alloy plate, mirror polishing, anodizing with Parker's solution, observing crystal grains in the polarization mode of an optical microscope, direction perpendicular or parallel to the rolling direction The crystal grain length was determined by a cutting method.

耐バーニング性の評価:耐熱軟化性の指標として便宜的にアルミニウム板を270℃に保持した大気炉にて7分間加熱した後、引張試験を行って0.2%耐力を測定し、支持体としての耐バーニング性を評価した。なお、耐力の測定は、アルミニウム合金板の圧延方向と平行な方向(L方向)について行い、270℃で7分間加熱後の0.2%耐力は120MPa以上を合格(○)、120MPa未満を不合格とした。   Burning resistance evaluation: As an index of heat resistance softening resistance, for convenience, the aluminum plate was heated for 7 minutes in an atmospheric furnace maintained at 270 ° C. and then subjected to a tensile test to measure 0.2% proof stress. The burning resistance of was evaluated. The proof stress was measured in the direction parallel to the rolling direction of the aluminum alloy sheet (L direction), and the 0.2% proof stress after heating at 270 ° C. for 7 minutes passed 120 MPa or more (O), and less than 120 MPa was not acceptable. Passed.

コイル内擦れ疵の有無の観察:一定面積の板表面に擦れ疵が目視で観察されるものを不良(×)、擦れ疵が観察されないものを良好(○)として評価した。   Observation of presence / absence of rubbing flaws in the coil: Evaluation was made on the case where rubbing wrinkles were visually observed on a plate surface of a certain area as bad (x) and those where no flaws were observed as good (◯).

また、得られたアルミニウム合金板を、脱脂(溶液:5%水酸化ナトリウム、温度:60℃、時間:10秒)−中和処理(溶液:10%硝酸、温度:20℃、時間:30秒)−交流電解粗面化処理(溶液:2.0%塩酸、温度:25℃、周波数:50Hz、電流密度:60A/dm、時間:20秒)―デスマット処理(溶液:5%水酸化ナトリウム、温度:60℃、時間:5秒)−陽極酸化処理(溶液:30%硫酸―温度:20℃、時間:60秒)し、水洗、乾燥して、一定の大きさに切り取り試験材とした。 Further, the obtained aluminum alloy plate was degreased (solution: 5% sodium hydroxide, temperature: 60 ° C., time: 10 seconds) -neutralization treatment (solution: 10% nitric acid, temperature: 20 ° C., time: 30 seconds). ) -AC electrolytic surface roughening treatment (solution: 2.0% hydrochloric acid, temperature: 25 ° C., frequency: 50 Hz, current density: 60 A / dm 2 , time: 20 seconds) —desmut treatment (solution: 5% sodium hydroxide) , Temperature: 60 ° C., time: 5 seconds) -anodic oxidation treatment (solution: 30% sulfuric acid-temperature: 20 ° C., time: 60 seconds), washed with water, dried, cut into a certain size and used as a test material .

各試験材について、ムラ模様、ストリークスの有無を観察した。また、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、視野の面積が0.04mmとなるよう写真を撮影し、得られた写真から未エッチング部の発生、エッチピットの均一性の評価を行った。結果を表3に示す。 Each test material was observed for the presence of uneven patterns and streaks. In addition, using a scanning electron microscope (SEM), the surface was observed at a magnification of 500 times, and a photograph was taken so that the area of the visual field was 0.04 mm 2. The uniformity of pits was evaluated. The results are shown in Table 3.

ムラ模様の有無の観察:試験材表面に強いムラ模様が目視で観察されるものを不良(×)、弱いムラ模様しか観察されないものを良好(○)、ムラ模様が観察されないものを優良(◎)として評価した。
ストリークスの有無の観察:試験材表面にストリークが目視で観察されるものを不良(×)、ストリークが観察されないものを良好(○)として評価した。
Observation of the presence or absence of uneven patterns: If a strong uneven pattern is visually observed on the surface of the test material, it is defective (X), if only a weak uneven pattern is observed is good (○), and if no uneven pattern is observed, it is excellent (◎ ).
Observation of the presence or absence of streak: Evaluation was made on the surface of the test material where streak was visually observed as defective (x) and when no streak was observed as good (◯).

未エッチング部の発生についての評価:未エッチング部が20%を超えるものは不良(×)、15〜20%のものは良好(○)、15%未満のものは優良(◎)とした。
エッチピットの均一性の評価:円相当直径が10μmを超える大きなピットが全ピットに対して面積率で10%を超えるものは不良(×)、5〜10%のものは良好(○)、5%未満のものは優良(◎)20%未満のものは良好(○)とした。
Evaluation of generation of unetched portion: Unetched portion exceeding 20% was judged as bad (x), 15-20% was good (◯), and less than 15% was judged excellent (◎).
Evaluation of uniformity of etch pits: Large pits with an equivalent circle diameter exceeding 10 μm are defective (×) when the area ratio exceeds 10% of all pits (×), 5-10% are good (◯), 5 Less than% is excellent (◎) and less than 20% is good (良好).

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

表3にみられるように、本発明に従う試験材No.1〜No.5はいずれも、擦れ疵の発生は認められず、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されていた。   As can be seen in Table 3, the test material No. 1-No. No. 5 shows no burning flaws, excellent burning resistance, no uneven pattern or streak, excellent etching after electrolytic treatment, and uniform etching pits formed on the entire surface. It had been.

これに対して、試験材No.6は、Mg含有量が少ないためバーニング耐力に劣ると共に、アルミパウダー量が多くなり、ピット形成が不均一となり、電解グレーニング後に未エッチング部やムラ模様による外観不良が生じた。一方試験材No.7は、Mg含有量が多いため、ピットの均一性に劣ると共に、アルミパウダー量が少なくなり、コイル内に擦れ傷が発生した。試験材No.8はZn含有量が多く、粗面化が不均一となった。試験材No.9はFeおよびSiの含有量が少ないため、析出物の数が少なく、Al−Fe系金属間化合物やAl−Fe−Si系金属間化合物の分布が不均一となり、ピットの形成が不均一となった。また、Feの含有量が少ないため、析出量や固溶量も少なくなり、バーニング耐力が不十分となった。一方試験材No.10はFeおよびSiの含有量が多いため、析出物の数が多く、粗大な化合物が生成し、粗面化構造の均一性が低下した。試験材No.11はCuの含有量が多く、電解処理時のピットが粗大となり未エッチ部が生じ、また不均一になった。試験材No.12はTiの含有量が多く、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となった。試験材No.13はMnの含有量が多く、粗大なAl−Fe−Mn系あるいはAl−Fe−Mn−Si系の金属間化合物が生成し、電解処理時の粗面化が不均一となった。試験材No.14はPb、In、Sn及びGaの総量が0.05%を超えたため、ピットの形状が崩れ不均一となった。   In contrast, test material No. No. 6 was inferior in burning resistance because of its low Mg content, increased in the amount of aluminum powder, resulting in non-uniform pit formation, and poor appearance due to unetched portions and uneven patterns after electrolytic graining. On the other hand, the test material No. In No. 7, since the Mg content was large, the uniformity of the pits was inferior, the amount of aluminum powder was reduced, and scratches were generated in the coil. Test material No. No. 8 had a large Zn content, and the surface roughness was uneven. Test material No. 9 has a small content of Fe and Si, so the number of precipitates is small, the distribution of Al-Fe-based intermetallic compounds and Al-Fe-Si-based intermetallic compounds is uneven, and pit formation is uneven. . Moreover, since there was little content of Fe, the amount of precipitation and the amount of solid solution also decreased, and the burning proof stress became inadequate. On the other hand, the test material No. Since No. 10 had a large content of Fe and Si, the number of precipitates was large, a coarse compound was generated, and the uniformity of the roughened structure was lowered. Test material No. No. 11 had a high Cu content, and the pits during the electrolytic treatment were coarse, resulting in an unetched portion and non-uniformity. Test material No. No. 12 had a large Ti content, and an Al—Ti coarse compound was produced, resulting in a non-uniform roughened structure. Test material No. No. 13 had a high Mn content, and a coarse Al—Fe—Mn or Al—Fe—Mn—Si intermetallic compound was produced, resulting in uneven surface roughness during the electrolytic treatment. Test material No. In No. 14, the total amount of Pb, In, Sn, and Ga exceeded 0.05%, so the shape of the pits collapsed and became non-uniform.

実施例2、比較例2
実施例1で鋳造したアルミニウム合金Aの鋳塊の圧延面の面削、均質化処理、熱間圧延を表4に示す条件で行い、熱間圧延後、中間焼鈍を施すことなしに表4に示す板厚まで冷間圧延を行った。冷間圧延で使用したロールの面粗度、圧延油の粘度を表5に示す。なお、表4、表5において、本発明の条件を外れたものには下線を付した。
Example 2 and Comparative Example 2
The surface milling, homogenization, and hot rolling of the ingot of the aluminum alloy A cast in Example 1 were performed under the conditions shown in Table 4, and after hot rolling, the intermediate annealing was not performed in Table 4. Cold rolling was performed to the plate thickness shown. Table 5 shows the surface roughness of the roll used in the cold rolling and the viscosity of the rolling oil. In Tables 4 and 5, those outside the conditions of the present invention are underlined.

得られたアルミニウム合金板(試験材)について、前記の方法により、冷間圧延後の板表面のアルミパウダー量、直径0.1〜1.0μmの析出物数、板表面の直径が30μm以上のオイルピット数、結晶粒長を測定した。結果を表5に示す。また、前記の方法により、耐バーニング性を評価し、冷間圧延後に巻き取られたコイル内で生じた擦れ疵の有無、ムラ模様、ストリークスの有無を観察し、エッチング性を評価した。結果を表6に示す。   About the obtained aluminum alloy plate (test material), the amount of aluminum powder on the surface of the plate after cold rolling, the number of precipitates having a diameter of 0.1 to 1.0 μm, and the diameter of the plate surface of 30 μm or more are obtained by the above-described method. The number of oil pits and the crystal grain length were measured. The results are shown in Table 5. Also, the burning resistance was evaluated by the above-described method, and the etching property was evaluated by observing the presence or absence of rubbing flaws generated in the coil wound after cold rolling, the presence of uneven patterns, and streak. The results are shown in Table 6.

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

表6に示すように、本発明に従う試験材No.15,16はいずれも、擦れ疵の発生は認められず、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されていた。これに対して、試験材No.17は、面削量が少ないため、ストリークスが発生した。試験材No.18は、均質化処理時の鋳塊の昇温速度が遅いため、析出物が直径1μmを超える大きさに成長して析出数が減少し、未エッチング部が形成されてピットが均一とならない。また析出量が過剰になるためFe固溶量が不足し、バーニング強度が低下した。一方、試験材No.19は、均質化処理時の鋳塊の昇温速度が速いため、析出が十分に進行せずピットの起点が不足するため、電解処理時に未エッチング部が形成されるとともにピットの均一性が損なわれる。試験材No.20は、均質化処理温度が低いため、ピット発生の起点となるFe、Siの析出が十分でなく、電解処理時に未エッチング部が形成されるとともにピットパターンが不均一になった。試験材No.21は、均質化処理温度が高いため、Feの固溶量が増大し、結果的にピット発生の起点となる微細な析出物が減少し、未エッチング部が形成されるとともにピットパターンが不均一になった。試験材No.22は、均質化処理の保持時間が短いため、Fe、Siの析出が不十分となり未エッチング部が形成され、ピットパターンが不均一となる。試験材No.23は、熱間圧延開始温度が低く、その結果熱間圧延の終了温度が低くなり、再結晶が部分的にしか生じず、ストリークスが発生した。また最終冷間圧延後の歪蓄積量が増大するため再結晶温度が低下し、バーニング強度も低下した。試験材No.24は、熱間圧延開始温度が高く、また熱間圧延終了温度も高いため、再結晶は全面に生じるが粗大化し、面質ムラやストリークスが生じた。試験材No.25は、熱間圧延終了時の板厚が厚いため、熱間圧延時の圧下率が不十分で歪導入量が少なくなるため再結晶粒が粗大化し、面質ムラが生じた。試験材No.26は、ロール面の算術平均粗さが小さく、圧延ロールと圧延材との間に導入される圧延油量が過剰となり大きなオイルピットの数が増加し、電解粗面化処理で形成されるエッチングピットが不均一となった。また、パウダー量が少なくなり、擦れ疵が生じた。試験材No.27は、ロール面の算術平均粗さが粗く、圧延ロールと圧延材との間に導入される圧延油量が少なくなって潤滑不良が生じ、その結果パウダー量が多くなり、ピット形成が不均一となり、電解グレーニング後に未エッチング部やムラ模様による外観不良が生じた。試験材No.28は、圧延油の粘度が低いため、圧延ロールと圧延材との間に導入される圧延油量が少なくなって潤滑不良が生じることで、アルミパウダー量が多くなり、ピット形成が不均一となり、電解グレーニング後に未エッチング部やムラ模様による外観不良が生じた。試験材No.29は、圧延油の粘度が高いため、圧延ロールと圧延材との間に導入される圧延油量が過剰となり大きなオイルピットの数が増加し、電解粗面化処理で形成されるエッチングピットが不均一となった。また、アルミパウダー量が少なくなり、コイル内に擦れ傷が発生した。   As shown in Table 6, the test material No. In both Nos. 15 and 16, generation of rubbing flaws was observed, burning resistance was excellent, uneven patterns and streaks were not generated, etching property after electrolytic treatment was excellent, and uniform etching pits were formed on the entire surface. Was formed. In contrast, test material No. In No. 17, streaks occurred because the amount of chamfering was small. Test material No. No. 18 has a slow heating rate of the ingot at the time of homogenization, so that the precipitates grow to a size exceeding 1 μm in diameter, the number of precipitates decreases, unetched portions are formed, and pits are not uniform. Moreover, since the precipitation amount became excessive, the Fe solid solution amount was insufficient, and the burning strength was lowered. On the other hand, test material No. No. 19 has a high temperature rise rate of the ingot at the time of the homogenization treatment, so that the precipitation does not proceed sufficiently and the starting point of the pit is insufficient, so that an unetched part is formed during the electrolytic treatment and the uniformity of the pit is impaired. It is. Test material No. In No. 20, since the homogenization temperature was low, the precipitation of Fe and Si as starting points of pit generation was not sufficient, and an unetched part was formed during the electrolytic treatment and the pit pattern became non-uniform. Test material No. In No. 21, since the homogenization temperature is high, the solid solution amount of Fe is increased, resulting in a decrease in fine precipitates that are the starting point of pit generation, and formation of unetched portions and non-uniform pit patterns. Became. Test material No. No. 22 has a short holding time of the homogenization treatment, so that Fe and Si are not sufficiently precipitated, an unetched portion is formed, and the pit pattern becomes non-uniform. Test material No. No. 23 had a low hot rolling start temperature, resulting in a low hot rolling end temperature, recrystallization occurring only partially, and streak. In addition, since the strain accumulation after the final cold rolling increased, the recrystallization temperature decreased and the burning strength also decreased. Test material No. In No. 24, since the hot rolling start temperature was high and the hot rolling end temperature was also high, recrystallization occurred on the entire surface but became coarse, resulting in surface quality unevenness and streak. Test material No. In No. 25, since the plate thickness at the end of hot rolling was thick, the reduction rate during hot rolling was insufficient, and the amount of strain introduced was reduced, so that the recrystallized grains became coarse and surface quality unevenness occurred. Test material No. 26, the arithmetic mean roughness of the roll surface is small, the amount of rolling oil introduced between the rolling roll and the rolled material becomes excessive, the number of large oil pits increases, and etching formed by electrolytic surface roughening treatment The pits became uneven. Also, the amount of powder was reduced, and rubbing wrinkles occurred. Test material No. No. 27 has a rough arithmetic average roughness of the roll surface, and the amount of rolling oil introduced between the rolling roll and the rolled material is reduced, resulting in poor lubrication, resulting in an increase in the amount of powder and uneven pit formation. As a result, appearance defects due to unetched portions and uneven patterns occurred after electrolytic graining. Test material No. No. 28, because the rolling oil has a low viscosity, the amount of rolling oil introduced between the rolling roll and the rolled material is reduced, resulting in poor lubrication, resulting in an increase in the amount of aluminum powder and uneven pit formation. After electrolytic graining, appearance defects due to unetched parts and uneven patterns occurred. Test material No. No. 29, because the viscosity of the rolling oil is high, the amount of rolling oil introduced between the rolling roll and the rolled material becomes excessive, increasing the number of large oil pits, and there are etching pits formed by the electrolytic surface roughening treatment. It became uneven. In addition, the amount of aluminum powder was reduced, and scratches were generated in the coil.

実施例3、比較例3
実施例1で鋳造したアルミニウム合金(表1)の鋳塊の圧延面を5mm/片面づつ面削して厚さ500mmとし、鋳塊を35℃/hrの昇温速度で530℃の温度に加熱し、この温度に3.5hr保持することにより均質化処理を行った後、常温まで降温した。
Example 3 and Comparative Example 3
The rolled surface of the ingot of the aluminum alloy cast in Example 1 (Table 1) is chamfered by 5 mm / one side to a thickness of 500 mm, and the ingot is heated to a temperature of 530 ° C. at a temperature increase rate of 35 ° C./hr. Then, the mixture was homogenized by maintaining at this temperature for 3.5 hours, and then cooled to room temperature.

ついで、熱間圧延開始温度の469℃まで加熱し、板厚3mmまで熱間圧延し、353℃の温度で熱間圧延を終了した。熱間圧延後、中間焼鈍を施すことなしに冷間圧延を行って板厚を0.3mmとした。なお、冷間圧延において使用したロールの面粗度は算術平均粗さRa:0.3μm、圧延油の粘度は3cStであった。   Subsequently, it heated to hot-rolling start temperature 469 degreeC, hot-rolled to plate | board thickness 3mm, and finished hot rolling at the temperature of 353 degreeC. After hot rolling, cold rolling was performed without intermediate annealing, and the plate thickness was set to 0.3 mm. In addition, the surface roughness of the roll used in cold rolling was arithmetic average roughness Ra: 0.3 μm, and the viscosity of the rolling oil was 3 cSt.

得られたアルミニウム合金板(試験材)について、前記の方法により、冷間圧延後の板表面のアルミパウダー量、直径0.1〜1.0μmの析出物数、板表面の直径30μm以上のオイルピット数、結晶粒長を測定した。また、以下の方法によりFe固溶量を測定した。結果を表7に示す。また、前記の方法により、耐バーニング性を評価し、冷間圧延後に巻き取られたコイル内で生じた擦れ疵の有無、ムラ模様、ストリークスの有無を観察し、エッチング性を評価した。結果を表8に示す。なお、表7において、本発明の条件を外れたものには下線を付した。   With respect to the obtained aluminum alloy plate (test material), the amount of aluminum powder on the surface of the plate after cold rolling, the number of precipitates having a diameter of 0.1 to 1.0 μm, and an oil having a diameter of 30 μm or more on the surface of the plate was obtained by the above-described method. The number of pits and the crystal grain length were measured. Further, the amount of Fe solid solution was measured by the following method. The results are shown in Table 7. Also, the burning resistance was evaluated by the above-described method, and the etching property was evaluated by observing the presence or absence of rubbing flaws generated in the coil wound after cold rolling, the presence of uneven patterns, and streak. The results are shown in Table 8. In Table 7, those outside the conditions of the present invention are underlined.

Fe固溶量の測定:アルミニウム合金板を熱フェノールに溶解し、ろ液中のFe量を定量した。なお、詳細は「軽金属Vol.50(2000)518〜526頁」に記載されている「湿式化学分析による固溶量の測定」に従った。   Measurement of Fe solid solution amount: An aluminum alloy plate was dissolved in hot phenol, and the amount of Fe in the filtrate was quantified. The details were in accordance with “Measurement of solid solution amount by wet chemical analysis” described in “Light Metals Vol. 50 (2000) pp. 518-526”.

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

表8に示すように、本発明に従う試験材No.30〜No.34はいずれも、擦れ疵の発生は認められず、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されていた。これに対して、試験材No.35は、Mg含有量が少ないためバーニング耐力に劣ると共に、アルミパウダー量が多くなり、ピット形成が不均一となり、電解グレーニング後に未エッチング部やムラ模様による外観不良が生じた。一方試験材No.36は、Mg含有量が多いため、ピットの均一性に劣ると共に、アルミパウダー量が少なくなり、コイル内に擦れ傷が発生した。試験材No.37はZn含有量が多く、粗面化が不均一となった。試験材No.38はFeおよびSiの含有量が少ないため、析出物の数が少なく、Al−Fe系金属間化合物やAl−Fe−Si系金属間化合物の分布が不均一となり、未エッチング部が形成され、ピットの形成が不均一となった。また、Feの固溶量も少ないため、バーニング耐力に劣る。一方試験材No.39はFeおよびSiの含有量が多いため、析出物の数が多く、粗大な化合物が生成し、粗面化構造の均一性が低下した。また、Fe固溶量も多いため、ピットパターンが不均一となった。試験材No.40はCuの含有量が多く、電解処理時に未エッチング部が形成され、ピットが粗大且つ不均一になった。試験材No.41はTiの含有量が多く、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となった。試験材No.42はMnの含有量が多く、粗大なAl−Fe−Mn系あるいはAl−Fe−Mn−Si系の金属間化合物が生成し、電解処理時の粗面化が不均一となった。試験材No.43はPb、In、Sn及びGaの総量が0.05%を超えたため、ピットの形状が崩れ不均一となった。   As shown in Table 8, the test material No. 30-No. In each of the samples 34, no generation of rubbing flaws was observed, burning resistance was excellent, uneven patterns and streaks were not generated, etching property after electrolytic treatment was excellent, and uniform etching pits were formed on the entire surface. It had been. In contrast, test material No. No. 35 had poor burning proof strength due to low Mg content, and increased the amount of aluminum powder, resulting in non-uniform pit formation, resulting in poor appearance due to unetched portions and uneven patterns after electrolytic graining. On the other hand, the test material No. No. 36 was inferior in pit uniformity due to its high Mg content, and the amount of aluminum powder was reduced, resulting in scratches in the coil. Test material No. No. 37 had a large Zn content, and the surface roughness was uneven. Test material No. 38 has a low Fe and Si content, so the number of precipitates is small, the distribution of Al-Fe-based intermetallic compounds and Al-Fe-Si-based intermetallic compounds becomes uneven, unetched portions are formed, and pits are formed. Formation was uneven. Moreover, since the amount of solid solution of Fe is also small, the burning strength is inferior. On the other hand, the test material No. Since No. 39 has a large content of Fe and Si, the number of precipitates was large, a coarse compound was generated, and the uniformity of the roughened structure was lowered. Further, since the amount of Fe solid solution was large, the pit pattern was not uniform. Test material No. No. 40 had a large Cu content, and an unetched portion was formed during the electrolytic treatment, resulting in coarse and non-uniform pits. Test material No. No. 41 had a large Ti content, and an Al—Ti coarse compound was produced, resulting in a non-uniform roughened structure. Test material No. No. 42 had a high Mn content, and a coarse Al—Fe—Mn or Al—Fe—Mn—Si based intermetallic compound was produced, resulting in uneven surface roughness during electrolytic treatment. Test material No. In No. 43, since the total amount of Pb, In, Sn and Ga exceeded 0.05%, the shape of the pits collapsed and became non-uniform.

実施例4、比較例4
実施例1で鋳造したアルミニウム合金Bの鋳塊の圧延面の面削、均質化処理、熱間圧延を表9に示す条件で行い、熱間圧延後、中間焼鈍を施すことなしに表9に示す板厚まで冷間圧延を行った。なお、鋳塊を均質化処理後、常温まで降温し、熱間圧延開始温度まで加熱した。冷間圧延で使用したロールの面粗度、圧延油の粘度を表10に示す。なお、表9、表10において、本発明の条件を外れたものには下線を付した。
Example 4 and Comparative Example 4
The surface of the aluminum alloy B ingot cast in Example 1 was chamfered, homogenized, and hot-rolled under the conditions shown in Table 9, and after hot rolling, the intermediate annealing was not performed. Cold rolling was performed to the plate thickness shown. The ingot was homogenized, cooled to room temperature, and heated to the hot rolling start temperature. Table 10 shows the surface roughness of the roll used in the cold rolling and the viscosity of the rolling oil. In Tables 9 and 10, those outside the conditions of the present invention are underlined.

得られたアルミニウム合金板(試験材)について、前記の方法により、冷間圧延後の板表面のアルミパウダー量、直径0.1〜1.0μmの析出物数、Fe固溶量、板表面の直径30μm以上のオイルピット数、結晶粒長を測定した。結果を表10に示す。また、前記の方法により、耐バーニング性を評価し、冷間圧延後に巻き取られたコイル内で生じた擦れ疵の有無、ムラ模様、ストリークスの有無を観察し、エッチング性を評価した。結果を表11に示す。   About the obtained aluminum alloy plate (test material), the amount of aluminum powder on the plate surface after cold rolling, the number of precipitates having a diameter of 0.1 to 1.0 μm, the amount of Fe solid solution, The number of oil pits having a diameter of 30 μm or more and the crystal grain length were measured. The results are shown in Table 10. Also, the burning resistance was evaluated by the above-described method, and the etching property was evaluated by observing the presence or absence of rubbing flaws generated in the coil wound after cold rolling, the presence of uneven patterns, and streak. The results are shown in Table 11.

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

表11に示すように、本発明に従う試験材No.44,45はいずれも、擦れ疵の発生は認められず、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されていた。これに対して、試験材No.46は、均質化処理時の鋳塊の昇温速度が遅いため、析出物が直径1μmを超える大きさに成長して析出数が減少し、未エッチング部が形成されてピットの均一性に劣る。また析出量が過剰になるためFe固溶量が不足し、バーニング強度が低下した。試験材No.47は、均質化処理時の鋳塊の昇温速度が速いため、析出が不十分となり、電解処理時に未エッチング部が形成されるとともにピットパターンが不均一となった。試験材No.48は、均質化処理温度が低いために、Fe、Siの析出、即ち固溶量の減少が十分でないため、電解処理時に未エッチング部が形成されるとともにピットパターンが不均一となった。試験材No.49は、均質化処理温度が高いために、Feの固溶量が過度になり、結果的にピット発生の起点となる微細な析出物が減少し、未エッチング部が形成されるとともにピットパターンが不均一となった。試験材No.50は、均質化処理時間が短いために、長手方向および幅方向でのFe、Siの固溶状態が不均一となり、ピットパターンが不均一となった。   As shown in Table 11, the test material No. Neither 44 nor 45 shows the occurrence of rubbing flaws, has excellent burning resistance, does not cause uneven patterns and streaks, has excellent etching properties after electrolytic treatment, and has uniform etching pits on the entire surface. Was formed. In contrast, test material No. No. 46, because the temperature rise rate of the ingot during the homogenization treatment is slow, the precipitates grow to a size exceeding 1 μm in diameter, the number of precipitates decreases, and unetched portions are formed, resulting in poor pit uniformity. . Moreover, since the precipitation amount became excessive, the Fe solid solution amount was insufficient, and the burning strength was lowered. Test material No. In No. 47, since the temperature of the ingot during the homogenization treatment was high, the precipitation was insufficient, and an unetched portion was formed during the electrolytic treatment and the pit pattern became non-uniform. Test material No. In No. 48, since the homogenization treatment temperature was low, the precipitation of Fe and Si, that is, the decrease in the amount of solid solution was not sufficient, so that an unetched portion was formed during the electrolytic treatment and the pit pattern became non-uniform. Test material No. 49, since the homogenization temperature is high, the amount of solid solution of Fe becomes excessive, resulting in a decrease in fine precipitates that are the starting point of pit generation, the formation of unetched portions and the formation of pit patterns. It became uneven. Test material No. In No. 50, since the homogenization time was short, the solid solution state of Fe and Si in the longitudinal direction and the width direction became non-uniform, and the pit pattern became non-uniform.

実施例5、比較例5
実施例1で鋳造したアルミニウム合金(表1)の鋳塊の圧延面を5mm/片面づつ面削して厚さ500mmとし、鋳塊を35℃/hrの昇温速度で530℃の温度に加熱し、この温度に3.5hr保持することにより均質化処理を行った。
Example 5, Comparative Example 5
The rolled surface of the ingot of the aluminum alloy cast in Example 1 (Table 1) is chamfered by 5 mm / one side to a thickness of 500 mm, and the ingot is heated to a temperature of 530 ° C. at a temperature increase rate of 35 ° C./hr. Then, a homogenization treatment was performed by maintaining this temperature for 3.5 hours.

ついで、熱間圧延開始温度の490℃まで35℃/hrの速度で降温し、板厚3mmまで熱間圧延し、346℃の温度で熱間圧延を終了した。熱間圧延後、中間焼鈍を施すことなしに冷間圧延を行って板厚を0.3mmとした。なお、冷間圧延において使用したロールの面粗度は算術平均粗さRa:0.3μm、圧延油の粘度は3cStであった。   Next, the temperature was lowered to a hot rolling start temperature of 490 ° C. at a rate of 35 ° C./hr, hot rolled to a plate thickness of 3 mm, and hot rolling was terminated at a temperature of 346 ° C. After hot rolling, cold rolling was performed without intermediate annealing, and the plate thickness was set to 0.3 mm. In addition, the surface roughness of the roll used in cold rolling was arithmetic average roughness Ra: 0.3 μm, and the viscosity of the rolling oil was 3 cSt.

得られたアルミニウム合金板(試験材)について、前記の方法により、冷間圧延後の板表面のアルミパウダー量、直径0.1〜1.0μmの析出物数、Fe固溶量、板表面の直径30μm以上のオイルピット数、結晶粒長を測定した。また、以下の方法により、全Fe量に対する金属間化合物を形成しているFe量の比率(化合物としてのFe)(%)、全Si量に対する金属間化合物を形成しているSi量の比率(化合物としてのSi)(%)、Al−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)を求めた。結果を表12に示す。また、前記の方法により、耐バーニング性を評価し、冷間圧延後に巻き取られたコイル内で生じた擦れ疵の有無、ムラ模様、ストリークスの有無を観察し、エッチング性を評価した。結果を表13に示す。なお、表12において本発明の条件を外れたものには下線を付した。   About the obtained aluminum alloy plate (test material), the amount of aluminum powder on the plate surface after cold rolling, the number of precipitates having a diameter of 0.1 to 1.0 μm, the amount of Fe solid solution, The number of oil pits having a diameter of 30 μm or more and the crystal grain length were measured. In addition, by the following method, the ratio of the amount of Fe forming the intermetallic compound to the total amount of Fe (Fe as a compound) (%), the ratio of the amount of Si forming the intermetallic compound to the total amount of Si ( Ratio of Fe (B%) forming Al—Fe—Si intermetallic compound to Si (%) as compound, and Fe amount (A%) forming Al—Fe intermetallic compound (B% / A%) was determined. The results are shown in Table 12. Also, the burning resistance was evaluated by the above-described method, and the etching property was evaluated by observing the presence or absence of rubbing flaws generated in the coil wound after cold rolling, the presence of uneven patterns, and streak. The results are shown in Table 13. In Table 12, those outside the conditions of the present invention are underlined.

金属間化合物を形成しているFe量、Si量の測定:図2に示すようなフェノール残渣分析法によって総金属間化合物中のFe量及びSi量を調べ、総金属間化合物中の(Al−Fe−Si系金属間化合物中のFe量(wt%))/(Al−Fe系金属間化合物中のFe量(wt%))比を求めた。   Measurement of Fe amount and Si amount forming intermetallic compound: The amount of Fe and Si in the total intermetallic compound was examined by a phenol residue analysis method as shown in FIG. The ratio of Fe amount in Fe-Si intermetallic compound (wt%)) / (Fe amount in Al-Fe intermetallic compound (wt%)) was determined.

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

表13に示すように、本発明に従う試験材No.51〜No.55はいずれも、擦れ疵の発生は認められず、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されていた。これに対して、試験材No.56は、Mg含有量が少ないためバーニング耐力に劣ると共に、アルミパウダー量が多くなり、ピット形成が不均一となり、電解グレーニング後に未エッチング部やムラ模様による外観不良が生じた。一方試験材No.57は、Mg含有量が多いため、ピットの均一性に劣ると共に、アルミパウダー量が少なくなり、コイル内に擦れ傷が発生した。試験材No.58はZn含有量が多く、粗面化が不均一となった。試験材No.59はFeおよびSiの含有量が少ないため、析出物の数が少なく、Al−Fe系金属間化合物やAl−Fe−Si系金属間化合物の分布が不均一となり、未エッチング部が形成され、ピットの形成が不均一となった。また、Feの固溶量も少ないため、バーニング耐力に劣る。さらに、金属間化合物を形成しているSi量が全Si量の40%を超えているため、ピットの起点としての作用が弱いAl−Fe−Si系金属間化合物の比率が大きいため、ピットの発生効率が低下して粗大なピットが生じ、ピットパターンが不均一となった。(Al−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)が0.9より大きい場合には、ピットの発生効率が低下して粗大なピットが生じ易くなる。一方試験材No.60はFeおよびSiの含有量が多いため、析出物の数が多く、粗大な化合物が生成し、粗面化構造の均一性が低下した。また、Fe固溶量も多いため、ピットパターンが不均一となった。試験材No.61はCuの含有量が多く、電解処理時に未エッチング部が形成され、ピットが粗大且つ不均一になった。試験材No.62はTiの含有量が多く、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となった。試験材No.63はMnの含有量が多く、粗大なAl−Fe−Mn系あるいはAl−Fe−Mn−Si系の金属間化合物が生成し、電解処理時の粗面化が不均一となった。試験材No.64はPb、In、Sn及びGaの総量が0.05%を超えたため、ピットの形状が崩れ不均一となった。   As shown in Table 13, the test material No. 51-No. In all cases, no generation of rubbing flaws was observed, burning resistance was excellent, uneven pattern and streak were not generated, etching property after electrolytic treatment was excellent, and uniform etching pits were formed on the entire surface. It had been. In contrast, test material No. No. 56 was inferior in burning resistance because of its low Mg content, increased in the amount of aluminum powder, resulting in non-uniform pit formation, and poor appearance due to unetched portions and uneven patterns after electrolytic graining. On the other hand, the test material No. No. 57 was inferior in pit uniformity due to a high Mg content, and the amount of aluminum powder was reduced, and scratches were generated in the coil. Test material No. No. 58 had a large Zn content, and the surface roughness was uneven. Test material No. 59 has a low content of Fe and Si, so the number of precipitates is small, the distribution of Al-Fe-based intermetallic compounds and Al-Fe-Si-based intermetallic compounds becomes uneven, unetched portions are formed, and pits are formed. Formation was uneven. Moreover, since the amount of solid solution of Fe is also small, the burning strength is inferior. Furthermore, since the amount of Si forming the intermetallic compound exceeds 40% of the total amount of Si, the ratio of the Al—Fe—Si intermetallic compound having a weak action as the starting point of the pit is large. The generation efficiency decreased and coarse pits were generated, resulting in non-uniform pit patterns. (The ratio (B% / A%) of the Fe amount (B%) forming the Al—Fe—Si intermetallic compound to the Fe amount (A%) forming the Al—Fe based intermetallic compound is If the ratio is larger than 0.9, the generation efficiency of pits is reduced and coarse pits are likely to be formed, whereas test material No. 60 has a large content of Fe and Si, and thus has a large number of precipitates and is a coarse compound. In addition, the uniformity of the roughened structure was reduced, and the pit pattern was non-uniform because of the large amount of Fe solid solution. An unetched part was formed, and the pits were coarse and non-uniform.Test material No. 62 had a large Ti content, and an Al-Ti coarse compound was produced, resulting in a non-uniform surface structure. Test material No. 63 has a large Mn content and is coarse Al- An e-Mn-based or Al-Fe-Mn-Si-based intermetallic compound was formed, resulting in uneven surface roughness during the electrolytic treatment.Test material No. 64 is the total amount of Pb, In, Sn and Ga Was over 0.05%, the shape of the pits collapsed and became non-uniform.

実施例6、比較例6
実施例1で鋳造したアルミニウム合金Cの鋳塊の圧延面の面削、均質化処理、熱間圧延を表14に示す条件で行い、熱間圧延後、中間焼鈍を施すことなしに表14に示す板厚まで冷間圧延を行った。なお、鋳塊を均質化処理後、常温まで降温し、熱間圧延開始温度まで加熱した。冷間圧延で使用したロールの面粗度、圧延油の粘度を表15に示す。なお、表14、表15において、本発明の条件を外れたものに下線を付した。
Example 6 and Comparative Example 6
The chamfering, homogenization treatment, and hot rolling of the rolled surface of the ingot of the aluminum alloy C cast in Example 1 were performed under the conditions shown in Table 14, and after hot rolling, the intermediate annealing was not performed in Table 14. Cold rolling was performed to the plate thickness shown. The ingot was homogenized, cooled to room temperature, and heated to the hot rolling start temperature. Table 15 shows the surface roughness of the rolls used in the cold rolling and the viscosity of the rolling oil. In Tables 14 and 15, those that deviate from the conditions of the present invention are underlined.

得られたアルミニウム合金板(試験材)について、前記の方法により、冷間圧延後の板表面のアルミパウダー量、直径0.1〜1.0μmの析出物数、Fe固溶量、全Fe量に対する金属間化合物を形成しているFe量の比率、全Si量に対する金属間化合物を形成しているSi量の比率およびAl−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)、板表面の直径30μm以上のオイルピット数、結晶粒長、金属間化合物を形成しているFe量の割合、金属間化合物を形成しているSi量の割合、Al−Fe系金属間化合物を形成しているFe量に対するAl−Fe−Si系金属間化合物を形成しているFe量の比を測定した。結果を表15に示す。また、前記の方法により、耐バーニング性を評価し、冷間圧延後に巻き取られたコイル内で生じた擦れ疵の有無、ムラ模様、ストリークスの有無を観察し、エッチング性を評価した。結果を表18に示す。   About the obtained aluminum alloy plate (test material), the amount of aluminum powder on the surface of the plate after cold rolling, the number of precipitates having a diameter of 0.1 to 1.0 μm, the amount of Fe solid solution, the total amount of Fe by the above method. Of the amount of Fe forming the intermetallic compound with respect to the ratio of the amount of Si forming the intermetallic compound with respect to the total amount of Si and the amount of Fe (A%) forming the Al—Fe intermetallic compound The ratio (B% / A%) of the Fe amount (B%) forming the Al—Fe—Si intermetallic compound (B% / A%), the number of oil pits with a diameter of 30 μm or more, the crystal grain length, and the intermetallic compound are formed. The ratio of the amount of Fe forming, the ratio of the amount of Si forming the intermetallic compound, and the amount of Fe forming the Al—Fe based intermetallic compound are forming the Al—Fe—Si based intermetallic compound. The ratio of Fe amount was measured. The results are shown in Table 15. Also, the burning resistance was evaluated by the above-described method, and the etching property was evaluated by observing the presence or absence of rubbing flaws generated in the coil wound after cold rolling, the presence of uneven patterns, and streak. The results are shown in Table 18.

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

Figure 0005116267
Figure 0005116267

表16に示すように、本発明に従う試験材No.65,66はいずれも、擦れ疵の発生は認められず、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されていた。これに対して、試験材No.67は、均質化処理温度が低いために、ピット発生の起点となるFe、Siの析出が十分でなく、電解処理時に未エッチング部が形成されるとともにピットパターンが不均一となった。試験材No.68は、均質化処理温度が高いために、Feの固溶量が過度となり、結果的にピット発生の起点となる微細な析出物が減少し、未エッチング部が形成されるとともにピットパターンが不均一となった。試験材No.69は、均質化処理時間が短いために、Fe、Siの析出が不十分となりピットパターンが不均一となる。試験材No.70は、均質化処理後、熱間圧延開始温度までの鋳塊の降温速度が遅いため、Al−Fe−Si系金属間化合物の析出が進行して、直径1μmを超える大きさに成長し、析出物数が減少し、Feの固溶量も少なくなった。その結果、バーニング耐力が不十分になり、またピットも不均一となった。試験材No.71は、均質化処理後、熱間圧延開始温度までの鋳塊の降温速度が速いため、析出進行のための時間が十分でなく、また鋳塊の温度が場所により不均一となるため、Fe、Siの析出が不均一となり、これに起因して、続いて行われる熱間圧延中の再結晶が場所により不均一となってストリークスが生じ、またピットパターンが不均一となった。   As shown in Table 16, test material No. In both Nos. 65 and 66, generation of rubbing flaws was not observed, burning resistance was excellent, uneven patterns and streaks were not generated, etching property after electrolytic treatment was excellent, and uniform etching pits were formed on the entire surface. Was formed. In contrast, test material No. In No. 67, since the homogenization temperature was low, the precipitation of Fe and Si as starting points of pit generation was not sufficient, and an unetched portion was formed during the electrolytic treatment and the pit pattern became non-uniform. Test material No. In No. 68, since the homogenization temperature is high, the amount of solid solution of Fe becomes excessive, and as a result, fine precipitates that are the starting point of pit generation are reduced, unetched portions are formed, and the pit pattern is not good. It became uniform. Test material No. In No. 69, since the homogenization time is short, the precipitation of Fe and Si becomes insufficient and the pit pattern becomes non-uniform. Test material No. 70, since the temperature drop rate of the ingot to the hot rolling start temperature after the homogenization treatment is slow, precipitation of the Al—Fe—Si intermetallic compound proceeds, and grows to a size exceeding 1 μm in diameter. The number of precipitates decreased, and the amount of Fe dissolved decreased. As a result, the burning resistance was insufficient and the pits were not uniform. Test material No. No. 71, since the temperature of the ingot to the hot rolling start temperature after the homogenization treatment is fast, the time for precipitation is not sufficient, and the temperature of the ingot is not uniform depending on the location. As a result, the precipitation of Si became non-uniform, and as a result, recrystallization during the subsequent hot rolling became non-uniform depending on the location, streaks occurred, and the pit pattern became non-uniform.

アルミパウダー量を測定するための拭き取り法のフローチャートである。It is a flowchart of the wiping off method for measuring the amount of aluminum powder. 金属間化合物中のFe量、Si量を測定するためのフェノール残渣分析法のフローチャートである。It is a flowchart of the phenol residue analysis method for measuring the amount of Fe and Si in an intermetallic compound.

Claims (5)

Mg:0.1〜1.5%(質量%、以下同じ)、Fe:0.1〜0.6%、Si:0.03〜0.15%、Cu:0.0001〜0.1%、Ti:0.0001〜0.1%を含有し、さらにPb、In、SnおよびGaから選ばれた1種以上の元素を、総量が0.005〜0.05%の範囲内で含有し、許容されるZn含有量を0.5%以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金を造塊し、得られた鋳塊の圧延面表層を3〜15mm面削した後、20〜60℃/hrの昇温速度で450〜580℃の温度域に加熱して3hr以上保持する均質化処理を行い、ついで開始温度を400〜520℃、終了温度を320〜400℃とし、終了時の厚さを5mm以下とする熱間圧延を行い、中間焼鈍を行うことなく冷間圧延し、最終冷間圧延において、ロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度が1〜6cStで、Mg含有量(Mg%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、−2×Mg%+2≦ρ≦−2×Mg%+8を満足するとともに、Mg含有量(Mg%)と圧延油の粘度ρとの関係が、ρ≦2×Mg+4を満足する圧延油を使用して、板表面のアルミパウダー量が0.1〜3.0mg/mに調整され、板表面において直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100,000個/mm 分散しており、板表面において、直径(円相当直径)が30μm以上のオイルピットの数が50個/mm 以下であり、板表面からみた圧延方向に直交する方向の平均結晶粒長が100μm以下であり、板表面からみた圧延方向と平行する方向の平均結晶粒長が、圧延方向に直交する方向の平均結晶粒長の2〜20倍であるアルミニウム合金板とすることを特徴とする平版印刷版用アルミニウム合金板の製造方法Mg: 0.1-1.5% (mass%, the same shall apply hereinafter) , Fe : 0.1-0.6%, Si: 0.03-0.15%, Cu: 0.0001-0.1% Ti: 0.0001 to 0.1%, and further contains one or more elements selected from Pb, In, Sn and Ga within a total amount of 0.005 to 0.05%. After allowing the allowable Zn content to be 0.5% or less, ingot an aluminum alloy having a composition composed of the balance aluminum and inevitable impurities, and chamfering the rolled surface layer of the resulting ingot by 3 to 15 mm Heating to a temperature range of 450 to 580 ° C. at a rate of temperature increase of 20 to 60 ° C./hr and holding for 3 hours or more, then setting the start temperature to 400 to 520 ° C. and the end temperature to 320 to 400 ° C. , Hot rolling to a thickness of 5 mm or less at the end, and intermediate annealing Cold rolling without undulation, and in the final cold rolling, using a rolling roll having a roll surface roughness of arithmetic average roughness Ra: 0.2 to 0.5 μm, a viscosity of 1 to 6 cSt, and an Mg content (Mg %) And the viscosity ρ of the rolling oil used in the final cold rolling satisfy −2 × Mg% + 2 ≦ ρ ≦ −2 × Mg% + 8, and the Mg content (Mg%) and the rolling oil Using a rolling oil satisfying ρ ≦ 2 × Mg + 4, the amount of aluminum powder on the plate surface is adjusted to 0.1 to 3.0 mg / m 2 , and the diameter (circle) (Equivalent diameter) 0.1 to 1.0 μm of precipitates are dispersed in an amount of 10,000 to 100,000 / mm 2 , and the number of oil pits having a diameter (equivalent circle diameter) of 30 μm or more is 50 on the plate surface. Pieces / mm 2 or less, and the flatness in the direction perpendicular to the rolling direction as seen from the plate surface. The average crystal grain length is 100 μm or less, and the average crystal grain length in the direction parallel to the rolling direction seen from the plate surface is 2 to 20 times the average crystal grain length in the direction orthogonal to the rolling direction. A method for producing an aluminum alloy plate for a lithographic printing plate. Mg:0.1〜1.5%、Fe:0.1〜0.6%、Si:0.03〜0.15%、Cu:0.0001〜0.1%、Ti:0.0001〜0.1%を含有し、さらにPb、In、SnおよびGaから選ばれた1種以上の元素を、総量が0.005〜0.05%の範囲内で含有し、許容されるZn含有量を0.5%以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金を造塊し、得られた鋳塊の圧延面表層を3〜15mm面削した後、20〜60℃/hrの昇温速度で450〜580℃の温度域に加熱して3hr以上保持する均質化処理を行い、その後、一旦常温まで降温し、ついで350〜500℃の温度に加熱して熱間圧延を開始し、終了温度を300〜380℃とし、終了時の厚さを5mm以下とする熱間圧延を行い、中間焼鈍を行うことなく冷間圧延し、最終冷間圧延において、ロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度が1〜6cStで、Mg含有量(Mg%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、−2×Mg%+2≦ρ≦−2×Mg%+8を満足するとともに、Mg含有量(Mg%)と圧延油の粘度ρとの関係が、ρ≦2×Mg+4を満足する圧延油を使用して、板表面のアルミパウダー量が0.1〜3.0mg/mMg: 0.1-1.5%, Fe: 0.1-0.6%, Si: 0.03-0.15%, Cu: 0.0001-0.1%, Ti: 0.0001- Zn content that is 0.1% and further contains one or more elements selected from Pb, In, Sn, and Ga within a total amount of 0.005 to 0.05%. Is made into an aluminum alloy having a composition composed of the balance aluminum and inevitable impurities, and the surface of the rolled surface of the resulting ingot is chamfered 3 to 15 mm, and then 20 to 60 ° C./hr. Heating to a temperature range of 450 to 580 ° C. at a heating rate of 3 ° C and performing a homogenization treatment for 3 hours or more, then lowering the temperature to room temperature, and then heating to 350 to 500 ° C. to start hot rolling The end temperature is 300 to 380 ° C., and the end thickness is 5 mm or less. In the final cold rolling, using a rolling roll having a roll surface roughness of arithmetic average roughness Ra: 0.2 to 0.5 μm, the viscosity is cold rolling without intermediate annealing. 1-6 cSt, the relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil used in the final cold rolling satisfies −2 × Mg% + 2 ≦ ρ ≦ −2 × Mg% + 8, Using a rolling oil in which the relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil satisfies ρ ≦ 2 × Mg + 4, the amount of aluminum powder on the plate surface is 0.1 to 3.0 mg / m. 2 に調整され、板表面において直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100,000個/mmAnd a precipitate having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm on the plate surface is 10,000 to 100,000 pieces / mm. 2 分散しており、板中のFeの固溶量が20〜100ppmであり、板表面において、直径(円相当直径)が30μm以上のオイルピットの数が50個/mmThe number of oil pits having a diameter (equivalent circle diameter) of 30 μm or more on the surface of the plate is 50 / mm. 2 以下であり、板表面からみた圧延方向に直交する方向の平均結晶粒長が100μm以下であり、板表面からみた圧延方向と平行する方向の平均結晶粒長が、圧延方向に直交する方向の平均結晶粒長の2〜20倍であるアルミニウム合金板とすることを特徴とする平版印刷版用アルミニウム合金板の製造方法。The average crystal grain length in the direction orthogonal to the rolling direction viewed from the plate surface is 100 μm or less, and the average crystal grain length in the direction parallel to the rolling direction viewed from the plate surface is the average in the direction orthogonal to the rolling direction. A method for producing an aluminum alloy plate for a lithographic printing plate, wherein the aluminum alloy plate has a crystal grain length of 2 to 20 times. Mg:0.1〜1.5%、Fe:0.1〜0.6%、Si:0.03〜0.15%、Cu:0.0001〜0.1%、Ti:0.0001〜0.1%を含有し、さらにPb、In、SnおよびGaから選ばれた1種以上の元素を、総量が0.005〜0.05%の範囲内で含有し、許容されるZn含有量を0.5%以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金を造塊し、得られた鋳塊の圧延面表層を3〜15mm面削した後、20〜60℃/hrの昇温速度で450〜580℃の温度域に加熱して3hr以上保持する均質化処理を行い、該保持温度から熱間圧延開始温度まで20〜60℃/hrの降温速度で降温し、ついで開始温度を400〜500℃、終了温度を300〜400℃とし、終了時の厚さを5mm以下とする熱間圧延を行い、中間焼鈍を行うことなく冷間圧延し、最終冷間圧延において、ロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度が1〜6cStで、Mg含有量(Mg%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、−2×Mg%+2≦ρ≦−2×Mg%+8を満足するとともに、Mg含有量(Mg%)と圧延油の粘度ρとの関係が、ρ≦2×Mg+4を満足する圧延油を使用して、板表面のアルミパウダー量が0.1〜3.0mg/mMg: 0.1-1.5%, Fe: 0.1-0.6%, Si: 0.03-0.15%, Cu: 0.0001-0.1%, Ti: 0.0001- Zn content that is 0.1% and further contains one or more elements selected from Pb, In, Sn, and Ga within a total amount of 0.005 to 0.05%. Is made into an aluminum alloy having a composition composed of the balance aluminum and inevitable impurities, and the surface of the rolled surface of the resulting ingot is chamfered 3 to 15 mm, and then 20 to 60 ° C./hr. A homogenization treatment is performed by heating to a temperature range of 450 to 580 ° C. at a temperature increase rate of 3 hours and holding for 3 hours or more, and the temperature is decreased at a temperature decrease rate of 20 to 60 ° C./hr from the holding temperature to the hot rolling start temperature. Start temperature is 400-500 ° C, end temperature is 300-400 ° C Hot rolling to a thickness of 5 mm or less, cold rolling without intermediate annealing, in the final cold rolling, the roll surface roughness of arithmetic average roughness Ra: 0.2-0.5 μm Using a rolling roll, the viscosity is 1 to 6 cSt, and the relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil used in the final cold rolling is −2 × Mg% + 2 ≦ ρ ≦ −2 × Mg % + 8, and the relationship between the Mg content (Mg%) and the viscosity ρ of the rolling oil is ρ ≦ 2 × Mg + 4. ~ 3.0mg / m 2 に調整され、板表面において直径(円相当直径)0.1〜1.0μmの析出物が10,000〜100,000個/mmAnd a precipitate having a diameter (equivalent circle diameter) of 0.1 to 1.0 μm on the plate surface is 10,000 to 100,000 pieces / mm. 2 分散しており、板中のFeの固溶量が20〜100ppmであり、成分元素の一部または全部が金属間化合物を形成しており、金属間化合物を形成しているFe量が全Fe量の50〜99.8%、金属間化合物を形成しているSi量が全Si量の5〜40%で、Al−Fe系金属間化合物を形成しているFe量(A%)に対するAl−Fe−Si系金属間化合物を形成しているFe量(B%)の比(B%/A%)が0.9以下であり、板表面において、直径(円相当直径)が30μm以上のオイルピットの数が50個/mmDispersed, the solid solution amount of Fe in the plate is 20 to 100 ppm, part or all of the component elements form an intermetallic compound, and the amount of Fe forming the intermetallic compound is the total Fe 50 to 99.8% of the amount, the amount of Si forming the intermetallic compound is 5 to 40% of the total amount of Si, and Al with respect to the amount of Fe (A%) forming the Al—Fe-based intermetallic compound The Fe amount (B%) ratio (B% / A%) forming the Fe—Si intermetallic compound is 0.9 or less, and the diameter (equivalent circle diameter) is 30 μm or more on the plate surface. Number of oil pits 50 / mm 2 以下であり、板表面からみた圧延方向に直交する方向の平均結晶粒長が100μm以下であり、板表面からみた圧延方向と平行する方向の平均結晶粒長が、圧延方向に直交する方向の平均結晶粒長の2〜20倍であるアルミニウム合金板とすることを特徴とする平版印刷版用アルミニウム合金板の製造方法。The average crystal grain length in the direction orthogonal to the rolling direction viewed from the plate surface is 100 μm or less, and the average crystal grain length in the direction parallel to the rolling direction viewed from the plate surface is the average in the direction orthogonal to the rolling direction. A method for producing an aluminum alloy plate for a lithographic printing plate, wherein the aluminum alloy plate has a crystal grain length of 2 to 20 times. 前記アルミニウム合金板が、さらにMn:0.05%を超え0.3%以下を含有することを特徴とする請求項1〜3のいずれかに記載の平版印刷版用アルミニウム合金板の製造方法The said aluminum alloy plate contains Mn: more than 0.05% and 0.3% or less further , The manufacturing method of the aluminum alloy plate for lithographic printing plates in any one of Claims 1-3 characterized by the above-mentioned. 270℃で7分間の熱処理後の0.2%耐力が120MPa以上であることを特徴とする請求項1〜4のいずれかに記載の平版印刷版用アルミニウム合金板の製造方法The method for producing an aluminum alloy plate for a lithographic printing plate according to any one of claims 1 to 4 , wherein a 0.2% yield strength after heat treatment at 270 ° C for 7 minutes is 120 MPa or more.
JP2006209962A 2005-08-30 2006-08-01 Method for producing aluminum alloy plate for lithographic printing plate Active JP5116267B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006209962A JP5116267B2 (en) 2005-08-30 2006-08-01 Method for producing aluminum alloy plate for lithographic printing plate
CN2006800319491A CN101253279B (en) 2005-08-30 2006-08-16 Aluminum alloy plate for surface printing plate and method for production thereof
PCT/JP2006/316437 WO2007026574A1 (en) 2005-08-30 2006-08-16 Aluminum alloy plate for surface printing plate and method for production thereof
US11/990,905 US20090252642A1 (en) 2005-08-30 2006-08-16 Aluminum alloy sheet for lithographic printing plate and method of producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005248684 2005-08-30
JP2005248684 2005-08-30
JP2006209962A JP5116267B2 (en) 2005-08-30 2006-08-01 Method for producing aluminum alloy plate for lithographic printing plate

Publications (2)

Publication Number Publication Date
JP2007092170A JP2007092170A (en) 2007-04-12
JP5116267B2 true JP5116267B2 (en) 2013-01-09

Family

ID=37978209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209962A Active JP5116267B2 (en) 2005-08-30 2006-08-01 Method for producing aluminum alloy plate for lithographic printing plate

Country Status (1)

Country Link
JP (1) JP5116267B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210103B2 (en) * 2007-09-28 2013-06-12 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5314396B2 (en) * 2008-05-08 2013-10-16 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plates

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146598A (en) * 1984-12-20 1986-07-04 Furukawa Alum Co Ltd Supporter for lithographic printing plate and its manufacture
JPS62181190A (en) * 1986-02-06 1987-08-08 Furukawa Alum Co Ltd Production of aluminum alloy base for planographic plate
JPH02274833A (en) * 1989-04-14 1990-11-09 Kobe Steel Ltd Aluminum alloy-soft material for supporting substrate and its manufacture
JP2544215B2 (en) * 1989-12-06 1996-10-16 スカイアルミニウム株式会社 Method for producing aluminum alloy base plate for printing plate support
JPH05214356A (en) * 1992-02-03 1993-08-24 Nippon Light Metal Co Ltd Lubricating oil for cold rolling of aluminum
JP3662959B2 (en) * 1993-12-13 2005-06-22 日本軽金属株式会社 Method for producing aluminum alloy base plate for electrolytic roughened lithographic printing plate
JP2899235B2 (en) * 1995-08-24 1999-06-02 住友軽金属工業株式会社 Method for producing aluminum plate or aluminum alloy plate with low optical anisotropy
JPH10212543A (en) * 1997-01-29 1998-08-11 Mitsubishi Alum Co Ltd Aluminum alloy for photosensitive substrate
JP3642915B2 (en) * 1997-04-30 2005-04-27 日本軽金属株式会社 Aluminum alloy base plate with excellent surface treatment appearance
JPH11181558A (en) * 1997-12-22 1999-07-06 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for low and positive pressure can body
JP4111459B2 (en) * 2000-09-18 2008-07-02 新日本石油株式会社 Cold rolling oil for aluminum
JP3893031B2 (en) * 2001-04-25 2007-03-14 株式会社神戸製鋼所 Aluminum alloy plate for printing plate and method for producing the same
JP2003096482A (en) * 2001-09-21 2003-04-03 Nippon Oil Corp Lubricating oil composition for aluminum processing
JP2004035936A (en) * 2002-07-02 2004-02-05 Furukawa Sky Kk Method of producing aluminum alloy rolled plate for lithographic printing plate support
JP2004322153A (en) * 2003-04-24 2004-11-18 Kobe Steel Ltd Work roll for rolling and rolling method using the same
JP4318587B2 (en) * 2003-05-30 2009-08-26 住友軽金属工業株式会社 Aluminum alloy plate for lithographic printing plates
JP4925248B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4925247B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4925246B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same

Also Published As

Publication number Publication date
JP2007092170A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4740896B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP4925246B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5210103B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3693485B2 (en) Manufacturing method of aluminum alloy base plate for lithographic printing plate
JP4939325B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4181596B2 (en) High-strength aluminum alloy plate for printing plates
JP2008063667A (en) Aluminum alloy material for lithography and its manufacturing method
JP2007070674A (en) Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor
JP4925247B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5149582B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
US5507887A (en) Support for planographic printing plate
US20090252642A1 (en) Aluminum alloy sheet for lithographic printing plate and method of producing the same
JP5116267B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP4181597B2 (en) High-strength aluminum alloy plate for printing plates
JP4925248B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5314396B2 (en) Aluminum alloy plate for lithographic printing plates
JP3177079B2 (en) Method for producing a lithographic printing plate support
JP2005002429A (en) Aluminum alloy material for planographic printing plate, and its production method
US20080289731A1 (en) Method of producing aluminum alloy sheet for lithographic printing plate
JP4110353B2 (en) Aluminum alloy base plate for lithographic printing plate and method for producing the same
US8118951B2 (en) Aluminum alloy sheet for lithographic printing plate
JP2982093B2 (en) Method for producing a lithographic printing plate support
JP3983611B2 (en) Method for producing aluminum alloy plate for printing plate
JP3600081B2 (en) Element of aluminum alloy support for PS plate and method for producing aluminum alloy support for PS plate
JP4105043B2 (en) Aluminum alloy material for lithographic printing plate and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Ref document number: 5116267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250