JP5114774B2 - Metal layer-tunnel barrier layer-sensor structure and sensor having this structure - Google Patents

Metal layer-tunnel barrier layer-sensor structure and sensor having this structure Download PDF

Info

Publication number
JP5114774B2
JP5114774B2 JP2007534459A JP2007534459A JP5114774B2 JP 5114774 B2 JP5114774 B2 JP 5114774B2 JP 2007534459 A JP2007534459 A JP 2007534459A JP 2007534459 A JP2007534459 A JP 2007534459A JP 5114774 B2 JP5114774 B2 JP 5114774B2
Authority
JP
Japan
Prior art keywords
tunnel barrier
barrier layer
aluminum
sensor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007534459A
Other languages
Japanese (ja)
Other versions
JPWO2007029754A1 (en
Inventor
道子 吉武
進二郎 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007534459A priority Critical patent/JP5114774B2/en
Publication of JPWO2007029754A1 publication Critical patent/JPWO2007029754A1/en
Application granted granted Critical
Publication of JP5114774B2 publication Critical patent/JP5114774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching

Description

【技術分野】
【0001】
この出願の発明は、エレクトロニクスやセンサー等の分野に適用することができる金属層−トンネルバリア層−センサー(MIS)構造及びこのMIS構造を有するセンサーに関するものである。
【0002】
従来より、トンネル電流を利用する金属層−トンネルバリア層−金属層(MIM)構造を有する電子放出源や、金属層−トンネルバリア層−センサー層(MIS)構造を持ちセンサー層での電子授受をトンネルバリア層を通して金属層へ伝えるタイプのセンサー、あるいはMIM構造もしくはMIS構造でスピンを持つ材料を含む磁気デバイスへの利用等のために、トンネルバリア層材料の研究開発が進められている。
【0003】
このようなトンネルバリア層材料の中で酸化アルミニウム(アルミナ)の薄膜を用いたものがいくつか提案されている(特許文献1、2、3、非特許文献1)。
これらのトンネルバリア層材料において酸化アルミニウム薄膜は、CVD法や真空蒸着法を用いて形成されており、アモルファスの形態となっている。
【0004】
【特許文献1】
特開2003−8004号公報
【特許文献2】
特開2002−222934号公報
【特許文献3】
特開2000−353307号公報
【非特許文献1】
V. Da Costa, et al., "Tunneling Phenomena as a Probe to Investigate Atomic Scale Fluctuations in Metal/Oxide/Metal Magnetic Tunnel Junctions", Phys. Rev. Lett., 85, p.876−879 (2000.7.24)
【非特許文献2】
Weijie Song, et al., "Oxygen Adsorption and Oxide Formation on Cu−9%Al(111) Surface Studied Using Low Energy Electron Diffraction and X−ray Photoelectron Spectroscopy", Jpn. J. Appl. Phys. Vol.42, p.4716−4720 (2003.7)
非特許文献3:M.Yoshitake,et al.,“Oxygen adsorption on Cu−9at.%Al(111)studied by low energy electron diffraction and Auger electron spectroscopy”,J.Vac.Sci.Technol.,A21(4),p.1290−1293(2003.7.1)
非特許文献4:Y.Yamauchi,et al.,“Surface study and thickness control of thin Al2O3 film on Cu−9%Al(111)single crystal”,Applied Surface Science,237,p.363−368(2004.8.14)
発明の開示
発明が解決しようとする課題
[0005]
しかしながら、従来の酸化アルミニウムを用いたトンネルバリア層は、他の酸化物層と積層する必要があったり、耐圧が十分ではなく5×10V/m程度の電圧を印加すると絶縁破壊をおこしたり、トンネル電流の大きさが場所によりばらつきがあったりする問題があった。
[0006]
そこで、本発明は、薄膜の厚さが均一で、より耐圧性にすぐれ、5×10V/m以上の電圧を印加しても絶縁破壊を起こさずにトンネル電流を流すことができ、トンネル電流の大きさに場所によるばらつきを生じさせないトンネルバリア層を有し、トンネル電流を利用する各種素子に適用した場合、動作効率、信頼性、寿命を向上させることができるトンネルバリア層材料を提供することを課題とする。
課題を解決するための手段
[0007]
この出願の発明は、上記課題を解決するものとして、第1には、銅、ニッケル、あるいはアルミニウムと合金または金属間化合物を形成するその他の金属に、アルミニウムを含むアルミニウム含有基板表面に、厚さ1〜4nmの酸化アルミニウムよりなるエピタキシャル薄層が形成され高速電子(20−30eV)回折で、縞状パターンとなる平坦な表面を有することを特徴とするトンネルバリア層材料を提供する。
[0008]
また、第2には、第1のトンネルバリア層材料を用いた金属層−トンネルバリア層−金属層(MIM)構造を、第3には、第1のトンネルバリア層材料を用いた金属層−トンネルバリア層−センサー層(MIS)構造を提供し、そして、第4には、第2のMIM構造を有することを特徴とする電子放出源を、第5には、第3のMIS構造を有することを特徴とするセンサーを、第6には、第2のMIM構造または第3のMIS構造を有することを特徴とする磁気デバイスを提供する。
発明の効果
[0009]
この出願の発明によれば、以下のような特異な効果を有した。1)1〜2x10V/mの電圧を膜厚方向に印加しても絶縁破壊を起こさず、リーク電流が発生しない。2)数V/mの電圧を膜厚方向に印加しても、絶縁破壊を起こさず、トンネル電流が流れる。3)3x10−2eV以下の電子線を直入射で照射しても、帯電しない。4)2〜3x10−4eVの電子線を表面すれすれに斜入射しても、帯電しない。このような特性を発揮することにより、上記した従来技術の課題を全て解決するに至った。
このため、薄膜の厚さが均一で、耐圧が高く絶縁破壊を起こさずにトンネル電流を流すことができ、電界効果型素子を含め、トンネル電流を利用する各種素子に適用した場合、動作効率、信頼性、寿命を向上させることができ、トンネル電流の大きさに場所によるばらつきを生じさせないトンネルバリア層材料の提供が可能となる。また、この出願の発明のトンネルバリア層材料を適用した各種素子の微細化も可能となり、耐圧の高さを生かしてMIM冷極エミッタも実現でき、エネルギー分散の少ない細かく絞れた電子線の発生が可能となる。
また、この出願の発明は、各種素子に適用した場合、動作効率、信頼性、寿命を向上させることで、省電力・省資源に貢献できる。さらに、MIM冷極エミッタが実現してエネルギー分散の少ない細かく絞れた電子線が発生できると、リソグラフィーなどの装置を大幅に小型化でき、省電力化に大きく寄与できる。
【図面の簡単な説明】
[0010]
[図1]実施例1のアルミ含有銅合金を、酸素誘起アルミ偏析現象を利用して酸化し、アルミナ膜を成長させるときの模式図である。
[図2]実施例1で作製したアルミナ膜の低速電子線回折パターンを示す写真とその模式図である。
[図3]実施例1で作製したアルミナ膜の高速反射電子線回折パターンを示す写真である。
【図4】実施例1で作製したサンプルのI−V特性を電気特性測定AFMにより測定した結果を示すグラフである。
【図5】実施例1で作製した酸化アルミニウム薄膜の測定前後におけるサンプルの表面形状像、バイアス電圧印加時の電流像の観察結果を示す写真である。
【図6】実施例2で作製したアルミナ膜の低速電子線回折パターンを示す写真である。
【図7】実施例2で作製したアルミナ膜の高速反射電子線回折パターンを示す写真である。
【図8】実施例3での電気特性測定用の走査型原子間力顕微鏡を用いた電流電圧特性評価の模式図である。
【図9】実施例3での電流電圧特性の測定結果(試料上の数箇所の点で測定)である。
【図10】実施例3での電気特性(I−V測定)前後における、V=0Vでの形状像とV=−1Vにおける電流像を示す写真である。
【発明を実施するための最良の形態】
【0011】
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
本発明のアルミナ膜基板は、出発材として、実施例1及び実施例2および、多くのアルミ含有合金多結晶において選択酸化によりアルミナ膜(アモルファス)が生成するという公知の事実から、実施例1及び2の銅、ニッケルをアルミと合金・金属間化合物を生成する他の金属に置換しても同様な作用効果を発揮させうることは、選択酸化が酸素とアルミとの結合エネルギーが大きいことによることから、容易に類推できる。
【0012】
この出願の発明者らは、これまでアルミニウムを含む銅単結晶の表面に形成される酸化アルミニウム薄膜についての研究を鋭意行ってきた(非特許文献2〜4)。そしてこれらの研究をさらに進めていった結果、アルミニウムを7〜16原子%含むCu−Al単結晶(111)の表面に厚さ1〜4nmの酸化アルミニウムよりなる薄層をエピタキシャル成長させた場合、その薄層は原子的に平坦で均一な厚さとなり、しかも耐圧が高く、5×109V/mより大きな電圧を印加しても絶縁破壊を起こさずにトンネル電流を流すことができ、トンネル電流の大きさに場所によるばらつきを生じさせず、トンネルバリア層材料として極めて優れていることを見出し、この出願の発明を完成するに至った。
【0013】
この出願の発明のトンネルバリア層材料において酸化アルミニウム薄層が形成されるCu−Al合金は、単結晶であり、アルミニウムを7〜16原子%含有する。アルミニウムが7原子%未満であると、アルミニウムの供給が不充分で酸化アルミニウム膜厚が薄くなり、16原子%を超えると、合金相だけでなく金属間化合物が生成しエピタキシャル膜でなくなる。
【0014】
また、Cu−Al合金は単結晶であることが必要であり、多結晶では原子的に平坦で均一な厚さのものは得られない。また、酸化物アルミニウム薄膜は、Cu−Al合金は(111)面上にエピタキシャル成長させたエピタキシャル薄膜である必要がある。(111)面以外の面では酸化アルミニウム薄膜を成長させたものは多結晶膜となり均一な性能が得られない。
【0015】
酸化アルミニウム薄層の膜厚は1〜4nmであることが必要であり、膜厚が上記範囲を外れるとトンネルバリア層としての良好な作動が困難となる。
【0016】
この出願の発明のバリア層材料は、たとえばMIM素子に適用する場合、酸化アルミニウム薄膜の上に金属層が形成されるが、その金属層材料としては、Au、Ag、Cu、Pt、Pd、Ir、Rh、Ru等を用いることができる。
【0017】
その他の種類の素子に適用する場合、各素子において従来より用いられてきたものと同様な材料からなる層を設けることができる。
【0018】
次に、この出願の発明のトンネルバリア層材料の作製方法例について述べる。
【0019】
この出願の発明のトンネルバリア層材料は、たとえば非特許文献1〜3に記載した方法を用いて作製することができる。
【0020】
すなわち、アルミニウムを7〜16原子%含むCu−Al(111)単結晶をチャンバー内にセットし、0.2〜2×10-7Pa程度の超高真空状態とする。そして結晶表面をArイオン等のスパッタリングと熱処理によりクリーンな面とする。スパッタリングのエネルギーは500〜1500eV程度が好ましく、スパッタリングの時間は1〜5分程度が好ましい。
【0021】
次に、結晶表面温度を900〜910K程度となるように加熱し、純粋な酸素をチャンバー内に導入し、酸素分圧を5〜10×10-6Pa程度とし、1〜23時間程度酸化させ、結晶表面に酸化アルミニウムを1〜4nmの厚さにエピタキシャル成長させる。場合によってはエピタキシャル成長の後、910〜1100Kの温度で1〜60分程度、熱処理を施してもよい。以上の方法によりトンネルバリア層材料が作製される。
【0022】
以下、実施例によりこの出願の発明ついてさらに詳しく説明する。もちろん、この出願の発明は上記の実施形態及び以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
【実施例1】
【0023】
アルミニウムを9原子%含むCu−Al(111)単結晶(市販品;Surface Preparation Laboratory Inc.社製)(厚さ1〜1.5mm)を基板として、チャンバー内にセットし、0.5×10-7Paの超高真空状態とした。そして結晶表面をArイオンのスパッタリング(1000eVのエネルギーで5分)と熱処理(910Kの温度で15分)によりクリーンな面とした。次に、結晶表面温度を900Kに加熱し、純粋な酸素をチャンバー内に導入し、酸素分圧を6.7×10-6Paとし、6時間程度酸化させ、結晶表面に酸化アルミニウムを2nmの厚さにエピタキシャル成長させ、アルミナ膜基板のサンプルを得た。
図1は、アルミ含有銅合金を、酸素誘起アルミ偏析現象を利用して酸化し、アルミナ膜を成長させるときの模式図であって。上記の製法による現象を模式的に示したものである。
【0024】
合金中に9原子%含まれているアルミが、酸素暴露により表面で酸化されて金属アルミが消費されるにつれ、バルクから表面に補給されてアルミナ膜が成長する。
上記で作製したトンネルバリア層材料の酸化アルミニウム薄膜の低速電子線回折パターンを測定した。その結果を図2に示す。図2より、酸化アルミニウム薄膜がエピタキシャル膜であり、チャージアップしないことがわかる。
図3でアルミナ膜に由来する線状のパターンが得られていることから、作製した膜が原子レベルで平坦であること、20〜30eVの高速電子の斜入射に対して帯電しないことがわかる。
【0025】
また、上記で作製したトンネルバリア層材料について、電気特性測定AFMによりサンプルのI−V特性(トンネル電流とバイアス電圧の関係)を測定するとともに、測定前後におけるサンプルの表面形状像、バイアス電圧印加時の電流像を観察した。図4にI−V特性の測定結果を示し、図5に形状像、電流像を示す。
【0026】
図4及び図5より、基板側にマイナス4V程度を印加すると電流が流れるが、I−V測定の前後で形状像に変化がなく、測定後に基板側にマイナス1V(サンプル−導電性カンチレバー間(カンチレバーがグラウンド))を印加して測定しても電流像にリーク電流がないことから、マイナス4V以上の電圧を印加したときに流れるのはトンネル電流で、絶縁破壊を起こさずに電流が流れていることがわかる。すなわち、トンネル電流が一気に流れるところまで電圧を印加した後でもブレークダウンが全く起こっていないことが示されている。したがって、上記実施例で作製した酸化アルミニウム薄膜が高性能なトンネルバリア層であることが確認された。
【実施例2】
【0027】
アルミを50原子%含むニッケルの単結晶(110)面を、超高真空中、1020K、酸素分圧5x10-8Torrで約6時間酸化して、エピタキシャルで原子レベルで平坦なアルミナ膜を作製した。
その結果を、図6、図7によって示す。
【実施例3】
【0028】
実施例1と同様に作製したアルミナ膜を大気中に取り出し、電気特性測定用の走査型原子間力顕微鏡を用いて、アルミナ膜の電流電圧特性を評価したところ、リーク電流がない良好な性能を示した。この結果を図8、図9により具体的に示す。
図8のA−C間に電圧Vを印加し、この間に流れるリーク電流Iを測定する。
図9より、−4Vの印加でもリーク電流が発生していないことがわかる。これは、2x109V/mの電界強度に相当し、作製したアルミナ膜、このような高電界でもリーク電流が発生せず、絶縁破壊も起こさない良質な材料であることがわかる
【実施例4】
【0029】
実施例1と同様に作製したアルミナ膜を大気中に取り出し、電気特性測定用の走査型原子間力顕微鏡を用いて、まず、図8におけるVを0Vとしてアルミナ膜の表面形状像を測定し、次にV=−1Vとして電流像(図8のIの大小で画像化)を測定した。次に、試料上の数点を選んでその場所にのみ実施例3と同様にA−C間に電圧Vを印加し(V=−7Vまで)、リーク電流Iが流れるのを確認した後、V=0Vにおける表面形状像、V=−1Vにおける電流像を測定したところ、アルミナ膜が絶縁破壊していなかった。その結果を図10に示す。
図8からわかるように、V=−7VまでA−C間に電圧を印加すると、A−C間にはリーク電流が流れる(I≠0)。しかし、図9のI−V測定後の電流像は、I−V測定前と同様に非常に均一にノイズレベルでゼロ電流を示しており、−7Vを印加した箇所では、その電圧下で電流は流れるが、ダメージは受けていない(=絶縁破壊していない)事がわかる。すなわち、−7Vを印加したときに流れているのはトンネル電流である。I−V測定前後の形状像を比較しても、I−V測定を行った場所を特定できないぐらい像の再現性はよく、電圧印加によるダメージが無いことを示している。
【Technical field】
[0001]
The invention of this application relates to a metal layer-tunnel barrier layer-sensor (MIS) structure and a sensor having this MIS structure, which can be applied to fields such as electronics and sensors.
[0002]
Conventionally, an electron emission source having a metal layer-tunnel barrier layer-metal layer (MIM) structure using a tunnel current or a metal layer-tunnel barrier layer-sensor layer (MIS) structure has been used to exchange electrons in the sensor layer. Research and development of tunnel barrier layer materials are underway for use in sensors that transmit to a metal layer through a tunnel barrier layer, or for use in magnetic devices including a MIM structure or a material having a spin in the MIS structure.
[0003]
Several tunnel barrier layer materials using aluminum oxide (alumina) thin films have been proposed (Patent Documents 1, 2, 3, and Non-Patent Document 1).
In these tunnel barrier layer materials, the aluminum oxide thin film is formed using a CVD method or a vacuum deposition method, and has an amorphous form.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2003-8004 [Patent Document 2]
JP 2002-222934 A [Patent Document 3]
JP 2000-353307 A [Non-Patent Document 1]
V. Da Costa, et al. , "Tunnelling Phenomena as a Probe to Investigate Atomic Scale Fluctuations in Metal / Oxide / Metal Magnetic Tunnel Junctions", Phys. Rev. Lett. , 85, p. 876-879 (2000.7.24)
[Non-Patent Document 2]
Weijie Song, et al. , “Oxygen Adsorption and Oxide Formation on Cu-9% Al (111) Surface Studyed Using Low Energy Diffraction and X-ray Photoelectron Spectroscopy.” J. et al. Appl. Phys. Vol. 42, p. 4716-4720 (20033.7)
Non-Patent Document 3: M.M. Yoshitake, et al. “Oxygen adsorption on Cu-9 at.% Al (111) studded by low energy electron diffraction and Auger electron spectroscopy”, J. Am. Vac. Sci. Technol. A21 (4), p. 1290-1293 (2003.7.1)
Non-patent document 4: Y.R. Yamauchi, et al. "Surface study and thickness control of thin Al2O3 film on Cu-9% Al (111) single crystal", Applied Surface Science, 237, p. 363-368 (2004.8.8.14)
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention [0005]
However, the conventional tunnel barrier layer using aluminum oxide needs to be laminated with another oxide layer, or the breakdown voltage is not sufficient, and dielectric breakdown occurs when a voltage of about 5 × 10 9 V / m is applied. There is a problem that the magnitude of the tunnel current varies depending on the location.
[0006]
Therefore, the present invention has a uniform thin film thickness, excellent pressure resistance, and can pass a tunnel current without causing dielectric breakdown even when a voltage of 5 × 10 9 V / m or more is applied. Provided is a tunnel barrier layer material that has a tunnel barrier layer that does not cause variations in the magnitude of current depending on the location, and can improve operating efficiency, reliability, and life when applied to various devices that use tunnel current. This is the issue.
Means for Solving the Problems [0007]
In order to solve the above-mentioned problems, the invention of this application is as follows. First, copper, nickel, or other metal that forms an alloy or intermetallic compound with aluminum, and the aluminum-containing substrate surface containing aluminum has a thickness. Provided is a tunnel barrier layer material characterized in that an epitaxial thin layer made of aluminum oxide having a thickness of 1 to 4 nm is formed and has a flat surface having a striped pattern by high-speed electron (20-30 eV) diffraction.
[0008]
Second, a metal layer using the first tunnel barrier layer material-tunnel barrier layer-metal layer (MIM) structure, and third, a metal layer using the first tunnel barrier layer material- A tunnel barrier layer-sensor layer (MIS) structure is provided, and fourth, an electron emission source characterized by having a second MIM structure, and fifth, a third MIS structure. According to a sixth aspect of the present invention, there is provided a magnetic device having the second MIM structure or the third MIS structure.
Effects of the Invention [0009]
According to the invention of this application, the following unique effects were obtained. 1) Even when a voltage of 1 to 2 × 10 9 V / m is applied in the film thickness direction, dielectric breakdown does not occur and no leakage current occurs. 2) Even when a voltage of several V / m is applied in the film thickness direction, a tunneling current flows without causing dielectric breakdown. 3) Even if an electron beam of 3 × 10 −2 eV or less is irradiated at normal incidence, it is not charged. 4) Even if an electron beam of 2 to 3 × 10 −4 eV is obliquely incident on the surface, it is not charged. By exhibiting such characteristics, all of the above-described problems of the prior art have been solved.
Therefore, the thickness of the thin film is uniform, the withstand voltage is high, and the tunnel current can flow without causing dielectric breakdown. When applied to various elements using the tunnel current, including field effect elements, the operation efficiency, Reliability and lifetime can be improved, and it is possible to provide a tunnel barrier layer material that does not cause variation in location of the tunnel current depending on location. In addition, various elements using the tunnel barrier layer material of the invention of this application can be miniaturized, and a MIM cold cathode emitter can be realized by taking advantage of the high withstand voltage, and a finely focused electron beam with little energy dispersion can be generated. It becomes possible.
In addition, when the invention of this application is applied to various elements, it can contribute to power saving and resource saving by improving operation efficiency, reliability, and lifetime. Furthermore, if a MIM cold cathode emitter is realized and a finely focused electron beam with little energy dispersion can be generated, an apparatus such as a lithography can be greatly reduced in size, which can greatly contribute to power saving.
[Brief description of the drawings]
[0010]
FIG. 1 is a schematic view when an aluminum film is grown by oxidizing the aluminum-containing copper alloy of Example 1 using an oxygen-induced aluminum segregation phenomenon.
FIG. 2 is a photograph showing a low-energy electron diffraction pattern of the alumina film produced in Example 1 and a schematic diagram thereof.
FIG. 3 is a photograph showing a high-speed reflected electron beam diffraction pattern of the alumina film produced in Example 1.
4 is a graph showing the results of measuring the IV characteristics of the sample produced in Example 1 by electrical characteristic measurement AFM. FIG.
5 is a photograph showing observation results of a sample surface shape image and a current image when a bias voltage is applied before and after measurement of the aluminum oxide thin film produced in Example 1. FIG.
6 is a photograph showing a low-energy electron diffraction pattern of the alumina film produced in Example 2. FIG.
7 is a photograph showing a high-speed reflection electron diffraction pattern of the alumina film produced in Example 2. FIG.
8 is a schematic diagram of current-voltage characteristic evaluation using a scanning atomic force microscope for measuring electrical characteristics in Example 3. FIG.
FIG. 9 shows measurement results of current-voltage characteristics in Example 3 (measured at several points on the sample).
10 is a photograph showing a shape image at V = 0V and a current image at V = −1V before and after electrical characteristics (IV measurement) in Example 3. FIG.
BEST MODE FOR CARRYING OUT THE INVENTION
[0011]
The invention of this application has the features as described above, and an embodiment thereof will be described below.
From the known fact that the alumina film substrate of the present invention is a starting material of Examples 1 and 2 and the fact that an alumina film (amorphous) is produced by selective oxidation in many aluminum-containing alloy polycrystals, Example 1 and Even if the copper and nickel of 2 are replaced with other metals that form aluminum and alloys / intermetallic compounds, the same effect can be achieved because the selective oxidation has a large binding energy between oxygen and aluminum. Therefore, it can be easily analogized.
[0012]
The inventors of this application have so far conducted research on an aluminum oxide thin film formed on the surface of a copper single crystal containing aluminum (Non-Patent Documents 2 to 4). As a result of further research on these, when a thin layer made of aluminum oxide having a thickness of 1 to 4 nm is epitaxially grown on the surface of a Cu—Al single crystal (111) containing 7 to 16 atomic% of aluminum, The thin layer has an atomically flat and uniform thickness, has a high withstand voltage, and can pass a tunnel current without causing dielectric breakdown even when a voltage higher than 5 × 10 9 V / m is applied. As a result, the present invention has been completed.
[0013]
The Cu—Al alloy in which the aluminum oxide thin layer is formed in the tunnel barrier layer material of the invention of this application is a single crystal and contains 7 to 16 atomic% of aluminum. If the aluminum content is less than 7 atomic%, the supply of aluminum is insufficient and the thickness of the aluminum oxide film becomes thin. If the aluminum content exceeds 16 atomic%, not only the alloy phase but also an intermetallic compound is produced and the epitaxial film is lost.
[0014]
In addition, the Cu—Al alloy needs to be a single crystal, and in the case of a polycrystal, an atomically flat and uniform thickness cannot be obtained. In addition, the aluminum oxide thin film needs to be an epitaxial thin film in which a Cu—Al alloy is epitaxially grown on the (111) plane. On a surface other than the (111) surface, a film obtained by growing an aluminum oxide thin film becomes a polycrystalline film, and uniform performance cannot be obtained.
[0015]
The film thickness of the aluminum oxide thin layer is required to be 1 to 4 nm. When the film thickness is out of the above range, it is difficult to operate as a tunnel barrier layer.
[0016]
When the barrier layer material of the invention of this application is applied to, for example, an MIM element, a metal layer is formed on an aluminum oxide thin film. As the metal layer material, Au, Ag, Cu, Pt, Pd, Ir , Rh, Ru, or the like can be used.
[0017]
When applied to other types of elements, a layer made of the same material as that conventionally used in each element can be provided.
[0018]
Next, an example of a method for producing the tunnel barrier layer material of the invention of this application will be described.
[0019]
The tunnel barrier layer material of the invention of this application can be produced using, for example, the methods described in Non-Patent Documents 1 to 3.
[0020]
That is, a Cu—Al (111) single crystal containing 7 to 16 atomic% of aluminum is set in a chamber to be in an ultrahigh vacuum state of about 0.2 to 2 × 10 −7 Pa. Then, the crystal surface is made a clean surface by sputtering and heat treatment of Ar ions or the like. Sputtering energy is preferably about 500 to 1500 eV, and sputtering time is preferably about 1 to 5 minutes.
[0021]
Next, the crystal surface temperature is heated to about 900 to 910 K, pure oxygen is introduced into the chamber, the oxygen partial pressure is set to about 5 to 10 × 10 −6 Pa, and oxidation is performed for about 1 to 23 hours. Then, aluminum oxide is epitaxially grown on the crystal surface to a thickness of 1 to 4 nm. In some cases, after epitaxial growth, heat treatment may be performed at a temperature of 910 to 1100 K for about 1 to 60 minutes. The tunnel barrier layer material is produced by the above method.
[0022]
Hereinafter, the invention of this application will be described in more detail with reference to examples. Of course, the invention of this application is not limited to the above embodiment and the following examples, and it goes without saying that various aspects are possible in detail.
[Example 1]
[0023]
A Cu—Al (111) single crystal containing 9 atomic% of aluminum (commercial product; manufactured by Surface Preparation Laboratory Inc.) (thickness 1 to 1.5 mm) was set in a chamber as a substrate, and 0.5 × 10 -7 Pa ultra-high vacuum. The crystal surface was cleaned by Ar ion sputtering (5 minutes at 1000 eV energy) and heat treatment (15 minutes at a temperature of 910 K). Next, the surface temperature of the crystal is heated to 900 K, pure oxygen is introduced into the chamber, the oxygen partial pressure is set to 6.7 × 10 −6 Pa, and oxidation is performed for about 6 hours. Epitaxially grown to a thickness, an alumina film substrate sample was obtained.
FIG. 1 is a schematic diagram when an aluminum-containing copper alloy is oxidized using an oxygen-induced aluminum segregation phenomenon to grow an alumina film. The phenomenon by said manufacturing method is shown typically.
[0024]
As aluminum contained in the alloy at 9 atomic% is oxidized on the surface by oxygen exposure and metallic aluminum is consumed, the aluminum film is replenished from the bulk to the surface to grow an alumina film.
The low-energy electron diffraction pattern of the aluminum oxide thin film of the tunnel barrier layer material produced above was measured. The result is shown in FIG. FIG. 2 shows that the aluminum oxide thin film is an epitaxial film and does not charge up.
Since a linear pattern derived from the alumina film is obtained in FIG. 3, it can be seen that the produced film is flat at the atomic level and is not charged with respect to oblique incidence of 20 to 30 eV high-speed electrons.
[0025]
In addition, for the tunnel barrier layer material produced above, the IV characteristics (relationship between the tunnel current and the bias voltage) of the sample are measured by electrical property measurement AFM, and the surface shape image of the sample before and after the measurement, when the bias voltage is applied The current image of was observed. FIG. 4 shows measurement results of IV characteristics, and FIG. 5 shows a shape image and a current image.
[0026]
4 and 5, current flows when minus 4V is applied to the substrate side. However, there is no change in the shape image before and after IV measurement, and minus 1V (between the sample and the conductive cantilever ( Since there is no leakage current in the current image even if measurement is performed with the cantilever grounded)), it is a tunnel current that flows when a voltage of minus 4 V or more is applied, and the current flows without causing dielectric breakdown. I understand that. That is, it is shown that no breakdown occurs even after the voltage is applied to the point where the tunnel current flows all at once. Therefore, it was confirmed that the aluminum oxide thin film produced in the above example was a high-performance tunnel barrier layer.
[Example 2]
[0027]
A nickel single crystal (110) plane containing 50 atomic% of aluminum was oxidized in ultrahigh vacuum at 1020 K and oxygen partial pressure of 5 × 10 −8 Torr for about 6 hours to produce an epitaxial, atomic level flat alumina film. .
The results are shown in FIGS.
[Example 3]
[0028]
The alumina film produced in the same manner as in Example 1 was taken out into the atmosphere, and the current-voltage characteristics of the alumina film were evaluated using a scanning atomic force microscope for measuring electrical characteristics. Indicated. The results are specifically shown in FIGS.
A voltage V is applied between A and C in FIG. 8, and a leakage current I flowing during this period is measured.
From FIG. 9, it can be seen that no leakage current occurs even when -4V is applied. This corresponds to an electric field strength of 2 × 10 9 V / m, and it can be seen that the produced alumina film is a high-quality material that does not cause leakage current and does not cause dielectric breakdown even in such a high electric field. ]
[0029]
The alumina film produced in the same manner as in Example 1 was taken out into the atmosphere, and using a scanning atomic force microscope for measuring electrical characteristics, first, the surface shape image of the alumina film was measured with V in FIG. Next, a current image (imaged with the magnitude of I in FIG. 8) was measured with V = −1V. Next, after selecting several points on the sample and applying the voltage V between A and C only in the same manner as in Example 3 (up to V = -7 V) and confirming that the leakage current I flows, When the surface shape image at V = 0V and the current image at V = −1V were measured, the alumina film was not broken down. The result is shown in FIG.
As can be seen from FIG. 8, when a voltage is applied between A and C up to V = −7 V, a leak current flows between A and C (I ≠ 0). However, the current image after the IV measurement in FIG. 9 shows zero current at a noise level very uniformly as before the IV measurement, and at a point where −7 V is applied, It can be seen that there is no damage (= no breakdown). That is, a tunnel current flows when -7V is applied. Even comparing the shape images before and after the IV measurement, the reproducibility of the image is so good that the place where the IV measurement was performed cannot be specified, indicating that there is no damage due to voltage application.

Claims (2)

銅、ニッケル、あるいはアルミニウムと合金または金属間化合物を形成するその他の金属に、アルミニウムを含むアルミニウム含有基板表面に、厚さ1〜4nmの酸化アルミニウムよりなるエピタキシャル薄層が形成され、高速電子(20−30eV)回折で、縞状パターンとなる平坦な表面を有するトンネルバリア層材料を用いて、センサー層での電子授受をトンネルバリア層を通して金属層へ伝える金属層−トンネルバリア層−センサー構造An epitaxial thin layer made of aluminum oxide having a thickness of 1 to 4 nm is formed on the surface of an aluminum-containing substrate containing aluminum on copper, nickel, or other metal that forms an alloy or intermetallic compound with aluminum, and high-speed electrons (20 in -30EV) diffraction, using a belt tunnel barrier layer material having a flat surface as a stripe pattern, a metal layer conveys the metal layer electron exchange with the sensor layer through the tunnel barrier layer - a tunnel barrier layer - sensor structure . 請求項1に記載の構造を有するセンサー A sensor having the structure according to claim 1.
JP2007534459A 2005-09-06 2006-09-06 Metal layer-tunnel barrier layer-sensor structure and sensor having this structure Expired - Fee Related JP5114774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007534459A JP5114774B2 (en) 2005-09-06 2006-09-06 Metal layer-tunnel barrier layer-sensor structure and sensor having this structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005258421 2005-09-06
JP2005258421 2005-09-06
PCT/JP2006/317678 WO2007029754A1 (en) 2005-09-06 2006-09-06 Alumina film substrate and its fabrication method
JP2007534459A JP5114774B2 (en) 2005-09-06 2006-09-06 Metal layer-tunnel barrier layer-sensor structure and sensor having this structure

Publications (2)

Publication Number Publication Date
JPWO2007029754A1 JPWO2007029754A1 (en) 2009-03-19
JP5114774B2 true JP5114774B2 (en) 2013-01-09

Family

ID=37835871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007534459A Expired - Fee Related JP5114774B2 (en) 2005-09-06 2006-09-06 Metal layer-tunnel barrier layer-sensor structure and sensor having this structure

Country Status (2)

Country Link
JP (1) JP5114774B2 (en)
WO (1) WO2007029754A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181482A (en) * 1987-01-23 1988-07-26 Sumitomo Electric Ind Ltd Photosensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841111B2 (en) * 1995-10-17 2006-11-01 東横化学株式会社 Heteroepitaxial growth of Al2O3 single crystal film on Si substrate, and apparatus used in the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181482A (en) * 1987-01-23 1988-07-26 Sumitomo Electric Ind Ltd Photosensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012032401; Yasuhiro YAMAUCHI et al.: 'Morphology and Thickness of Ultra-Thin Epitaxial Al2O3 Film on Cu-9%Al(111)' Jpn. J. Appl. Phys. Vol. 42, 2003, pp. 4721-4724 *
JPN6012032403; M YOSHITAKE et al.: 'Crystallinity and thickness control of well-ordered ultra-thin Al2O3 film on NiAl(1 1 0)' Surface Science Vol. 511, 2002, pp. L313-L318 *

Also Published As

Publication number Publication date
WO2007029754A1 (en) 2007-03-15
JPWO2007029754A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Matsuda et al. Electrical resistance of a monatomic step on a crystal surface
Feng et al. Probing the size and density of silicon nanocrystals in nanocrystal memory device applications
US20110175038A1 (en) Coated carbon nanoflakes
Yoshitake Work Function and Band Alignment of Electrode Materials
Comini et al. Gas sensing properties of zinc oxide nanostructures prepared by thermal evaporation
Saka et al. Formation of metallic nanowires by utilizing electromigration
Dózsa et al. Formation and characterization of semiconductor Ca 2 Si layers prepared on p-type silicon covered by an amorphous silicon cap
KR102196693B1 (en) Transition metal chalcogen compound patterned structure, method of manufacturing the same, and electrode having the same for two-dimensional planar electronic device
Tulić et al. Ni-mediated reactions in nanocrystalline diamond on Si substrates: the role of the oxide barrier
JP5114774B2 (en) Metal layer-tunnel barrier layer-sensor structure and sensor having this structure
Mlack et al. Substrate-independent catalyst-free synthesis of high-purity Bi2Se3 nanostructures
Verrelli et al. Cluster beam synthesis of metal and metal-oxide nanoparticles for emerging memories
Chan et al. Ge nanocrystals in lanthanide-based Lu2O3 high-k dielectric for nonvolatile memory applications
Ton-That et al. Structural and electronic properties of ordered La@ C82 films on Si (111)
Tresback et al. Characterization and electrical properties of individual Au–NiO–Au heterojunction nanowires
KR102162010B1 (en) Doped transition metal chalcogen compound patterned structure, method of manufacturing the same, and electrode having the same for two-dimensional planar electronic device
Semenenko et al. Resonant tunneling field emission of Si sponge-like structures
Bozhko et al. Composite Fe3O4–W (100) probes for scanning tunneling microscopy
Yin et al. The metal-insulator transition in vanadium dioxide: A view at bulk and surface contributions for thin films and the effect of annealing
Sleziona et al. Manipulation of the electrical and memory properties of MoS 2 field-effect transistors by highly charged ion irradiation
Zanettini et al. Al 2 O 3 Coating as Passivation Layer for CZT-based Detectors
Rastjoo et al. Top-down fabrication and transformation properties of vanadium dioxide nanostructures
KR102023045B1 (en) One dimensional transition metal chalcogenide compound, interconnect composed by one dimensional transition metal chalcogenide compound, electronic apparatus having the same
Chen et al. Dependence of local structural and electrical properties of nitride doped zinc oxide films on growth temperature
Gudi Pulsed Laser Deposition of 2D Materials and Complex Perovskites

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

R150 Certificate of patent or registration of utility model

Ref document number: 5114774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees