JP5114658B2 - Mechanical structural steel with excellent mechanical properties and machinability - Google Patents

Mechanical structural steel with excellent mechanical properties and machinability Download PDF

Info

Publication number
JP5114658B2
JP5114658B2 JP2007099069A JP2007099069A JP5114658B2 JP 5114658 B2 JP5114658 B2 JP 5114658B2 JP 2007099069 A JP2007099069 A JP 2007099069A JP 2007099069 A JP2007099069 A JP 2007099069A JP 5114658 B2 JP5114658 B2 JP 5114658B2
Authority
JP
Japan
Prior art keywords
steel
machinability
mechanical properties
mass
nitrides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007099069A
Other languages
Japanese (ja)
Other versions
JP2008174830A (en
Inventor
浩一 磯部
雅之 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2007099069A priority Critical patent/JP5114658B2/en
Publication of JP2008174830A publication Critical patent/JP2008174830A/en
Application granted granted Critical
Publication of JP5114658B2 publication Critical patent/JP5114658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel having, in particular, excellent mechanical properties and machinability and used for automobiles, general machinery, etc. <P>SOLUTION: The steel for machine structure having excellent mechanical properties and machinability has a composition composed of, by mass, 0.1 to 0.8% C, 0.001 to 2.5% Si, 0.1 to 3.0% Mn, 0.01 to 0.40% S, &le;0.1% P, 0.005 to 0.5% Al, 0.0020 to 0.02% N, 0.005 to 0.1% Nb and the balance Fe with inevitable impurities and is characterized in that the existence density of the sum of one or more kinds among the carbides, nitrides and carbonitrides, containing both of Nb and Al and having 30 nm to 100 nm&phiv; circle-equivalent diameter, in the steel is made to &ge;0.1 piece/&mu;m<SP>2</SP>. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は自動車や一般的機械などに用いられる機械構造用鋼に関するものであり、特に
機械的特性に優れ、かつ被削性にも優れた機械構造用鋼に関するものである。
The present invention relates to a machine structural steel used for automobiles and general machines, and more particularly to a machine structural steel having excellent mechanical properties and excellent machinability.

近年、鋼の高強度化が進んでいるが、一般的に鋼の高強度化が進むと加工性が低下する
。このため、高強度であり、かつ切削加工の能率を低下させない快削鋼に対するニーズが高まっている。
In recent years, the strength of steel has been increased, but generally the workability decreases as the strength of steel increases. For this reason, there is an increasing need for free-cutting steel that has high strength and does not reduce the efficiency of cutting.

これまで被削性を改善するためには、S、Pb、Biなどの被削性改善元素が添加されてきた。しかしSを多量に添加すると、鋼材中に生成したMnSが熱間加工で延伸し、その延伸方向に直交する方向の機械的特性が著しく低下するといった異方性が生じる。これに対して特許文献1、特許文献2及び特許文献3には、Ca、Mg、Rem等により硫化物の形態やサイズを制御して被削性や機械的特性を改善する方法が記載されている。しかし、これら特許文献に記載されている方法だけでは被削性改善やSの多量添加で被削性を改善する際の機械的特性の劣化を防止する効果には限界がある。   Until now, in order to improve machinability, machinability improving elements such as S, Pb and Bi have been added. However, when S is added in a large amount, MnS produced in the steel material is stretched by hot working, and anisotropy occurs in which mechanical properties in a direction perpendicular to the stretching direction are remarkably lowered. On the other hand, Patent Document 1, Patent Document 2 and Patent Document 3 describe methods for improving machinability and mechanical properties by controlling the form and size of sulfide by Ca, Mg, Rem, etc. Yes. However, only the methods described in these patent documents have limitations in improving machinability and preventing deterioration of mechanical properties when improving machinability by adding a large amount of S.

また、Pb、Biの添加は被削性改善に頼著な効果を有する反面、熱間加工性を大きく低下させるため、その使用量にも限界がある。   Addition of Pb and Bi has a profound effect on improving machinability, but greatly reduces the hot workability, so the amount of use is limited.

上記以外の方法として、化学成分を特定すると共にオーステナイト粒度を7番以下であ
ることを特徴とする被削性に優れた鋼やその製造方法が特許文献4に記載されている。し
かし、この方法を用いても被削性改善やS添加時の機械的特性の劣化を防止する効果は十
分とは言えない。
As a method other than the above, Patent Document 4 describes a steel excellent in machinability characterized by specifying a chemical component and having an austenite grain size of No. 7 or less and a method for producing the same. However, even if this method is used, it cannot be said that the effect of improving machinability and preventing the deterioration of mechanical properties upon addition of S is sufficient.

また特許文献5には、Nb酸化物や炭化物、窒化物及び炭窒化物の1種以上をMnSの析出核とする硫黄含有快削性機械構造用鋼が開示されている。しかし、MnSの析出核となりうる大きなNb酸化物や炭化物や窒化物及び炭窒化物は、鋼材の脆化促進による被削性改善には寄与しない。また、MnSの析出を促進するだけでは被削性の改善効果も小さい。このため、本方法を用いても十分な被削性の改善効果を得ることはできない。   Patent Document 5 discloses a sulfur-containing free-cutting machine structural steel having one or more of Nb oxide, carbide, nitride and carbonitride as MnS precipitation nuclei. However, large Nb oxides, carbides, nitrides, and carbonitrides that can be MnS precipitation nuclei do not contribute to improving machinability by promoting embrittlement of steel materials. Moreover, the effect of improving the machinability is small only by promoting the precipitation of MnS. For this reason, even if this method is used, a sufficient machinability improving effect cannot be obtained.

また特許文献6には、BNやAlNの固溶温度以上に鋼を加熱することにより、被削性や冷間鍛造性、疲労強度特性に優れた機械構造用鋼を製造する方法が開示されている。本特許文献には、Nbを含有する鋼も開示されている。しかし本特許文献に記載の方法は鋼材中のCの黒鉛化を促進することで被削性を改善しようとするものであり、黒鉛化での被削性改善効果も十分とは言えず、黒鉛を生成させた場合は靭性の劣化も懸念される。   Patent Document 6 discloses a method for producing a steel for machine structural use that is excellent in machinability, cold forgeability, and fatigue strength properties by heating the steel to a temperature higher than the solid solution temperature of BN or AlN. Yes. This patent document also discloses steel containing Nb. However, the method described in this patent document is intended to improve the machinability by promoting graphitization of C in the steel material, and it cannot be said that the machinability improvement effect in graphitization is sufficient. There is also a concern about the deterioration of toughness when it is generated.

特開2002−69570号公報Japanese Patent Laid-Open No. 2002-69570 特開2000−8719号公報JP 2000-8719 A 特許第3740042号公報Japanese Patent No. 3740042 特開2000−26785号JP 2000-26785 A 特開2004−83924号公報JP 2004-83924 A 特開平07−41851号公報JP 07-41851 A

上記したように、従来の技術では機械的異方性を十分に抑制し、かつ被削性改善効果を十分に得ることはできない。本発明は、このような状況のもとでなされたものであり、
機械的異方性を抑制し、被削性に優れた機械構造用鋼を提供することを目的とする。
As described above, the conventional technique cannot sufficiently suppress the mechanical anisotropy and cannot sufficiently obtain the machinability improving effect. The present invention has been made under such circumstances,
An object of the present invention is to provide a machine structural steel that suppresses mechanical anisotropy and has excellent machinability.

本発明者らは、鋼材の脆化を促進することで被削性を改善しつつ、熱間圧延等で延伸し
たMnS等の非金属介在物による機械的特性の劣化や異方性の増大を抑える方法について検討を重ねた。その結果、鋼成分として、特にAl:0.005〜0.5%、Nb:0.005〜0.1%を含有させ、鋼中の円相当径が30nm〜100nmのAl及びNbの両方を含有する炭化物、窒化物、及び炭窒化物を鋼中に分散すると共に、その個数密度をあるしきい値以上とすることにより、上記課題を解決できることを見出した。
The inventors have improved the machinability by promoting embrittlement of the steel material, while reducing the mechanical properties and increasing the anisotropy due to non-metallic inclusions such as MnS drawn by hot rolling. We studied about the method to suppress. As a result, as steel components, Al: 0.005 to 0.5% and Nb: 0.005 to 0.1% are contained, and both Al and Nb having an equivalent circle diameter in steel of 30 nm to 100 nm are contained. It has been found that the above-mentioned problems can be solved by dispersing carbide, nitride, and carbonitride in steel and setting the number density to a certain threshold value or more.

本発明の要旨は、次のとおりである。
(1)質量%で、
C:0.1〜0.8%、
Si:0.001〜2.5%、
Mn:0.1〜3.0%、
S:0.01〜0.40%、
P:0.1%以下、
Al:0.005〜0.5%、
N:0.0020〜0.02%、
Nb:0.005〜0.1%を含有し、残部がFeおよび不可避不純物からなる鋼であって、鋼中の円相当径が30nm〜100nmφであり、Nb及びAlの両方を含有する、炭化物、窒化物、及び炭窒化物のうちの1種又は2種以上の合計の存在密度が、断面において0.1個/μm2以上であることを特徴とする機械的特性及び被削性に優れた機械構造用鋼。
The gist of the present invention is as follows.
(1) By mass%
C: 0.1 to 0.8%
Si: 0.001 to 2.5%,
Mn: 0.1-3.0%
S: 0.01-0.40%,
P: 0.1% or less,
Al: 0.005 to 0.5%
N: 0.000020 to 0.02%,
Carbide containing Nb: 0.005 to 0.1%, the balance being Fe and inevitable impurities, the equivalent circle diameter in the steel being 30 nm to 100 nmφ, and containing both Nb and Al A machine with excellent mechanical properties and machinability characterized in that the total density of one or more of nitride, nitride, and carbonitride is 0.1 piece / μm 2 or more in cross section Structural steel.

(2)さらに、質量%でCr:0.005〜2.0%、Ni:0.005〜2.0%、Mo:0.005〜1.0%、及びB:0.0002〜0.01%の少なくとも一つを含有することを特徴とする上記(1)に記載の機械的特性及び被削性に優れた機械構造用鋼。
(3)さらに、質量%でV:0.002〜1.0%、及びTi:0.002〜2.0%の少なくとも一つを含有することを特徴とする上記(1)又は(2)に記載の機械的特性及び被削性に優れた機械構造用鋼。
(4)さらに、質量%でCa:0.0002〜0.01%、Z r:0.0002〜0.01%、Mg:0.0002〜0.01%、Ce:0.0002〜0.02%、La:0.0002〜0.02%、及びNd:0.0002〜0.02%、の少なくとも一つを含有することを特徴とする上記(1)乃至(3)のいずれかに記載の機械的特性及び被削性に優れた機械構造用鋼。
(5)さらに、質量%でPb:0.005〜0.3%、Bi:0.005〜0.3%、Te:0.0002〜0.1%、及びSb:0.0002〜0.1%の少なくとも一つを含有することを特徴とする(1)乃至(4)のいずれかに記載の機械的特性及び被削性に優れた機械構造用鋼。
(2) Further, Cr: 0.005 to 2.0%, Ni: 0.005 to 2.0%, Mo: 0.005 to 1.0%, and B: 0.0002 to 0.01% by mass% The structural structural steel according to (1) above, which is excellent in mechanical properties and machinability, characterized by containing at least one of the following.
(3) The above (1) or (2), further comprising at least one of V: 0.002 to 1.0% and Ti: 0.002 to 2.0% by mass% Machine structural steel with excellent mechanical properties and machinability as described in 1.
(4) Further, in terms of mass%, Ca: 0.0002 to 0.01%, Zr: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, Ce: 0.0002 to 0.001. It contains at least one of 02%, La: 0.0002 to 0.02%, and Nd: 0.0002 to 0.02%, in any one of (1) to (3) above Machine structural steel with excellent mechanical properties and machinability.
(5) Further, by mass%, Pb: 0.005 to 0.3%, Bi: 0.005 to 0.3%, Te: 0.0002 to 0.1%, and Sb: 0.0002 to 0.1% The steel for machine structural use according to any one of (1) to (4), which is excellent in mechanical properties and machinability.

本発明によれば、機械的異方性を抑制し、被削性に優れた機械構造用鋼を提供すること
ができる。
ADVANTAGE OF THE INVENTION According to this invention, the mechanical anisotropy can be suppressed and the machine structural steel excellent in machinability can be provided.

以下、本発明について詳細に説明する。切削は1種の破壊現象であり、鋼材を脆化させ
ることで、破壊現象の一つである切削を促進することができる。Pb、Bi等融点が低く、鋼に対する溶解度がない低融点金属が鋼材を脆化させることは良く知られており、それらの元素の添加は切削抵抗を低減し、仕上げ面の粗さを低下させるなど、被削性の改善に大きな効果を発揮する。また、S等の不純物元素の増加も鋼材を脆化させることが知られており、さらに鋼材中に非金属介在物として分布するMnSは、切削加工時に応力集中源として作用し、亀裂の発生や伝播を促進することで被削性改善に寄与する。
Hereinafter, the present invention will be described in detail. Cutting is a type of fracture phenomenon, and embrittlement of steel can promote cutting, which is one of the fracture phenomena. It is well known that low melting point metals such as Pb and Bi, which have low melting points and have no solubility in steel, make steels brittle, and the addition of these elements reduces cutting resistance and roughness of the finished surface. It has a great effect on improving machinability. In addition, it is known that an increase in impurity elements such as S causes embrittlement of steel materials, and MnS distributed as non-metallic inclusions in steel materials acts as a stress concentration source during cutting, and cracks are generated and Contributes to machinability improvement by promoting propagation.

本発明者らは鋼材の脆化を促進することで被削性を改善しつつ、非金属介在物による機
械的特性の劣化や異方性の増大を抑える方法について検討を重ねた。
The present inventors have repeatedly studied a method of suppressing deterioration of mechanical properties and anisotropy due to nonmetallic inclusions while improving machinability by promoting embrittlement of steel materials.

非金属介在物による機械的特性の劣化や異方性の増大を避けるには、その非金属介在物
を極力微細に分布させることが有効である。本発明者等は、非金属介在物として、脱酸生
成物や凝固中に晶出するMnS等の硫化物や液相中に生成する様なTiN等ではなく、固相中で温度降下に伴い溶解度が低下して生成する微細な析出物を利用して鋼材を脆化させる方法について探索した。
In order to avoid deterioration of mechanical properties and increase in anisotropy due to non-metallic inclusions, it is effective to distribute the non-metallic inclusions as finely as possible. The present inventors, as non-metallic inclusions, are not deoxidized products, sulfides such as MnS that crystallize during solidification, or TiN that forms in the liquid phase, but with a temperature drop in the solid phase. A search was made for a method of embrittlement of a steel material by using fine precipitates produced by a decrease in solubility.

種々の析出物を検討した結果、後述する理由により、鋼中の円相当径が30nm〜100nmφ
であり、Nb及びAlの両方を含有する、炭化物、窒化物、及び炭窒化物のうちの1種又は2
種以上の合計の存在密度が、断面において0.1個/μm2以上であるようにすることにより、機械的特性の劣化や異方性の増大を抑えつつ、被削性性を大幅に改善できることを見出した。
As a result of examining various precipitates, the equivalent circle diameter in steel is 30 nm to 100 nmφ for the reasons described later.
1 or 2 of carbide, nitride, and carbonitride containing both Nb and Al
By making the total existence density of seeds or more to be 0.1 pieces / μm 2 or more in the cross section, machinability can be greatly improved while suppressing deterioration of mechanical properties and increase of anisotropy. I found it.

上記のNbおよびAlの両方を含有する、炭化物、窒化物、及び炭窒化物とは、NbC又はNb(C,N)とAlNが結合した析出物、(Nb,Al)(C,N)、及び(Nb,Al,X)(C,N)(XはAl、Nb以外の1種もしくは2種類以上の炭化物、窒化物、又は炭窒化物を形成する元素であり、また各元素の組成比は限定しない)等の少なくともNb及びAlを含む炭窒化物である。   Carbides, nitrides, and carbonitrides containing both Nb and Al above are precipitates in which NbC or Nb (C, N) and AlN are combined, (Nb, Al) (C, N), And (Nb, Al, X) (C, N) (X is an element that forms one or more types of carbides, nitrides, or carbonitrides other than Al and Nb, and the composition ratio of each element. Is a carbonitride containing at least Nb and Al.

円相当径が30nm〜100nmφのNbおよびAlの両方を含有する微細な炭化物、窒化物、及び炭窒化物は、サイズが極めて小さい為に切削加工で導入される転位移動を妨げ、転位の集積を促進する。このため、上記した炭化物、窒化物、及び炭窒化物を鋼中に導入することにより、刃先近傍の鋼材における亀裂の発生や亀裂伝播が促進されるといった脆化が促され、その結果、鋼の被削性が向上する。   Fine carbides, nitrides, and carbonitrides containing both Nb and Al with an equivalent circle diameter of 30 nm to 100 nmφ are so small in size that they prevent dislocation movement introduced by cutting and prevent dislocation accumulation. Facilitate. For this reason, by introducing the above-described carbide, nitride, and carbonitride into steel, embrittlement such as generation of cracks and crack propagation in the steel near the blade edge is promoted, and as a result, Machinability is improved.

上記の析出物の円相当径が30nmφ未満では脆化効果に寄与しないため、30nmφを下限と
した。一方、100nmφを超えて粗大になると却って脆化効果が低下し、被削性改善効果は期待できないので、上限を100nmφとした。
If the equivalent circle diameter of the precipitate is less than 30 nmφ, it does not contribute to the embrittlement effect, so 30 nmφ was set as the lower limit. On the other hand, since the embrittlement effect is reduced when the particle size is larger than 100 nmφ and the machinability improving effect cannot be expected, the upper limit is set to 100 nmφ.

また、30nm〜100nmφの上記析出物は、数μm〜数100μmφの酸化物や晶出MnS等に比べ、圧倒的にサイズが小さいため、靭性等機械的な特性を劣化させたり、異方性を増大させるといった弊害も生じない。   In addition, the above precipitates of 30 nm to 100 nmφ are overwhelmingly smaller in size than oxides of several μm to several hundred μmφ, crystallized MnS, etc. There is no adverse effect such as increasing.

上記した析出物の合計個数は、例えば、以下のようにして測定する。まず鋼材の任意の
断面より抽出レプリカ法で有機樹脂(例えばアセチルセルロースファイルム)に析出物を採取し、この有機樹脂を透過型電子顕微鏡により5万倍の倍率で、無作為に20視野以上を観察する。1視野当たりの観察面積は、例えば3.5μm2であり、その全視野内の30nm〜100nmφの炭化物、窒化物、炭窒化物を調査する。通常、透過型電子顕微鏡にはエネルギー分散法と電子線回析パターン解析法の機能を有しているが、炭化物は電子線回析パターン解析法により同定し、窒化物はエネルギー分散法により同定する。この同定した析出物の内、AlとNbの両方を含有する析出物は、エネルギー分散法によりAl、Nbの存在を検出でき、その個数を計数して単位面積(例えば1μm2)当たりの個数を求める。上記析出物の分布状況について調査する鋼材断面はどの断面かは特に問わない。
The total number of the above precipitates is measured as follows, for example. First, precipitates are collected on an organic resin (for example, acetylcellulose filed) by extraction replica method from an arbitrary cross section of steel material, and this organic resin is randomly selected with a transmission electron microscope at a magnification of 50,000 times, and randomly has 20 fields of view or more. Observe. The observation area per visual field is, for example, 3.5 μm 2 , and carbides, nitrides, and carbonitrides having a diameter of 30 to 100 nm in the entire visual field are investigated. Usually, transmission electron microscopes have functions of energy dispersion and electron diffraction pattern analysis, but carbides are identified by electron diffraction pattern analysis and nitrides are identified by energy dispersion. . Among the identified precipitates, precipitates containing both Al and Nb can detect the presence of Al and Nb by the energy dispersion method, and count the number of them to determine the number per unit area (for example, 1 μm 2 ). Ask. It does not ask | require in particular which cross section the steel material investigated about the distribution condition of the said precipitate.

Nb及びAlの両方を含有する、微細な炭化物、窒化物、及び炭窒化物を対象とするのは、他の析出物でも鋼材の脆化に寄与するものがあるが、Nb及びAlの両方を含有する前記微細析出物は、加工で導入される転位の消滅を抑制し、粒界等への界面へ転位が集積し易くなるため、粒界脆化を強く促すからである。上記の析出物の存在密度を0.1個/μm2以上とするのは、この条件を満足する場合に、上記微細析出物によって亀裂の発生や伝播を促進し、切削抵抗を大幅に減少させることで、仕上げ面の精度や切削の生産性を向上したり、工具摩頼を大幅に抑制できるためである。上記の析出物の存在密度を0.1個/μm2未満では、この効果が得られないため、0.1個/μm2以上とした。 For fine carbides, nitrides, and carbonitrides containing both Nb and Al, other precipitates may contribute to steel embrittlement, but both Nb and Al This is because the fine precipitates contained suppress the disappearance of dislocations introduced by processing and facilitate the accumulation of dislocations at the interface to the grain boundaries and the like, which strongly promotes grain boundary embrittlement. The above-mentioned density of the precipitates is set to 0.1 pieces / μm 2 or more when, when this condition is satisfied, the fine precipitates promote the generation and propagation of cracks and greatly reduce the cutting resistance. This is because the accuracy of the finished surface and the productivity of cutting can be improved, and tool wear can be greatly suppressed. In the density less than 0.1 pieces / [mu] m 2 of said precipitates, since this effect can not be obtained, and a 0.1 or / [mu] m 2 or more.

上記の析出物を上記の存在密度にするには、後述する成分を有する鋼を作製し、この鋼
を一旦1250℃以上の温度に加熱してNbC又はNb(C,N)、及びAlN等の炭化物、窒化物、及び炭窒化物を極力固溶させ、その後900〜1200℃の温度で減面率20%以上の熱間加工を行って鋼材マトリクスに歪を加えることにより、達成することができる。
In order to bring the above precipitates into the above existing density, a steel having the components described later is prepared, and this steel is once heated to a temperature of 1250 ° C. or higher, such as NbC or Nb (C, N), and AlN. This can be achieved by solidifying carbide, nitride, and carbonitride as much as possible, and then performing hot working at a temperature reduction of 20% or more at a temperature of 900 to 1200 ° C. to add strain to the steel matrix. .

NbC、Nb(C,N)、及びAlN等の炭化物、窒化物、及び炭窒化物は温度低下に伴う溶解度の減少で、鉄のマトリクスに析出してくるが、その際、既に析出したNbC、Nb(C,N)、及びAlN等が鋼材マトリクスに存在するとそれらを核として析出するため粗大な炭化物や窒化物、炭窒化物になり易く、その結果、サイズが30nm〜100nmφを超えて成長した炭化物や窒化物、炭窒化物は被削性向上に寄与しなくなる。このようなNbC、Nb(C,N)、及びAlN等の粗大化を抑制するには、鋳造段階やその後の昇温過程で析出したNbC、Nb(C,N)、及びAlN等を、一旦1250℃以上の温度、好ましくは1280℃以上の加熱処理で固溶させ、その後900℃〜1200℃での熱間加工で鋼材マトリクスに歪みを加えて、NbC、Nb(C,N)、及びAlN等の炭化物や窒化物、炭窒化物の析出サイトを与えることで、30nm〜100nmφといった微細炭化物、窒化物、炭窒化物として析出させ、NbおよびAlの両方を含有する炭化物、窒化物、炭窒化物の合計の存在密度を0.1個/μm2以上析出させることが可能となる。その結果、引張強度や靭性などの機械的特性の劣化や異方性の増大を抑えて、被削性の大幅な改善が実現でき、その結果、切削により製造される機械構造物の品質や生産性の向上が図れる。また、工具寿命を延ばすこともでき、切削加工の生産性増大にも寄与する。 Carbides, nitrides, and carbonitrides such as NbC, Nb (C, N), and AlN are precipitated in the iron matrix due to a decrease in solubility with a decrease in temperature. If Nb (C, N), AlN, etc. are present in the steel matrix, they will precipitate as nuclei, so they tend to become coarse carbides, nitrides, and carbonitrides. As a result, the size grew beyond 30 nm to 100 nmφ. Carbides, nitrides, and carbonitrides do not contribute to improving machinability. In order to suppress such coarsening of NbC, Nb (C, N), AlN, etc., NbC, Nb (C, N), AlN, etc., precipitated in the casting stage and the subsequent heating process, NbC, Nb (C, N), and AlN are dissolved in a heat treatment at a temperature of 1250 ° C or higher, preferably 1280 ° C or higher, and then the steel matrix is distorted by hot working at 900 ° C to 1200 ° C. By providing precipitation sites for carbides, nitrides, carbonitrides, etc., precipitates as fine carbides, nitrides, carbonitrides of 30 nm to 100 nmφ, carbides, nitrides, carbonitriding containing both Nb and Al It becomes possible to deposit 0.1 or more / μm 2 of the total existence density of the objects. As a result, deterioration of mechanical properties such as tensile strength and toughness and increase in anisotropy can be suppressed, and machinability can be greatly improved. As a result, the quality and production of machine structures manufactured by cutting Can improve the performance. In addition, the tool life can be extended, which contributes to an increase in cutting productivity.

次に、本発明の鋼成分について説明する。以下、%は質量%を意味する。まず、特に重
要な成分であるAl、N、Nbの規定理由について述べる。
Next, the steel component of the present invention will be described. Hereinafter,% means mass%. First, the reasons for defining Al, N, and Nb, which are particularly important components, will be described.

(Al:0.005〜0.5%)
Alは脱酸元素であり、鋼材中でA1203やAlNとして存在する。本発明においては被削性
改善のため、AlNを生成させNbCやNb(C,N)と複合化させる必要があるため、Al濃度の下限を0.005%とした。また、本発明ではAlが0.5%を超えるとAlNが粗大化し、被削性に改善に有効に作用しない粗大化したAlNが増大するため、Alの上限を0.5%とした。AlNの粗大化を効果的に抑制する点から、Alは0.1%以下が好ましい。
(Al: 0.005-0.5%)
Al is a deoxidizing element, exists as A1 2 0 3 or AlN in steel. In the present invention, in order to improve machinability, AlN must be generated and combined with NbC or Nb (C, N), so the lower limit of the Al concentration was set to 0.005%. Further, in the present invention, when Al exceeds 0.5%, AlN becomes coarse and coarse AlN that does not effectively affect the machinability increases, so the upper limit of Al is set to 0.5%. From the viewpoint of effectively suppressing the coarsening of AlN, Al is preferably 0.1% or less.

(N:0.0020〜0.02%)
N濃度の増加に伴い固溶Nが増加すると動的歪み時効によって、刃先近傍の鋼材を硬化し、工具の寿命を低下させるため、その上限を0.02%とした。また、AlNやNb(C,N)を生成させることで被削性を改善するには0.002%以上のNが必要となる。
(N: 0.000020 to 0.02%)
When solid solution N increases with increasing N concentration, the steel material near the cutting edge is hardened by dynamic strain aging and the tool life is shortened, so the upper limit was made 0.02%. Further, N of 0.002% or more is required to improve machinability by generating AlN and Nb (C, N).

(Nb:0.005〜0.1%)
NbはNbCやNb(C,N)など、Alと共に炭化物、窒化物、炭窒化物を生成させて被削性を向上させる上で必須の元素であり、0.005%未満ではNbC、Nb(C,N)の生成量が不足
するため、Nb添加量は0.005%以上とした。また、Nbが0.1%を超えるとNbCやNb(C,N)が粗大化して被削性改善に有効な30nm〜100nmφのNb,Al両方を含有する炭化物、窒化物、炭窒化物が得られないのに加え、鋼材の熱間延性を大きく低下させるため、Nbの上限を0.1%とした。
(Nb: 0.005-0.1%)
Nb is an element essential for improving the machinability by generating carbide, nitride, carbonitride together with Al, such as NbC and Nb (C, N), and if less than 0.005%, NbC, Nb ( Since the amount of C, N) produced is insufficient, the amount of Nb added is set to 0.005% or more. Also, if Nb exceeds 0.1%, NbC and Nb (C, N) are coarsened, and carbides, nitrides, and carbonitrides containing both 30 nm to 100 nmφ Nb and Al are effective for improving machinability. In addition to this, the upper limit of Nb was set to 0.1% in order to greatly reduce the hot ductility of the steel material.

本発明は、さらに、機械的な特性や鋼材の健全性に影響を及ぼす成分を適正な組成範囲
に制御することで、機械的特性及び被削性に優れた機械構造用鋼を提供できる。また、S
やPb,Bi、Te、Sb等の被削性改善元素を添加すると、本発明では、これら被削性改善元素の添加のみで被削性を改善する場合に比べ、熱間延性や靭性といった機械的な特性の劣化や異方性の増大といった負の影響を抑えつつ、相対的に被削性改善効果を増大できる。
Furthermore, the present invention can provide a steel for machine structure excellent in mechanical properties and machinability by controlling the components affecting the mechanical properties and the soundness of the steel material to an appropriate composition range. S
When adding machinability improving elements such as Pb, Bi, Te, Sb, etc., in the present invention, compared to the case where machinability is improved only by the addition of these machinability improving elements, machines such as hot ductility and toughness The machinability improvement effect can be relatively increased while suppressing negative influences such as deterioration of general characteristics and increase of anisotropy.

以下に、Al、N、Nb以外の成分範囲や各種添加元素の量を特定する理由を以下に説明する。まず、C、Si、Mn、S、及びPについて説明する。   The reason for specifying the component ranges other than Al, N, and Nb and the amounts of various additive elements will be described below. First, C, Si, Mn, S, and P will be described.

(C:0.1〜0.8%)
Cは鋼材の基本強度に大きく影響を及ぼす元素であり、十分な強度を得るために0.1〜0・8%とした。Cが0.1%未満では十分な強度が得られない。またCが0.8%を超えると硬質な炭化物Fe3Cが増加し、被削性の低下が著しい。
(C: 0.1-0.8%)
C is an element that greatly affects the basic strength of steel, and is set to 0.1 to 0.8% in order to obtain sufficient strength. If C is less than 0.1%, sufficient strength cannot be obtained. On the other hand, if C exceeds 0.8%, the amount of hard carbide Fe 3 C increases and the machinability deteriorates remarkably.

(Si:0.001〜2.5%)
Siは脱酸元素として添加されるが、フェライトの固溶強化や焼き戻し軟化抵抗を付与するために添加する。Siが0.001%以下ではその効果は認めらない。また、Siが2.5%を超えると脆化し、高温での変形抵抗も増大するため、2.5%以下とした。
(Si: 0.001 to 2.5%)
Si is added as a deoxidizing element, but is added in order to impart solid solution strengthening and temper softening resistance of ferrite. The effect is not recognized when Si is 0.001% or less. Moreover, when Si exceeds 2.5%, it becomes brittle and deformation resistance at high temperature increases, so it was made 2.5% or less.

(Mn:0.1〜3.0%)
MnはSをMnSと固定して赤熱脆化を抑制すると共に、固溶Mnは焼き入れ性の向上や焼
き入れ後の強度を確保するために必要である。その下限値は0.1%であり、Mn量が多くなるとマトリックスの硬さが高くなり冷間加工性も低下する一方、強度や焼き入れ性に及ぼす影響も飽和するため、3.0%を上限とした。
(Mn: 0.1-3.0%)
Mn fixes S to MnS to suppress red heat embrittlement, and solid solution Mn is necessary for improving the hardenability and securing the strength after quenching. The lower limit is 0.1%, and as the amount of Mn increases, the hardness of the matrix increases and cold workability decreases, while the effect on strength and hardenability is saturated, so 3.0% The upper limit.

(S:0.01〜0.40%)
Sは被削性改善に極めて有効な元素であり、鋼材中にMnS、FeSの硫化物を生成せしめる。一方、S濃度の増加に伴いMnSの量やサイズが増大し、熱間圧延でそれらが延伸するため、機械的特性を劣化させたり、異方性を増大させる原因となる。また、S濃度の増加でFeSが多量に生成すると熱間延性が大きく低下する等、鋼材の製造性も大きく低下する。そこでS濃度については被削性改善効果が得られ、機械的特性や異方性の増大、熱間延性の低下が許容出来る0.01〜0.40%の範囲とした。
(S: 0.01-0.40%)
S is an extremely effective element for improving machinability, and forms sulfides of MnS and FeS in steel. On the other hand, as the S concentration increases, the amount and size of MnS increase, and they are stretched by hot rolling, thereby deteriorating mechanical properties and increasing anisotropy. Moreover, when FeS produces | generates abundantly by the increase in S concentration, the hot ductility will fall large, for example, the productivity of steel materials will also fall large. Therefore, the S concentration is within a range of 0.01 to 0.40%, which can provide machinability improving effects, and can allow an increase in mechanical properties and anisotropy and a decrease in hot ductility.

(P:0.1%以下)
Pは素地を硬くする元素であり、鋼材の融点を下げ、熱間加工性や鋳造性を低下させるため、0.1%以下とした。
(P: 0.1% or less)
P is an element that hardens the substrate, and is set to 0.1% or less in order to lower the melting point of the steel material and reduce hot workability and castability.

次に、鋼に、質量%でC r:0.005〜2.0%、Ni:0.005〜2.0%、Mo:0.005〜1.0%、及び、B:O.0002〜0.01%の内の1種または2種以上を添加することが好ましい理由を以下に述べる。   Next, in steel, by mass: Cr: 0.005 to 2.0%, Ni: 0.005 to 2.0%, Mo: 0.005 to 1.0%, and B: O.I. The reason why it is preferable to add one or more of 0002 to 0.01% is described below.

(Cr:0.005〜2.0%)
Crは焼き入れ性向上、焼き戻し軟化抵抗付与元素であり、そのため、高強度化が必要な場合に添加される元素であり、その効果を得るには0.005%以上添加する必要がある。また、Cr 濃度が2%を超えると、Cr炭化物が生成し、脆化を引き起こすため、その上限を2.0%とした。
(Cr: 0.005-2.0%)
Cr is an element that improves hardenability and imparts temper softening resistance. Therefore, Cr is an element that is added when high strength is required. To obtain this effect, it is necessary to add 0.005% or more. Further, if the Cr concentration exceeds 2%, Cr carbide is generated and causes embrittlement, so the upper limit was made 2.0%.

(Ni:0.005〜2.0%)
Niはフェライトを強化し、延性を向上させると共に焼き入れ性を向上させ、さらに耐食性向上にも有効な元素であり、その濃度が0.005%以下ではその効果が得られないため、その下限を0.005%とした。また、Ni濃度が2.0%を超えてもその効果は飽和するため、上限を2.0%とした。
(Ni: 0.005-2.0%)
Ni strengthens ferrite, improves ductility and hardenability, and is also an element effective for improving corrosion resistance. Since its effect cannot be obtained at a concentration of 0.005% or less, its lower limit is set. It was set to 0.005%. Moreover, since the effect is saturated even if the Ni concentration exceeds 2.0%, the upper limit was set to 2.0%.

(Mo:0.005〜1.0%)
Moは焼き入れ性向上、焼き戻し軟化抵抗付与に有効な元素であり、高強度化が必要な場合に添加される元素である。その効果を得るには0.005%以上添加する必要がある。また、Mo濃度が1%を超えると、炭化物の生成に起因して脆化を引き起こすため、その上限を1.0%とした。
(Mo: 0.005-1.0%)
Mo is an element effective for improving hardenability and imparting temper softening resistance, and is an element added when high strength is required. In order to obtain the effect, it is necessary to add 0.005% or more. Further, if the Mo concentration exceeds 1%, embrittlement occurs due to the formation of carbides, so the upper limit was made 1.0%.

(B:0.0002〜0.01%)
Bは固溶している場合は焼き入れ性向上や粒界強化に有効な元素であり、BNとして析出した場合は被削性向上に寄与する。これらの効果はB濃度が0.0002%以上で発揮される。また、B濃度が0.01%を超えると熱間延性が低下したり、粗大なBNにより機械的特性が劣化するため、その上限を0.01%とした。
(B: 0.0002 to 0.01%)
B is an element effective for improving hardenability and strengthening grain boundaries when dissolved, and contributes to improving machinability when precipitated as BN. These effects are exhibited when the B concentration is 0.0002% or more. Further, when the B concentration exceeds 0.01%, the hot ductility is lowered, or the mechanical properties are deteriorated by coarse BN, so the upper limit was made 0.01%.

さらに、鋼に、質量%でV:0.001〜1.0%、及びTi:0.001〜2.0%の内の1種または2種を添加することが好ましい理由について説明する。   Furthermore, the reason why it is preferable to add one or two of V: 0.001 to 1.0% and Ti: 0.001 to 2.0% by mass% to the steel will be described.

(V:0.002〜1.0%)
Vは炭、窒化物を形成し、析出強化作用が強い元素である。V濃度が0.002%未満では効果は出現しない。またV濃度が1.0%超では鋼材を著しく脆化するため、V濃度を1.0%以下に制限した。
(V: 0.002 to 1.0%)
V is an element that forms charcoal and nitride and has a strong precipitation strengthening action. If the V concentration is less than 0.002%, no effect appears. Further, when the V concentration exceeds 1.0%, the steel material is significantly embrittled, so the V concentration is limited to 1.0% or less.

(Ti:0.002〜2.0%)
Tiは炭、窒化物を形成し、鋼の強化やγ粒の粗大化を抑えて機械的特性の向上に有効に作用する。その効果を得るにはTi濃度が0.002%以上必要であり、Ti濃度が2.0%を超えて添加すると強度上昇が大き過ぎ被削性の劣化を引き起こす。
(Ti: 0.002-2.0%)
Ti forms charcoal and nitrides and effectively works to improve mechanical properties by suppressing the strengthening of steel and the coarsening of γ grains. In order to obtain the effect, the Ti concentration is required to be 0.002% or more. If the Ti concentration exceeds 2.0%, the strength increase is too large and the machinability is deteriorated.

さらに、鋼に、質量%でCa:0.0002〜0.01%、Z r:0.0002〜0.01%、Mg:0.0002〜0.01%、Ce:0.0002〜0.02%、La:0.0002〜0.02%、およびNd:0.0002〜0.02%の内の1種または2種以上添加することが好ましい理由について説明する。   Further, in steel, Ca: 0.0002 to 0.01%, Zr: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, Ce: 0.0002 to 0.00%. The reason why it is preferable to add one or more of 02%, La: 0.0002 to 0.02%, and Nd: 0.00002 to 0.02% will be described.

(Ca:0.0002〜0.01%)
Caは脱酸元素であり、脱酸生成物であるCaOはA1203を軟質化し被削性の向上に寄与するばかりでなく、CaSを生成してMnSに固溶することで熱間加工時の硫化物の延伸を抑制する。Ca濃度が0.0002%以上で上記効果が発揮され、Ca濃度が0.01%を超えるとCaSのクラスターが生成し、機械的特性やノズル詰まりの原因となるためその上限を0.01%とした。
(Ca: 0.0002 to 0.01%)
Ca is a deoxidizing element, CaO is deoxidation product not the A1 2 0 3 only contributes to the improvement of softened machinability, hot working by a solid solution in MnS to generate CaS Suppresses the stretching of sulfides at the time. The above effect is exhibited when the Ca concentration is 0.00002% or more, and when the Ca concentration exceeds 0.01%, CaS clusters are formed, causing mechanical properties and nozzle clogging. It was.

(Z r:0.0002〜0.01%、Mg:0.0002〜0.01%、Ce:0.0002〜0.02%、La:0.0002〜0.02%、Nd:0.0002〜0.02%,)
Z r、Mg、Ce、La、Ndは何れもオキシサルフアイドを形成し、MnSと複合化することで形態制御効果を発揮し、延伸した硫化物による靭性の低下や異方性の増大を緩和する。上記効果を得るには何れの元素共に0.0002%以上必要である。またZrとMgは0.01%を超えて添加すると、Ce、La、Ndは0.02%を超えて添加すると、それぞれクラスター状硫化物により機械的特性が劣化するばかりが被削性にも悪影響を及ぼす。よって、Zr、Mgの濃度は0.01%以下、Ce、La、Ndの濃度は0.02%以下に制限した。
(Zr: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, Ce: 0.0002 to 0.02%, La: 0.0002 to 0.02%, Nd: 0.00%. 0002 to 0.02%,)
Zr, Mg, Ce, La, and Nd all form oxysulfide, and when combined with MnS, exerts a shape control effect, mitigating toughness reduction and anisotropy increase due to stretched sulfides To do. In order to obtain the above effect, 0.00002% or more of any element is required. If Zr and Mg are added in excess of 0.01%, Ce, La, and Nd are added in excess of 0.02%, and the mechanical properties are deteriorated by the clustered sulfides. Effect. Therefore, the concentrations of Zr and Mg were limited to 0.01% or less, and the concentrations of Ce, La, and Nd were limited to 0.02% or less.

さらに、鋼に、質量%でPb:0.005〜0.3%、Bi:0.005〜0.3%、Te:0.0001〜0.1%、及びSb:0.0001〜0.1%の内の1種または2種以上添加することが好ましい理由について述べる。   Further, in steel, Pb: 0.005 to 0.3%, Bi: 0.005 to 0.3%, Te: 0.0001 to 0.1%, and Sb: 0.0001 to 0.1% in mass%. The reason why it is preferable to add one or more of these will be described.

Pb、Bi、Te、Sbは何れも被削性改善元素であり、S等に比べ機械的特性を低下することなく被削性を改善するのに有効な元素である。その効果を得るにはPb、Biは0.005%以上必要で、Te、Sbは0.001%以上必要である。一方、これらの元素を過剰に添加すると鋼材は脆化し、熱間加工性が損なわれる。具体的にはPb、Biは0.3%を超えると、Te、Sbは0.1%を超えると、それぞれ脆化が激しくなる。このため、Pb、Biの濃度の上限を0.3%とし、Te、Sbの濃度の上限を0.1%とした。   Pb, Bi, Te, and Sb are all machinability improving elements and are effective elements for improving machinability without deteriorating mechanical properties as compared with S and the like. To obtain this effect, 0.005% or more of Pb and Bi is necessary, and 0.001% or more of Te and Sb are necessary. On the other hand, if these elements are added excessively, the steel material becomes brittle and the hot workability is impaired. Specifically, when Pb and Bi exceed 0.3% and Te and Sb exceed 0.1%, embrittlement becomes severe. For this reason, the upper limit of the Pb and Bi concentrations is set to 0.3%, and the upper limit of the Te and Sb concentrations is set to 0.1%.

以下、本発明の効果を実施例によりさらに詳述する。
真空溶解炉を用いて150kgの鋼魂を溶製し、その鋼魂を2分割し、2分割した片方の材料のみ、室温から一旦1250℃以上の温度に加熱し、その後1000℃で熱間鍛造を実施し、もう片方の材料は1200℃以下の温度に加熱した後、1000℃で熱間鍛造を実施し、どちらも60φの被削性評価用の丸棒に加工することにより、複数の試料を作製した。前者の条件で製造された試料は本発明鋼であり、後者の条件で製造された試料は比較鋼である。表1−1及び表1−2に、製造した試料の化学成分と熱間鍛造前の加熱温度を示す。なお、添加元素の種類によって試料を第1群〜第5群に分類した。
Hereinafter, the effect of the present invention will be described in more detail with reference to examples.
A 150kg steel soul is melted using a vacuum melting furnace, and the steel soul is divided into two parts. Only one of the two parts is heated from room temperature to 1250 ° C or higher, and then hot forged at 1000 ° C. After the other material was heated to a temperature of 1200 ° C or lower, hot forging was performed at 1000 ° C, and both were processed into a round bar for machinability evaluation of 60φ. Was made. The sample manufactured under the former condition is the steel of the present invention, and the sample manufactured under the latter condition is the comparative steel. Table 1-1 and Table 1-2 show the chemical composition of the manufactured samples and the heating temperature before hot forging. The samples were classified into a first group to a fifth group according to the type of additive element.

Figure 0005114658
Figure 0005114658

Figure 0005114658
Figure 0005114658

表1−1及び表1−2に成分及び加熱条件を示した試料を用い、表2に示す切削条件で
ドリル穿孔試験を行い、累積穴深さ1000mmまで切削可能な最高の切削速度(VL,1000)で
被削性を評価した。VL,1000の評価結果も表1に示した。炭化物、窒化物、炭窒化物の生成状況は、以下の方法により求めた。まず鋼材断面の任意の位置より抽出レプリカ法でアセチルセルロースフィルムに析出物を採取し、このアセチルセルロースフィルムを透過型電子顕微鏡により5万倍の倍率で観察した。1視野当たりの観察面積を3.5μm2とし、無作為に抽出した20視野について観察した。その全視野内の30nm〜100nmφの炭化物、窒化物、炭窒化物の存在を調査した。先ず炭化物を透過型電子顕微鏡での電子線回析パターン解析法により同定し、その後、窒化物と炭、窒化物を透過型電子顛微鏡でのエネルギー分散法により同定した。次いで、この同定した析出物の内、AlとNbの両方を含有する析出物について、エネルギー分散法によりAl、Nbの存在を検出し、その個数を計数して単位面積(1μm2)当たりの個数を求めた。
Using the samples whose components and heating conditions are shown in Table 1-1 and Table 1-2, a drill drilling test was conducted under the cutting conditions shown in Table 2, and the maximum cutting speed (VL, 1000). The evaluation results of VL and 1000 are also shown in Table 1. The production | generation condition of the carbide | carbonized_material, nitride, and carbonitride was calculated | required with the following method. First, a precipitate was collected on an acetylcellulose film from an arbitrary position on the cross section of the steel by an extraction replica method, and this acetylcellulose film was observed with a transmission electron microscope at a magnification of 50,000 times. The observation area per field of view was 3.5 μm 2 and 20 randomly extracted fields were observed. The existence of carbides, nitrides, and carbonitrides with a diameter of 30 to 100 nm within the entire field of view was investigated. First, carbides were identified by an electron diffraction pattern analysis method with a transmission electron microscope, and then nitrides, charcoal, and nitrides were identified by an energy dispersion method with a transmission electron microscope. Next, among the identified precipitates, the presence of Al and Nb is detected by the energy dispersion method for the precipitates containing both Al and Nb, and the number is counted and the number per unit area (1 μm 2 ). Asked.

表1−1、表1−2、および後述する表3の各表中の「存在密度」は、円相当径が30nm〜100nmφであり、Nb及びAlの両方を含有する、炭化物、窒化物、及び炭窒化物の1種または2種以上の合計の存在密度である。   “Existence density” in each table of Table 1-1, Table 1-2, and Table 3 to be described later, the equivalent circle diameter is 30 nm to 100 nmφ, and contains both Nb and Al, carbide, nitride, And the total abundance density of one or more of carbonitrides.

Figure 0005114658
Figure 0005114658

表1−1のWl〜W45は本発明鋼であり、1260℃に加熱後1000℃で熱間鍛造した水準である。これら本発明鋼は、微細析出物における上記存在硬度が0.1個/μm2以上であった。一方、表1−2のSl〜S45は、Wl〜W45と同一組成を有する比較鋼であり、1150℃に加熱後1000℃で熱間鍛造した水準である。熱間鍛造前に1250℃以上の温度で加熱処理を実施していないため、微細析出物における上記存在密度が0.1個/μm2未満であった。 Wl to W45 in Table 1-1 are steels of the present invention, which are hot forged at 1000 ° C after heating to 1260 ° C. These steels of the present invention had a hardness of 0.1 precipitates / μm 2 or more in the fine precipitates. On the other hand, Sl to S45 in Table 1-2 are comparative steels having the same composition as Wl to W45, and are hot forged at 1000 ° C. after heating to 1150 ° C. Since the heat treatment was not performed at a temperature of 1250 ° C. or higher before hot forging, the existence density in the fine precipitates was less than 0.1 / μm 2 .

Wl〜W45の本発明鋼と、Sl〜S45の比較鋼のドリル寿命VL,1000を、同一組成範囲に属するもの同士(第1群同士など)で比較すると、上記存在密度が0.1個/μm2以上であるWl〜W45の本発明鋼の方が、上記存在密度が0.1個/μm2未満であるSl〜S45の比較鋼に比べてVL,1000の値は少なくとも16m/min以上、平均で21m/min高く、被削性が優れていることが示された。 When the drill life VL, 1000 of the invention steels of Wl to W45 and the comparative steels of Sl to S45 are compared with those belonging to the same composition range (such as the first group), the above-mentioned existence density is 0.1 / μm. The present invention steel of Wl to W45 that is 2 or more has a value of VL, 1000 of at least 16 m / min or more on average, compared with the comparative steel of Sl to S45 whose abundance is less than 0.1 / μm 2. It was 21 m / min high, indicating excellent machinability.

また、表1−2のT1〜3は比較鋼であり、熱間鍛造前に1250℃以上の温度で加熱されているもの、Al、N、Nb濃度が適正な範囲から外れていたため、微細析出物における上記存在密度が0.1個/μm2未満となり、VL,1000の値は本発明鋼の平均値(95m/min)と比較して13m/min以上低くなった。 Also, T1-3 in Table 1-2 are comparative steels, which are heated at a temperature of 1250 ° C or higher before hot forging, Al, N, Nb concentration was out of the proper range, so fine precipitation The abundance density in the product was less than 0.1 / μm 2, and the value of VL, 1000 was 13 m / min or more lower than the average value (95 m / min) of the steel of the present invention.

実施例2では、実施例1と同様な方法で、S以外はほぼ同一成分系でS濃度が0.02
〜0.4%の範囲の鋼魂を作製し、この鋼魂を2分割し、それぞれを実施例1と同様な方
法で加工することにより、本発明鋼W46〜W52及び比較鋼S46〜S52を作製した。これら本発明鋼及び比較鋼で被削性を調査すると共に、靭性評価サンプルとして、丸棒の長手方向(L方向)及びそれに直交する方向(C方向)それぞれでシャルピー試験片を採取し、これら試験片のシャルピー衝撃値を調べ、L方向のシャルピー衝撃値に対するC方向のシャルピー衝撃値の比で機械的異方性を評価した。
In Example 2, the same method as in Example 1 except that S was almost the same component system, and the S concentration was 0.02.
A steel soul in a range of ˜0.4% is produced, and this steel soul is divided into two parts, and each of them is processed in the same manner as in Example 1, whereby the present invention steels W46 to W52 and comparative steels S46 to S52 are produced. Produced. In addition to investigating machinability with these inventive steels and comparative steels, Charpy specimens were collected in the longitudinal direction (L direction) of the round bar and in the direction perpendicular to it (C direction) as toughness evaluation samples. The Charpy impact value of the piece was examined, and the mechanical anisotropy was evaluated by the ratio of the Charpy impact value in the C direction to the Charpy impact value in the L direction.

表3には製造した試料の化学成分、熱間鍛造前の加熱温度、VL,1000の値、及びL方向の衝撃値に対するC方向のシャルピー衝撃値の比を示す。   Table 3 shows the chemical composition of the manufactured sample, the heating temperature before hot forging, the values of VL and 1000, and the ratio of the Charpy impact value in the C direction to the impact value in the L direction.

Figure 0005114658
Figure 0005114658

表3の結果に基づき、VL,1000の値とL方向とC方向のシャルピー衝撃値の比の関係を整理した結果を図1に示す。表3及び図1より、本発明鋼及び比較鋼共にS濃度を増加させることにより、VL,1000を向上できるが、同一の、VL,1000を満足するには本発明鋼の方が比較鋼より少ないS濃度で達成出来る分、L方向とC方向の衝撃値の比を高く維持できていることが示された。   Based on the results in Table 3, FIG. 1 shows the results of organizing the relationship between the values of VL, 1000 and the ratio of Charpy impact values in the L and C directions. From Table 3 and Fig. 1, the VL and 1000 can be improved by increasing the S concentration in both the inventive steel and the comparative steel, but the inventive steel is better than the comparative steel to satisfy the same VL and 1000. It was shown that the ratio of the impact value in the L direction and the C direction can be kept high as much as it can be achieved with a small S concentration.

以上の2つの実施例から、本発明鋼は被削性レベルが比較鋼と同一レベルであれば機械
的異方性が少なく、また、機械的異方性が同一レベルであれば、比較鋼に比べ本発明鋼の
方が格段に被削性が優れていることが示された。
From the above two examples, the steel of the present invention has little mechanical anisotropy if the machinability level is the same as that of the comparative steel, and if the mechanical anisotropy is the same level, In comparison, it was shown that the steel of the present invention has much better machinability.

本発明例と比較例の、VL,1000の値とL方向とC方向衝撃値の比の関係を示す図である。It is a figure which shows the relationship between the value of VL, 1000 and the ratio of the L direction and a C direction impact value of the example of this invention and a comparative example.

Claims (5)

質量%で、
C:0.1〜0.8%、
Si:0.001〜2.5%、
Mn:0.1〜3.0%、
S:0.01〜0.40%、
P:0.1%以下、
Al:0.005〜0.5%、
N:0.0020〜0.02%、
Nb:0.005〜0.1%を含有し、残部がFeおよび不可避不純物からなる鋼であって、
鋼中の円相当径が30nm〜100nmφであり、Nb及びAlの両方を含有する、炭化物、窒化物
、及び炭窒化物のうちの1種又は2種以上の合計の存在密度が、断面において0.1個/μm2以上であることを特徴とする機械的特性及び被削性に優れた機械構造用鋼。
% By mass
C: 0.1-0.8%
Si: 0.001 to 2.5%
Mn: 0.1-3.0%
S: 0.01-0.40%
P: 0.1% or less,
Al: 0.005 to 0.5%
N: 0.000020 to 0.02%,
Nb: 0.005 to 0.1% steel with the balance being Fe and inevitable impurities,
The total equivalent density of one or more of carbides, nitrides, and carbonitrides containing both Nb and Al having an equivalent circle diameter of 30 nm to 100 nmφ in steel is 0.1 in the cross section. A machine structural steel excellent in mechanical properties and machinability, characterized by being 1 piece / μm 2 or more.
さらに、質量%でCr:0.005〜2.0%、Ni:0.005〜2.0%、Mo:0.005〜1.0%、及びB:0.0002〜0.01%の少なくとも一つを含有することを特徴とする請求項1に記載の機械的特性及び被削性に優れた機械構造用鋼。   Further, at least one of Cr: 0.005 to 2.0%, Ni: 0.005 to 2.0%, Mo: 0.005 to 1.0%, and B: 0.0002 to 0.01% by mass%. 2. The structural steel having excellent mechanical properties and machinability according to claim 1, characterized by comprising さらに、質量%でV:0.002〜1.0%、及びTi:0.002〜2.0%の少なくとも一つを含有することを特徴とする請求項1又は2に記載の機械的特性及び被削性に優れた機械構造用鋼。   The mechanical properties according to claim 1 or 2, further comprising at least one of V: 0.002 to 1.0% and Ti: 0.002 to 2.0% by mass%. And machine structural steel with excellent machinability. さらに、質量%でCa:0.0002〜0.01%、Zr:0.0002〜0.01%、Mg:0.0002〜0.01%、Ce:0.0002〜0.02%、La:0.0002〜0.02%、及びNd:0.0002〜0.02%、の少なくとも一つを含有することを特徴とする請求項1乃至3のいずれかに記載の機械的特性及び被削性に優れた機械構造用鋼。   Further, in mass%, Ca: 0.0002 to 0.01%, Zr: 0.0002 to 0.01%, Mg: 0.0002 to 0.01%, Ce: 0.0002 to 0.02%, La The mechanical properties and machinability according to any one of claims 1 to 3, characterized by containing at least one of: 0.00002 to 0.02% and Nd: 0.00002 to 0.02%. Excellent machine structural steel. さらに、質量%でPb:0.005〜0.3%、Bi:0.005〜0.3%、Te:0.0002〜0.1%、及びSb:0.0002〜0.1%の少なくとも一つを含有することを特徴とする請求項1乃至4のいずれかに記載の機械的特性及び被削性に優れた機械構造用鋼。   Further, at least one of Pb: 0.005 to 0.3%, Bi: 0.005 to 0.3%, Te: 0.0002 to 0.1%, and Sb: 0.0002 to 0.1% by mass%. 5. The steel for machine structural use having excellent mechanical properties and machinability according to claim 1, wherein the steel has excellent mechanical properties and machinability.
JP2007099069A 2006-12-20 2007-04-05 Mechanical structural steel with excellent mechanical properties and machinability Expired - Fee Related JP5114658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099069A JP5114658B2 (en) 2006-12-20 2007-04-05 Mechanical structural steel with excellent mechanical properties and machinability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006342225 2006-12-20
JP2006342225 2006-12-20
JP2007099069A JP5114658B2 (en) 2006-12-20 2007-04-05 Mechanical structural steel with excellent mechanical properties and machinability

Publications (2)

Publication Number Publication Date
JP2008174830A JP2008174830A (en) 2008-07-31
JP5114658B2 true JP5114658B2 (en) 2013-01-09

Family

ID=39702050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099069A Expired - Fee Related JP5114658B2 (en) 2006-12-20 2007-04-05 Mechanical structural steel with excellent mechanical properties and machinability

Country Status (1)

Country Link
JP (1) JP5114658B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204463B8 (en) 2007-10-29 2019-08-14 Nippon Steel Corporation Martensite type steel not requiring heat treatment and hot forged non heat-treated steel parts
JP6094180B2 (en) * 2012-11-30 2017-03-15 Jfeスチール株式会社 Machine structural steel with excellent cold forgeability and toughness
US10662492B2 (en) * 2013-06-27 2020-05-26 Nippon Steel Nisshin Co., Ltd. Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
CN105908070A (en) * 2016-05-18 2016-08-31 安徽合矿机械股份有限公司 Automobile spring material with good brittleness resistance and good rupture resistance
WO2018021452A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Steel for machine structures
CN109477187A (en) * 2016-07-27 2019-03-15 新日铁住金株式会社 Steel for mechanical structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333624A (en) * 1995-06-05 1996-12-17 Aichi Steel Works Ltd Production of hot forged product
JPH10195530A (en) * 1996-12-28 1998-07-28 Daido Steel Co Ltd Production of high strength and high toughness ferrite + pearlite type non-tempered forged article
JP3725666B2 (en) * 1997-08-05 2005-12-14 新日本製鐵株式会社 Manufacturing method of carburized shaft parts
JP4681160B2 (en) * 2001-07-10 2011-05-11 愛知製鋼株式会社 Manufacturing method of high temperature carburizing steel and high temperature carburizing steel manufactured by the method
JP3929035B2 (en) * 2002-07-03 2007-06-13 三菱製鋼株式会社 Sulfur-containing free-cutting machine structural steel
JP4384592B2 (en) * 2004-12-10 2009-12-16 株式会社神戸製鋼所 Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability

Also Published As

Publication number Publication date
JP2008174830A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4473928B2 (en) Hot-worked steel with excellent machinability and impact value
EP1669469A1 (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
WO2010116555A1 (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
JP5181619B2 (en) Hardened steel with excellent machinability and hardenability
CN113099723B (en) High-carbon cold-rolled steel sheet, method for producing same, and high-carbon steel machine component
JP5419820B2 (en) Rolled steel bar or wire rod for hot forging
JP5114658B2 (en) Mechanical structural steel with excellent mechanical properties and machinability
US20100193089A1 (en) Hot-working tool steel having excellent toughness and high-temperature strength and method for production thereof
JPWO2012046779A1 (en) Case-hardened steel and method for producing the same
KR102556224B1 (en) Bolts and Steel for Bolts
JP4793298B2 (en) Non-tempered steel and manufacturing method thereof
KR20180004245A (en) Spring river
JP2017066460A (en) Age hardening steel
JP2005146303A (en) Method for manufacturing curburized steel superior in grain-coarsening resistance after high temperature carburizing
JP6477382B2 (en) Free-cutting steel
JP4528363B1 (en) Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
CN106574335B (en) Hot working has material, the manufacturing method of hot working tool and hot working tool
JP6477383B2 (en) Free-cutting steel
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JPH111743A (en) High strength, high toughness tempered steel excellent in machinability
JP5681333B1 (en) Forged parts, manufacturing method thereof, and connecting rod
JP7464832B2 (en) Bolts and bolt steel
JP2002194483A (en) Steel for machine structure
JP2003213368A (en) Steel for machine structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5114658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees