JP5106488B2 - Manufacturing method of manganese carbonate - Google Patents

Manufacturing method of manganese carbonate Download PDF

Info

Publication number
JP5106488B2
JP5106488B2 JP2009160300A JP2009160300A JP5106488B2 JP 5106488 B2 JP5106488 B2 JP 5106488B2 JP 2009160300 A JP2009160300 A JP 2009160300A JP 2009160300 A JP2009160300 A JP 2009160300A JP 5106488 B2 JP5106488 B2 JP 5106488B2
Authority
JP
Japan
Prior art keywords
manganese
carbonate
manganese carbonate
carbon dioxide
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009160300A
Other languages
Japanese (ja)
Other versions
JP2011016668A (en
Inventor
利至 山岡
直樹 樋口
誠 成迫
大祐 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2009160300A priority Critical patent/JP5106488B2/en
Priority to KR20100063328A priority patent/KR101274365B1/en
Priority to CN2010102208928A priority patent/CN101985365A/en
Publication of JP2011016668A publication Critical patent/JP2011016668A/en
Application granted granted Critical
Publication of JP5106488B2 publication Critical patent/JP5106488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は酸性のマンガン溶液からマンガンを炭酸マンガンとして回収するにあたって、特にナトリウムに注目して高純度な炭酸マンガンを高回収率で回収することを目的とした発明である。 The present invention is an invention aimed at recovering high-purity manganese carbonate at a high recovery rate, particularly focusing on sodium when recovering manganese as manganese carbonate from an acidic manganese solution.

近年、電子機器やリチウムイオン二次電池のような電池材料加えて合金その他様々な材料においてマンガンの使用量が盛んに行われている。これらの機器・電池・材料等においては、マンガンはマンガンだけでなく他の金属成分が組み合されて使用されている。このため、機器・電池等に使用されていたマンガンをリサイクルするにあたっては、これらの金属成分からマンガンのみを分離することが必要である。この分離のための手法の一つとして酸性抽出剤を用いる方法があり、特開2008-231522(特許文献1)に示されているように一般的に用いられている。しかしながら酸性抽出剤を使用すると、抽出剤から水相に金属成分を取り出すために酸と接触させる必要がある。ここでは抽出剤に含まれるマンガンの多くを水相に移すためには、抽出剤に接触する水相を強酸性に変えておかなければならない。このように抽出工程を通じて得られたマンガン水溶液は強酸性である。 In recent years, manganese has been actively used in battery materials such as electronic devices and lithium ion secondary batteries, as well as alloys and other various materials. In these devices, batteries, materials, etc., manganese is used in combination with not only manganese but also other metal components. For this reason, when recycling manganese used in equipment and batteries, it is necessary to separate only manganese from these metal components. One of the methods for this separation is a method using an acidic extractant, which is generally used as disclosed in JP 2008-231522 (Patent Document 1). However, when an acidic extractant is used, it must be contacted with an acid in order to extract the metal component from the extractant into the aqueous phase. Here, in order to transfer most of the manganese contained in the extractant to the aqueous phase, the aqueous phase in contact with the extractant must be changed to strongly acidic. Thus, the manganese aqueous solution obtained through the extraction process is strongly acidic.

このようにして得られた酸性マンガン溶液から酸化マンガンか炭酸マンガンを得ようとするためにpH調整を実施する場合、例えば苛性ソーダや苛性カリのような水酸化物を用いると水相のナトリウムやカリウムイオン濃度が上昇し、目的のマンガンを不純物の混入を防いだ状態で回収する、すなわち高純度なマンガン化合物を得ることは困難であった。
特開2008-231522
When pH adjustment is performed in order to obtain manganese oxide or manganese carbonate from the acidic manganese solution thus obtained, for example, when hydroxide such as caustic soda or caustic potash is used, sodium and potassium ions in the aqueous phase are used. It has been difficult to recover the target manganese in a state in which the concentration has increased and to prevent contamination with impurities, that is, to obtain a high-purity manganese compound.
JP2008-231522

また、マンガン溶液から炭酸塩としてマンガンを分離する際に、pH調整剤・炭酸供給剤として炭酸ナトリウムなどの炭酸塩を直接またはその水溶液を使用して炭酸マンガンの沈殿を生成させろ過により分離することも考えられる。しかしながらこの方法では液中にナトリウム成分がろ液中に混在するため、ろ過、乾燥後にナトリウム分が混入する恐れがある。さらに前述のようにpH調整によって溶液に既にナトリウムが増えているような場合には、さらにナトリウムが析出しやすい条件になってしまうため特に炭酸マンガン中にナトリウムが混入する恐れがある。こういったナトリウムの混入をさけるために多量の洗浄水を使用すると、炭酸マンガンをろ液に流出させてしまうことが考えられる。このように、有価金属をリサイクルする工程において酸性抽出剤を使用した抽出工程によってマンガンだけを取り出したのち高純度な炭酸マンガンを得る方法が必要であった。本発明は、簡便な方法により、高純度の炭酸マンガンを得る方法を課題とする。 In addition, when separating manganese as a carbonate from a manganese solution, a carbonate such as sodium carbonate is directly or using an aqueous solution as a pH adjuster / carbonate supply agent, and a manganese carbonate precipitate is produced and separated by filtration. Is also possible. However, in this method, a sodium component is mixed in the filtrate, so that there is a possibility that sodium will be mixed after filtration and drying. Further, as described above, when sodium is already increased in the solution by adjusting the pH, it becomes a condition where sodium is more likely to precipitate, so that sodium may be mixed in manganese carbonate. If a large amount of washing water is used in order to avoid such sodium contamination, manganese carbonate may flow out into the filtrate. Thus, there has been a need for a method of obtaining high-purity manganese carbonate after extracting only manganese by an extraction step using an acidic extractant in the step of recycling valuable metals. An object of the present invention is to obtain a high purity manganese carbonate by a simple method.

即ち本発明は、
(1)酸性マンガン溶液をアンモニア水でpHを7−8に調整し、該液に炭酸ガスを吹き込み、ナトリウム或はカリウムが、100mass ppm以下である炭酸マンガン得る炭酸マンガンの製造方法。
(2)上記(1)において、炭酸ガス吹込み中に、継続して、アンモニア水を添加し、pHを7−8に継続して維持し、ナトリウム或はカリウムが、100mass ppm以下である炭酸マンガンを得る炭酸マンガンの製造方法。
That is, the present invention
(1) an acidic solution of manganese adjusted to 7-8 pH with aqueous ammonia, blowing carbon dioxide gas in the liquid, the sodium or potassium method of producing a manganese carbonate to obtain a manganese carbonate is less than 100 mass ppm.
(2) In the above (1), during the carbon dioxide gas blowing, ammonia water is continuously added, and the pH is continuously maintained at 7-8, so that the sodium or potassium is not more than 100 mass ppm. A method for producing manganese carbonate to obtain manganese.

本発明により、以下の効果を得られる。(1)ナトリウムの低い炭酸マンガンを容易に得られる。(2)抽出後液からのマンガンの回収に当たり、酸性が強い液中から炭酸マンガンの生成において、ナトリウム等の不純物が少ない、炭酸マンガンを容易に得られる。 The following effects can be obtained by the present invention. (1) Manganese carbonate with low sodium can be easily obtained. (2) In the recovery of manganese from the liquid after extraction, manganese carbonate with few impurities such as sodium can be easily obtained in the production of manganese carbonate from a liquid with strong acidity.

本発明において、原料とする酸性マンガン液のマンガン濃度は任意のものを使用できる。炭酸化後のマンガン濃度が5ppm程度に低減するまで炭酸マンガンとして回収できるため、コストに見合うようであれば希薄溶液から炭酸マンガンを回収することも可能である。逆に高濃度な水溶液であっても溶解度を超えて析出が見られないようであれば、原料として使用することが可能である。 In the present invention, the manganese concentration of the acidic manganese liquid used as a raw material can be any. Since it can be recovered as manganese carbonate until the manganese concentration after carbonation is reduced to about 5 ppm, it is also possible to recover manganese carbonate from a dilute solution if the cost is met. Conversely, even if it is a high concentration aqueous solution, if precipitation does not appear exceeding solubility, it can be used as a raw material.

酸性のマンガン液を炭酸化する前にpHを調整する。本発明ではアンモニア水を使用する。アンモニア水であれば、マンガン以外の金属成分のコンタミをさけることができる。pHは二酸化炭素が溶けるpHであれば良い。アンモニア水は、例えば、20から40mass%程度に調整し、使用することが望ましい。 Adjust the pH before carbonating the acidic manganese solution. In the present invention, ammonia water is used. If ammonia water is used, contamination of metal components other than manganese can be avoided. The pH may be any pH that dissolves carbon dioxide. It is desirable to use ammonia water after adjusting it to about 20 to 40 mass%, for example.

pH5においても、炭酸化は行われるが、反応速度と収率を考慮するとpH7から8が望ましい。 pH調整後のマンガン溶液を、二酸化炭素を用いて炭酸化する。吹き込み速度は製造の規模によって調整すればよい。 Carbonation is also performed at pH 5, but pH 7 to 8 is desirable in consideration of reaction rate and yield. Carbonate the manganese solution after pH adjustment using carbon dioxide. The blowing speed may be adjusted according to the scale of manufacture.

例えば、ビーカーレベルであれば100ml/分程度が適切であり、スケールアップする場合にはより多量に吹き込むことができる。吹き込んだ二酸化炭素が液中に溶解するよう、吹き込み口はより細かく分かれているほうが良い。また、炭酸ガスを吹込み中は、pHが、低下するが、その調整もアンモニア水で行うことが好ましい。この場合もpHは、7から8に維持することが好ましい。炭酸マンガンを得る為に好適だからである。十分に反応した後、ろ過・洗浄・乾燥することで、高純度の炭酸マンガンを得ることができる。 For example, if it is a beaker level, about 100 ml / min is suitable, and when it scales up, it can blow in a larger quantity. It is better to divide the inlet more finely so that the injected carbon dioxide dissolves in the liquid. Further, while carbon dioxide gas is being blown in, the pH is lowered, but the adjustment is preferably performed with aqueous ammonia. Again, the pH is preferably maintained at 7-8. This is because it is suitable for obtaining manganese carbonate. After sufficiently reacting, high purity manganese carbonate can be obtained by filtration, washing and drying.

(実施例1) 図1に示す処理フローに沿って、以下本発明の一態様を説明する。マンガン水溶液(pH0、マンガン濃度75g/L)を250ml用意し、28mass%アンモニア水を50ml加えた。添加後のpHは7.1である。このマンガン液に100ml/分の流量で二酸化炭素を吹き込んだ。二酸化炭素の吹き込みを続けると反応によりpHが下がりはじめる。そこで、pHを7〜8に維持するようにアンモニア水をゆっくり滴下していった。液中のマンガンが十分に反応するように、二酸化炭素の吹き込みは3hr行った。二酸化炭素吹込み中のアンモニア水の添加量は50mlに達した。 Embodiment 1 An embodiment of the present invention will be described below along the processing flow shown in FIG. 250 ml of an aqueous manganese solution (pH 0, manganese concentration 75 g / L) was prepared, and 50 ml of 28 mass% aqueous ammonia was added. The pH after addition is 7.1. Carbon dioxide was blown into the manganese solution at a flow rate of 100 ml / min. If carbon dioxide blowing is continued, the pH starts to drop due to the reaction. Therefore, ammonia water was slowly dropped to maintain the pH at 7-8. Carbon dioxide was blown in for 3 hours so that manganese in the liquid reacted sufficiently. The amount of ammonia water added during carbon dioxide injection reached 50 ml.

二酸化炭素吹込み後に生成した殿物をろ過して液相より分離した。殿物は乾燥後、X線回折(以下XRDと称す。)を行った。実施例により得られた沈殿のXRDパターンを図2に示す。XRDを行った所、図2に示す矢印のように、炭酸マンガンのピークと一致した。ろ液をICP発光により濃度を測定したところ、マンガン濃度は6ppmであった。これらの結果から、当初のマンガン水溶液に含まれるマンガンのほぼ100%を炭酸マンガンとして回収できたことがわかった。炭酸マンガン中のナトリウム不純物濃度を測定したところ98massppmであった。 The residue formed after carbon dioxide blowing was filtered and separated from the liquid phase. The dried product was dried and then subjected to X-ray diffraction (hereinafter referred to as XRD). The XRD pattern of the precipitate obtained in the example is shown in FIG. When XRD was performed, it coincided with the peak of manganese carbonate as shown by the arrow in FIG. When the concentration of the filtrate was measured by ICP luminescence, the manganese concentration was 6 ppm. From these results, it was found that almost 100% of the manganese contained in the original aqueous manganese solution could be recovered as manganese carbonate. The sodium impurity concentration in manganese carbonate was measured and found to be 98 massppm.

発明例)マンガン水溶液(pH0、マンガン濃度75g/L)を250ml用意し、28mass%アンモニア水を50ml加えた。添加後のpHは7.1である。このマンガン液に100ml/分の流量で二酸化炭素を吹き込んだ。二酸化炭素の吹き込みを続けると反応によりpHが下がりはじめた。液中のマンガンが十分に反応するように、二酸化炭素の吹き込みは3hr行った。pHは6に低下した。二酸化炭素吹込み後に生成した殿物をろ過して液相より分離した。殿物を乾燥後XRDを行ったところ、炭酸マンガンのピークと一致した。ろ液をICP発光により濃度を測定したところ、マンガン濃度は50g/Lであった。これらの結果から、当初のマンガン水溶液に含まれるマンガンの約33%を炭酸マンガンとして回収できたことがわかった。 ( Invention Example ) 250 ml of an aqueous manganese solution (pH 0, manganese concentration 75 g / L) was prepared, and 50 ml of 28 mass% aqueous ammonia was added. The pH after the addition is 7.1. Carbon dioxide was blown into this manganese solution at a flow rate of 100 ml / min. When carbon dioxide blowing was continued, the pH began to drop due to the reaction. Carbon dioxide was blown in for 3 hours so that manganese in the liquid sufficiently reacted. The pH dropped to 6. The residue formed after carbon dioxide blowing was filtered and separated from the liquid phase. When the residue was dried and XRD was performed, it coincided with the peak of manganese carbonate. When the concentration of the filtrate was measured by ICP luminescence, the manganese concentration was 50 g / L. From these results, it was found that about 33% of manganese contained in the original aqueous manganese solution could be recovered as manganese carbonate.

(比較例)マンガン水溶液(pH0、マンガン濃度75g/L)を250ml用意し、28%アンモニア水を50ml加えた。添加後のpHは7.1である。このマンガン液に炭酸ナトリウムを50g加え沈殿を生成させた。生成した殿物をろ過して液相より分離した。殿物は乾燥後XRDを行ったところ、炭酸マンガンのピークと一致した。ろ液をICP発光により濃度を測定したところ、マンガン濃度は5ppm以下であった。これらの結果から、当初のマンガン水溶液に含まれるマンガンのほぼ100%を炭酸マンガンとして回収できたことがわかった。炭酸マンガン中のナトリウム不純物濃度を測定したところ5000ppmであった。 (Comparative example 1 ) 250 ml of manganese aqueous solution (pH 0, manganese concentration 75g / L) was prepared, and 50 ml of 28% ammonia water was added. The pH after the addition is 7.1. 50 g of sodium carbonate was added to this manganese solution to form a precipitate. The resulting residue was filtered and separated from the liquid phase. When the porridge was dried and XRD was performed, it coincided with the peak of manganese carbonate. When the concentration of the filtrate was measured by ICP emission, the manganese concentration was 5 ppm or less. From these results, it was found that almost 100% of manganese contained in the original aqueous manganese solution could be recovered as manganese carbonate. The sodium impurity concentration in the manganese carbonate was measured and found to be 5000 ppm.

(比較例)マンガン水溶液(pH0、マンガン濃度75g/L)を250ml用意した。このマンガン液に100ml/分の流量で二酸化炭素を吹き込んだ。pHは変化しなかった。沈殿物の生成は観察できなかった。ろ液をICP発光により濃度を測定したところ、マンガン濃度は75g/Lであった。
(Comparative example 2 ) 250 ml of manganese aqueous solution (pH 0, manganese concentration 75g / L) was prepared. Carbon dioxide was blown into this manganese solution at a flow rate of 100 ml / min. The pH did not change. The formation of a precipitate could not be observed. When the concentration of the filtrate was measured by ICP luminescence, the manganese concentration was 75 g / L.

本発明の一態様である処理フローを示す。The processing flow which is 1 aspect of this invention is shown. 本発明の一態様である炭酸マンガンの沈殿のXRDパターンを示す。2 shows an XRD pattern of precipitation of manganese carbonate which is one embodiment of the present invention.

Claims (2)

酸性マンガン溶液をアンモニア水でpHを7−8に調整し、該液に炭酸ガスを吹き込み、ナトリウム或はカリウムが、100mass ppm以下である炭酸マンガン得ることを特徴とする炭酸マンガンの製造方法。A method for producing manganese carbonate, characterized in that an acidic manganese solution is adjusted to pH 7-8 with aqueous ammonia, and carbon dioxide gas is blown into the liquid to obtain manganese carbonate having sodium or potassium of 100 mass ppm or less . 請求項1において、炭酸ガス吹込み中に、継続して、アンモニア水を添加し、pHを7−8に継続して維持し、ナトリウム或はカリウムが、100mass ppm以下である炭酸マンガンを得ることを特徴とする炭酸マンガンの製造方法。In Claim 1, during the carbon dioxide blowing, ammonia water is continuously added and the pH is continuously maintained at 7-8 to obtain manganese carbonate whose sodium or potassium is not more than 100 mass ppm. The manufacturing method of manganese carbonate characterized by these.
JP2009160300A 2009-07-07 2009-07-07 Manufacturing method of manganese carbonate Expired - Fee Related JP5106488B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009160300A JP5106488B2 (en) 2009-07-07 2009-07-07 Manufacturing method of manganese carbonate
KR20100063328A KR101274365B1 (en) 2009-07-07 2010-07-01 Method for manufacturing manganese carbonate
CN2010102208928A CN101985365A (en) 2009-07-07 2010-07-01 Method for manufacturing manganese carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160300A JP5106488B2 (en) 2009-07-07 2009-07-07 Manufacturing method of manganese carbonate

Publications (2)

Publication Number Publication Date
JP2011016668A JP2011016668A (en) 2011-01-27
JP5106488B2 true JP5106488B2 (en) 2012-12-26

Family

ID=43594769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160300A Expired - Fee Related JP5106488B2 (en) 2009-07-07 2009-07-07 Manufacturing method of manganese carbonate

Country Status (3)

Country Link
JP (1) JP5106488B2 (en)
KR (1) KR101274365B1 (en)
CN (1) CN101985365A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101738956B1 (en) * 2015-10-23 2017-05-23 전남대학교산학협력단 Method for manufacturing electrolyte manganese metal from solution comprising manganese
FR3083701B1 (en) 2018-07-13 2020-08-14 Gifrer Barbezat OLEO-ALKALINE LINIMENT
CN109019694B (en) * 2018-10-25 2020-10-23 中国科学院青海盐湖研究所 Micro-nano structure spherical MnCO3Preparation method of (1)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011867A (en) * 1956-07-09 1961-12-05 Manganese Chemicals Corp Precipitation of manganese carbonate
JPS5626721A (en) * 1979-08-07 1981-03-14 Nippon Steel Corp Manufacture of manganese carbonate
JPH04108614A (en) * 1990-08-30 1992-04-09 Japan Metals & Chem Co Ltd Production of high purity manganese carbonate
JPH0760120A (en) * 1993-08-20 1995-03-07 Nippon Steel Corp Method for regenerating stack gas purifying catalyst
CN1159425A (en) * 1996-03-11 1997-09-17 长沙市环境保护研究所 Clean production technology for manganese carbonate
JP3032975B1 (en) 1998-12-25 2000-04-17 株式会社ジャパンエナジー Manganese carbonate production method
JP2000281347A (en) * 1999-03-29 2000-10-10 Japan Energy Corp Fine particulate manganese carbonate and its production
TWI279019B (en) * 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
KR100688732B1 (en) * 2005-03-30 2007-03-02 에스케이 주식회사 Process of Precipitation for Spheric Manganese Carbonate and the products produced thereby

Also Published As

Publication number Publication date
KR101274365B1 (en) 2013-06-13
CN101985365A (en) 2011-03-16
KR20110004288A (en) 2011-01-13
JP2011016668A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
KR101823952B1 (en) A Method For Preparing Lithium Carbonate By Recycling Lithium From Used Anode Of Lithium Ion Seondary Battery
JP5598778B2 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
CA2868086C (en) Method for producing high-purity nickel sulfate
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
CN115323196A (en) Processing of lithium-containing materials including HCl blasting
US10850989B2 (en) Method for preparing solid lithium salt from lithium solution
KR101713600B1 (en) Method of recovering lithium in wastewater obtained from waste lithium battery recycling process
JP6986997B2 (en) Lithium carbonate manufacturing method and lithium carbonate
WO2010131664A1 (en) High purity lithium carbonate and method for producing same
JP2019508587A5 (en)
AU2018227891A1 (en) Method for producing lithium hydroxide from lithium-containing ore
EP3663420A1 (en) Sodium removal method, metal concentrating method, and metal recovery method
WO2020045596A1 (en) Method for producing lithium carbonate
JP5867710B2 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP6613954B2 (en) Method for producing nickel aqueous solution
CN115087621A (en) Method for producing lithium hydroxide
JP5106488B2 (en) Manufacturing method of manganese carbonate
AU1135600A (en) Separation and concentration method
JP6656709B2 (en) Manufacturing method of zinc ingot
KR101562263B1 (en) Method for preparing sodium nitrate using a waste solution containing nitric acid
KR20130031018A (en) Method for separating individual ca and mg from solutions containing ca and mg, cac2o4 and mgc2o4 produced thereby, and cao and mgo prepared thereby
TW202300460A (en) Method for producing cobalt sulfate
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
JP2012201540A (en) Method for producing manganese carbonate
KR101541616B1 (en) Method for removing magnesium impurities in a manganese compound manufacturing process

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees