JP5105401B2 - Electrode active material and electrochemical device using the same - Google Patents

Electrode active material and electrochemical device using the same Download PDF

Info

Publication number
JP5105401B2
JP5105401B2 JP2006265831A JP2006265831A JP5105401B2 JP 5105401 B2 JP5105401 B2 JP 5105401B2 JP 2006265831 A JP2006265831 A JP 2006265831A JP 2006265831 A JP2006265831 A JP 2006265831A JP 5105401 B2 JP5105401 B2 JP 5105401B2
Authority
JP
Japan
Prior art keywords
electrode
active material
indigo
electrode active
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006265831A
Other languages
Japanese (ja)
Other versions
JP2008084786A (en
Inventor
秀雄 田中
耕一 光藤
俊造 末松
健治 町田
賢次 玉光
秀則 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2006265831A priority Critical patent/JP5105401B2/en
Publication of JP2008084786A publication Critical patent/JP2008084786A/en
Application granted granted Critical
Publication of JP5105401B2 publication Critical patent/JP5105401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、電極活物質及びそれを用いた二次電池やキャパシタなどの電気化学素子に係り、さらに詳しくは、特にpHが中性付近の電解液中でも電荷の貯蔵・放出が可能である電極活物質及びそれを用いた電気化学素子に関するものである。   The present invention relates to an electrode active material and an electrochemical element such as a secondary battery or a capacitor using the electrode active material, and more specifically, an electrode active material capable of storing and releasing charges even in an electrolyte solution having a pH near neutral. The present invention relates to a substance and an electrochemical element using the substance.

近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わり、電気自動車やハイブリッド車への期待が高まっている。これらの電気自動車やハイブリッド車では、モーターを駆動させるための電源としては、高エネルギー密度かつ高出力密度特性を有する電気化学素子が用いられる。このような電気化学素子としては、二次電池、電気二重層キャパシタ、電気化学キャパシタ等がある。   In recent years, due to environmental problems on the earth, there are increasing expectations for electric vehicles and hybrid vehicles in place of engine-driven gasoline vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, an electrochemical element having high energy density and high output density characteristics is used as a power source for driving the motor. Examples of such electrochemical elements include secondary batteries, electric double layer capacitors, and electrochemical capacitors.

このような電気化学素子用の電極としては軽量化が求められており、軽量の電極材料としては、導電性高分子を用いた電極材料が提案されている。このような導電性高分子を用いた電極は、導電性高分子に対する電解質イオンのドープ反応及び脱ドープ反応を原理としている。このような導電性高分子としては、ポリアニリン、ポリチオフェン、ポリピリジン等が研究されている。   Such an electrode for an electrochemical element is required to be lightweight, and an electrode material using a conductive polymer has been proposed as a lightweight electrode material. An electrode using such a conductive polymer is based on the principle of doping reaction and dedoping reaction of electrolyte ions with respect to the conductive polymer. As such a conductive polymer, polyaniline, polythiophene, polypyridine and the like have been studied.

また、特許文献1には、急速充放電が可能で、且つ、サイクル性が優れたプロトン移動型のポリマー電池が開示されている。それらの電極にはπ共役高分子、例えばポリピロール、ポリピリジン、ポリピリミジンそれら誘導体を用いることが開示されている。
特開平11−126610号公報
Patent Document 1 discloses a proton transfer type polymer battery that can be rapidly charged and discharged and has excellent cycle characteristics. It is disclosed that π-conjugated polymers such as polypyrrole, polypyridine, polypyrimidine derivatives thereof are used for these electrodes.
Japanese Patent Laid-Open No. 11-126610

しかしながら、特許文献1に示されているプロトン移動型のポリマー電池は、強酸性電解液で用いられるが、一般に、このような電気化学素子の外装としては、ステンレス等の金属ケースやゴム製のガスケットを用いることが多く、それらは強酸性の電解液と接触することによって腐食が発生するという問題点があった。   However, the proton transfer type polymer battery disclosed in Patent Document 1 is used in a strongly acidic electrolytic solution. Generally, as an exterior of such an electrochemical element, a metal case such as stainless steel or a rubber gasket is used. There is a problem that corrosion occurs when they come into contact with a strongly acidic electrolyte.

また、金属ケースの腐食によって電気化学素子の密閉精度が損なわれ、液漏れに至る場合も想定される。そのため金属ケースやガスケットからの液漏れが発生することを防止するために、金属ケースやガスケット等の外装部材として耐強酸材料を用いる必要があり、電気化学素子の製造コストを引き上げてしまうという問題点があった。   Moreover, the case where corrosion of a metal case impairs the sealing accuracy of an electrochemical element and leads to liquid leakage is also assumed. Therefore, in order to prevent liquid leakage from the metal case or gasket, it is necessary to use a strong acid-resistant material as an exterior member such as a metal case or gasket, which raises the manufacturing cost of the electrochemical element. was there.

本発明は、上述したような従来技術の問題点を解消するために提案されたものであって、その目的は、腐食等の問題が起きない中性電解液を用いることができる電極活物質及びそれを用いた電気化学素子を提供することにある。   The present invention has been proposed to solve the problems of the prior art as described above, and its purpose is to provide an electrode active material that can use a neutral electrolytic solution that does not cause problems such as corrosion and the like. It is to provide an electrochemical device using the same.

本発明者等は、上記の課題を解決するために、電極材料として種々の導電性高分子の検討を行った結果、インジゴ系ポリマーを用いることにより、中性の電解液中でも高いレドックス(酸化還元)活性を示すことを見出したものである。   In order to solve the above problems, the present inventors have studied various conductive polymers as electrode materials. As a result, by using indigo-based polymers, the present inventors have achieved high redox (redox). ) It has been found to show activity.

すなわち、請求項に記載の電極活物質は、下記の化学式(2)で示されるインジゴ系ポリマーからなることを特徴とするものである。
That is , the electrode active material according to claim 1 is made of an indigo polymer represented by the following chemical formula (2).

上記のような構成を有する請求項1に記載の電極活物質は、前述したポリアニリンや、ポリインドール、ポリキノキサリンやそれらの誘導体等の導電性高分子とは異なり、pHが7付近の中性領域の電解液中でも高いレドックス活性を示すため、これらを用いて電気化学素子を作製した場合に、その外装が腐食することを防止できる。 The electrode active material according to claim 1 having the structure as described above, polyaniline and described above, polyindole, unlike conductive polymer such as polyquinoxaline and derivatives thereof, the neutral region of pH is near 7 Therefore, when an electrochemical element is produced using these, the exterior can be prevented from corroding.

請求項に記載の電気化学素子は、請求項1に記載の電極活物質を、正極及び/又は負極に用いたことを特徴とするものである。
上記のような請求項に記載の発明によれば、上記化学式(2)で示されるインジゴ系ポリマーを電極活物質として用いることにより、中性の電解液を用いた場合でも、充放電特性を損なうことが少ない電気化学素子を得ることができる。
The electrochemical device according to claim 3 is characterized in that the electrode active material according to claim 1, used in the positive electrode and / or negative electrode.
According to the invention described in claim 3 as described above, by using the indigo-based polymer represented by the above asked Studies formula (2) as an electrode active material, even when using an electrolytic solution of neutral charge It is possible to obtain an electrochemical element that does not impair the discharge characteristics.

本発明によれば、腐食等の問題が起きない中性電解液を用いることができる電極活物質及びそれを用いた電気化学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode active material which can use the neutral electrolyte solution which does not cause problems, such as corrosion, and an electrochemical element using the same can be provided.

(1)電極活物質
本発明に係る電極活物質は、下記に示す化学式(1)又は化学式(2)で示されるインジゴ系ポリマーからなるものである。なお、このインジゴ系ポリマーの分子量は、103〜106が好ましい。
(1) Electrode active material The electrode active material which concerns on this invention consists of an indigo-type polymer shown by following Chemical formula (1) or Chemical formula (2). The molecular weight of the indigo polymer is preferably 10 3 to 10 6 .

なお、化学式(2)における基(−Y−)は、下記に例示するようなπ結合を有する基のいずれかであることが好ましい。
In addition, the group (—Y—) in the chemical formula (2) is preferably any one of groups having a π bond as exemplified below.

また、電極活物質としては、上記化学式(1)で示されるインジゴ系ポリマーの方が、化学式(2)で示されるインジゴ系ポリマーに比べ、容量密度の点でより好ましい。これは、化学式(1)で示されるインジゴ系ポリマーは、化学式(2)で示されるインジゴ系ポリマーに比べて、インジゴモノマー単位の分子量が最も小さいため、理論容量密度(反応電子数に比例し、モノマー単位の分子量に反比例する)が大きくなるからである。   As the electrode active material, the indigo polymer represented by the chemical formula (1) is more preferable in terms of capacity density than the indigo polymer represented by the chemical formula (2). This is because the indigo polymer represented by the chemical formula (1) has the smallest molecular weight of the indigo monomer unit as compared to the indigo polymer represented by the chemical formula (2), and thus the theoretical capacity density (proportional to the number of reaction electrons, This is because (inversely proportional to the molecular weight of the monomer unit) increases.

(2)インジゴ系ポリマーの製造方法
上記化学式(1)又は化学式(2)で示されるインジゴ系ポリマーは、下記の反応式(3)により、下記の構造式の化合物をアルカリ中で酸化することにより得られる。なお、酸化方法としては、酸素やその他の酸化剤を用いた化学酸化による重合と、電解により酸化重合する方法がある。
(2) Production method of indigo polymer The indigo polymer represented by the chemical formula (1) or chemical formula (2) is obtained by oxidizing a compound having the following structural formula in an alkali according to the following reaction formula (3). can get. As the oxidation method, there are a polymerization by chemical oxidation using oxygen and other oxidizing agents and a method of oxidative polymerization by electrolysis.

(3)電極の作製
本発明のインジゴ系ポリマーは非導電性の物質であり、これらのインジゴ系ポリマーを用いた電極には導電助剤が必要となる。
(3) Production of Electrode The indigo polymer of the present invention is a non-conductive substance, and a conductive additive is required for electrodes using these indigo polymers.

本出願人が先に出願した、インジゴ又はその誘導体を電極活物質として用いた場合に比べて、本発明のインジゴ系ポリマーは高分子量体であるため、充放電中における活物質の脱離が起こりにくい。そのため、本発明のインジゴ系ポリマーを用いた電気化学素子はより高い信頼性を有する。   Since the indigo polymer of the present invention is a high molecular weight polymer compared to the case where indigo or a derivative thereof is used as an electrode active material, which was previously filed by the applicant, desorption of the active material occurs during charging and discharging. Hateful. Therefore, the electrochemical element using the indigo polymer of the present invention has higher reliability.

また、上記化学式(1)のインジゴ系ポリマー、及び上記化学式(2)のインジゴ系ポリマーのうち、Y基のオルト位、パラ位でインジゴモノマーと結合して、π共役系を伸長させるポリマーは、インジゴに比べて電子伝導性に優れる。そのため、導電助剤の量が少なくて済み、結果として高い容量密度を持つ電極が作製できる。   Further, among the indigo polymer of the above chemical formula (1) and the indigo polymer of the above chemical formula (2), the polymer that bonds to the indigo monomer at the ortho-position and para-position of the Y group and extends the π-conjugated system, Excellent electronic conductivity compared to indigo. Therefore, the amount of the conductive auxiliary agent is small, and as a result, an electrode having a high capacity density can be produced.

また、上記化学式(2)のインジゴ系ポリマーのうち、Y基のメタ位でインジゴモノマーと結合して、π共役系を伸長させないポリマーは、インジゴと同程度の電子伝導性を有するが、2つのレドックス対のうち、より正電位側のレドックス電位が高く、より負電位側のレドックス電位が低いまま維持されるので、作動電圧の点で好ましい。   Among the indigo polymers of the above chemical formula (2), a polymer that bonds to an indigo monomer at the meta position of the Y group and does not extend the π-conjugated system has the same electronic conductivity as indigo. Of the redox pairs, the redox potential on the positive potential side is higher and the redox potential on the more negative potential side is maintained low, which is preferable in terms of operating voltage.

用いる導電助剤としては、カーボンブラック、ケッチェンブラック、グラファイト、カーボンナノチューブ、金属粉末、あるいはアセチレンブラック等を使用することができる。なかでも、カーボンナノチューブが軽量であると共に電子伝導性に優れるため好適である。   As the conductive aid used, carbon black, ketjen black, graphite, carbon nanotube, metal powder, acetylene black, or the like can be used. Among these, carbon nanotubes are preferable because they are lightweight and excellent in electron conductivity.

前記インジゴ系ポリマーと導電助剤を混合して、集電体上に混合物層を形成することにより、インジゴ系ポリマーによるレドックス反応による電荷が、導電助剤を通じて集電体に集積されるようになり、電極としての機能を果たすようになる。   By mixing the indigo polymer and the conductive aid to form a mixture layer on the current collector, the charge due to the redox reaction by the indigo polymer is accumulated on the current collector through the conductive aid. , To function as an electrode.

また、集電体への混合物層の形成方法としては、インジゴ系ポリマー及び上記導電助剤を分散させた分散液を集電体に塗布し、乾燥する方法を用いることが好ましく、これにより電気化学素子用の電極を作製することができる。   In addition, as a method for forming the mixture layer on the current collector, it is preferable to use a method in which a dispersion in which the indigo polymer and the conductive auxiliary agent are dispersed is applied to the current collector and then dried. An electrode for an element can be manufactured.

(4)電解液
電解液としては、電極物質からの電荷キャリアとしてプロトンを供給する電解液を用いる。このような電解液としては、プロトンが解離する電解液であれば、非水系、水系のいずれの電解液も用いることができる。具体的には、アニオン種として硫酸アニオン、硝酸アニオン、ハロゲン化物イオン、スルホン酸基を持つアニオンなど、カチオン種として、プロトン(H+)、4級アンモニウムカチオン、アンモニウムカチオン、アルカリ金属カチオンなどの組み合わせの塩を例示できる。中でも解離度の高いイオン(pKaの低いアニオン、pKbの低いカチオン)の組み合わせが好ましい。電解液中の電解質(塩)濃度は0.1mol/L以上であり、好ましくは0.5〜10.0mol/Lの範囲である。なお、電解液としてはpH5〜9の電解液が好ましい。
(4) Electrolytic Solution As the electrolytic solution, an electrolytic solution that supplies protons as charge carriers from the electrode material is used. As such an electrolytic solution, any non-aqueous or aqueous electrolyte solution can be used as long as it is an electrolyte solution from which protons are dissociated. Specifically, a combination of proton (H + ), quaternary ammonium cation, ammonium cation, alkali metal cation, etc. as cation species such as sulfate anion, nitrate anion, halide ion, anion having sulfonate group as anion species The salt of can be illustrated. Among them, a combination of ions having a high degree of dissociation (an anion having a low pKa and a cation having a low pKb) is preferable. The electrolyte (salt) concentration in the electrolytic solution is 0.1 mol / L or more, and preferably in the range of 0.5 to 10.0 mol / L. In addition, as electrolyte solution, electrolyte solution of pH 5-9 is preferable.

(5)電気化学素子の作製
以上のようにして作製した電極と電解液を用いて、二次電池等の電気化学素子を作製することができる。
(5) Production of electrochemical device An electrochemical device such as a secondary battery can be produced using the electrode and the electrolyte produced as described above.

例えば、正極、負極共に本発明のインジゴ系ポリマーからなる電極を用いた、エネルギーの貯蔵・放出の際にプロトンの移動を伴うプロトン駆動型の二次電池や、正極又は負極に本発明のインジゴ系ポリマーからなる電極を用い、対向する電極には他のレドックス活性を有する活物質からなる電極、例えばキノキサリン系ポリマーからなる電極を用いたプロトン二次電池を作製することができる。   For example, both the positive electrode and the negative electrode using an electrode made of the indigo polymer of the present invention, a proton-driven secondary battery that accompanies proton transfer during energy storage / release, and the indigo system of the present invention for a positive electrode or a negative electrode A proton secondary battery using an electrode made of a polymer and an electrode made of an active material having another redox activity, for example, an electrode made of a quinoxaline-based polymer, can be manufactured.

このように、正極、負極共に、あるいはいずれか一方に本発明のインジゴ系ポリマーを用いた電極を用いたプロトン駆動型二次電池では、一定電圧でエネルギーの蓄積・放出が可能となると共に、電極の容量密度が高いためにエネルギー密度が高い、いわゆる優れた電池特性を有するものが得られる。   Thus, in the proton-driven secondary battery using the electrode using the indigo polymer of the present invention for both the positive electrode and the negative electrode, energy can be stored and released at a constant voltage, and the electrode As a result, the battery has a high energy density and so-called excellent battery characteristics.

また、正極又は負極に本発明のインジゴ系ポリマーからなる電極を用い、対向する電極には電気二重層容量を形成する電極、例えば活性炭電極を用いた電気二重層キャパシタや、正極又は負極に本発明のインジゴ系ポリマーからなる電極を用い、対向する電極にはレドックス活性を有し電位範囲が広い活物質からなる電極、例えば酸化ルテニウムからなる電極を用いた電気化学キャパシタを作製することができる。   In addition, an electrode made of the indigo polymer of the present invention is used for a positive electrode or a negative electrode, and an electrode that forms an electric double layer capacity is used as an opposing electrode, for example, an electric double layer capacitor using an activated carbon electrode, or a positive electrode or a negative electrode according to the present invention. An electrochemical capacitor using an electrode made of an indigo polymer and an electrode made of an active material having redox activity and a wide potential range, for example, an electrode made of ruthenium oxide, can be manufactured.

正極又は負極に本発明のインジゴ系ポリマーを用いた電極を用い、対向する電極には電気二重層容量を形成する電極を用いた電気二重層キャパシタは、エネルギー密度はより低くなるものの、充放電において、蓄積されているエネルギーに比例するように端子間電圧が上昇又は降下する特性を有するため、このような特性を生かした電気二重層キャパシタを作製することができる。   An electric double layer capacitor using an electrode that uses the indigo polymer of the present invention for the positive electrode or the negative electrode and an electrode that forms an electric double layer capacity for the opposite electrode is lower in energy density, but in charge and discharge Since the voltage between the terminals increases or decreases in proportion to the stored energy, an electric double layer capacitor that makes use of such characteristics can be manufactured.

一方、正極又は負極に本発明のインジゴ系ポリマーを用いた電極を用い、対向する電極にはレドックス活性を有し電位範囲が広い活物質からなる電極を用いた電気化学キャパシタは、蓄積されているエネルギーに比例するように端子間電圧が上昇又は降下する、いわゆるキャパシタ特性を有するため、このような特性を生かした電気化学キャパシタを作製することができる。   On the other hand, an electrochemical capacitor using an electrode using the indigo-based polymer of the present invention for the positive electrode or the negative electrode and an electrode made of an active material having a redox activity and a wide potential range is accumulated in the opposing electrode. Since it has a so-called capacitor characteristic in which the voltage between terminals rises or falls in proportion to energy, an electrochemical capacitor utilizing such a characteristic can be manufactured.

以上のような電極の間にセルロース系のセパレ−タを介在させ、これら電極及びセパレ−タに電解液を含浸させて、図1に示すような上ケ−スと下ケ−スとの間に配置し、ポリアミドイミドからなるガスケットを上ケ−スと下ケ−スとの間に配置してかしめることによって封止して電気化学素子を作製する。金属ケースとしてはステンレスなどを使用することができる。なお、電気化学素子の構造については、この他にも電極をシート状に形成して、この電極を巻回したり、また電極を交互に積層したりした構造を採用することもできる。   A cellulosic separator is interposed between the electrodes as described above, and the electrode and the separator are impregnated with an electrolytic solution, so that the space between the upper case and the lower case as shown in FIG. Then, a gasket made of polyamideimide is placed between the upper case and the lower case and caulked by sealing to produce an electrochemical device. Stainless steel or the like can be used as the metal case. As for the structure of the electrochemical element, it is also possible to adopt a structure in which an electrode is formed in a sheet shape and this electrode is wound or the electrodes are alternately laminated.

このような電気化学素子は、電解液が中性であるため、強酸性の電解液を使用した場合と比較して、ケースやガスケットに対する損傷を抑制することができる。   Since such an electrochemical element has a neutral electrolyte, it can suppress damage to the case and the gasket as compared with the case where a strongly acidic electrolyte is used.

(6)電気化学素子
上述したように、本発明の電極活物質は種々の電気化学素子の電極材料として用いることができる。以下、各電気化学素子について詳述する。
(6) Electrochemical element As described above, the electrode active material of the present invention can be used as an electrode material for various electrochemical elements. Hereinafter, each electrochemical element will be described in detail.

(二次電池)
本発明のインジゴ系ポリマー活物質は、プロトン駆動型二次電池に用いることができる。その際、電解液としてプロトンを有する水溶液を用いる。なお、電解液としては、プロトンが解離する電解液であれば、非水系、水系のいずれの電解液も用いることができる。そして、正極及び負極に本発明の電極活物質を用いてなる電極を用い、電解液としてパラトルエンスルホン酸テトラメチルアンモニウムやリン酸水素二アンモニウム水溶液などのpHが中性付近の水溶液を用いる。
(Secondary battery)
The indigo polymer active material of the present invention can be used for a proton-driven secondary battery. At that time, an aqueous solution containing protons is used as the electrolytic solution. As the electrolytic solution, any non-aqueous or aqueous electrolytic solution can be used as long as it is an electrolyte that dissociates protons. And the electrode which uses the electrode active material of this invention is used for a positive electrode and a negative electrode, and aqueous solution near pH neutral, such as tetramethylammonium paratoluenesulfonate and hydrogen diammonium hydrogenphosphate aqueous solution, is used as electrolyte solution.

以上の二次電池は、正極と負極で貯蔵できる電荷量が同程度であるため、同規格の電極を正極にも負極にも利用することができる。また、用いる水溶液のpHが中性付近であるため、構成した二次電池の他の構成材料の酸による腐食を抑制でき、信頼性の高い二次電池を得ることができる。   Since the secondary batteries described above have the same amount of charge that can be stored in the positive electrode and the negative electrode, electrodes of the same standard can be used for both the positive electrode and the negative electrode. In addition, since the pH of the aqueous solution used is near neutral, corrosion due to acid of other constituent materials of the secondary battery that has been configured can be suppressed, and a highly reliable secondary battery can be obtained.

一方、酸性溶液を電解液としたプロトン駆動型二次電池の場合は、正極に本発明の電極活物質を用いてなる電極を用い、負極にはキノキサリン系ポリマー等のプロトン電池の負極を用いる。以上の二次電池では、本発明の電極活物質を正極に用いた方が負極に用いるより高い容量密度が得られる。   On the other hand, in the case of a proton-driven secondary battery using an acidic solution as an electrolyte, an electrode using the electrode active material of the present invention is used as the positive electrode, and a negative electrode of a proton battery such as a quinoxaline polymer is used as the negative electrode. In the above secondary battery, a higher capacity density is obtained when the electrode active material of the present invention is used for the positive electrode than when it is used for the negative electrode.

また、酸性水溶液中で本発明の電極活物質を正極に用いた場合、電解液のpHが低いほど正極の電位が高くなるので、高電圧特性を有する。したがって、正極に本発明の電極活物質を用いてなる電極を用いたプロトン二次電池は、容量密度と作動電圧のそれぞれに比例する値であるエネルギー密度の点で好ましい。   In addition, when the electrode active material of the present invention is used for the positive electrode in an acidic aqueous solution, the lower the pH of the electrolytic solution, the higher the potential of the positive electrode, and thus high voltage characteristics. Therefore, a proton secondary battery using an electrode using the electrode active material of the present invention for the positive electrode is preferable in terms of energy density, which is a value proportional to the capacity density and the operating voltage.

また、塩基性溶液を電解液としたプロトン駆動型二次電池を構築する場合は、負極に本発明の電極活物質を用いてなる電極を用い、正極にオキシ水酸化ニッケルなどのニッケル水素電池の正極を用いる。   Moreover, when constructing a proton-driven secondary battery using a basic solution as an electrolyte, an electrode using the electrode active material of the present invention is used for the negative electrode, and a nickel hydride battery such as nickel oxyhydroxide is used for the positive electrode. A positive electrode is used.

以上の二次電池では、本発明の電極活物質を負極に用いた方が正極に用いるより高い容量密度が得られる。また、塩基性水溶液中で本発明の電極活物質を負極に用いた場合、電解液のpHが高いほど負極の電位が低くなるので、高電圧特性を有する。したがって、負極に本発明の電極活物質を用いてなる電極を用いた上記二次電池は、容量密度と作動電圧のそれぞれに比例する値であるエネルギー密度の点で好ましい。   In the above secondary battery, a higher capacity density is obtained when the electrode active material of the present invention is used for the negative electrode than when it is used for the positive electrode. In addition, when the electrode active material of the present invention is used for a negative electrode in a basic aqueous solution, the higher the pH of the electrolyte solution, the lower the potential of the negative electrode, and thus high voltage characteristics. Therefore, the secondary battery using the electrode using the electrode active material of the present invention for the negative electrode is preferable in terms of energy density, which is a value proportional to the capacity density and the operating voltage.

(電気二重層キャパシタ)
電気二重層キャパシタは、次のようにして作製することができる。なお、電解液としては、プロトンが解離する電解液であれば、非水系、水系のいずれの電解液も用いることができる。そして、正極として本発明の電極活物質を用いてなる電極を用い、負極として活性炭などの電気二重層容量を有する電極を用いる。あるいは、正極として電気二重層容量を有する電極を用い、負極として本発明の電極活物質を用いてなる電極を用いることもできる。
(Electric double layer capacitor)
The electric double layer capacitor can be manufactured as follows. As the electrolytic solution, any non-aqueous or aqueous electrolytic solution can be used as long as it is an electrolyte that dissociates protons. An electrode using the electrode active material of the present invention is used as the positive electrode, and an electrode having an electric double layer capacity such as activated carbon is used as the negative electrode. Alternatively, an electrode having an electric double layer capacity can be used as the positive electrode, and an electrode using the electrode active material of the present invention can be used as the negative electrode.

このようにして作製した電気二重層キャパシタは、負極の電位が充放電に伴い変動するので、充放電において、蓄積されているエネルギーに比例するように端子間電圧が上昇又は降下する特性を有するため、このような特性を生かした素子として利用できる。   Since the electric double layer capacitor thus fabricated has a characteristic in which the voltage between the terminals increases or decreases in proportion to the stored energy during charging / discharging because the potential of the negative electrode fluctuates with charging / discharging. Thus, it can be used as an element utilizing such characteristics.

正極として本発明の電極活物質を用いてなる電極を用いた場合、電解液が酸性である方が正極の容量密度が高くなるため好ましい。また、酸性水溶液中で本発明の電極活物質を正極に用いた場合、電解液のpHが低いほど正極の電位が高くなるので、高電圧特性を有する。したがって、正極に本発明の電極活物質を用いてなる電極を用いたプロトン二次電池は、容量密度と作動電圧のそれぞれに比例する値であるエネルギー密度の点で好ましい。   When the electrode using the electrode active material of the present invention is used as the positive electrode, it is preferable that the electrolyte is acidic because the capacity density of the positive electrode is increased. In addition, when the electrode active material of the present invention is used for the positive electrode in an acidic aqueous solution, the lower the pH of the electrolytic solution, the higher the potential of the positive electrode, and thus high voltage characteristics. Therefore, a proton secondary battery using an electrode using the electrode active material of the present invention for the positive electrode is preferable in terms of energy density, which is a value proportional to the capacity density and the operating voltage.

負極として本発明の電極活物質を用いてなる電極を用いた場合、電解液が塩基性である方が負極の容量密度が高くなるため好ましい。また、塩基性水溶液中で本発明の電極活物質を負極に用いた場合、電解液のpHが高いほど負極の電位が低くなるので、高電圧特性を有する。したがって、負極に本発明の電極活物質を用いてなる電極を用いた上記電気二重層キャパシタは、容量密度と作動電圧のそれぞれに比例する値であるエネルギー密度の点で好ましい。   When an electrode using the electrode active material of the present invention is used as the negative electrode, it is preferable that the electrolyte is basic because the negative electrode has a higher capacity density. In addition, when the electrode active material of the present invention is used for a negative electrode in a basic aqueous solution, the higher the pH of the electrolyte solution, the lower the potential of the negative electrode, and thus high voltage characteristics. Therefore, the electric double layer capacitor using an electrode using the electrode active material of the present invention for the negative electrode is preferable in terms of energy density, which is a value proportional to the capacitance density and the operating voltage.

(電気化学キャパシタ)
本発明のインジゴ系ポリマー活物質からなる電極と、その他のπ共役系導電性高分子からなる電極を組み合わせることにより、エネルギーの貯蔵・放出の際にプロトンの移動を伴うプロトン駆動型キャパシタを構築できる。なお、電解液としては、プロトンが解離する電解液であれば、非水系、水系のいずれの電解液も用いることができる。
(Electrochemical capacitor)
By combining an electrode made of the indigo polymer active material of the present invention and an electrode made of another π-conjugated conductive polymer, a proton-driven capacitor that accompanies proton transfer during energy storage / release can be constructed. . As the electrolytic solution, any non-aqueous or aqueous electrolytic solution can be used as long as it is an electrolyte that dissociates protons.

そして、正極にポリピロール、ポリチオフェン、ポリアニリン、ポリインドール等のレドックス活性を有し電位範囲が広い導電性高分子や、酸化ルテニウム等のレドックス活性を有し電位範囲が広い金属酸化物からなる電極を用い、負極には本発明のインジゴ系ポリマー活物質からなる電極を用いる。   In addition, an electrode made of a conductive polymer having redox activity such as polypyrrole, polythiophene, polyaniline, polyindole and the like and having a wide potential range or a metal oxide having a redox activity such as ruthenium oxide and a wide potential range is used as the positive electrode. For the negative electrode, an electrode made of the indigo polymer active material of the present invention is used.

以上の電気化学キャパシタは、正極の電位が充放電に伴い変動するので、充放電において、蓄積されているエネルギーに比例するように端子間電圧が上昇又は降下する特性を有するため、このような特性を生かした電気化学キャパシタとして利用できる。   In the above electrochemical capacitor, since the potential of the positive electrode fluctuates with charging / discharging, the voltage between terminals increases or decreases in proportion to the stored energy in charging / discharging. It can be used as an electrochemical capacitor that takes advantage of

上記電気化学キャパシタでは、負極として本発明の電極活物質を用いてなる電極が酸性よりも中性、中性よりも塩基性の溶液中で駆動させた場合に、容量密度がより高くなる。そのため、正極としては、中性あるいは塩基性溶液中でより高い容量密度が得られるポリピロール、ポリチオフェンからなる電極を用いることが容量密度の点で好ましい。   In the above-described electrochemical capacitor, when the electrode using the electrode active material of the present invention as the negative electrode is driven in a neutral solution rather than an acidic solution and a basic solution rather than a neutral solution, the capacity density becomes higher. Therefore, as the positive electrode, it is preferable from the viewpoint of capacity density to use an electrode made of polypyrrole or polythiophene that can obtain higher capacity density in a neutral or basic solution.

(7)作用・効果
上述したように、本発明によれば、電極活物質としてインジゴ系ポリマーを用いた電極と、電極活物質からの電荷キャリアとしてプロトンを供給する電解液を組み合わせて用いることにより、中性を示す電解液中でも、レドックス活性を示すため、中性の電解液を用いて電気化学キャパシタなどの電気化学素子を作製することができる。このため、電気化学素子の他の構成材料の酸による腐食を抑制でき、信頼性の高い電気化学素子を得ることができる。
(7) Action / Effect As described above, according to the present invention, an electrode using an indigo-based polymer as an electrode active material and an electrolyte solution supplying protons as charge carriers from the electrode active material are used in combination. In addition, since it exhibits redox activity even in a neutral electrolyte solution, an electrochemical element such as an electrochemical capacitor can be produced using the neutral electrolyte solution. For this reason, the corrosion by the acid of the other structural material of an electrochemical element can be suppressed, and a highly reliable electrochemical element can be obtained.

(CV曲線)
導電助剤としてカーボンナノチューブを2.5wt%分散させた水溶液中に、上記化学式(1)で示されるインジゴ系ポリマーを2.5wt%分散させ、ステンレス集電体上のCNT(カーボンナノチューブ)の上に塗布した。そして、ステンレス集電体への塗布後、常圧、105℃で30分乾燥した後、60℃で真空乾燥を30分行い、電極を得た。
(CV curve)
A 2.5 wt% indigo polymer represented by the above chemical formula (1) is dispersed in an aqueous solution in which 2.5 wt% carbon nanotubes are dispersed as a conductive additive, and the CNT (carbon nanotube) on the stainless steel current collector is dispersed. It was applied to. And after apply | coating to a stainless steel electrical power collector, after drying at normal pressure and 105 degreeC for 30 minutes, vacuum drying was performed at 60 degreeC for 30 minutes, and the electrode was obtained.

上記のようにして作製した電極のCV曲線は、図2に示すようになった。図から明らかなように、−0.6V〜−0.4Vと0.2V〜0.4Vvs.Ag/AgClに酸化還元反応に対応する電流が見られ、本発明の電極活物質である化学式(1)で示されるインジゴ系ポリマーは正極、負極の双方に用いることができることが分かった。なお、上記化学式(2)で示されるインジゴ系ポリマーについても、ほぼ同様のCV曲線が得られた。   The CV curve of the electrode produced as described above was as shown in FIG. As is apparent from the figure, -0.6V to -0.4V and 0.2V to 0.4Vvs. An electric current corresponding to the oxidation-reduction reaction was observed in Ag / AgCl, and it was found that the indigo polymer represented by the chemical formula (1) as the electrode active material of the present invention can be used for both the positive electrode and the negative electrode. A substantially similar CV curve was obtained for the indigo polymer represented by the chemical formula (2).

(作動電圧)
次に、本発明の電極活物質である化学式(2)で示されるインジゴ系ポリマーを電極に用いた電気化学素子の作動電圧を調べたところ、表1に示すような結果が得られた。
(Operating voltage)
Next, when the operating voltage of the electrochemical device using the indigo polymer represented by the chemical formula (2) which is the electrode active material of the present invention as an electrode was examined, the results shown in Table 1 were obtained.

本実施例のプロトン駆動型二次電池は、以下のようにして作製した。
導電助剤としてカーボンナノチューブを2.5wt%分散させた水溶液中に、化学式(2)で示されるインジゴ系ポリマー(Y基:≡)を2.5wt%分散させ、ステンレス集電体上のCNT(カーボンナノチューブ)の上に塗布した。そして、ステンレス集電体への塗布後、常圧、105℃で30分乾燥した後、60℃で真空乾燥を30分行い、電極を得た。
The proton-driven secondary battery of this example was manufactured as follows.
An indigo polymer (Y group: ≡) represented by the chemical formula (2) is dispersed in an aqueous solution in which 2.5 wt% of carbon nanotubes are dispersed as a conductive auxiliary agent, and CNT ( The carbon nanotube was coated on the carbon nanotube. And after apply | coating to a stainless steel electrical power collector, after drying at normal pressure and 105 degreeC for 30 minutes, vacuum drying was performed at 60 degreeC for 30 minutes, and the electrode was obtained.

そして、表1に示すように、上記の電極を正極及び/又は負極とし、セルロース系のセパレータを介してセルを作製し、さらに、表1に示した各電解液を用いて、プロトン駆動型二次電池を作製した。なお、表1において、中性水溶液としては、1Mリン酸水素二アンモニウム水溶液を用い、酸性水溶液としては、4M硫酸水溶液を用いた。   Then, as shown in Table 1, the above electrode is used as a positive electrode and / or a negative electrode, a cell is produced through a cellulose separator, and each of the electrolyte solutions shown in Table 1 is used. A secondary battery was produced. In Table 1, a 1M diammonium hydrogen phosphate aqueous solution was used as the neutral aqueous solution, and a 4M sulfuric acid aqueous solution was used as the acidic aqueous solution.

(比較結果)
実施例1〜5及び比較例の各電気化学素子について作動電圧を調べたところ、表1に示すような結果が得られた。
(Comparison result)
When the operating voltage was investigated about each electrochemical element of Examples 1-5 and a comparative example, the result as shown in Table 1 was obtained.

表1から明らかなように、本発明の電極活物質である化学式(2)で示されるインジゴ系ポリマー(Y基:≡)は、正極及び/又は負極として用いて電気化学素子を形成することができることが分かった。   As is apparent from Table 1, the indigo polymer (Y group: ≡) represented by the chemical formula (2) which is the electrode active material of the present invention can be used as a positive electrode and / or a negative electrode to form an electrochemical device. I understood that I could do it.

なお、実施例4及び実施例5に示すように、ポリアニリン、ポリインドールは酸性水溶液中でしか作動しないので、これらを正極とし、上記のインジゴ系ポリマーを負極とした実施例4及び実施例5では、電解液として酸性水溶液を用いたが、酸性でも作動することが分かった。   In addition, as shown in Example 4 and Example 5, since polyaniline and polyindole operate only in an acidic aqueous solution, in Example 4 and Example 5 using these as the positive electrode and the above indigo polymer as the negative electrode, Although an acidic aqueous solution was used as the electrolytic solution, it was found that it operates even when acidic.

電気化学素子の構造を示す断面図。Sectional drawing which shows the structure of an electrochemical element. 本発明の電極活物質を用いて作製した電極のCV曲線。The CV curve of the electrode produced using the electrode active material of this invention.

符号の説明Explanation of symbols

1…電気化学素子
2…金属ケース
2a…上ケース
2b…下ケース
3…電極
4…セパレータ
6…ガスケット
DESCRIPTION OF SYMBOLS 1 ... Electrochemical element 2 ... Metal case 2a ... Upper case 2b ... Lower case 3 ... Electrode 4 ... Separator 6 ... Gasket

Claims (6)

下記の化学式(2)で示されるインジゴ系ポリマーからなることを特徴とする電極活物質。
An electrode active material comprising an indigo polymer represented by the following chemical formula (2).
前記π結合を有する基(−Y−)が、下記に示した基のいずれかであることを特徴とする請求項に記載の電極活物質。
2. The electrode active material according to claim 1 , wherein the group having a π bond (—Y—) is any of the groups shown below.
請求項1に記載の電極活物質を、正極及び/又は負極に用いたことを特徴とする電気化学素子。 An electrochemical element, wherein the electrode active material according to claim 1 is used for a positive electrode and / or a negative electrode. 前記電気化学素子が、二次電池であることを特徴とする請求項に記載の電気化学素子。 The electrochemical device according to claim 3 , wherein the electrochemical device is a secondary battery. 前記電気化学素子が、電気二重層キャパシタであることを特徴とする請求項に記載の電気化学素子。 The electrochemical device according to claim 3 , wherein the electrochemical device is an electric double layer capacitor. 前記電気化学素子が、電気化学キャパシタであることを特徴とする請求項に記載の電気化学素子。 The electrochemical device according to claim 3 , wherein the electrochemical device is an electrochemical capacitor.
JP2006265831A 2006-09-28 2006-09-28 Electrode active material and electrochemical device using the same Expired - Fee Related JP5105401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265831A JP5105401B2 (en) 2006-09-28 2006-09-28 Electrode active material and electrochemical device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265831A JP5105401B2 (en) 2006-09-28 2006-09-28 Electrode active material and electrochemical device using the same

Publications (2)

Publication Number Publication Date
JP2008084786A JP2008084786A (en) 2008-04-10
JP5105401B2 true JP5105401B2 (en) 2012-12-26

Family

ID=39355410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265831A Expired - Fee Related JP5105401B2 (en) 2006-09-28 2006-09-28 Electrode active material and electrochemical device using the same

Country Status (1)

Country Link
JP (1) JP5105401B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5431452B2 (en) * 2008-04-07 2014-03-05 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions
JP2011103260A (en) * 2009-11-12 2011-05-26 National Institute Of Advanced Industrial Science & Technology Positive electrode active material for nonaqueous secondary battery
EP3583644A4 (en) 2017-02-15 2020-11-11 Hydro-Québec Electrode materials and processes for their preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123672A (en) * 1980-03-05 1981-09-28 Nippon Telegr & Teleph Corp <Ntt> Battery
JP2895546B2 (en) * 1990-01-29 1999-05-24 昭和電工株式会社 Water-insoluble self-doping conductive polymer and method for producing the same
JP3739167B2 (en) * 1997-04-30 2006-01-25 三井化学株式会社 Electroluminescence element
JP2007103530A (en) * 2005-09-30 2007-04-19 Nippon Chemicon Corp Electrochemistry capacitor

Also Published As

Publication number Publication date
JP2008084786A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4004769B2 (en) Electrolytic solution and electrochemical cell using the same
US7035084B2 (en) Secondary battery and capacitor using indole polymeric compound
JP4597727B2 (en) Electric double layer capacitor
EP3439086B1 (en) Aqueous secondary cell
JP3708426B2 (en) Proton conducting polymer secondary battery
JP2008544543A (en) Heterogeneous electrochemical supercapacitor and method for producing the same
JP4600136B2 (en) Aqueous electrolyte lithium secondary battery
JP2008288028A (en) Electrode for electrochemical cell and electrochemical cell
JP5586366B2 (en) Electric double layer capacitor
JP5105401B2 (en) Electrode active material and electrochemical device using the same
US20190006122A1 (en) Electrochemical energy storage devices
JP2008269824A (en) Electrochemical cell
US11393640B2 (en) Water based hybrid lithium ion capacitor battery having a water-in-salt electrolyte
JP2017199639A (en) Electrode structure for power storage device, power storage device, and method for manufacturing electrode structure
JP2000124081A (en) Electric double-layer capacitor
JP2007103530A (en) Electrochemistry capacitor
JP5050346B2 (en) Water-based lithium secondary battery
JP2014053298A (en) Cathode for power storage device and method of manufacturing the same, cathode active material for power storage device and method of manufacturing the same, and power storage device
JP4942116B2 (en) Electric double layer capacitor
JP2009065062A (en) Electrolyte for electric double-layer capacitor
KR102555960B1 (en) Electrolytic solution additive for electrochemical device and electrolytic solution containing the same
EP3627604B1 (en) Ion exchange separation membrane and flow battery comprising same
JP2008251831A (en) Aqueous hybrid capacitor
US20240145675A1 (en) Multi-electrode
KR101025983B1 (en) Energy storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

R150 Certificate of patent or registration of utility model

Ref document number: 5105401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees