JP5102410B2 - 移動体検出装置および移動体検出方法 - Google Patents

移動体検出装置および移動体検出方法 Download PDF

Info

Publication number
JP5102410B2
JP5102410B2 JP2012530450A JP2012530450A JP5102410B2 JP 5102410 B2 JP5102410 B2 JP 5102410B2 JP 2012530450 A JP2012530450 A JP 2012530450A JP 2012530450 A JP2012530450 A JP 2012530450A JP 5102410 B2 JP5102410 B2 JP 5102410B2
Authority
JP
Japan
Prior art keywords
subclass
movement
image
subclasses
movement trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012530450A
Other languages
English (en)
Other versions
JPWO2012127815A1 (ja
Inventor
正宏 岩崎
一生 登
亜矢子 甲本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012530450A priority Critical patent/JP5102410B2/ja
Application granted granted Critical
Publication of JP5102410B2 publication Critical patent/JP5102410B2/ja
Publication of JPWO2012127815A1 publication Critical patent/JPWO2012127815A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像中の移動体の領域を特定することによって移動体を検出する画像処理技術に関し、特に、遮蔽の起きやすい環境下において、動画像中の動き情報に基づいて移動体を検出、抽出する移動体検出装置等に関する。
従来、移動体の像(以下、単に「移動体」という。)が含まれる画像から、画像中の移動体の領域を抽出することによって移動体を検出する領域抽出技術の研究開発が広く行われてきている。移動体の領域を抽出する技術は、デジタルビデオカメラもしくはデジタルスチルカメラにおける焦点制御、画質改善処理、自動車の安全運転支援システム、または、ロボットにおける移動体との衝突回避制御もしくは衝突回避のための警報などに、共通して利用される基礎技術である。
画像中の移動体を検出する技術のうち一般的な手法として、例えば非特許文献1のように、あらかじめ移動体に関する形状情報を学習しておき、画像中をスキャンしながら、学習した形状情報と画像中の領域とのマッチングを行い、マッチング度が高い領域を検出対象物体として抽出する手法がある。
また、非特許文献2から5では、遮蔽の起こりやすい混雑シーンにおいて、移動体を追跡する方法が開示されている。これらの方法は、非特許文献1とは異なり、形状情報は用いずに、動画像から移動軌跡を抽出し、移動軌跡の類似性に基づいて各移動軌跡をクラスタリングすることで、異なる動きをする移動体をそれぞれクラスとして抽出、追跡することができる。特に、形状情報を用いた移動体抽出方法では抽出が難しい遮蔽物体の追跡に対して効果がある。
B.Leibe, K.Schindler, N.Cornellis and L.Van Gool, "Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles", IEEE Trans. Pattern Recognition and Machine Intelligence Vol.30, No.10, 1683−1698, 2008 G. J. Brostow and R. Cipolla, "Unsupervised Bayesian Detection of Independent Motion in Crowds", In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2006 L. Kratz and K. Nishino, "Tracking with Local Spatio−temporal Motion Patterns in Extremely Crowded Scenes", In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2010 V. Rabaud and S. Belongie, "Counting Crowded Moving Objects", In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2006 D. Sugimura, K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto, "Using Individuality to Track Individuals: Clustering Individual Trajectories in Crowds using Local Appearance and Frequency Trait", In Proc. of International Conference on Computer Vision, 2009
しかしながら、上述した特許文献1に記載の手法によると、特に混雑環境下等の遮蔽が起こりやすいシーンにおいては、移動体の形状情報の一部しか見えない場合が起こり、前記マッチング度が低くなることが原因で検出対象物体を検出できないといった問題がある。
また、上述した非特許文献2から5に代表される混雑下での移動体追跡の技術は、領域抽出ではなく移動体の追跡に主眼が置かれているため、長期間移動体の一部が遮蔽されないシーンを前提としている。すなわち、各移動体の一部が遮蔽されずに追跡可能である場合において利用可能な手法である。そのため、高い位置に設置されたカメラから俯瞰的に撮影したシーン等に限定されるといった問題がある。
そこで本発明は、カメラの撮影位置限定の課題と誤検出の課題とを解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出可能な移動体検出装置および移動体検出方法を提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る移動体検出装置は、動画像中の移動体の全部または一部の領域を特定する領域分割を実行することによって動画像中の移動体を検出する移動体検出装置であって、動画像を構成する少なくとも3枚のピクチャからなる複数枚のピクチャを受け付ける画像入力部と、前記複数枚のピクチャから、少なくとも2枚のピクチャから構成される画像サブセットを複数抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出する移動軌跡算出部と、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡をサブクラスに分類するサブクラス分類部と、任意の2つのサブクラスの間で、同一の移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合に基づいて、サブクラス間の類似度を計算するサブクラス間類似度計算部と、前記サブクラス間類似度計算部が計算したサブクラス間の類似度がより高いサブクラスの集まりほど、より同一のクラスに分類されるように、サブクラスをクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する移動体検出部とを備える。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、またはコンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、およびコンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本発明により、カメラの撮影位置限定の課題と誤検出の課題とを解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出することができる。
図1Aは、本発明が解決する課題の一例を示す図である。 図1Bは、本発明が解決する課題の一例を示す図である。 図2は、本発明の実施の形態1における移動体検出装置の基本構成を示す図である。 図3は、本発明の実施の形態1における移動体検出装置をソフトウェアで実現する場合における、ソフトウェアを実行するハードウェアの構成図である。 図4は、本発明の実施の形態1における移動体検出装置の基本動作を示すフローチャートである。 図5Aは、本発明の実施の形態1における画像サブセットへの分割方法の処理例を示す図である。 図5Bは、本発明の実施の形態1における移動軌跡算出部の処理例を示す図である。 図6は、本発明の実施の形態1におけるサブクラスラベル付与部の処理例を示す図である。 図7Aは、本発明の実施の形態1における移動軌跡の共有割合の算出例を示す図である。 図7Bは、本発明の実施の形態1における移動軌跡の共有割合の算出例を示す図である。 図8Aは、本発明の実施の形態1におけるラベル伝播部および移動体検出部の処理例を示す図である。 図8Bは、本発明の実施の形態1におけるラベル伝播部および移動体検出部の処理例を示す図である。 図8Cは、本発明の実施の形態1におけるラベル伝播部および移動体検出部の処理例を示す図である。 図9は、人物歩行における歩調についての説明図である。 図10は、本発明の実施の形態2における移動体検出装置の基本構成を示す図である。 図11は、本発明の実施の形態2における移動体検出装置の基本動作を示すフローチャートである。 図12は、本発明の実施の形態2におけるサブクラスラベル付与部の処理例を示す図である。 図13は、本発明の実施の形態3における移動体検出装置の構成を示す図である。 図14は、本発明の実施の形態3における移動体検出装置の基本動作を示すフローチャートである。 図15は、本発明の実施の形態3における測地距離の効果の一例を示す図である。 図16は、本発明の実施の形態3におけるサブクラスラベル付与部の処理例を示す図である。 図17は、本発明の実施の形態3におけるサブクラスラベル付与部の処理例を示す図である。 図18は、本発明の実施の形態4における移動体検出装置の基本構成を示す図である。 図19は、本発明の実施の形態4における移動体検出装置の基本動作を示すフローチャートである。 図20は、本発明の実施の形態4における移動軌跡リカバリ部の処理例を示す図である。 図21は、本発明の実施の形態1から4の第1変形例における移動体検出装置の基本構成を示す図である。 図22は、本発明の実施の形態1から4の第1変形例における記録・送信データの一例を示す図である。 図23は、本発明の実施の形態1から4の第2変形例における移動体検出装置の構成例を示す図である。 図24は、本発明の実施の形態1から4の第2変形例における移動体検出装置の基本動作を示すフローチャートである。 図25は、本発明の実施の形態1から4の第2変形例における動き予測の一例を示す図である。
(本発明の基礎となった知見)
本発明者は、「背景技術」の欄において記載した、先行技術文献に関し、以下の問題が生じることを見出した。
車載カメラや可搬型のカメラの多くは、比較的低い場所からの撮影に用いられることが多い。特に、低い位置から混雑したシーンを撮影する場合においては、高い位置から俯瞰的に撮影したシーンと比べて、手前に存在する移動体によって奥の移動体が遮蔽されやすい。そのため、図1Aおよび図1Bに示すように、ガードレールまたは他の物体等による遮蔽が起きやすい環境下においては、長時間移動体を追跡することが難しいという問題が生じることを見出した。この問題に対して、短時間の動き情報をもとに前記移動体追跡の技術を適用すると、図1Aおよび図1Bに示すような例において誤検出が発生することが課題となることを見出した。例えば、一時的にガードレールまたは人等によって移動体の一部が遮蔽された場合においては、検出結果a−1、a−2および検出結果b−1、b−2のように移動体の頭部と脚部が別々の移動体として抽出され、本来一つの移動体が二つの移動体として検出される誤検出が問題となることを見出した。例えば、図1Aでは、長い時間にわたって移動軌跡を求めると、遮蔽が起こった時刻以降の時刻では移動軌跡が途切れてしまう。このため、人物の腰部、脚部、頭部などで遮蔽が順次起こると、結果として移動軌跡が求められないという問題が生じることを見出した。つまり、長い時間にわたって移動軌跡を求めると密な移動軌跡を求めることができないという問題が生じることを見出した。
このような問題を解決するために、本発明の一態様に係る移動体検出装置は、動画像中の移動体の全部または一部の領域を特定する領域分割を実行することによって動画像中の移動体を検出する移動体検出装置であって、動画像を構成する少なくとも3枚のピクチャからなる複数枚のピクチャを受け付ける画像入力部と、前記複数枚のピクチャから、少なくとも2枚のピクチャから構成される画像サブセットを複数抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出する移動軌跡算出部と、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡をサブクラスに分類するサブクラス分類部と、任意の2つのサブクラスの間で、同一の移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合に基づいて、サブクラス間の類似度を計算するサブクラス間類似度計算部と、前記サブクラス間類似度計算部が計算したサブクラス間の類似度がより高いサブクラスの集まりほど、より同一のクラスに分類されるように、サブクラスをクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する移動体検出部とを備える。
この構成によると、画像サブセットごとに移動軌跡を算出している。このように短い時間間隔で移動軌跡を算出することで、画像サブセット内では密な移動軌跡を算出することができる。このような密な移動軌跡をサブクラスに分類し、共有割合に基づいてサブクラス間の類似度を計算することにより、遮蔽が起こったとしても適切に移動体を検出することができる。例えば、第1の画像サブセットにおいて第1のサブクラスに分類されていた移動軌跡が遮蔽の影響により次の時刻の第2の画像サブセットにおいて第2のサブクラスおよび第3のサブクラスに分離した場合であっても、第1のサブクラスと第2のサブクラスとの間の共有割合および第1のサブクラスと第3のサブクラスとの間の共有割合はともに高くなる。このため、共有割合に基づいて計算されたサブクラス間の類似度を用いてサブクラスのクラス分類を行うと、第1〜第3のサブクラスには同一のクラスに分類され、同一の移動体として検出される。よって、カメラの撮影位置限定の課題と誤検出の課題とを解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出することができる。
例えば、前記サブクラス分類部は、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与するサブクラスラベル付与部を含み、前記サブクラス間類似度計算部は、すべてのサブクラスの中から任意に選択される第1及び第2のサブクラスの間で、同一のブロックの動きを示す移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合がより高いほど前記第1及び第2のサブクラスに同一のサブクラスラベルをより再付与することで、サブクラスラベルをサブクラス間で伝播するラベル伝播部を含み、前記移動体検出部は、同一のサブクラスラベルが付与されたサブクラスの集まりを同一のクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出しても良い。
この構成によると、画像サブセットごとに移動軌跡を算出している。このように短い時間間隔で移動軌跡を算出することで、画像サブセット内では密な移動軌跡を算出することができる。このような密な移動軌跡をサブクラスに分類し、共有割合に基づいてサブクラスラベルをサブクラスラベル間で伝播することにより、遮蔽が起こったとしても適切に移動体を検出することができる。例えば、第1の画像サブセットにおいて第1のサブクラスに分類されていた移動軌跡が遮蔽の影響により次の時刻の第2の画像サブセットにおいて第2のサブクラスおよび第3のサブクラスに分離した場合であっても、第1のサブクラスと第2のサブクラスとの間の共有割合および第1のサブクラスと第3のサブクラスとの間の共有割合はともに高くなる。サブクラスラベルの伝播処理を行なうことにより、第1〜第3のサブクラスには同一のサブクラスラベルが再付与され、同一の移動体として検出される。よって、カメラの撮影位置限定の課題と誤検出の課題とを解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出することができる。
つまり、従来の移動軌跡のクラスタリング法と比較して、時間的に短い移動軌跡をサブクラスに分類し、サブクラス間の時間的な関連の強さを移動軌跡の共有割合として用い、得られたサブクラスラベルを伝播することにより、時間的に関連の強いサブクラスラベルを同一のクラスラベルに更新することによって、時間的にコヒーレンシーを保った領域抽出が可能となる。そのため、一時的に2つに分離された1つの移動体を、1つの移動体として同一のラベルを付与することが可能となり、移動体検出において誤検出を削減できるという効果がある。さらには、時間的に短い移動軌跡を用いるために、遮蔽が頻繁に起こるシーンにおいて、対応点が消滅し移動軌跡が算出できなくなる危険性を減らすことができる。それにより、より高密度に移動体を抽出することが可能になり、検出精度を向上できる。さらに、移動体を検出するだけでなく、移動体を画像中から抽出ことも可能である。
また、前記移動軌跡算出部は、時間的に隣接する画像サブセット間で一部のピクチャが重なるように、前記複数枚のピクチャから、複数の画像サブセットを抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出し、前記ラベル伝播部は、前記第1及び第2のサブクラス間で共有するピクチャにおいて同一の位置を通る移動軌跡の前記第1及び第2のサブクラスに含まれる移動軌跡に対する割合がより大きいほど、前記第1及び第2のサブクラスの間の移動軌跡の共有割合がより高いと判断し、前記移動軌跡の共有割合がより高いほど前記第1及び第2のサブクラスに同一のサブクラスラベルをより再付与することで、サブクラスラベルをサブクラス間で伝播するとしても良い。
時間的に隣接する画像サブセット間でピクチャが重なるように画像サブセットを抜き出している。このため、時間的に隣接する画像サブセット間の重なり合い(オーバーラップ)を有するピクチャにおいては、移動軌跡が同じになる。よって、第1及び第2のサブクラス間での共有割合を簡単に算出することができる。
また、前記ラベル伝播部は、さらに、サブクラスに含まれる移動軌跡の数または当該サブクラスに含まれる移動軌跡が構成する空間的な大きさに対応する値であるサブクラスの信頼度がより大きいサブクラスほど前記サブクラスラベル付与部が付与したサブクラスラベルと同一のサブクラスラベルをより再付与することで、サブクラスラベルをサブクラス間で伝播するとしても良い。
サブクラスの信頼度を用いることにより、より高精度に時間的にコヒーレンシーを有する領域分割を行うことができる。このため、移動体を正しく領域抽出し、これによって画像中の移動体を確実に検出することが可能である。
また、上述の移動体検出装置は、さらに、前記移動軌跡算出部で算出された移動軌跡のうち、画像サブセットを構成するピクチャの枚数よりも少ないピクチャの枚数でしか算出することができなかった移動軌跡を保持する保持部と、前記保持部に保持されている移動軌跡を、当該移動軌跡に連続する他の移動軌跡が属するクラスと同一のクラスに分類する移動軌跡リカバリ部とを備え、前記移動体検出部は、さらに、前記移動軌跡リカバリ部により分類された移動軌跡を含めて同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出するとしても良い。
サブクラスの生成時に用いなかった移動軌跡を、その移動軌跡に連続する他の移動軌跡が属するクラスに分類することにより、より高密度に移動体を抽出することが可能になる。
また、前記サブクラスラベル付与部は、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡のうち類似する移動軌跡を同一のサブクラスに分類することにより、前記複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与するとしても良い。具体的には、前記サブクラスラベル付与部は、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡のうち最も類似する移動軌跡の組み合わせを同一のサブクラスに分類する処理を、規定回数または前記複数の移動軌跡が規定のサブクラス数に分類されるまで繰り返し実行することによって、前記複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与するとしても良い。
これにより、類似する移動軌跡を同一のサブクラスに分類することが可能になる。
また、前記サブクラスラベル付与部は、(a)前記移動軌跡算出部で算出された複数の移動軌跡について、移動軌跡間の類似性を表す距離を算出し、(b)算出された距離のうち、予め定められた閾値よりも小さい距離を連結することで、前記算出された距離を測地距離に変換し、(c)画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡のうち、任意の2つの移動軌跡について、それ以外の移動軌跡を中継点として前記2つの移動軌跡の一方から他方にたどりつく経路の距離である測地距離を算出し、得られた測地距離の分布における不連続点を検出し、検出した不連続点よりも小さい測地距離だけ離れた移動軌跡を一つのクラスタとすることによって同一のサブクラスに分類する処理を行うことによって、前記複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与するとしても良い。
このように移動軌跡間の類似性を表すために移動軌跡間の測地距離を用いることによって、人物等の関節物体に対して、より正確に移動体を検出、抽出することが可能となる。
さらに、サブクラスの生成方法に関して、別の好ましい形態は、前記サブクラスラベル付与部は、画像サブセットごとに、当該画像サブセットに含まれる少なくとも一枚の画像から、エッジ、色、輝度の少なくとも一つを用いて、画像を複数の領域に分割しサブクラスを生成し、分割した領域を通る移動軌跡に対して、それぞれサブクラスラベルを付与するとしたものである。
このようにエッジ、輝度、色等の画像の空間的な情報を用いて移動軌跡をサブクラスに分類することも可能である。
また、上述の移動体検出装置は、さらに、前記画像入力部において受け付けられた前記複数枚のピクチャのうちの少なくとも1枚のピクチャに対して、前記移動体検出部で同一のクラスに分類された移動体領域ごとに、他の移動体領域と異なる表示態様となるように画像処理を施し、画像処理が施されたピクチャを出力する出力部を備えるとしても良い。
AV(Audio/Visual)機器、画像監視装置等において、抽出した移動体をそれぞれ画像上に表示することができる。このため、ユーザーが移動体を認識しやすくなる。
また、上述の移動体検出装置は、さらに、前記移動体検出部による移動体の検出結果を、記録装置に書き込む、または、伝送路を介して外部に送信する記録・送信部を備えるとしても良い。
例えば、各移動体画像の中から必要な移動体画像のみを選択して保存したり、外部に出力したりすることによって、図形要素として効率的な保存及び出力が可能になる。そのため、携帯電話等、処理能力の限られた機器に、移動体画像を保存及び送信する場合に有効に作用する。
また、上述の移動体検出装置は、さらに、前記移動体検出部により特定されたクラスを構成する移動軌跡のうち、当該クラスを代表する代表移動軌跡を算出し、算出した前記代表移動軌跡に従って、当該クラスに対応する移動体の領域が、ピクチャ間で移動すると予測することにより、前記移動体の動きを予測する動き予測部を備えるとしても良い。
複数のブロックの移動軌跡を代表する軌跡を用いて移動体の動きを予測することにより、ノイズ耐性の高い動き予測が可能となる。
また、前記サブクラス間類似度計算部は、サブクラス間の移動軌跡の共有割合を要素とする行列Wに、サブクラス間の類似度を要素とする行列Zを繰返し掛け合わせることにより、サブクラス間の類似度を要素とする行列Zを更新することで、サブクラス間の類似度を計算しても良い。
サブクラス間の類似度の計算を行列間の掛け算で行うことができるため、高速にサブクラス間の類似度を計算することができる。
また、前記サブクラス間類似度計算部は、さらに、更新後の行列Zに、サブクラスに含まれる移動軌跡の数または当該サブクラスに含まれる移動軌跡が構成する空間的な大きさに対応する値であるサブクラスの信頼度を要素とする行列Yを重み付け加算することで、サブクラス間の類似度を計算しても良い。
サブクラスの信頼度を加味してサブクラス間の類似度を計算することにより、サブクラス間の類似度の信頼性を高めることができる。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。
なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
以下、本発明の実施の形態について、図面を用いて説明する。
図2は、実施の形態1における移動体検出装置の構成を示す図である。図2に示されるように、この移動体検出装置200は、画像入力部201、移動軌跡算出部202、サブクラス分類部213、サブクラス間類似度計算部214A、移動体検出部204Bおよび出力部205を備える。
この移動体検出装置200は、移動軌跡を用いて、動画像中の移動体の全部又は一部の領域を特定するクラス分類をすることによって動画像中の移動体を検出する装置である。つまり、移動体検出装置200は、動画像中の移動体の全部または一部の領域を特定する領域分割を実行することによって動画像中の移動体を検出する装置である。
画像入力部201は、動画像を構成する時間的に異なる複数枚のピクチャの入力を受け付ける処理部であり、例えば、ビデオカメラ、あるいは、ビデオカメラと接続された通信インターフェース等である。つまり、画像入力部201は、動画像を構成する少なくとも3枚のピクチャからなる複数枚のピクチャを受け付ける。以下、ピクチャのことを画像ともいう。
移動軌跡算出部202は、画像入力部201で受け付けた少なくとも3枚のピクチャを、複数の画像サブセットに分割する。ここで、画像サブセットは、少なくとも2枚のピクチャからなるものとする。そして、移動軌跡算出部202は、画像サブセットごとに移動軌跡を算出する。移動軌跡算出部202は、ピクチャを構成する1個以上の画素からなるブロックごとに、少なくとも2枚のピクチャ間での画像の動きを検出し、検出した動きを複数枚のピクチャについて連結することで、移動軌跡を算出する。つまり、ブロックとは、移動軌跡を算出する単位であり、1個以上の画素の集まりである。つまり、移動軌跡算出部202は、複数枚のピクチャから、少なくとも2枚のピクチャから構成される画像サブセットを複数抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出する。
サブクラス分類部213は、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡をサブクラスに分類する。サブクラス分類部213は、サブクラスラベル付与部203を含む。サブクラスラベル付与部203は、画像サブセットごとに、当該画像サブセットに含まれる移動軌跡算出部202で算出された複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与する。
サブクラス間類似度計算部214Aは、任意の2つのサブクラスの間で、同一の移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合に基づいて、サブクラス間の類似度を計算する。サブクラス間類似度計算部214Aは、ラベル伝播部204Aを含む。ラベル伝播部204Aは、すべてのサブクラスの中から任意に選択される第1及び第2のサブクラスの間で、同一の移動軌跡(同一のブロックの動きを示す移動軌跡)を共有している程度を示す移動軌跡の共有割合を算出し、算出した共有割合がより高いほど前記第1及び第2のサブクラスに同一のサブクラスラベルをより再付与することで、サブクラスラベルをサブクラス間で伝播する。つまり、ラベル伝播部204Aは、任意のサブクラスペアにおけるサブクラスペアの類似度(時間的な関連の強さ)として、移動軌跡の共有割合を用いて、サブクラスのラベル情報をサブクラス間で伝播する。なお、移動軌跡の共有割合とは、サブクラス間で同一の移動軌跡を保持している率であり、詳細は後述する。ここで、サブクラスのラベル情報を伝播した結果から、サブクラスのラベル情報を更新する。つまり、同一のサブクラスラベルが付されたサブクラス同士は、サブクラス間の類似度が高いことを示している。
移動体検出部204Bは、サブクラス間類似度計算部214Aが計算したサブクラス間の類似度がより高いサブクラスの集まりほど、より同一のクラスに分類されるように、サブクラスをクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する。
類似度が高い2つのサブクラスには同一のサブクラスラベルが付与されている。このため、移動体検出部204Bは、同一のサブクラスラベルが付与されたサブクラスの集まりを同一のクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する。
つまり、移動体検出部204Bは、ラベル情報の更新により、同一のサブクラスラベルが付与されたサブクラスは同一のクラスであると判定する。このように、移動体検出部204Bは、各画像サブセットから得られたサブクラスが同一のクラスであるかを判定することで、時間的にコヒーレンシーを有するクラスタリングを行うことができる。これにより、同一のクラスと判定されたサブクラスに属する移動軌跡には、同じクラスラベルが付与される。その結果、一つのクラスが一つの移動体に対応するため、各移動軌跡をクラスに分類することができれば、移動体の領域を特定することになり、移動体を検出できる。ここでは、クラスは、少なくとも1つからなるサブクラスの集まりであり、同一のクラスに属するサブクラスは、同一の移動体に対応する。
出力部205は、移動体検出部204Bで行った動画像中の移動体の検出結果を出力する。具体的には、出力部205は、画像入力部201において受け付けられた複数枚のピクチャのうちの少なくとも1枚のピクチャに対して、移動体検出部204Bで同一のクラスに分類された移動体領域ごとに、他の移動体領域と異なる表示態様となるように画像処理を施し、画像処理が施されたピクチャを出力する。なお、出力部205は、画像処理が施されたピクチャをディスプレイ装置等に出力する。
なお、本明細書において、「領域」とは、ある特定の対象物が存在する画像領域を抽出する検出技術と、対象物の区別なく物体ごとに画像領域(移動軌跡)を分類するクラス分類技術の両者を含んでいる。なお、検出技術とクラス分類技術とは、共通する部分が多いため、本明細書においては両者を区別しない。
なお、上記した移動体検出装置200を構成する各構成要素(画像入力部201、移動軌跡算出部202、サブクラスラベル付与部203、ラベル伝播部204A、移動体検出部204B、出力部205)は、コンピュータ上で実行されるプログラム等のソフトウェアで実現されてもよいし、電子回路または集積回路等のハードウェアで実現されてもよい。図3は、ソフトウェアによって実現された本実施の形態における移動体検出装置のハードウェア構成を示す図である。図3において、カメラ301は、画像を撮影して出力する。コンピュータ302は、カメラ301から画像を取得して移動体検出処理を行って、移動体検出結果を表示する画像を生成する。ディスプレイ303は、コンピュータ302で生成された画像を取得して表示する。コンピュータ302は、I/F304、CPU305、ROM306、RAM307、HDD308およびビデオカード309を含む。コンピュータ302を動作させるプログラムは、ROM306またはHDD308にあらかじめ保持されている。プログラムは、プロセッサであるCPU305によって、ROM306またはHDD308からRAM307に読み出されて展開される。CPU305は、RAM307に展開されたプログラム中のコード化された各命令を実行する。I/F304は、プログラムの実行に応じて、カメラ301で撮影された画像を、RAM307へ取り込む。ビデオカード309は、プログラムの実行に応じて生成された画像を出力し、ディスプレイ303がその画像を表示する。
なお、コンピュータプログラムは、半導体であるROM306またはHDD308に限られず、例えば光ディスクに格納されていてもよい。また、有線や無線のネットワーク、放送などを介して伝送され、コンピュータのRAM307に取り込まれてもよい。
以下、本実施の形態の移動体検出装置200の動作を、図4を用いて説明する。
図4は、本実施の形態の移動体検出装置200の動作を表すフローチャートである。
図4において、ステップS401〜S403は、それぞれ図2の画像入力部201、移動軌跡算出部202およびサブクラスラベル付与部203に対応している。また、ステップS404は、図2のラベル伝播部204Aおよび移動体検出部204Bに対応している。さらに、ステップS405は、図2の出力部205に対応している。すなわち、画像入力部201では画像入力ステップS401、移動軌跡算出部202では移動軌跡算出ステップS402、サブクラスラベル付与部203ではサブクラスラベル付与ステップS403、ラベル伝播部204Aおよび移動体検出部204Bではラベル伝播・更新ステップS404、出力部205では画像出力ステップS405の各動作を実行する。
画像入力ステップS401において、画像入力部201は、カメラ301から、動画像を構成する複数のピクチャを取得する。ここではT(T≧3)枚のピクチャが入力されたものとする。
次に、移動軌跡算出ステップS402において、移動軌跡算出部202は、画像入力部201で受け付けたT枚のピクチャを、F(F≧2)枚からなるピクチャを1つの画像サブセットとして時系列的にD個の画像サブセットに分割する。ただし、T>Fである。ここで、移動軌跡算出部202は、図5Aに示すように、同一時刻のピクチャがオーバーラップするようにピクチャを画像サブセット502に分割することが望ましい。そして、移動軌跡算出部202は、画像サブセットごとに移動軌跡を算出する。ここでは、図5Bに示すように、移動軌跡算出部202は、各画像サブセット502に含まれる複数のピクチャ間の動き情報503を算出し、移動軌跡を生成して出力する。複数のピクチャ間の動きを算出する手法として、複数のピクチャのうちのある1つのピクチャ上のI点の画素i504を基準に、他の(F−1)枚のピクチャ中の対応する画素を探索する。なお、I点の画素の代わりに、I個の小矩形領域(ブロック)を基準にしても良い。例えば、移動軌跡算出部202は、時刻tと時刻(t+1)に撮影されたピクチャを用いて、時刻tのピクチャ上の画素iの画素座標(xit,yit)(i=1…I)に対応する、時刻(t+1)のピクチャ上の画素座標(xit+1,yit+1)を推定する。ピクチャが3枚以上ある場合は、順次対応する座標を求めていくことで、各画像サブセットのF枚のピクチャのI点の対応点が算出される。
上記した複数のピクチャ間の対応点を算出する具体的な手法は、非特許文献6または非特許文献7などに詳しく記載されているため、ここでは詳細な説明を省略する。
なお、本実施の形態においてTは3以上、Fは2以上であればよい。また、画像サブセットは、図5Aの例のように、必ずしも同一時刻のピクチャがオーバーラップするようにT枚のピクチャを分割する必要はなく、時刻(t+1)から時刻(t+F)までのピクチャを1つの画像サブセットとし、時刻(t+F+n)から時刻(t+2F−1+n)を1つの画像サブセットとするなどのように、ピクチャをオーバーラップさせずに分割しても構わない。このように、画像サブセット間で同一時刻のピクチャをオーバーラップしないように分割した場合には、移動軌跡算出部202は、画像サブセット間の画像である時刻(t+F)と時刻(t+F+n)との画像間で、ブロック間のマッチングを行うことにより、2枚の画像間の対応点を算出しておく。
P.Anandan,"A Computational Framework and an Algorithm for the Measurement of Visual Motion",International Journal of Computer Vision, Vol.2, pp.283−310,1989
Vladimir Kolmogorov and Ramin Zabih, "Computing Visual Correspondence with Occlusions via Graph Cuts", International Conference on Computer Vision,2001
そして、この移動軌跡算出ステップS402では、移動軌跡算出部202は、各画像サブセットについて、I点の画素のF枚のピクチャにわたる動き情報である、対応点の画素座標の組から、画素ごとに対応する移動軌跡を、下記式1のようにI本生成する。
以下、1つの画像サブセットについて移動軌跡を算出する例について説明する。
Figure 0005102410
ここで、Fは画像サブセットに含まれるピクチャの枚数、すなわち移動軌跡の算出に用いたピクチャの枚数である。
図5Bは、ひとつの画像サブセットにおける移動軌跡xの例を示す図である。移動軌跡xは、時刻tから時刻(t+F−1)の入力画像501において、画素i504から、他のピクチャ上の画素i504に対応する画素への動き情報503から算出した、画素座標の集まりからなるベクトルである。このように、画像サブセットごとに移動軌跡を求めることによって、T枚のピクチャを画像サブセットに分割せずに移動軌跡を算出する場合と比較して、より短い時間の移動軌跡を用いることになる。そのため、遮蔽により動きベクトルが正しく求まらずに移動軌跡を算出できなくなる危険性を減らすことができるという効果がある。さらに、遮蔽の影響を受けにくいために、長い時刻の移動軌跡を算出する場合と比較して、より多くの移動軌跡を求めることができるという効果もある。
次に、サブクラスラベル付与ステップS403にて、サブクラスラベル付与部203は、各画像サブセットDについて、式1に示したI本の移動軌跡をS個のサブクラスに分類する。
サブクラスへの分類は、類似した移動軌跡を同一のサブクラスに分類できれば良いため、様々な方法を用いることができる。例えば、式1に示したI本の移動軌跡を入力として、非特許文献8のpp.526−528に示されるようなk−means法を用い、サブクラス数をS個と設定すれば、類似した移動軌跡を同一のサブクラスとして、I本の移動軌跡をS個のサブクラスに分類することができる。
さらには、I本の移動軌跡を入力として、非特許文献8のpp.550−555に示すようなデンドログラムをベースとしたクラスタリングアルゴリズムを用いることもできる。ここでは、最も類似度の高い(最も距離が小さい)移動軌跡のペアを順次同一のサブクラスとする処理をサブクラス数がS個になるまで繰り返し行うか、もしくは、規定回数行う。なお、ここで、移動軌跡の類似度は、移動軌跡ベクトル間のユークリッド距離を用いても良いし、前記ユークリッド距離に対して、サブクラスに属する移動軌跡の数を用いて正規化を行った距離を用いても良い。
例えば、移動軌跡ペアの類似度(距離)を計算する時に、同一のサブクラスに属する移動軌跡の数を用いて正規化する処理を行えば、図6に示すように均一的なサブクラスが生成されやすい。すなわち、各サブクラスに属する移動軌跡の数のばらつきが小さくなる。なお、上記の距離算出方法に限定するものではなく、移動軌跡ベクトル間の類似性を判定できる距離もしくは類似度であれば良い。なお、これらの場合は、距離が小さいほど、類似度が高いということになる。すなわち、ここでは、類似度が最も大きいか、距離が最も小さい移動軌跡のペアを同一のサブクラスとする処理を行う。
Richard O.Duda, Peter E.Hart and David G Stork, "Pattern Classification", John Wiley & Sons, Inc.,2001
上記のようなクラスタリングアルゴリズムを用いた処理により、各画像サブセットDに属する各移動軌跡xは、S個のサブクラスのうち、式2に示すように、それぞれサブクラスD−sのいずれかに属することになる。すなわち、各移動軌跡には、サブクラスD−sのラベル(以下、「サブクラスラベルD−s」と言う。)がそれぞれ付与されることになる。
Figure 0005102410
なお、サブクラスへの分類は、検出したい移動体の最小サイズと同じか、それより小さいサイズのサブクラスになるように行っても良い。また、サブクラス数が、あらかじめ想定される移動体数よりも多くなるように設定しても良い。ここで、1つの移動体がサブクラスとして複数に分割されても構わない。そのため、サブクラス数Sは、必ずしも画像中に存在する移動体数と同じである必要はなく、移動体数よりも多い値に設定すれば良いため、撮影シーンにおける具体的な移動体数が分からない場合でも厳密な設定を行う必要はない。このとき、各画像サブセットについて独立に処理を行うので、画像サブセット間でサブクラス数Sが同一になる必要はないし、画像サブセットに含まれるピクチャの枚数Fも画像サブセットごとに異なっていても構わない。
次に、ラベル伝播・更新ステップS404にて、ラベル伝播部204Aは、前記各画像サブセットDから得られたサブクラスD−sに対して、サブクラス間の移動軌跡の共有割合に基づいてサブクラスのラベル情報をサブクラス間で伝播する。そして、ラベル伝播部204Aは、異なる画像サブセットから得られたサブクラスを含めて、任意のサブクラスペアが同一のクラスに属するか否かを判定することで、サブクラスのラベルを更新するか否かを判定し、各移動軌跡にサブクラスラベルを付与する。移動体検出部204Bは、複数のサブクラスが同一のラベルに更新された場合は、これら複数のサブクラスが同一のクラスに属すると判定する。この結果として、1つのクラスが1つの移動体に対応するため、各移動軌跡をクラスに分類することが移動体の領域を特定することになり、結果として移動体を検出できる。また、これにより時間的に異なる画像サブセットに属するサブクラス間で、移動軌跡の共有割合を用いてラベル伝播を行うことで、移動軌跡の共有割合が高いサブクラス同士を同一のクラスと判定することができる。このため、長い時間の移動軌跡を用いる場合と比べて遮蔽の影響を受けにくく、かつ長い時間の移動軌跡を用いる場合と同様に時間的にコヒーレンシーを有する領域分割を行うことができるという効果がある。
以下、具体的に説明する。式2、図7Aおよび図7Bに示すように、各移動軌跡には各画像サブセットから得られたサブクラスラベルD−sが付与されている。ここでは、画像サブセットが2つの場合について説明するが、各画像サブセットは独立に処理可能であるため、画像サブセット数は2に限定されるものではなく、2以上であっても同様に処理可能である。また、図7Aおよび図7Bでは見やすさを考慮して、一部の移動軌跡のみを示しているが、本実施の形態では移動軌跡の本数を限定するものではない。
図7Aは、時刻(t+1)から時刻(t+F)のピクチャから構成される画像サブセット1と、時刻(t+1)から時刻(t+2F−1)のピクチャから構成される画像サブセット2を示している。また、図7Bは、図7Aの画像サブセット1に含まれる時刻(t+F)のピクチャと図7Aの画像サブセット2に含まれる時刻(t+F)のピクチャにおいて共有されている移動軌跡を示す。
図7Aに示すように、サブクラスラベル付与ステップS403にて画像サブセット1からサブクラス数Sが3個、画像サブセット2からサブクラス数Sが2個のサブクラスが生成されたとする。図7Bに示すように、画像サブセット1と画像サブセット2で同一時刻(t+F)の画像を用いた場合、時刻(t+F)の画像上で、互いに異なる画像サブセットから算出されたサブクラス間で共有されている移動軌跡の本数を計算することができる。ここで、複数のサブクラス間に同一の移動軌跡が存在する場合、つまり、複数のサブクラス間に同一のブロックの動きを示す移動軌跡が存在する場合に、同一の移動軌跡(同一のブロックの動きを示す移動軌跡)を共有されている移動軌跡と表現する。具体的に説明すると、図7Bに示すように、時刻(t+F)の画像においては、サブクラス1−1に含まれる移動軌跡の点とサブクラス2−1に含まれる移動軌跡の点とが同一の画素位置となる。このため、同一の画素位置に接続される移動軌跡同士が同一の移動軌跡を示すことになる。サブクラス1−1とサブクラス2−1との対応点は互いに、それぞれ同一の移動軌跡に対応するため、互いに移動軌跡を共有していることになる。また、同様に、サブクラス1−2または1−3とサブクラス2−2とも互いに移動軌跡を共有している。ここで、サブクラスDaとDbの間で共有している移動軌跡の本数をshare_DaDbとする。ここで、DaとDbはそれぞれサブクラスラベルに対応する。さらに、各サブクラスに属する移動軌跡の本数をN_Daとすると、サブクラスDaに対するサブクラスDbの移動軌跡の共有割合WDa,Dbを、式3で表すことができる。
Figure 0005102410
ここで、ラベル伝播部204Aは、任意のサブクラスペアについて移動軌跡の共有割合Wを計算する。この時、サブクラスラベルDaとDbは、異なる画像サブセットから得られたサブクラスである。また、N_Daは、サブクラスDaに含まれる移動軌跡数である。なお、サブクラスラベル付与ステップS403におけるサブクラスラベル付与の処理は、各画像サブセットに対して独立に処理を行うが、本ステップにおいては、独立に処理されたサブクラスを用いて、そのサブクラス間の類似関係(時間的な関連の強さ)を移動軌跡の共有割合として表すものである。
図7Aおよび図7Bの例で補足すると、サブクラス1−1に対するサブクラス2−1の移動軌跡の共有割合は、W1−1,2−1=3/3となる。また、サブクラス2−1に対するサブクラス1−1の移動軌跡の共有割合は、W2−1,1−1=3/3となる。一方、サブクラス2−2に対するサブクラス1−2の移動軌跡の共有割合は、W2−2,1−2=3/4となる。また、サブクラス1−2に対するサブクラス2−2の移動軌跡の共有割合は、W1−2,2−2=3/3となる。また、サブクラス2−2に対するサブクラス1−3の移動軌跡の共有割合は、W2−2,1−3=1/4となる。また、サブクラス1−3に対するサブクラス2−2の移動軌跡の共有割合は、W1−3,2−2=1/1となる。ここで、移動軌跡を共有しないサブクラスペアの移動軌跡の共有割合をW=0とする。例えば、W1−1,2−2=0である。また、同一画像サブセット内のサブクラスペアについての移動軌跡の共有割合W=0とする。例えば、W1−1,1−2=0である。さらに、時間的に隣接していない画像サブセット間のサブクラスペアについての移動軌跡の共有割合W=0として構わない。また、Wの対角成分は、サブクラス自身を表すため、共有割合W=1とすることが望ましい。
さらに、移動軌跡の共有割合Wは、式4のように非対称行列として表現することができる。しかし、移動軌跡の共有割合Wが、対称行列となるようにしてもよい。具体的には、サブクラスDaに対するサブクラスDbの移動軌跡の共有割合WDa,DbとサブクラスDbに対するサブクラスDaの移動軌跡の共有割合WDb,Daとの平均値を、移動軌跡の共有割合WDa,DbおよびWDb,Daの各々として再設定しても良い。また、移動軌跡の共有割合WDa,DbおよびWDb,Daのうち大きいほうの値を、移動軌跡の共有割合WDa,DbおよびWDb,Daの各々として再設定しても良い。このような再設定を行うことにより移動軌跡の共有割合Wを対称行列として表現することができる。
Figure 0005102410
次に、式3にて算出した移動軌跡の共有割合Wを用いて、ラベル伝播部204Aは、以下のようにラベル情報を伝播する。ラベル伝播の手法としては、非特許文献9にその方法が開示されているが、独立に計算されたサブクラスから、サブクラス間の類似度を計算する方法については記載が無く、さらに類似度を移動軌跡の共有割合で表した例も無い。
本実施の形態においては、独立に計算されたサブクラスからサブクラス間の類似度を移動軌跡の共有割合で表すことで、以下のようにラベル伝播を行う。つまり、本実施の形態では、サブクラス間の類似度を繰返し計算することにより、ラベル伝播を行う。ここで、サブクラス間の類似度は、後述するサブクラス行列Zの要素として示される。
Figure 0005102410
ここで、右辺の第1項がサブクラス間の類似度を用いたラベル伝播を表す。ここでは、移動軌跡の共有割合を用いた(式5)の第1項の繰返し計算が、移動軌跡の共有割合を重みとしたラベル伝播に相当する。また、第2項は、後述するサブクラスの信頼度を表す。サブクラス行列はZ=[z ,z ,..,z ....,zΓ ]であり、z は、サブクラスpのサブクラスラベルベクトルである。z は、サブクラスラベル数Γの要素数を持ち、初期状態(l=1)においては、各サブクラスに対応する要素のみが1で他の要素は0で表されるベクトルである。例えば、z =[1,0,0,…,0]であり、z =[0,1,0,…,0]である。つまり、初期状態において、サブクラス行列Zは、式6に一例を示す単位行列である。
Figure 0005102410
lは繰り返し回数を表す。α≦1であり、サブクラスの信頼度をすべてのサブクラス間で均一とみなすのであれば、α=1とすれば良いし、サブクラスの信頼度を考慮する場合には、α=0.99などとすれば良い。
サブクラスの信頼度行列は、Y=[y ,y ,・・・,y ,・・・,yΓ ]であり、Yは対角行列である。y は、サブクラスpの信頼度ベクトルであり、サブクラスラベルベクトルz と同様に、サブクラスラベル数の要素数を持ち、各サブクラスラベルに対応する要素のみが0より大きい値をもち、他の要素は0で表されるベクトルである。例えば、y =[2,0,0,…,0]であり、y =[0,3,0,…,0]である。y における「2」がサブクラス1に対する信頼度を示し、y における「3」がサブクラス2に対する信頼度を示す。つまり、サブクラスの信頼度行列Yは、式7に一例を示す対角行列である。
Figure 0005102410
信頼度は以下のように設定すればよい。例えば、各サブクラスに属する移動軌跡の本数が大きいほど、当該サブクラスの信頼度が大きくなるように信頼度を設定しても良いし、各サブクラスに属する移動軌跡の平均の時間長が大きいほど、当該サブクラスの信頼度が大きくなるように信頼度を設定しても良い。また、各サブクラスに属する移動軌跡が構成する空間的な大きさが大きいほど、当該サブクラスの信頼度が大きくなるように信頼度を設定しても良い。
ラベル伝播部204Aは、式5の計算を規定回数繰り返す処理を行う。なお、このような繰り返し演算処理を非特許文献9において、ラベル伝播処理と呼んでいる。そして、次式によりサブクラスラベルを更新するか否かを決定する。
Figure 0005102410
ここで、式8は、p列q行のサブクラス行列Zの各列について、値が最大となる行番号を示している。例えば、サブクラス行列Zが式9のようになっているとする。この場合、1列目に着目すると3行目の値が1.5となっており、1列目の中で最大となっている。このため、式8により、1列目に対して値が最大となる行番号として3が求められる。これは、初期状態でサブクラスラベルが1であったサブクラスにサブクラスラベルとして3が再付与されることを示している。
Figure 0005102410
つまり、ラベル伝播部204Aは、式5によって算出したサブクラスラベルベクトルzの列番号が初期状態のサブクラスラベルを示しており、各列において最大値を有する行番号を新たなサブクラスラベルとしてとして更新する。この処理によって、複数のサブクラスラベルが同一のクラスとなることによって、独立した画像サブセットから算出されたサブクラスも含めて、異なる複数のサブクラスを同一のクラスとして判定することができる。さらに、式5、および式8の処理によって、同一画像サブセットから得られたサブクラス間の関係も自動的に考慮される。そのため、図1Aおよび図1Bに示したような課題に対して、サブクラスa−1およびa−2が同一クラス、サブクラスb−1およびb−2が同一クラスとなり、誤検出を削減できるという効果がある。すなわち、時間的に異なる画像サブセットから算出されたサブクラス同士についても同一クラスに属するか否かを判定することができる。このため、遮蔽によって移動軌跡が算出できなくなる危険性を減らしながら、時間的にコヒーレンシーを保った移動体の検出が可能になる。
具体的な効果を、図8A〜図8Cを用いて説明する。図8Aは、3つの画像サブセットから算出したそれぞれのサブクラスを表す。図8A〜図8Cでは、サブクラスのテクスチャの違いが、異なるサブクラスであることを表す。つまり、同一のサブクラスラベルが付されたサブクラスのテクスチャは同一である。次に、式5および式8に示したラベル伝播処理およびラベル更新処理を行うことによって、図8Bのように、時間的に異なる画像サブセットから算出したサブクラスを、時間的にコヒーレンシーを保ったクラス(図8Bの例では、θθ)として、それぞれ1つのクラスとして統合することができる。さらには、図1Aおよび図1Bに示したように1つの移動体が複数のサブクラスに分離する例と同様の例として、図8Aの左の2つのサブクラスを、ラベル伝播処理により1つのクラス(クラスθ)に統合することができる。このように、一つの移動体が複数のサブクラスに分割されたとしても、ラベル伝播・更新ステップS404によって、誤検出の原因の1つである1つの移動体に属する複数のサブクラスを、1つのクラスとして統合することができる。さらには、図8Bに示すように、時間的に隣接していない図中左の画像サブセットから生成されたサブクラスと、図中右の画像サブセットから生成されたサブクラスとの関係についても、式5の繰り返し演算、および式8の処理によって取扱うことができる。すなわち、隣接する画像サブセットから生成されたサブクラス間の移動軌跡の共有割合の情報のみから、時間的に隣接していない画像サブセットが同一のクラスか否かを判定することができる。すなわち、画像サブセットは時間的に隣接する2個に限定されるものではない。画像サブセットが3個以上の場合であっても、隣接していない画像サブセットにおけるサブクラスペアについて、同一クラスであるか否かを判断することが可能である。その結果として、カメラの撮影位置の問題によって起こる遮蔽の問題を解決しながら、1つの移動体が複数に分割される誤検出の課題を解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出可能となる。さらには、図1Bに示すように、遮蔽が頻繁に起こりうる環境下においても、短い時間の画像で構成された画像サブセットを複数用いてサブクラスを生成し、ラベル伝播処理を行うことによって、より高密度に移動体を抽出することが可能であるという効果もある。具体的には、短い時間の画像で構成された画像サブセットを用いることで、遮蔽の影響を削減することができるため、より高密度にサブクラスを生成することが可能になる。そして、サブクラス間のコヒーレンシーをラベル伝播処理によって持たせることが可能になる。一方、長時間の移動軌跡を用いた場合、図1Bの白色の移動体(検出結果b−1)のように、頭部のみしか追跡することができず、胴体および脚部などの他の移動軌跡は途中で追跡が不能になる。そのため、高密度に移動体を抽出することが難しい。
F. Wang and C. Zhang, "Label propagation through linear neighborhoods", In Proc of International Conference on Machine Learning, 2006
なお、異なる画像サブセットから生成したサブクラス間の移動軌跡の共有割合の算出は、必ずしも同一時刻の画像上で行われる必要はなく、図8Cに示すように時刻(t+F)と時刻(t+F+n)の2枚の画像上で共有されている移動軌跡の本数から計算することもできる。具体的には、時刻(t+F)と時刻(t+F+n)との画像間の対応点は移動軌跡算出部202により求められている。このため、ラベル伝播部204Aは、その対応点の情報を用いて、時刻(t+F)上のサブクラスD−sに属する移動軌跡の、時刻(t+F+n)上での対応点を求める。ここで、nは1以上である。そして、時刻(t+F+n)におけるサブクラスD−sに属する移動軌跡の数と時刻(t+F+n)におけるサブクラスD−sに属する前記対応点の数から前述と同様の方法で共有割合を計算することができる。そして、同様に時刻(t+F+n)上のサブクラスD−sに属する移動軌跡から、移動軌跡算出ステップS402で算出した動き情報を用いて、時刻(t+F)上での対応点を求める。そして、時刻(t+F)におけるサブクラスD−sに属する移動軌跡の数と時刻(t+F+n)におけるサブクラスD−sに属する前記対応点の数から共有割合を計算することができる。時刻(t+2F−1+n)と時刻(t+2F−1+2n)の場合についても同様である。このように、画像サブセット間において必ずしも同一時刻の画像がオーバーラップしている必要はない。
次に画像出力ステップS405では、出力部205は、ラベル伝播・更新ステップS404で行った動画像中の移動体の検出結果を出力する。具体的には、画像入力ステップS401で受け付けた動画像に対して、例えば、ラベル伝播・更新ステップS404で検出された移動体領域θごとに異なる表示態様となるように、画像処理を施し、画像処理が施された画像をディスプレイ装置等に出力する。これにより、それぞれの移動体を区別しながら、かつ時間的にコヒーレンシーを保った表示を行うことができる。
ここで、移動体を歩行者とした場合の、画像サブセットの画像枚数Fの決定方法について説明する。一分間に何歩進めるかを表す歩調は、通常の成人では110〜120、ゆっくり歩く場合で70〜80程度、急いでいる場合で140程度である。そのため、一歩にかかる時間は、0.43〜0.86秒と考えることができる。一方、図9に示すように、歩行者を横から撮影した場合、一歩進むことによって、片脚が他方の脚に完全に遮蔽されてしまう。このような、関節物体特有の問題に対しては、半歩にかかる時間より少ない時間に対応する画像枚数Fを決定する事で、遮蔽の影響を減らす事が可能である。すなわち、早く歩く場合を想定した場合で、0.22秒より短い時間に対応する画像枚数をFとすることが望ましく、例えば、30fps(フレーム/秒)で撮影した場合には、Fを6枚以下とすることが望ましい。また、遅く歩く場合は、同様に30fpsで撮影すると仮定すると、12枚以下が望ましい。なお、前述したように画像サブセットの数については、2以上であれば良い。
以上のように、カメラの撮影位置の問題によって起こる遮蔽の問題を解決しながら、1つの移動体が複数に分割される誤検出の課題を解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出可能となる。
よって、デジタルビデオカメラ等の動画像撮影装置が普及してきた今日において、デジタルカメラの焦点制御や画質改善処理、自動車の安全運転支援システム、ロボットにおける人との衝突回避制御や警報などへの応用技術として、本発明の実用価値は極めて高い。
(実施の形態2)
次に、本発明の実施の形態2における移動体検出装置について説明する。
ここでは、サブクラスラベル付与部203によるサブクラスラベル付与処理を、実施の形態1とは異なる方法で行う例について説明する。図10は、実施の形態2における移動体検出装置200aの構成を示す図である。実施の形態2に係る移動体検出装置200aは、画像入力部201と、移動軌跡算出部202と、サブクラスラベル付与部203aと、ラベル伝播部204Aと、移動体検出部204Bと、出力部205とを含む。
このような実施の形態2に係る移動体検出装置200aは、実施の形態1に係る移動体検出装置200とサブクラスラベル付与部203aの構成を除いて、同じ構成であるため、同一構成要素の説明は省略する。
なお、サブクラスラベル付与部203aは、図2に示したサブクラス分類部213に含まれるが、本図ではサブクラス分類部213の記載を省略する。また、ラベル伝播部204Aは、図2に示したサブクラス間類似度計算部214Aに含まれるが、本図ではサブクラス間類似度計算部214Aの記載を省略する。
サブクラスラベル付与部203aは、画像サブセットごとに、当該画像サブセットに含まれる少なくとも一枚の画像から、エッジ、色、輝度の少なくとも一つを用いて、画像を複数の領域に分割しサブクラスを生成し、分割した領域を通る移動軌跡に対して、それぞれサブクラスラベルを付与する。
つまり、サブクラスラベル付与部203aは、画像サブセットごとに、画像入力部201で受け付けた複数枚の画像のうち少なくとも1枚の画像から、輝度、エッジ情報、色などを用いて、類似した画像領域を同一のサブクラスに分類する処理を行う。次に、サブクラスラベル付与部203aは、移動軌跡算出部202で算出された移動軌跡に対して、移動軌跡が通る画像領域のサブクラスラベルを付与する。つまり、サブクラスラベル付与部203aは、同一のサブクラスに分類された画像領域を通る移動軌跡に、同一のサブクラスラベルを付すことにより、上記移動軌跡を同一のサブクラスに分類する。実施の形態1と異なるのは、サブクラスへの分類を移動軌跡ではなく、画像の情報から行い、その情報に基づいて、移動軌跡に対してサブクラスラベルを付与する点である。なお、サブクラスラベル付与部203aにおける画像領域のサブクラス分類処理は、移動軌跡に関する情報を用いずに行うことができる。そのため、必ずしも画像領域のサブクラス分類処理は、移動軌跡算出部202の処理の後に行う必要はなく、両者を並列に処理してもよいし、画像領域のサブクラス分類処理を移動軌跡算出部202の処理より前に行ってもよい。
以下、本実施の形態2の移動体検出装置200aの動作を、図11を用いて説明する。
ステップS401、S402については、実施の形態1と同様であるため、説明を省略する。
次に、サブクラスラベル付与ステップS403aにおいて、サブクラスラベル付与部203aは、画像入力ステップS401で入力された複数の画像のうち少なくとも1枚の画像を用いて、画像の領域分割を行う。ここでは、画素(輝度)値や色情報、エッジ情報等とその位置情報などを入力として領域分割を行う手法であれば何でもよく、例えば、非特許文献10の方法を用いることができる。
X.Ren and J.Malik, "Learning a Classification Model for Segmentation",International Conference on Computer Vision, Vol.1, p.10−17,2003
非特許文献10の方法では、エッジ情報や空間近傍の画素値のスムーズネスを用いて画像領域を複数の小さな領域に分割する。例えば、対象が人物の場合は、図12のように、人物を細かく分割したような結果となる。ここでは、各画像サブセットに対して、例えばF枚のフレームの画像が入力された時に、その中から1枚の画像を選択して領域分割を行っても良い。ここで、複数の画像のうちの時間的に中間の画像を用いて領域分割を行っても良いし、画像サブセット内で時間的に最初もしくは最後の画像を用いて領域分割を行っても良く、画像の選択に制限を加えるものではない。
他にも、例えば、画素値と画素位置とを並べて3次元ベクトルとし、それを入力として、k−means法などのクラスタリングアルゴリズムにより画像領域を分割しても良いし、もちろん、上記3次元ベクトルの代わりに、RGBなどの色情報と画素位置情報とを並べた5次元ベクトルを用いても良い。つまり、空間的に画像を領域分割できる手法であればどのような方法を用いて領域分割を行っても良い。
そして、各画像サブセットについて、分割された領域をサブクラスとして、領域分割を行うために選択した画像の時刻と移動軌跡算出ステップS402で算出した移動軌跡との関係から、移動軌跡にサブクラスラベルを付与する。
具体的には、サブクラスラベル付与部203aは、図12に示すように、空間的に領域分割をした各領域をサブクラスと考え、領域分割のために選択した時刻t’の画像において、各移動軌跡がどのサブクラスを通過したかによって、サブクラスラベルを付与する。例えば、移動軌跡1から4は、それぞれ時刻t’において、サブクラスD−aからD−dをそれぞれ通過する。このため、サブクラスラベル付与部203aは、移動軌跡1から4に、対応するサブクラスラベルD−aからD−dをそれぞれ付与する。このような処理を該当する移動軌跡に対して行えば、各移動軌跡xは、式2に示すように、それぞれサブクラスD−sのいずれかに属することになる。すなわち、各移動軌跡には、実施の形態1のサブクラスラベル付与ステップS403での処理と同様に、サブクラスD−sのラベルがそれぞれ付与されることになる。この処理を、各画像サブセットについて行う。
ラベル伝播・更新ステップS404以降の処理は、実施の形態1と同じであるため、説明を省略する。
以上のように、実施の形態2によると、移動軌跡から、遮蔽の起こりやすい混雑環境下においても画像中の移動体の検出をすることができる。さらに、実施の形態1と比べて、色や輝度などの情報を明示的に用いることができるため、例えば単一色の服などを着た移動体を検出する場合には、より高精度な移動体の検出が行える。
以上のように、カメラの撮影位置の問題によって起こる遮蔽の問題を解決しながら、1つの移動体が複数に分割される誤検出の課題を解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出可能となる。
よって、デジタルビデオカメラ等の動画像撮影装置が普及してきた今日において、デジタルカメラの焦点制御や画質改善処理、自動車の安全運転支援システム、ロボットにおける人との衝突回避制御や警報などへの応用技術として、本発明の実用価値は極めて高い。
(実施の形態3)
次に、本発明の実施の形態3における移動体検出装置について説明する。ここでは、サブクラスラベル付与部203によるサブクラスラベル付与処理を、実施の形態1および2とは異なる方法で行う例について説明する。図13は、実施の形態3における移動体検出装置200bの構成を示す図である。実施の形態3における移動体検出装置200bの構成は、画像入力部201と、移動軌跡算出部202と、サブクラスラベル付与部203bと、ラベル伝播部204Aと、移動体検出部204Bと、出力部205とを含む。このような実施の形態3に係る移動体検出装置200bは、実施の形態1に係る移動体検出装置200とサブクラスラベル付与部203bの構成を除いて、同じ構成であるため、同一構成要素の説明は省略する。
なお、サブクラスラベル付与部203bは、図2に示したサブクラス分類部213に含まれるが、本図ではサブクラス分類部213の記載を省略する。また、ラベル伝播部204Aは、図2に示したサブクラス間類似度計算部214Aに含まれるが、本図ではサブクラス間類似度計算部214Aの記載を省略する。
サブクラスラベル付与部203bは、(a)移動軌跡算出部202で算出された複数の移動軌跡について、移動軌跡間の類似性を表す距離を算出し、(b)算出された距離のうち、予め定められた閾値よりも小さい距離を連結することで、前記算出された距離を測地距離に変換し、(c)画像サブセットごとに、当該画像サブセットに含まれる移動軌跡算出部202で算出された複数の移動軌跡のうち、任意の2つの移動軌跡について、それ以外の移動軌跡を中継点として前記2つの移動軌跡の一方から他方にたどりつく経路の距離である測地距離を算出し、得られた測地距離の分布における不連続点を検出し、検出した不連続点よりも小さい測地距離だけ離れた移動軌跡を一つのクラスタとすることによって同一のサブクラスに分類する処理を行うことによって、前記複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与する。
つまり、サブクラスラベル付与部203bは、実施の形態1と同様に、移動軌跡算出部202で算出した各画像サブセットの移動軌跡に対して、類似した移動軌跡が同じクラスになるようにサブクラスに分類し、各移動軌跡に対して分類した結果であるサブクラスにラベルを付与する。実施の形態1と異なるのは、サブクラスへの分類を行う時に移動軌跡の類似度として、測地距離を用いる点である。
以下、本実施の形態3の移動体検出装置200bの動作を、図14を用いて説明する。ステップS401、S402については、実施の形態1と同様であるため、説明を省略する。
次に、サブクラスラベル付与ステップS403bにおいて、サブクラスラベル付与部203bは、各画像サブセットについて、式2で算出した移動軌跡iを用いて画素の動きの類似性を含む距離マトリクスを算出する。移動軌跡iと移動軌跡jとの線形距離f(i,j)は以下のように算出できる。
Figure 0005102410
ここで、wは重み係数であり、設計者が設定するパラメータである。
また、ptnij、mtnijについては以下に示す。
Figure 0005102410
Figure 0005102410
ここで、
Figure 0005102410
式10に示されるように、式11に示した移動軌跡間距離の時間平均値に加えて、式12に示した移動軌跡間距離の時間的ばらつきを前記線形距離f(i,j)の要素とする。特に式12に示した移動軌跡間距離の時間的ばらつきは、画素の動きの類似性を示すものであり、これによって、画素間のなす距離の関係が時間的に変化しない剛体だけでなく、関節物体等の形状変化を捉えることができる。ただし、ここでは、必ずしも上記の距離計算を行う必要はなく、移動軌跡の類似性を表す距離尺度であれば、どのような距離を用いても良い。
次に、式10で算出した線形距離f(i,j)に対して閾値Rを用いて、その閾値に対して以下のように非線形化処理を行いf’(i,j)を算出する。
Figure 0005102410
移動軌跡iに着目した時に移動軌跡iとの線形距離が小さい順にR個の移動軌跡jを選択し、選択された移動軌跡jとの距離は変更せず、選択されなかった移動軌跡jとの距離を無限大に変更する。なお、ここでは、線形距離f(i,j)が小さい順に移動軌跡jを選択したが、次式のように閾値Rを設定して、非線形化処理を行なっても良い。
Figure 0005102410
つまり、サブクラスラベル付与部203bは、移動軌跡算出部202で算出された画像サブセットごとに、複数の移動軌跡のそれぞれについて、距離が小さい順に予め定められた個数の移動軌跡を選択し、選択されなかった移動軌跡との距離を無限大に変更する非線形化をした後に、複数の距離のそれぞれを測地距離に変換してもよい。または、サブクラスラベル付与部203bは、式15に示すように、移動軌跡iに着目した時に、移動軌跡算出部202で算出された複数の移動軌跡jのそれぞれについて、距離が予め定められた閾値R以下の移動軌跡jを選択し、選択されなかった移動軌跡との距離を無限大に変更する非線形化をした後に、複数の距離のそれぞれを測地距離に変換してもよい。
なお、距離の非線形化に関しては、上記の関数に限定されるものではなく、移動軌跡iと移動軌跡jに関する距離に対して非線形変換を行うものであれば何でもよい。
次に、サブクラスラベル付与部203bは、非線形化された距離f’(i,j)を用いて、次式のように測地距離を算出する。
Figure 0005102410
なお、min(x,y)は、値xと値yのうち小さい方を返す関数である。また、移動軌跡sは、移動軌跡iから移動軌跡jに辿(たど)りつくための中継点である。ここで、f’(i,s)+f’(s,j)における中継点sは1点に限るものではない。この方法は、ダイクストラ法と呼ばれる最短経路探索手法であり、以下の非特許文献11に記載されている。
E.W.Dijkstra,"A note on two problems in connexion with graphs",Numerische Mathematik,pp.269−271,1959
ここで、式14から式16に示した非線形化処理の効果について、図15(a)および図15(b)を用いて説明する。ここでは、線形距離f(i,j)と測地距離g(i,j)の違いを分かりやすく説明するため、式11に示すような時刻tにおける移動軌跡間距離を例とする。実際には、移動軌跡間距離に加えて、式12に示したように画素の動きの類似性として移動軌跡間距離の変動成分を用いることにより、関節物体等の形状だけではなく形状変化をも捉えることができる。図15(a)は、式14から式16の処理を行わない場合の例である。例えば、頭部の画素i1402と手先部の画素j1403との距離は、線形距離1401に示す距離となる。一方、式14から式16のような非線形処理を行うことによって、閾値Rが適切に設定されていれば、図15(b)に示されるように、頭部の画素i1402と手先部の画素j1403との距離は、画素k1404を通って画素jにたどり着くまでの矢印で示したような線形和としての距離となる。そのため、線形距離1401では人物のような関節物体の関節が繋がった形状をデータとして連続的に表現できないのに対して、測地距離を用いることにより関節が繋がった形状の連続性を表現することが可能となる。なお、測地距離の計算方法は、式16に限定されるものではない。
次に、閾値Rに対応する測地距離変換を行ったg(i,j)を用いて、不連続点を検出することによって移動軌跡をサブクラスに分類し、サブクラスラベルを付与する。ここでは、g(i,j)が無限大となる移動軌跡iと移動軌跡jの間が不連続点である。閾値Rに対して得た測地距離変換の結果の例を図16を用いて説明する。ここで、図16(a)は、ステップS402で算出した移動軌跡a〜hを示す図である。図16(b)は、図16(a)に示した移動軌跡a〜hからなる高次元空間の概念図である。ここでは、移動軌跡の数を8本としたが、8本に限定されるものではない。実際には、各画素に対応する移動軌跡を用いてもよいし、ブロック単位で求めた移動軌跡を用いてもよい。ここで、移動軌跡からなる高次元空間1502の1点が、それぞれ式1に示した一つの移動軌跡に対応する。すなわち、各点が1枚のピクチャ上の領域だけではなく時間的に異なる複数枚のピクチャに渡って画素を追跡した結果である。さらに、高次元空間1502上で、点と点との距離は、ベクトル間のユークリッド距離ではなく、式16に示すような測地距離に対応する。
図16(c)は、クラスタリング結果を示す図である。ここで、図16(c)において、式10に示した移動軌跡aと移動軌跡bとの距離をf(a,b)とした時に、f(e,f)>f(c,d)>f(f,g)>R>f(b,c)である。ここでは、閾値をRとして設定した場合に、距離f(f,g)は、閾値Rよりも大きな値を持つとする。この場合、式15によって測地距離を求めてもg(e,f)、g(c,d)、g(f,g)はそれぞれ無限大となる。よって、サブクラスラベル付与部203bは、それぞれ、移動軌跡cと移動軌跡dとの間、移動軌跡eと移動軌跡fとの間、移動軌跡fと移動軌跡gとの間が不連続点であると判定する。この結果、移動軌跡a、b、cは、互いに不連続点を通らずに辿ることができるため、無限大の値はとらず、逆に、例えば、移動軌跡a、b、cから、他の移動軌跡に対しては、測地距離の不連続点g(c,d)を通るため無限大となる。このように、測地距離が無限大とならない移動軌跡iと移動軌跡jの組は同じサブクラスとし、無限大となる場合は別のサブクラスとする。そして、測地距離が無限大となる組と無限大にならない組とを整理して、D−1、D−2、D−3、D−4の合計4つのサブクラスに分離することができる。ここで、閾値Rの性質について述べる。閾値Rが小さいほど、画像上でより小さな移動体を検出可能となる一方で、誤検出(フォルスポジティブ)が増加するというトレードオフがある。そこで、例えば、監視用途等、移動体検出を行いたい範囲が事前に分かっている場合には、検出したい移動体の最小サイズとその画像上での動きに合わせて閾値Rを設定すればよい。また、ここでは、移動体をサブクラスとして細かく分類する例について述べたが、図17に示すように、複数の移動体をそれぞれ分離するように、閾値Rを大きく設定してもよい。例えば、図17(a)のように動画像中に2つの移動体が存在し、複数の移動軌跡が求められている場合には、前記高次元空間は、図17(b)のようになる。1つの移動体の部位を分割するために設定された閾値Rよりも、閾値Rを大きく設定することによって、図17(c)のクラスタリング結果に示すように、異なる移動体間の測地距離g(i,j)が無限大となり、図17(d)のように2つの移動体をそれぞれ分離する事ができる。
以上の処理によって、測地距離が無限大とならない移動軌跡の組は連続とすることで同じサブクラスと判定することができ、測地距離が無限大となる移動軌跡の組は不連続とすることによって、不連続点をもとに移動軌跡をサブクラスに分離することができる。すなわち、各移動軌跡には、実施の形態1のサブクラスラベル付与ステップS403での処理と同様に、サブクラスD−sのラベルがそれぞれ付与されることになる。
ラベル伝播・更新ステップS404以降の処理は、実施の形態1と同じであるため、説明を省略する。
以上のように、実施の形態3によると、移動軌跡から、遮蔽の起こりやすい混雑環境下においても画像中の移動体の検出をすることができる。なお、本実施の形態では、測地距離に基づいて、類似した移動軌跡を同一のサブクラスに分類するため、図16の例では、頭部の動きと腕の動きの違い、上腿(じょうたい)と下腿(かたい)との動きの違いが反映され、頭部、腕、上腿、下腿を別々のサブクラスとして分類することができる。その結果を用いて、ラベル伝播・更新により時間的にコヒーレンシーを保ったクラスとして、サブクラスを統合することができる。さらに、本方法は、同様の方法によって、複数人が存在するシーンにおいて、それぞれの移動体を検出することも可能である。
以上のように、カメラの撮影位置の問題によって起こる遮蔽の問題を解決しながら、1つの移動体が複数に分割される誤検出の課題を解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出可能となる。
よって、デジタルビデオカメラ等の動画像撮影装置が普及してきた今日において、デジタルカメラの焦点制御や画質改善処理、自動車の安全運転支援システム、ロボットにおける人との衝突回避制御や警報などへの応用技術として、本発明の実用価値は極めて高い。
(実施の形態4)
次に、本発明の実施の形態4における移動体検出装置について説明する。
図18は、実施の形態4における移動体検出装置200cの構成を示す図である。実施の形態4に係る移動体検出装置200cは、画像入力部201と、移動軌跡算出部202と、サブクラスラベル付与部203と、ラベル伝播部204Aと、移動体検出部204Bと、リカバリ用移動軌跡保持部1701と、移動軌跡リカバリ部1702と、出力部205とを含む。
このような実施の形態4に係る移動体検出装置200cは、実施の形態1から3に係る移動体検出装置とリカバリ用移動軌跡保持部1701と移動軌跡リカバリ部1702の構成を除いて、同じ構成であるため、同一構成要素の説明は省略する。なお、実施の形態1を基本形態として説明するが、本実施の形態は、実施の形態2および3についても一般性を失うことなく適用可能である。
なお、サブクラスラベル付与部203は、図2に示したサブクラス分類部213に含まれるが、本図ではサブクラス分類部213の記載を省略する。また、ラベル伝播部204Aは、図2に示したサブクラス間類似度計算部214Aに含まれるが、本図ではサブクラス間類似度計算部214Aの記載を省略する。
リカバリ用移動軌跡保持部1701は、移動軌跡算出部202で算出された移動軌跡のうち、画像サブセットを構成するピクチャの枚数よりも少ないピクチャの枚数でしか算出することができなかった移動軌跡を保持している記憶装置である。
移動軌跡リカバリ部1702は、リカバリ用移動軌跡保持部1701に保持されている移動軌跡を、当該移動軌跡に連続する他の移動軌跡が属するクラスと同一のクラスに分類する。
なお、移動体検出部204Bは、実施の形態1に示した処理に加えて、移動軌跡リカバリ部1702により分類された移動軌跡を含めて同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する。
つまり、移動軌跡リカバリ部1702は、移動体検出部204Bにおいて、同一のクラスと判定された時間的に隣接する画像サブセット間のサブクラスペアから、移動軌跡算出部202において、遮蔽等の影響により動き検出ができずにF枚分算出できなかった移動軌跡に対して、前記同一クラスと判定されたサブクラスペアと同一のラベルを付与する。そして、リカバリ用移動軌跡保持部1701は、移動軌跡リカバリ部1702の処理で用いられるF枚分算出できなかった時間的に短い移動軌跡を保持しておく。これにより、移動体検出部204Bは、より多い数の移動軌跡に対してラベルを付与する事で、移動体をより正確に検出・抽出するものである。通常、移動軌跡の類似度もしくは距離を計算する場合、ベクトルの長さが同一である必要がある。一方、本実施の形態では、移動軌跡のベクトルの要素数が一定値に満たない移動軌跡に対しては、類似度の計算を行わず、代わりに移動体検出部204Bの処理により得られたクラス情報を用いることでラベル付けする。これにより、より多い本数の移動軌跡を用いて移動体の検出および抽出を行うものである。
以下、本実施の形態4の移動体検出装置200cの動作を、図19を用いて説明する。ステップS401、S403、S404については、実施の形態1と同様であるため、説明を省略する。
移動軌跡算出ステップS402cにおいて、実施の形態1から3で説明したように、移動軌跡算出部202は、式1に示すような移動軌跡を算出する。ここで、画像サブセットに含まれるF枚の画像について、遮蔽等の理由により移動軌跡が算出できない場合がある。このような場合を考慮して、F枚に満たない移動軌跡については、リカバリ用移動軌跡保持部1701にリカバリ用移動軌跡として別途保持しておく。また、実施の形態1から3においては、移動軌跡を時刻(t+1)から時刻(t+F)のように順方向に算出する例について説明したが、ここでは、別途、時刻(t+F)から時刻(t+1)に向かって逆方向に移動軌跡を算出することが望ましい。
次に、移動軌跡リカバリステップS1801において、移動軌跡リカバリ部1702は、ラベル伝播・更新ステップS404で同一のクラスとして統合された時間的に異なる画像サブセットから算出したサブクラスの情報から、リカバリ用移動軌跡保持部1701に保持された前記リカバリ用移動軌跡に対してクラスラベル情報を付与する。なお、移動体検出部204Bは、移動軌跡リカバリ部1702により分類された移動軌跡を含めて同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する。
図20に、3つの画像サブセットを用いて、リカバリ用移動軌跡にクラスラベル情報を付与する例を示す。ここでは、画像サブセットは2つ以上あればよく、画像サブセットの数を限定するものではない。ラベル伝播・更新ステップS404により、異なる画像サブセット間のサブクラスが同一のクラスか否かが判定される。図中では、同一のテクスチャを持つクラスが同一のクラスである。ここで、図20中央の画像サブセットに対して、移動軌跡リカバリ部1702は、移動軌跡算出ステップS402cで算出したリカバリ用移動軌跡に新たにクラスラベルを付与する。ここでは、図20の破線で示した移動軌跡がリカバリ用移動軌跡であり、それに対して、クラスθ、クラスθのクラスラベルをそれぞれ付与する。すなわち、当該画像サブセットに対して、一時刻前の画像サブセットで得られた移動軌跡と接続しているリカバリ用移動軌跡に対して、一時刻前の画像サブセットで得られたクラスラベル(図中ではクラスラベルθ、θ)を付与する。もちろん、クラスラベル数を限定するものではない。例えば、リカバリ用移動軌跡1901については、一時刻前の画像サブセットで得られたクラスラベルθのクラスの移動軌跡と接続されている。このため、リカバリ用移動軌跡1901にはクラスラベルθが付与される。
同様に、当該画像サブセットに対して、一時刻後の画像サブセットで得られた移動軌跡と接続しているリカバリ用移動軌跡に対して、一時刻後の画像サブセットで得られたクラスラベルを付与する。例えば、リカバリ用移動軌跡1902については、一時刻後の画像サブセットで得られたクラスラベルθのクラスの移動軌跡と接続されている。このため、リカバリ用移動軌跡1902にはクラスラベルθが付与される。
このように、F枚に満たない移動軌跡に対してラベル付けを行うことができるのは、時間的に前後の画像サブセットから得られたクラスラベルと当該画像サブセットから得られたクラスラベルとが時間的にコヒーレンシーを保つようにラベル伝播・更新ステップS404によりラベル付けされているためである。以上のようにして、実施の形態1から3と比較して、より高密度に移動軌跡にラベル付けを行うことができるため、結果として、より正確に移動体を検出、抽出することができる。さらには、移動体をより精度よく抜出すことができるという効果もある。
次に、画像出力ステップS405cでは、出力部205は、移動軌跡リカバリステップS1801で行った動画像中の移動体の検出結果を含めて出力する。具体的には、画像入力ステップS401で受け付けた動画像に対して、例えば、ラベル伝播・更新ステップS404と移動軌跡リカバリステップS1801で検出された移動体領域ごとに異なる表示態様となるように、画像処理を施し、画像処理が施された画像を、ディスプレイ装置等に出力する。これにより、それぞれの移動体を区別しながら、かつ時間的にコヒーレンシーを保った表示を行うことができる。
以上のように、カメラの撮影位置の問題によって起こる遮蔽の問題を解決しながら、1つの移動体が複数に分割される誤検出の課題を解決し、遮蔽の起こりやすい環境下においても適切に移動体を検出、抽出可能となる。さらに、遮蔽の起こりやすい環境下では、長時間の移動軌跡を算出することが難しいため、上記のように短い移動軌跡に対してもラベル付けを行うことで、より高精度な移動体の検出が可能になる。
よって、デジタルビデオカメラ等の動画像撮影装置が普及してきた今日において、デジタルカメラの焦点制御や画質改善処理、自動車の安全運転支援システム、ロボットにおける人との衝突回避制御や警報などへの応用技術として、本発明の実用価値は極めて高い。
(実施の形態1から4の第1変形例)
次に、本発明の実施の形態1から4の第1変形例における移動体検出装置について説明する。ここでは、実施の形態1から4においてクラス判定を行い、移動体を検出した結果をそれぞれ検出した領域ごとに記録・送信する機能を付加した例について説明する。ここでは、実施の形態1における変形例について述べるが、実施の形態2〜4においても同様に適用可能である。このような第1変形例に係る移動体検出装置200eは、図21に示すように、画像入力部201、移動軌跡算出部202、サブクラスラベル付与部203、ラベル伝播部204Aおよび移動体検出部204Bに、記録・送信部2001を付加することによって実現が可能である。
なお、サブクラスラベル付与部203は、図2に示したサブクラス分類部213に含まれるが、本図ではサブクラス分類部213の記載を省略する。また、ラベル伝播部204Aは、図2に示したサブクラス間類似度計算部214Aに含まれるが、本図ではサブクラス間類似度計算部214Aの記載を省略する。
記録・送信部2001は、移動体検出部204Bによる移動体の検出結果を、記録装置に書き込む、または、伝送路を介して外部に送信する。つまり、記録・送信部2001は、移動体検出部204Bでの移動体検出の結果に基づいて、画像入力部201で受け付けたピクチャにおける移動体領域を特定し、特定した移動体領域ごとに移動体領域を示す情報を、メモリやハードディスク等の記録媒体に記録する、又は、通信インターフェース等を介して外部に送信する処理部である。つまり、この記録・送信部2001は、画像表示の場合と同様に、移動体を検出した結果画像を示す情報をクラスラベルθに応じてそれぞれ別々に記録または送信する。また、各クラスに属する動き情報を以下のように平均化することで、動き情報を圧縮することも可能である。通常であれば画素ごとに動き情報を保持する必要があるが、以下の処理を行えば1つの移動体に対して1つの動きを保持するだけでよい。例えば、動き情報として画素iの動きベクトル(u ,v )を用いた場合には、以下のように分割された領域ごとに平均化した動き情報を計算することができる。
Figure 0005102410
Figure 0005102410
ここで、Cは、クラスθに属する移動軌跡の数である。u Cm、v Cmは、それぞれ、クラスθに属する画素の動きベクトルのx成分およびy成分である。図22に本変形例における処理結果の1つとして、時刻tからT枚の画像を入力としてクラス分類を行い、その結果を用いて移動体の抽出領域を記録、送信する例を示す。識別子として各クラスラベルθと、各クラスラベルθに属する時刻tにおけるピクチャの画素位置と画素値、そして、各クラスラベルθに対応する時刻tから時刻(t+T)までの動きベクトルu ,v ,ut+1 ,vt+1 ,...,ut+T ,vt+T を記録、送信する。もちろん、画像の画素位置と画素値を用いる代わりに、時刻tにおける1枚のピクチャに対して、画素ごとに各クラスラベルを付けて送信してもかまわない。これにより、動き情報をクラス数分送信するだけで済むために、ピクチャをT枚送信する場合と比べて、効率よく移動体の検出結果を記録、送信することができるといった効果がある。特には、クラス数が画素数に比べて少なければ少ないほど効率がよい。
(実施の形態1から4の第2変形例)
次に、実施の形態1から4の第2変形例として、移動体を検出した結果から、移動体の動きを予測する機能を付加した移動体検出装置について説明する。ここでは、実施の形態1に沿って説明するが、実施の形態2〜4においても同様に実現可能である。
図23に示すように、本実施の形態における移動体検出装置200fは、画像入力部201、移動軌跡算出部202、サブクラスラベル付与部203、ラベル伝播部204Aおよび移動体検出部204Bに、動き予測部2201および出力部2202を付加することによって移動体の動きを予測する機能を有する。
なお、サブクラスラベル付与部203は、図2に示したサブクラス分類部213に含まれるが、本図ではサブクラス分類部213の記載を省略する。また、ラベル伝播部204Aは、図2に示したサブクラス間類似度計算部214Aに含まれるが、本図ではサブクラス間類似度計算部214Aの記載を省略する。
動き予測部2201は、移動体を検出した結果から、各クラスに含まれる画素の移動軌跡から代表移動軌跡を算出し、前記代表移動軌跡をもとに移動体の動きを予測する。つまり、動き予測部2201は、移動体検出部204Bにより特定されたクラスを構成する移動軌跡のうち、当該クラスを代表する代表移動軌跡を算出し、算出した前記代表移動軌跡に従って、当該クラスに対応する移動体の領域が、ピクチャ間で移動すると予測することにより、移動体の動きを予測する。
図24に本変形例による処理のフローチャートを示す。ステップS401からS404までは、実施の形態1と同様であるため説明を省略する。
次に、ステップS2301では、動き予測部2201は、移動体検出部204Bでの移動体検出の結果に基づいて、各クラスに属する移動軌跡から、各クラスの代表点及びその代表移動軌跡を求める。
ここで、クラスθに属する画素の移動軌跡をxCmと表現することとする。次式のように、クラスθごとに代表の移動軌跡を求める。ここでは、代表の移動軌跡として、平均移動軌跡を算出する例について説明するが、下記の計算に対して移動軌跡xCmごとに重み付け等を行ってもよいし、画像上でのクラスの重心に対応する画素の移動軌跡を代表の移動軌跡としてもよい。
Figure 0005102410
ここで、Cは、クラスθに属する画素数もしくは画素の移動軌跡の数である。
図25に、式19に基づいてクラスθごとに代表の移動軌跡を求める例を示す。図25には、ある移動体に対応するクラスθと他の移動体に対応するクラスθとにそれぞれ関する代表の移動軌跡のみを示している。図中の「×」は、それぞれ時刻tに対応する代表移動軌跡
Figure 0005102410
の要素である画素位置を示している。この方法によると、単純に近接した画素の移動軌跡の時間平均を求めるような方法と比較して、動きが類似した画素の移動軌跡のみを用いて代表の移動軌跡を算出することができる。このため、より高精度に代表の移動軌跡を求めることができる。このように、クラスごとに代表の移動軌跡を求めることによって、移動体ごと、もしくは部位ごとの動きを正確かつ簡便に表現することができる。
次に、ステップS2302では、動き予測部2201が、ステップS2301にて算出した代表の移動軌跡から、時刻Tより先の時刻における移動体の位置を予測する。初めに、代表の移動軌跡から加速度を算出し、時刻(T+1)以降の移動体の位置を予測する例について説明する。3枚以上の時系列画像が入力された場合は、次式20のように代表の移動軌跡
Figure 0005102410
ごとに加速度ベクトルsを得ることができる。
Figure 0005102410
ここで、u は、時刻tにおける画素mの動きベクトルであり、次式21のように表すことができる。
Figure 0005102410
式20の加速度ベクトルを用いて、図25にて破線の矢印及び「○」で示したように、動き予測部2201は、移動体ごとに、時刻(T+t’)における移動体の位置pos(T+t’)を以下の式22に従って予測することができる。
Figure 0005102410
そして、出力部2202は、ステップS2301で予測した移動体の位置や移動体部位の位置を出力する。これにより、加速度を加味した動き予測が可能となる。動きが急激に早くなったり、急激に止まったりといった場合に、その加速度を反映して移動体の位置を予測することができるといった効果がある。また、動きベクトルの代わりにアフィンパラメータを用いてもかまわない。アフィンパラメータは、回転運動を含む動きの表現が可能であり、腕あるいは足の回旋運動の表現に適しているため、特に関節物体の位置をより正確に予測することができる。
さらに、上述した動きベクトルと加速度の代わりに、代表の移動軌跡xに対して直接、N次関数をフィッティングすることも可能である。T枚の時系列に並んだ画像を入力とした場合、代表の移動軌跡
Figure 0005102410
に含まれるT個の画像上での位置情報に対してN次関数をフィッティングすることができる。これにより、フィッティングした関数の値に沿うように、時刻(T+t’)における画像上での位置pos(T+t’)を推定することが可能となる。具体的には、関数をフィッティングすることによって、より滑らかな動きを表現することが可能となるため、より高精度な動き予測が可能となる。特には、フィッティングした関数に沿った動き予測が可能であるため、フィッティングした関数が本来の動きに近い場合に動き予測の精度が高い。もちろん、これらの画像上での位置予測は、時間的内挿にも利用可能である。
以上のように、本変形例によれば、動きが類似した画素の移動軌跡を同一のクラスとして算出できるため、高精度に代表の移動軌跡を求めることができる。
以上、本発明に係る移動体検出方法及び移動体検出装置について、実施の形態及びその変形例に基づいて説明したが、本発明は、これらの実施の形態及び変形例に限定されるものではない。当業者が思いつく各種変形を、本発明の趣旨を逸脱しない範囲で各実施の形態に施して実現される形態も本発明に含まれる。
また、各実施の形態における特徴的な構成要素を任意に組合せて実現される形態も本発明に含まれる。
また、上記実施の形態における移動体検出装置は、画像入力部201及び移動軌跡算出部202を備えているが、本発明は、これらの構成要素を必須とするものではない。つまり、動画像を構成する複数のブロックのそれぞれにおける画像の移動軌跡が予め算出されている場合には、移動体検出装置200は、外部から、そのような移動軌跡を取得し、取得した移動軌跡に対して、ステップS403、S404の処理を実行してもよい。
また、上記実施の形態における移動体検出装置は、出力部205または205aを備えているが、本発明は、出力部を必須とするものではない。つまり、移動体の検出結果をディスプレイ等に表示せずに、他の処理に利用するものであっても良い。
また、本発明は、移動体検出装置として実現されたが、動画像において動きをもつオブジェクトの領域を抽出、あるいは、分割する画像処理装置として実現することができるのは言うまでもない。
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、図3に示したようなCPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の移動体検出装置などを実現するソフトウェアは、次のようなプログラムである。
すなわち、このプログラムは、コンピュータに、移動体検出方法に含まれる全てのステップを実行させる。この移動体検出方法は、動画像中の移動体の全部または一部の領域を特定する領域分割を実行することによって動画像中の移動体を検出する移動体検出方法であって、動画像を構成する少なくとも3枚のピクチャからなる複数枚のピクチャを受け付けるステップと、前記複数枚のピクチャから、少なくとも2枚のピクチャから構成される画像サブセットを複数抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出するステップと、画像サブセットごとに、当該画像サブセットに含まれる、算出された複数の移動軌跡をサブクラスに分類するステップと、任意の2つのサブクラスの間で、同一の移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合に基づいて、サブクラス間の類似度を計算するステップと、計算されたサブクラス間の類似度がより高いサブクラスの集まりほど、より同一のクラスに分類されるように、サブクラスをクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出するステップとを含む。
本発明は、複数枚のピクチャにおける動きに基づいて、形状が変化しながら移動する人物等の移動体を含む画像を領域抽出することによって画像中の移動体を検出する移動体検出装置として、例えば、運動解析装置、監視装置、ビデオカメラやTV等のAV機器に内蔵させる移動体検出装置等として利用することが可能である。
200、200a、200b、200c、200e、200f 移動体検出装置
201 画像入力部
202 移動軌跡算出部
203、203a、203b、203d、203e、203f サブクラスラベル付与部
204A ラベル伝播部
204B 移動体検出部
205、2202 出力部
213 サブクラス分類部
214A サブクラス間類似度計算部
301 カメラ
302 コンピュータ
303 ディスプレイ
304 I/F
305 CPU
306 ROM
307 RAM
308 HDD
309 ビデオカード
501 入力画像
502 画像サブセット
503 動き情報
504、1402 画素i
1401 線形距離
1403 画素j
1404 画素k
1502 高次元空間
1701 リカバリ用移動軌跡保持部
1702 移動軌跡リカバリ部
1901、1902 リカバリ用移動軌跡
2001 記録・送信部
2201 動き予測部

Claims (16)

  1. 動画像中の移動体の全部または一部の領域を特定する領域分割を実行することによって動画像中の移動体を検出する移動体検出装置であって、
    動画像を構成する少なくとも3枚のピクチャからなる複数枚のピクチャを受け付ける画像入力部と、
    前記複数枚のピクチャから、少なくとも2枚のピクチャから構成される画像サブセットを複数抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出する移動軌跡算出部と、
    画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡をサブクラスに分類するサブクラス分類部と、
    任意の2つのサブクラスの間で、同一の移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合に基づいて、サブクラス間の類似度を計算するサブクラス間類似度計算部と、
    前記サブクラス間類似度計算部が計算したサブクラス間の類似度がより高いサブクラスの集まりほど、より同一のクラスに分類されるように、サブクラスをクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する移動体検出部と
    を備える移動体検出装置。
  2. 前記サブクラス分類部は、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与するサブクラスラベル付与部を含み、
    前記サブクラス間類似度計算部は、すべてのサブクラスの中から任意に選択される第1及び第2のサブクラスの間で、同一のブロックの動きを示す移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合がより高いほど前記第1及び第2のサブクラスに同一のサブクラスラベルをより再付与することで、サブクラスラベルをサブクラス間で伝播するラベル伝播部を含み、
    前記移動体検出部は、同一のサブクラスラベルが付与されたサブクラスの集まりを同一のクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する
    請求項1記載の移動体検出装置。
  3. 前記移動軌跡算出部は、時間的に隣接する画像サブセット間で一部のピクチャが重なるように、前記複数枚のピクチャから、複数の画像サブセットを抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出し、
    前記ラベル伝播部は、前記第1及び第2のサブクラス間で共有するピクチャにおいて同一の位置を通る移動軌跡の前記第1及び第2のサブクラスに含まれる移動軌跡に対する割合がより大きいほど、前記第1及び第2のサブクラスの間の移動軌跡の共有割合がより高いと判断し、前記移動軌跡の共有割合がより高いほど前記第1及び第2のサブクラスに同一のサブクラスラベルをより再付与することで、サブクラスラベルをサブクラス間で伝播する
    請求項2記載の移動体検出装置。
  4. 前記ラベル伝播部は、さらに、サブクラスに含まれる移動軌跡の数または当該サブクラスに含まれる移動軌跡が構成する空間的な大きさに対応する値であるサブクラスの信頼度がより大きいサブクラスほど前記サブクラスラベル付与部が付与したサブクラスラベルと同一のサブクラスラベルをより再付与することで、サブクラスラベルをサブクラス間で伝播する
    請求項2または3記載の移動体検出装置。
  5. さらに、前記移動軌跡算出部で算出された移動軌跡のうち、画像サブセットを構成するピクチャの枚数よりも少ないピクチャの枚数でしか算出することができなかった移動軌跡を保持する保持部と、
    前記保持部に保持されている移動軌跡を、当該移動軌跡に連続する他の移動軌跡が属するクラスと同一のクラスに分類する移動軌跡リカバリ部とを備え、
    前記移動体検出部は、さらに、前記移動軌跡リカバリ部により分類された移動軌跡を含めて同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出する
    請求項2〜4のいずれか1項に記載の移動体検出装置。
  6. 前記サブクラスラベル付与部は、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡のうち類似する移動軌跡を同一のサブクラスに分類することにより、前記複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与する
    請求項2〜5のいずれか1項に記載の移動体検出装置。
  7. 前記サブクラスラベル付与部は、画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡のうち最も類似する移動軌跡の組み合わせを同一のサブクラスに分類する処理を、規定回数または前記複数の移動軌跡が規定のサブクラス数に分類されるまで繰り返し実行することによって、前記複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与する
    請求項6記載の移動体検出装置。
  8. 前記サブクラスラベル付与部は、(a)前記移動軌跡算出部で算出された複数の移動軌跡について、移動軌跡間の類似性を表す距離を算出し、(b)算出された距離のうち、予め定められた閾値よりも小さい距離を連結することで、前記算出された距離を測地距離に変換し、(c)画像サブセットごとに、当該画像サブセットに含まれる前記移動軌跡算出部で算出された複数の移動軌跡のうち、任意の2つの移動軌跡について、それ以外の移動軌跡を中継点として前記2つの移動軌跡の一方から他方にたどりつく経路の距離である測地距離を算出し、得られた測地距離の分布における不連続点を検出し、検出した不連続点よりも小さい測地距離だけ離れた移動軌跡を一つのクラスタとすることによって同一のサブクラスに分類する処理を行うことによって、前記複数の移動軌跡をサブクラスに分類し、各移動軌跡に当該移動軌跡が分類されたサブクラスの識別子であるサブクラスラベルを付与する
    請求項6記載の移動体検出装置。
  9. 前記サブクラスラベル付与部は、画像サブセットごとに、当該画像サブセットに含まれる少なくとも一枚の画像から、エッジ、色、輝度の少なくとも一つを用いて、画像を複数の領域に分割しサブクラスを生成し、分割した領域を通る移動軌跡に対して、それぞれサブクラスラベルを付与する
    請求項2〜5のいずれか1項に記載の移動体検出装置。
  10. さらに、
    前記画像入力部において受け付けられた前記複数枚のピクチャのうちの少なくとも1枚のピクチャに対して、前記移動体検出部で同一のクラスに分類された移動体領域ごとに、他の移動体領域と異なる表示態様となるように画像処理を施し、画像処理が施されたピクチャを出力する出力部を備える
    請求項2〜9のいずれか1項に記載の移動体検出装置。
  11. さらに、
    前記移動体検出部による移動体の検出結果を、記録装置に書き込む、または、伝送路を介して外部に送信する記録・送信部を備える
    請求項2〜9のいずれか1項に記載の移動体検出装置。
  12. さらに、
    前記移動体検出部により特定されたクラスを構成する移動軌跡のうち、当該クラスを代表する代表移動軌跡を算出し、算出した前記代表移動軌跡に従って、当該クラスに対応する移動体の領域が、ピクチャ間で移動すると予測することにより、前記移動体の動きを予測する動き予測部を備える
    請求項2〜9のいずれか1項に記載の移動体検出装置。
  13. 前記サブクラス間類似度計算部は、サブクラス間の移動軌跡の共有割合を要素とする行列Wに、サブクラス間の類似度を要素とする行列Zを繰返し掛け合わせることにより、サブクラス間の類似度を要素とする行列Zを更新することで、サブクラス間の類似度を計算する
    請求項1記載の移動体検出装置。
  14. 前記サブクラス間類似度計算部は、さらに、更新後の行列Zに、サブクラスに含まれる移動軌跡の数または当該サブクラスに含まれる移動軌跡が構成する空間的な大きさに対応する値であるサブクラスの信頼度を要素とする行列Yを重み付け加算することで、サブクラス間の類似度を計算する
    請求項13記載の移動体検出装置。
  15. 動画像中の移動体の全部または一部の領域を特定する領域分割を実行することによって動画像中の移動体を検出する移動体検出方法であって、
    動画像を構成する少なくとも3枚のピクチャからなる複数枚のピクチャを受け付けるステップと、
    前記複数枚のピクチャから、少なくとも2枚のピクチャから構成される画像サブセットを複数抜き出し、画像サブセットごとに当該画像サブセットに含まれるピクチャ間で、ピクチャを構成する1個以上の画素からなるブロックの動きの軌跡である移動軌跡を複数算出するステップと、
    画像サブセットごとに、当該画像サブセットに含まれる、算出された複数の移動軌跡をサブクラスに分類するステップと、
    任意の2つのサブクラスの間で、同一の移動軌跡を共有している程度を示す移動軌跡の共有割合を算出し、前記共有割合に基づいて、サブクラス間の類似度を計算するステップと、
    計算されたサブクラス間の類似度がより高いサブクラスの集まりほど、より同一のクラスに分類されるように、サブクラスをクラスに分類することにより、同一のクラスに含まれる移動軌跡に対応するブロック同士を移動体の領域として特定することによって動画像中の移動体を検出するステップと
    を含む移動体検出方法。
  16. 請求項15に記載の移動体検出方法に含まれる全てのステップをコンピュータに実行させるためのプログラム。
JP2012530450A 2011-03-22 2012-03-13 移動体検出装置および移動体検出方法 Active JP5102410B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012530450A JP5102410B2 (ja) 2011-03-22 2012-03-13 移動体検出装置および移動体検出方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011063297 2011-03-22
JP2011063297 2011-03-22
JP2012530450A JP5102410B2 (ja) 2011-03-22 2012-03-13 移動体検出装置および移動体検出方法
PCT/JP2012/001731 WO2012127815A1 (ja) 2011-03-22 2012-03-13 移動体検出装置および移動体検出方法

Publications (2)

Publication Number Publication Date
JP5102410B2 true JP5102410B2 (ja) 2012-12-19
JPWO2012127815A1 JPWO2012127815A1 (ja) 2014-07-24

Family

ID=46878995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530450A Active JP5102410B2 (ja) 2011-03-22 2012-03-13 移動体検出装置および移動体検出方法

Country Status (4)

Country Link
US (1) US8605946B2 (ja)
JP (1) JP5102410B2 (ja)
CN (1) CN103189898B (ja)
WO (1) WO2012127815A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007680A (ja) * 2012-06-27 2014-01-16 Xacti Corp 画像生成装置
US20140126779A1 (en) * 2012-11-03 2014-05-08 Greg Duda System for license plate identification in low-quality video
JP2014186547A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 移動物体追跡システム、方法及びプログラム
JP6098320B2 (ja) * 2013-04-15 2017-03-22 オムロン株式会社 画像処理装置、画像処理方法、および画像処理プログラム
JP6276519B2 (ja) * 2013-05-22 2018-02-07 株式会社 日立産業制御ソリューションズ 人数計測装置および人物動線解析装置
FR3006799B1 (fr) 2013-06-10 2016-10-21 Renault Sa Procede et systeme correspondant de suivi d'objets en mouvement
US9213901B2 (en) * 2013-09-04 2015-12-15 Xerox Corporation Robust and computationally efficient video-based object tracking in regularized motion environments
US20150222646A1 (en) 2014-01-31 2015-08-06 Crowdstrike, Inc. Tagging Security-Relevant System Objects
WO2015122163A1 (ja) * 2014-02-14 2015-08-20 日本電気株式会社 映像処理システム
US10482658B2 (en) * 2014-03-31 2019-11-19 Gary Stephen Shuster Visualization and control of remote objects
JP6526953B2 (ja) * 2014-09-12 2019-06-05 株式会社日立国際電気 物体識別方法
US9836635B2 (en) * 2014-10-09 2017-12-05 Cognex Corporation Systems and methods for tracking optical codes
US11501244B1 (en) 2015-04-06 2022-11-15 Position Imaging, Inc. Package tracking systems and methods
US10853757B1 (en) 2015-04-06 2020-12-01 Position Imaging, Inc. Video for real-time confirmation in package tracking systems
US10148918B1 (en) 2015-04-06 2018-12-04 Position Imaging, Inc. Modular shelving systems for package tracking
US11416805B1 (en) 2015-04-06 2022-08-16 Position Imaging, Inc. Light-based guidance for package tracking systems
WO2017123920A1 (en) 2016-01-14 2017-07-20 RetailNext, Inc. Detecting, tracking and counting objects in videos
US11436553B2 (en) 2016-09-08 2022-09-06 Position Imaging, Inc. System and method of object tracking using weight confirmation
CN106548302B (zh) * 2016-12-01 2020-08-14 携程旅游信息技术(上海)有限公司 互联网交易的风险识别方法及***
US10634506B2 (en) 2016-12-12 2020-04-28 Position Imaging, Inc. System and method of personalized navigation inside a business enterprise
US10634503B2 (en) * 2016-12-12 2020-04-28 Position Imaging, Inc. System and method of personalized navigation inside a business enterprise
US11120392B2 (en) 2017-01-06 2021-09-14 Position Imaging, Inc. System and method of calibrating a directional light source relative to a camera's field of view
US10234864B2 (en) 2017-03-07 2019-03-19 nuTonomy Inc. Planning for unknown objects by an autonomous vehicle
US10095234B2 (en) 2017-03-07 2018-10-09 nuTonomy Inc. Planning for unknown objects by an autonomous vehicle
US10281920B2 (en) * 2017-03-07 2019-05-07 nuTonomy Inc. Planning for unknown objects by an autonomous vehicle
US10114375B1 (en) * 2017-04-06 2018-10-30 Delphi Technologies, Inc. Motion-characteristic based object classification for automated vehicle
US10706561B2 (en) * 2017-12-21 2020-07-07 612 Authentic Media Systems and methods to track objects in video
US10891741B2 (en) * 2017-12-29 2021-01-12 RetailNext, Inc. Human analytics using fusion of image and depth modalities
JP6898883B2 (ja) * 2018-04-16 2021-07-07 Kddi株式会社 接続装置、接続方法及び接続プログラム
CA3111595A1 (en) 2018-09-21 2020-03-26 Position Imaging, Inc. Machine-learning-assisted self-improving object-identification system and method
WO2020146861A1 (en) 2019-01-11 2020-07-16 Position Imaging, Inc. Computer-vision-based object tracking and guidance module
US10817733B2 (en) * 2019-02-13 2020-10-27 Sap Se Blind spot implementation in neural networks
KR20210112672A (ko) 2020-03-05 2021-09-15 삼성전자주식회사 객체를 검출하기 위한 프로세서 및 객체 검출 방법
CN111860189B (zh) * 2020-06-24 2024-01-19 北京环境特性研究所 一种目标跟踪方法和装置
KR102396830B1 (ko) * 2020-10-16 2022-05-11 한양대학교 산학협력단 이동체 판단 장치 및 그 판단 방법
WO2022113273A1 (ja) * 2020-11-27 2022-06-02 日本電信電話株式会社 時系列データ分析装置、時系列データ分析方法、及び時系列データ分析プログラム
US11733054B2 (en) 2020-12-11 2023-08-22 Motional Ad Llc Systems and methods for implementing occlusion representations over road features
US11954916B2 (en) * 2022-02-07 2024-04-09 GM Global Technology Operations LLC Systems and methods for classifying detected objects in an image at an automated driving system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373075A (ja) * 1989-08-14 1991-03-28 Nippon Telegr & Teleph Corp <Ntt> 移動物体検出装置
JPH1050110A (ja) * 1996-07-31 1998-02-20 Ichikoh Ind Ltd 車両用灯具
JPH1079556A (ja) * 1996-09-04 1998-03-24 Akihiko Yoshikawa 発光素子用電極
JPH1166319A (ja) * 1997-08-21 1999-03-09 Omron Corp 移動体検出方法及び装置並びに移動体認識方法及び装置並びに人間検出方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678394B1 (en) * 1999-11-30 2004-01-13 Cognex Technology And Investment Corporation Obstacle detection system
EP2250624B1 (en) * 2008-03-14 2011-12-21 Panasonic Corporation Image processing method and image processing apparatus
US8340357B2 (en) 2008-10-27 2012-12-25 Panasonic Corporation Moving object detection method and moving object detection apparatus
JP4542207B1 (ja) 2009-01-09 2010-09-08 パナソニック株式会社 移動体検出方法および移動体検出装置
WO2011080923A1 (ja) 2009-12-28 2011-07-07 パナソニック株式会社 関節状領域検出装置およびその方法
WO2011080900A1 (ja) 2009-12-28 2011-07-07 パナソニック株式会社 移動体検出装置および移動体検出方法
CN101866429B (zh) * 2010-06-01 2012-09-05 中国科学院计算技术研究所 多运动目标动作行为识别的训练方法和识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373075A (ja) * 1989-08-14 1991-03-28 Nippon Telegr & Teleph Corp <Ntt> 移動物体検出装置
JPH1050110A (ja) * 1996-07-31 1998-02-20 Ichikoh Ind Ltd 車両用灯具
JPH1079556A (ja) * 1996-09-04 1998-03-24 Akihiko Yoshikawa 発光素子用電極
JPH1166319A (ja) * 1997-08-21 1999-03-09 Omron Corp 移動体検出方法及び装置並びに移動体認識方法及び装置並びに人間検出方法及び装置

Also Published As

Publication number Publication date
WO2012127815A1 (ja) 2012-09-27
US20130051624A1 (en) 2013-02-28
JPWO2012127815A1 (ja) 2014-07-24
CN103189898A (zh) 2013-07-03
CN103189898B (zh) 2016-01-20
US8605946B2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
JP5102410B2 (ja) 移動体検出装置および移動体検出方法
US8599252B2 (en) Moving object detection apparatus and moving object detection method
JP4782901B2 (ja) 移動体検出装置および移動体検出方法
Rout A survey on object detection and tracking algorithms
US8243987B2 (en) Object tracking using color histogram and object size
EP2548174B1 (en) Method and apparatus for trajectory estimation, and method for segmentation
JP2022166067A (ja) 情報処理システム、情報処理方法及びプログラム
CN107851318A (zh) 用于对象跟踪的***和方法
JP2016099941A (ja) オブジェクト位置推定システム、及びそのプログラム
KR101839827B1 (ko) 원거리 동적 객체에 대한 얼굴 특징정보(연령, 성별, 착용된 도구, 얼굴안면식별)의 인식 기법이 적용된 지능형 감시시스템
Ferryman et al. Performance evaluation of crowd image analysis using the PETS2009 dataset
Santoro et al. Crowd analysis by using optical flow and density based clustering
Sengar et al. Motion detection using block based bi-directional optical flow method
Jiang et al. Multiple pedestrian tracking using colour and motion models
AU2015203666A1 (en) Methods and systems for controlling a camera to perform a task
CN113396423A (zh) 处理来自基于事件的传感器的信息的方法
JP2016143335A (ja) グループ対応付け装置、グループ対応付け方法及びグループ対応付け用コンピュータプログラム
JP6708368B2 (ja) 変形可能部分モデルを使用した車両追跡における部分的隠蔽処理方法及びシステム
JP7488674B2 (ja) 物体認識装置、物体認識方法及び物体認識プログラム
CN111027482B (zh) 基于运动向量分段分析的行为分析方法及装置
Nguyen et al. 3d pedestrian tracking using local structure constraints
Rougier et al. 3D head trajectory using a single camera
CN113763418B (zh) 一种基于头肩检测的多目标跟踪方法
Thangaraj et al. A competent frame work for efficient object detection, tracking and classification
JP3763279B2 (ja) 物体抽出システム、物体抽出方法および物体抽出プログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150