JP5102089B2 - 気体圧制御型微小振動制御装置 - Google Patents

気体圧制御型微小振動制御装置 Download PDF

Info

Publication number
JP5102089B2
JP5102089B2 JP2008101153A JP2008101153A JP5102089B2 JP 5102089 B2 JP5102089 B2 JP 5102089B2 JP 2008101153 A JP2008101153 A JP 2008101153A JP 2008101153 A JP2008101153 A JP 2008101153A JP 5102089 B2 JP5102089 B2 JP 5102089B2
Authority
JP
Japan
Prior art keywords
gas
gas pressure
gap
flat plate
objective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008101153A
Other languages
English (en)
Other versions
JP2009250390A (ja
Inventor
勝美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PNEUMATIC SERVO CONTROLS Ltd
Original Assignee
PNEUMATIC SERVO CONTROLS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PNEUMATIC SERVO CONTROLS Ltd filed Critical PNEUMATIC SERVO CONTROLS Ltd
Priority to JP2008101153A priority Critical patent/JP5102089B2/ja
Publication of JP2009250390A publication Critical patent/JP2009250390A/ja
Application granted granted Critical
Publication of JP5102089B2 publication Critical patent/JP5102089B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は気体圧制御型微小振動制御装置に係り、特に、気体圧の制御によって支持対象物を微小振動させる気体圧制御型微小振動制御装置に関する。
流体圧を用いるアクチュエータは、ピストンとシリンダーの機構で代表されるように、よく知られている。流体圧アクチュエータは、流体圧サーボ機構を用い、流体圧を制御することで移動体を駆動することができる。特に、空気等の気体を用いる気体圧制御アクチュエータは、油圧を用いるものに比べてコンタミネーションの問題が少ないので、扱いやすい位置決め装置として期待されている。
特許文献1には、気体軸受機構のバネ定数が高いことに着目し、気体軸受の隙間をそこに供給する気体圧の制御により変化させ、この隙間の変化を対象物の微小移動に用い、応答性の良い微小移動機構を実現する構成が示されている。ここでは、適当な押付力が与えられている可動子を移動方向に案内する案内部があり、案内部の底面である気体受壁に設けられる開口から、可動子の気体受面へ向かって制御された気体圧を有する気体が供給され、可動子が気体受壁から浮上し、押付力と釣り合いつつ隙間を形成し、この隙間量を供給気体圧によって制御することで、可動子が微小移動される。また、可動子を複数個、軸方向に配置し、隣接する可動子の間の隙間にそれぞれ制御された気体圧を供給することで、微小移動の範囲を隙間の数に応じて拡大できることも述べられている。
上記特許文献1に開示される構成を発展させて、板厚の薄い可動子を複数個、軸方向に配置し、隣接する可動子の間の隙間にそれぞれ制御された気体圧を供給することで、全体として小型で、微小移動の移動範囲が広い気体圧制御アクチュエータを構成することができる。
特開2005−268293号公報
このように、特許文献1では、気体軸受機構のバネ定数が高いことを利用して、気体圧によって押付力と釣り合わせて気体の流れる隙間量を制御することができる。この隙間量を変化させることで加速度を生成すれば、微小振動を気体圧で制御できそうである。微小振動を制御できれば、除振装置等に広く利用できる可能性がある。
しかしながら、気体隙間のバネ定数、すなわち気体圧変化に対する隙間量の変化に関する気体軸受剛性が高いと、これにつれて気体隙間の減衰特性も高く、隙間量の時間微分量である速度、隙間量の2階時間微分量である加速度を精度よく制御できない。
すなわち、特許文献1の構成では、気体隙間量の2階時間微分量である加速度、あるいは推力を精度よく制御することができない。
本発明の目的は、気体圧制御によって支持対象物を微小振動させることができる気体圧制御型微小振動制御装置を提供することである。
本発明に係る気体圧制御型微小振動制御装置は、支持対象物に向かい合う対物上面に気体吹出部を有し、対物上面と支持対象物との間の対物隙間に気体を流す対物パッドと、気体が流れることができる貫通窓を有し、対物パッドの対物上面と反対側のパッド裏面に平行に整列配置される複数の平板可動子と、複数の平板可動子をその整列配置される整列軸方向に沿って移動可能に収容する筐体部と、対物パッドの気体吹出部と、各平板可動子の貫通窓と、複数の平板可動子のうちでパッド裏面に向かい合う最先端側平板可動子とパッド裏面との隙間であるパッド側隙間と、隣接する平板可動子の間の隙間である各可動子間隙間と、複数の平板可動子のうちで筐体部の底面に向かい合う最後端側平板可動子と筐体部の底面との隙間である底面側隙間とに隙間制御用気体を供給する隙間制御用気体供給手段と、を備え、対物パッドは、気体吹出部から外周側に向かって延びる表面絞りであって、気体圧変化に対する対物隙間の変化量に関する気体軸受剛性特性が対物隙間量を制御可能な予め定めた所定値を有し、各平板可動子は、気体圧変化に対する各可動子隙間の変化量に関する気体軸受剛性特性が正方向の符号を有し、対物パッドにおける気体軸受剛性特性の所定値に対し1/10以下に設定される気体絞り部をそれぞれ有し、隙間制御用気体の気体圧を制御し、支持対象物からの押付力と釣り合わせつつ各隙間の間隔を調整しながら、支持対象物を微小振動させることを特徴とする。
また、本発明に係る気体圧制御型微小振動制御装置において、対物パッドは、気体吹出部から吹き出し、支持対象物と対物上面との間の隙間を流れる気体を排出するための気体排出部を有し、筐体部は、その内部に複数の平板可動子の外周側に軸方向に沿って設けられる外周側空間を有し、気体排出部は、外周側空間を介して外部の排気装置に接続されることが好ましい。
また、本発明に係る気体圧制御型微小振動制御装置において、筐体部は、その内部に複数の平板可動子の外周側に軸方向に沿って設けられる外周側空間を有し、外周側空間に予め定めた所定気体圧の気体を供給し、支持対象物に予め定めたバイアス支持力を与えるバイアス気体供給手段を備えることが好ましい。
また、本発明に係る気体圧制御型微小振動制御装置において、支持対象物または対物パッドと筐体部とを気密に接続し、ゴムまたはプラスチックゴムで構成されるベロフラムを備えることが好ましい。
また、本発明に係る気体圧制御型微小振動制御装置において、対物パッドは、表面絞りとして、気体吹出部から外周側に向かって延びる複数の細溝を有し、各平板可動子は、気体絞り部として、貫通窓から外周側に向かって延びる複数の溝であって、対物パッドの細溝よりも溝幅が広く、溝深さが深いことが好ましい。
また、本発明に係る気体圧制御型微小振動制御装置において、筐体部の内部に設けられ、各平板可動子の中心部をそれぞれ支持する中心支持軸であって、整列軸方向への変位剛性が径方向への変位剛性よりも小さい支持部材を介して支持する中心支持軸を備えることが好ましい。
また、本発明に係る気体圧制御型微小振動制御装置において、支持対象物または対物パッドの加速度を取得し、取得された加速度に応じて隙間制御用気体の気体圧を制御する制御部を備えることが好ましい。
また、本発明に係る気体圧制御型微小振動制御装置において、対物パッドは、直交する3軸の方向で支持対象物を支持するように、支持対象物に対し複数設けられることが好ましい。
上記構成により、気体圧制御型微小振動制御装置は、気体が流れることができる貫通窓を有し、対物パッドの対物上面と反対側のパッド裏面に平行に整列配置される複数の平板状可動子を備えて、各可動子間隙間等に隙間制御用気体が供給される。ここまでの構成は、上記特許文献1における気体軸受利用の微小隙間制御と同じである。特許文献1における内容と異なるのは、各平板可動子に設けられる気体絞り部である。ここでは、各平板可動子は、気体圧変化に対する各可動子隙間の変化量に関する気体軸受剛性特性が正方向の符号を有し予め定めた閾値剛性値以下に設定される気体絞り部をそれぞれ有する。
表面絞り等の気体絞り部をなくして、各平板可動子を表面が平坦なものとすれば、平板可動子の間の気体軸受剛性特性は最小になる。しかしながら、実験によれば、表面絞り等の気体絞り部をなくすと、隣接する平板可動子の隙間に気体を流そうとしても、その隙間がゼロ、あるいは相互にくっついてしまうことが生じる。つまり、表面絞り等の気体絞り部をなくすと、気体圧変化に対する各可動子隙間の変化量に関する気体軸受剛性特性がマイナスとなることが生じる。この状態では、隙間量の2階時間微分量である加速度を気体圧で制御することができない。
上記構成によれば、各平板可動子には気体絞り部が設けられるが、その気体圧変化に対する各可動子隙間の変化量に関する気体軸受剛性特性が正方向の符号を有し、対物パッドに設けられる表面絞りの気体軸受剛性特性の1/10以下の気体軸受剛性特性に設定される。例えば、特許文献1で述べられている気体軸受剛性特性の1例は、(隙間変化量/気体圧変化量)=(5μm/0.1MPa)程度であるが、対物パッドに設けられる表面絞りの気体軸受剛性特性をこの値に設定するときは、各平板可動子の気体軸受剛性特性は、この10%である(0.5μm/0.1MPa)以下に設定される
このように、気体絞り部の気体軸受剛性特性を1/10程度に低く設定することで、気体が流れる隙間の減衰特性もこれに応じて低下させることができ、気体圧によって隙間量の2階時間微分量である加速度を制御できる。これによって、気体圧制御によって、対物パッド上の支持対象物を微小振動させることができる。
また、気体圧制御型微小振動制御装置は、対物パッドには気体吹出部から吹き出した気体を回収する気体排出部を有し、筐体部の内部には複数の平板可動子の外周側に軸方向に沿って設けられる外周側空間が設けられ、気体排出部は、外周側空間を介して外部の排気装置に接続される。気体吹出部から吹き出して支持対象物を浮上させるのに用いられた気体を効率よく回収できる。
また、気体圧制御型微小振動制御装置において、筐体部は、その内部に複数の平板可動子の外周側に軸方向に沿って設けられる外周側空間を有し、外周側空間に予め定めた所定気体圧の気体を供給し、対物パッドを介し支持対象物に予め定めたバイアス支持力を与えるバイアス気体供給手段を備える。これによって、隙間制御用気体によって微小加速度を発生させながら、例えば、一定値のバイアス支持力を発生させることができる。
また、気体圧制御型微小振動制御装置において、対物パッドと筐体部とを気密に接続し、ゴムまたはプラスチックゴムで構成されるベロフラムを備えるので、例えば、対物パッドが筐体部に対し、対物パッドの対物上面に平行な面内で移動することがあっても、隙間制御用気体によって微小加速度を発生させながら、例えば、一定値のバイアス支持力を発生させることができる。
また、気体圧制御型微小振動制御装置において、対物パッドは、対物上面に設けられ、気体吹出部から外周側に向かって延びる表面絞りを有する。ここでの表面絞りは、気体軸受剛性特性を十分高くとって、隙間量を精度よく制御するものとすることがよい。これによって、支持対象物を対物パッドの対物との上面に対して精度よく浮上制御させることができる。
また、気体圧制御型微小振動制御装置において、筐体部の内部に設けられ、各平板可動子の中心部をそれぞれ支持する中心支持軸であって、整列軸方向への変位剛性が径方向への変位剛性よりも小さい支持部材を介して支持する中心支持軸を備える。これによって、各平板可動子が中心軸に沿って振動する際に、中心軸の径方向に各平板可動子がずれることを抑制することができる。
また、気体圧制御型微小振動制御装置において、支持対象物の加速度を取得して、取得された加速度に応じて隙間制御用気体の気体圧を制御するので、目標加速度で支持対象物を微小振動させることができる。
また、気体圧制御型微小振動制御装置において、対物パッドは、直交する3軸の方向で支持対象物を支持するように、支持対象物に対し複数設けられるので、支持対象物を3次元的に微小振動させ、例えば、支持対象物の3次元的振動を相殺して除振することができる。
以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。以下では、気体圧制御型微小振動制御装置が支持する対象物として、除振台を説明するが、支持対象物はこれ以外のものであってもよい。例えば、振動を除去したい載物台、あるいは振動を除去したい測定器等の装置であってもよい。
また、支持対象物を支持する方法として、支持対象物をXYZの直交する3軸方向で支持するものとし、支持対象物に対し、Z方向に支持する対物パッドを有する気体圧制御型微小振動制御装置と、X方向に支持する対物パッドを有する気体圧制御型微小振動制御装置と、Y方向に支持する対物パッドを有する気体圧制御型微小振動制御装置との3種類の気体圧制御型微小振動制御装置が設けられる例を説明するが、勿論、支持対象物を1方向のみで支持するもの、直交する2方向で支持するものとしてもよい。
また、支持対象物は、対物パッドに直接支持されるのではなく、対物パッドに支持される可動台に取り付けられるものとして説明するが、これ以外の取付方法、支持方法を用いてもよい。例えば、支持対象物をZ方向の1方向にのみ支持する場合に、対物パッドに支持対象物を直接向かい合わせて浮上支持させるものとしてもよい。また、以下で述べる寸法、材質、個数等は、説明のための例示であり、用途目的に応じて、それ以外の条件のものを用いることができる。
図1は、気体圧制御型微小振動制御装置100が用いられる除振システム200の構成を示す図である。以下では、気体圧制御型微小振動制御装置のことを、単に微小振動制御装置と呼ぶことにする。この除振システム200は、除振台202の振動を加速度検出器204で検出し、検出された加速度に応じて制御部206において気体圧を制御し、制御された気体圧を微小振動制御装置200に供給し、微小振動制御装置200によって後述する可動台を微小振動させて、可動台に取付部210を介して取り付けられた除振台202の微小振動を相殺して除振する機能を有するシステムである。
図1の例では、除振台202は、その底部の複数の取付部210においてそれぞれ可動台に取り付けられる。例えば、平面形状が矩形の除振台202の場合は、矩形の各隅部に4つの微小振動制御装置100を配置し、それぞれの微小振動制御装置100によって支持される4つの可動台に取付部210を介して除振台202を取り付けるものとできる。また、平面形状が円形の除振台202の場合は、円形の外周に沿って均等に複数の微小振動制御装置100を配置し、それぞれの微小振動制御装置100によって支持される各可動台に取付部210を介して除振台202を取り付けるものとできる。
図2、図3は、微小振動制御装置100の構成を示す図で、図2は上面図、図3は正面断面図である。なお、図1から図3には、直交する3軸の方向であるX方向、Y方向、Z方向が示されている。ここで、XY平面は除振台202の上面に平行な平面で、Z方向はXY平面に垂直な方向である。図1は、XZ平面で見た図、図2はXY平面で見た図、図3はXZ平面で見た図である。
微小振動制御装置100は、例えば、除振システム200の基礎部に固定される筐体部102と、図1で説明した除振台202の取付部210が取り付けられる可動台104と、可動台104をXYZの3軸方向に気体を介して非接触的に支持する5つの気体圧支持機構12,14,16,18,20と、各気体圧支持機構12,14,16,18,20にそれぞれ接続される気体圧制御弁13,15,17,19,60を含んで構成される。
筐体部102は、図2、図3の例では平面形状が矩形のケース体で、可動台104、5つの気体圧支持機構12,14,16,18,20が収容される。筐体部102は、上記のように、除振システム200の基礎部に適当な固定手段によって固定される。
可動台104は、底面側にフランジ部を有し、フランジ部の上部に角柱部を有し、5つの気体圧支持機構12,14,16,18,20によって、気体を介して浮上され、XYZの3軸方向に移動可能に支持されるテーブルである。可動台104の角柱部は、図2に示されるように、平面形状が適当に隅部が丸められた矩形形状で、矩形形状の4辺は、X方向に平行な2つの辺と、Y方向に平行な2つの辺である。これらの辺は、それぞれZ方向に延びて、XZ平面またはYZ平面を形成する。可動台104の底面はXY平面に平行な面である。また、可動台104の上面は、除振台202の取付部210が取り付けられる面である。
5つの気体圧支持機構12,14,16,18,20は、3種類に区別することができる。気体圧支持機構12,14は、可動台104のYZ平面に向かい合い、可動台104にX方向の微小振動を与える機能を有する。気体圧支持機構16,18は、可動台104のXZ平面に向かい合い、可動台104にY方向の微小振動を与える機能を有する。なお、可動台104のYZ平面とXZ平面とがほぼ同じ面積を有する場合は、気体圧支持機構12,14,16,18は筐体部において配置される位置が異なるのみで、同じ構成のものを用いることができる。
もう1つの気体圧支持機構20は、可動台104の底面のXY平面に向かい合い、可動台104にZ方向の微小振動を与える機能を有する。この気体圧支持機構20は、図1で説明した除振台202の重量を支えて、さらに除振台202にZ方向の微小振動を与えることになるので、気体圧支持機構12,14,16,18に比べて大型となる。そのことに応じて、可動台104の底部のXY平面の面積を広げるために、可動台104に上記のランジ部が設けられることになる。
5つの気体圧制御弁13,15,17,19,60は、図1で説明した制御部206の制御の下で5つの気体圧支持機構12,14,16,18,20に制御された気体圧を供給する制御弁である。上記のように、気体圧支持機構12,14,16,18と気体圧支持機構20の大きさが異なることに対応し、気体圧制御弁13,15,17,19に比べ、気体圧制御弁60は大きな気体流量容量を有する。かかる気体圧制御弁13,15,17,19,60としては、電気信号でアクチュエータを駆動して出力気体圧を制御するアクチュエータ駆動型制御弁を用いることができる。例えば、フォースモータ駆動スプール・スリーブ型気体圧制御弁等を用いることができる。
上記のように、気体圧支持機構12,14,16,18,20は大きさ等が異なるのみで、基本構成は同じものとできるので、以下では、代表して気体圧支持機構20の詳細な構成を説明する。図3では、気体圧支持機構20とこれに用いられる気体圧制御弁60とを含む構成をZ方向微小振動部10として示してある。
図4は、気体圧支持機構20の上面図であり、図5は、気体圧支持機構20と気体圧制御弁60を含むZ方向微小振動部10の構成を示す図である。図6は、気体圧支持機構20を構成する中心軸32を、図7は平板可動子50を、それぞれ示す図である。
気体圧支持機構20は、対物パッド22と、筐体本体26と、対物パッド22と筐体本体26とを気密に接続する伸縮壁部24とを有する筐体部21を含んで構成される。筐体部21の内部には、中心軸32、中心軸32の周囲に軸方向に整列配置される複数の平板可動子50が収納される。
対物パッド22は、支持対象物である可動台104を非接触的に支持するための平板状部材であり、その上面は、可動台104に向かい合う対物上面23である。対物上面23は、その表面を気体が滑らかに流れるように平坦面に加工される。また、対物パッド22は、その裏面側の外周部において伸縮壁部24に接続される。かかる対物パッド22は、適当な金属材料を用いて円板状に成形したものを用いることができる。場合によっては、セラミック材料またはプラスチック材料等を用いることができる。対物パッド22の表面には、適当な表面処理を行うことができる。
対物上面23の中央に設けられる気体吹出口30は、気体圧制御弁60に接続される気体吹出部で、対物上面23と可動台104との隙間に流す隙間制御用気体を供給するための開口部である。
また、対物上面23において、気体吹出口30の外側に円環状に配置される気体排出溝44は、排気口48(図5参照)を介して排気装置45に接続される気体排出部であり、気体吹出口30から供給される隙間制御用気体を回収する排出溝である。
また、対物上面23において、気体排出溝44の外周側に円環状に設けられる気体吸引溝46は、減圧源47に接続される気体吸引部であり、気体排出溝44から漏れてくる気体を吸引するための減圧溝である。気体吸引溝46は、対物パッド22の内部に設けられる管路を通り、対物パッド22の外周部に設けられた接続口を介して外部の減圧源47に接続される。気体吸引溝46を設けることで、気体圧支持機構20を例えば真空環境の下で作動させることができる。
対物パッド22の上面である対物上面23において、気体吹出口30と気体排出溝44との間には、中心から放射状に延びる浅く細い溝である複数の細溝42が設けられる。放射状に延びる細溝42は、円板の内径側で共通化してくぼみ40となっている。すなわち、対物パッド22の上面において、内径側の部分は、気体吹出口30の中心から所定の半径の部分の肉厚が薄くなってくぼみ40を形成し、そのくぼみ40が各細溝42の始発点となり、そこから所定の長さで細溝42が径方向に延びる。径方向に延びた細溝42の先端部は、そこで円周方向に両側に広がり、隣接する細溝42の円周方向の広がりとつながらない程度でその広がりを止める。くぼみ40及び細溝42の形状は表面絞りとしての一例であって、他の適当な形状を有する表面絞りであってもよい。
このようなくぼみ40及び細溝42は、対物上面23において気体吹出口30から径方向に気体が流れるときに、絞り効果を奏するように設けられる。すなわち、対物上面23と可動台104の下面と対向し、2つの面の間の隙間に気体が流れて、このくぼみ40及び細溝42を流れる気体が細溝42の終端等で平板面にあふれるときに、流路が狭くなって絞られ、いわゆる表面絞りとなる。この表面絞りの効果により、2つの面の間の流れが安定し、2つの面の間の間隔も安定する。
くぼみ40及び細溝42の深さは約10μmから約20μmとすることができる。また、対物パッド22の外形を例えば約30mmとすると、くぼみ40の径方向の幅は約1mmから6mm程度、細溝42の幅は約0.2mmから約2mm程度とすることができる。
排気装置45によって回収された気体、減圧源47から回収された気体は、再び気体圧制御弁60等に戻されて再利用されることができる。
伸縮壁部24は円環状の蛇腹状伸縮部材で、筐体本体26の外周部に底面側の接続部を有し、対物パッド22の裏面側の側面の外周部に上面側の接続部を有する。伸縮壁部24は、筐体本体26と、対物パッド22のいずれとも、気密構造で接続される。かかる伸縮壁部24としては、適当なプラスチック材料またはゴム材料の蛇腹状部材、あるいは金属薄板の蛇腹状部材を用いることができる。また、場合によって、蛇腹状伸縮部材に代えて、金属製のベロー状伸縮部材またはダイヤフラム状伸縮部材を用いてもよい。あるいは、少しの気体の漏れが許容できるときには、内径の異なるスリーブを数段に渡って径方向に配置し、いわゆる竹の子型に軸方向に順次移動する構造のものを用いてもよい。
筐体本体26は、対物パッド22とほぼ同じ外径の円板状の外形を有する部材で、その中央部には中心穴を有する円環状くぼみが設けられる。この円環状くぼみには、中心軸32が着脱可能に立設して配置される。上記のように、筐体本体26の外周部には円環状の伸縮壁部24が立設して設けられ、これによって、上部開口を有する容器状の空間が形成され、この空間に平板可動子50が収納される。
このように筐体本体26は、伸縮壁部24とともに複数の平板可動子50を収納する機能を有するが、特に、平板可動子50を中心軸32の周囲に、軸方向に沿って整列配置させる機能を有する。筐体本体26の底面には、その中心部に、気体圧制御弁60に接続される気体供給口38(図5参照)が貫通して設けられ、底面の外周側に排気装置45に接続される排気口48(図5参照)が設けられる。
中心軸32は、筐体本体26の中心の貫通穴である気体供給口38の上面側に、気体供給口38の内径よりも大きな外径を有して形成される円環状のくぼみの中に立設されて配置される軸である。図6に、中心軸32の様子を示す。中心軸32は、その中央に中心貫通穴を有し、外形は六角星稜形をなし、その星陵形の谷の部分に、中心貫通穴に連通する連通穴34が複数設けられる。上記のように、中心軸32は、気体供給口38の上面側の円環状くぼみに立設されて配置されるので、中心軸32の中心貫通穴は気体供給口38に連通している。したがって、中心軸32の側面に設けられる連通穴34は、気体供給口38に連通し、気体圧制御弁60から供給される隙間制御用気体が吹き出すことができる。そして吹き出した気体は、径方向には各平板可動子50に向かって流れ、また、軸方向には星陵形の谷間から上方に向かって気体吹出口30に向かって流れる。
なお、必要に応じ、中心軸32の中心貫通穴の中に隙間量センサを配置することができる。隙間量センサを配置することで、対物パッド22の対物上面23と、非接触支持対象物である可動台104との間の隙間を検出し、そのデータを図1で説明した制御部206に伝送し、隙間量の制御に用いることができる。その場合、隙間量センサの外形を中心貫通穴の内径よりも小さくすることで、気体供給口38から供給される気体を十分に気体吹出口30、連通穴34に流れることができる。隙間量センサとしては、静電容量型センサ、磁気センサ、光学式センサ等を用いることができる。
再び図5に戻り、中心軸32の周りに配置される複数の平板可動子50は、筐体部21の筐体本体26に対し、対物パッド22を移動させるための微小変位を発生する機能を有する。平板可動子50の様子を図7に示す。
平板可動子50は、円板52の中央部に同心円の開口部54を有するドーナツ型の部材である。開口部54は、その中に中心軸32が十分配置できる程度の大きさの内径を有する。開口部54の外周側には、2段のくぼみ56,58が設けられる。このくぼみ56,58は、開口部54から隙間制御用気体が平板可動子50の円板の表面に流れ出し、例えば隣接する他の平板可動子50との間の隙間を通って外周側に流れるときの気体の流れを絞る気体絞り部としての機能を有する。この気体絞り部の機能によって、隙間を流れる気体に剛性特性と減衰特性が付与されることになる。
ここで、図4で説明したような細溝42による表面絞りの場合は、気体圧変化に対する気体隙間の変化量に関する気体軸受剛性特性がかなり大きく、これによって、隙間量を気体圧によって精度よく制御できる。例えば、図4で説明した細溝42等の寸法の場合、対物パッド22における気体排出溝44の位置までの直径を約30mmから約300mmとし、気体吹出口の内径を約10mmから30mmとして、気体が流れる隙間の公称標準値を10μm程度とし、気体圧PSを約0.2MPaとすると、(隙間変化量/気体圧変化量)=(5μm/0.1MPa)程度とすることができる。
これに対し、図7で示される平板可動子50の気体絞り部は、気体軸受剛性特性が小さく設定される。すなわち、平板可動子50の絞り部の気体軸受剛性特性は、正方向の符号を有し予め定めた閾値剛性値以下に設定される。ここで閾値剛性値は、同様な隙間流れにおいて、隙間量を精度よく制御する場合に設定される気体軸受剛性特性の約1/10程度以下とすることがよい。上記の例では、平板可動子50の直径を約30mmから約300mmとし、気体吹出口の内径を約10mmから30mmとし、気体が流れる隙間の公称標準値を10μm程度とした場合に、(隙間変化量/気体圧変化量)=(0.5μm/0.1MPa)以下とすることが好ましい。
このように、平板可動子50の気体絞り部の気体軸受剛性特性を小さく設定することで、気体が流れる隙間の減衰特性もこれに応じて低下させることができ、気体圧によって隙間量の2階時間微分量である加速度を制御できる。これによって、気体圧制御によって、対物パッド22上の支持対象物である可動台104を微小振動させることができる。
図7の平板可動子50の寸法の一例を述べると、外径が約30mmから大きいもので約300mm、内径が約5mmから10mm、板厚が約0.05mmから約2mm程度、くぼみ56の深さは約100μmから約300μm、くぼみ58の深さは約300μmから約500μm程度である。かかる平板可動子50は、例えばSUS等の金属円板を加工して得ることができる。
気体軸受剛性特性を小さく設定するには、図7の2段くぼみによる気体絞り部以外に、図4で説明した表面絞りを用いて行うこともできる。図8はそのような表面絞りを有する平板可動子70の例を示す図である。この平板可動子70は、円板72の中心に開口部74を有し、さらに、くぼみ76と幅広溝78とを有する。すなわち、平板可動子70の平板面の一方の面に、中心から放射状に延びる深く幅が広い溝である複数の幅広溝78が設けられる。放射状に延びる幅広溝78は、円板の内径側で共通化して深いくぼみ76となっている。すなわち、平板可動子70の内径側の部分は、中心から所定の半径の部分の肉厚が薄くなって深いくぼみ76を形成し、そのくぼみ76が各幅広溝78の始発点となり、そこから所定の長さで幅広溝78が径方向に延びる。径方向に延びた幅広溝78の先端部は、そこで円周方向に両側に広がり、隣接する幅広溝78の円周方向の広がりとつながらない程度でその広がりを止める。くぼみ76及び幅広溝78の形状は表面絞りとしての一例であって、他の適当な形状を有する表面絞りであってもよい。なお、くぼみ76、幅広溝78を平板可動子70の両側の面に設けるものとしてもよい。
このようなくぼみ76及び幅広溝78は、平板可動子70の表面に沿って径方向に気体が流れるときに、絞り効果を奏するように設けられる。すなわち、平板可動子70の平板面が、他の面と対向し、2つの面の間の隙間に気体が流れて、このくぼみ76及び幅広溝78を流れる気体が幅広溝78の終端等で平板面にあふれるときに、流路が狭くなって絞られ、いわゆる表面絞りとなる。この表面絞りの効果により、2つの面の間の流れが安定し、2つの面の間の間隔も安定する。ただし、絞りの効果としての気体軸受剛性特性は、隙間量を精度よく制御する場合に設定される気体軸受剛性特性の約1/10以下と制限されることは上記の通りである。
再び図5に戻り、複数の平板可動子50は、中心軸32の周りに、その軸方向に沿って積層状に整列配置される。そして、隣接する平板可動子50の間の隙間には、中心軸32の側面の連通穴34から隙間制御用気体が流される。また、複数の平板可動子50の中の最上層に位置する平板可動子50の上面と対物パッド22の底面との間の隙間と、最下層に位置する平板可動子50の下面と筐体本体26の上面との間の隙間にも、同様に中心軸32の側面の連通穴34から隙間制御用気体が流される。
いま、対物パッド22と伸縮壁部24と筐体本体26とで形成される収納空間にN枚の平板可動子50が整列配置されているとすると、対物パッド22と筐体本体26との間には、N+1の隙間が形成されており、これらの隙間に隙間制御用気体が流れる。そして、可動台104からは、除振台202の重量がかかり、これによって対物パッド22には押付力が与えられる。
ここで、対物パッド22によって各平板可動子50に向かって押付力Fが働くときは、これらの隙間を流れる気体の流れは、いわゆる気体軸受としての作用を示す。すなわち、隙間制御用気体の気体圧PSを制御し、押付力Fと釣り合わせつつこれらの隙間量を調整することができ、これによって、平板可動子50を中心軸32の軸方向、すなわち対物パッド22を可動台104の高さ位置を変化させる方向に微小移動させることができる。そして、この微小移動を時間変化させることで、隙間量の2階時間微分量としての微小加速度を可動台104に与えることができ、これによって可動台104を微小振動させることができる。
例えば隙間制御用気体の気体圧PSを+ΔP変化させると、各隙間量を+Δs変化させることができ、このΔs/ΔPは、平板可動子50の形状、隣り合う平板可動子50の間の隙間、気体圧PS、押付力F等を与えることで実験的に定めることができる。ここで、Δs/ΔPは、各隙間ごとに定まるものであるので、隙間の数をN+1とすると、複数の平板可動子50の全体の軸方向移動量は、(N+1)×Δsとなり、移動量が、平板可動子50の数の増減で調整できる。
このように、対物パッド22と伸縮壁部24と筐体本体26とで形成される収納空間においては、中心軸32の側面の連通穴34から隙間制御用気体が供給されて、複数の平板可動子50の間の隙間等に流れる。流れた気体は、複数の平板可動子50の外周と、伸縮壁部24との間の空間49に流れ出す。この空間49は、図3に示されるように、対物パッド22の気体排出溝44と、筐体本体26における排気口48に接続されて、外部に吸引される空間であるので、これを気体排気流路と呼ぶことができる。気体排気流路である空間49は、上記のように、対物パッド22の気体排出溝44からの気体と、各平板可動子50の間の隙間等からの気体とを集めて外部の排気装置45に導く。これにより、気体を効率よく回収できる。
次に、図1の制御部206について説明する。制御部206は、加速度検出器204で検出された除振台202の振動の加速度を、適当な指令値と比較し、その偏差をゼロにするように、気体圧制御弁60を制御して隙間制御用気体の気体圧を周期的に微小変化させる機能を有する。適当な指令値としては、加速度=0とすることができる。また、除振台202の振動の周波数を検出し、その振動周波数で、隙間制御用気体の気体圧を周期的に微小変化させることが好ましい。このようにして、検出された加速度に応じて気体圧PSを周期的に微小変化させた隙間制御用気体は、Z方向微小振動部10に供給される。そして、これによって、対物パッド22が微小振動し、可動台104を微小振動させ、除振台202の微小振動が相殺されて除振が行われる。なお、加速度検出器204は、除振台202の他に、可動台104に取り付けられるものとしてもよく、また、対物パッドの加速度を検出するものとしてもよい。
図3で説明したように、微小振動制御装置100は、Z方向微小振動部10を構成する気体圧支持機構20と気体圧制御弁60と同様な機能を有する気体圧支持機構12,14,16,18と気体圧制御弁13,15,17,19を有し、これによって、可動台104にX方向の微小振動とY方向の微小振動を与えることができる。これらのX方向微小振動とY方向微小振動も、加速度検出器204を3次元的検出装置とすることで、制御部206によって、検出されたX方向振動、Y方向振動を相殺するように、それぞれの隙間制御用気体の気体圧を制御するものとすることができる。
上記では、平板可動子50の中心部の開口部52と、中心軸32とは直接的に固定されることなく、中心軸32によって各平板可動子50が径方向に偏移しないように摺動保持されている。平板可動子50の保持としては、この他に、中心軸に粘弾性材料で各平板可動子50を保持することができる。粘弾性材料としては、プラスチック、ゴム等を用いることができる。この場合には、中心軸は星陵形でなく単純な円柱軸または角柱軸でもよい。
図9は、雲形ばねを用いて平板可動子を中心軸に保持する例を示す図である。この平板可動子71は、図8で説明した平板可動子70と同様に、円板73において、内径側のくぼみ77と、くぼみ77から径方向に延びる幅広溝79が設けられている。そして、この円板73の内径側部分と、中心軸33の外形との間を接続する薄板部材として雲形ばね75が設けられる。雲形ばね75は、ここでは、中心軸33の軸方向への変位に対する剛性が径方向への変位に対する剛性が小さい保持部材として用いられている。
雲形ばね75のパターンとしては、径方向に延びる部分の形状と円周状に延びる部分の形状とを適切に組み合わせて全体の形状が形成される。具体的には、複雑に曲がりくねった形状を有し、これによりパターンの間に窓状の開口が形成され、この開口窓を通って気体が流れることができる。かかる雲形バネ75は、金属薄板を所定のパターンにエッチング加工して得ることができる。例えば厚さ約0.1mm程度のSUS板に対しエッチング加工または放電加工等を行うことによって得ることができる。なお、雲形バネとは、その形状パターンが、曲がりくねっていて、雲形に似ていることから用いた単なる呼称であり、軸方向に剛性が小さく、径方向に剛性の大きいバネであればそれ以外の呼称のものであってもよい。
雲形ばね75と平板可動子70の円板73との間の接続、雲形ばね75と中心軸33との間の接続としては、適当な接着材を用いることができる。また、場合によっては、円板73の厚さを薄くして、雲形ばね75と一体化成形を行うものとすることができる。
このような構成をとることで、中心軸33に雲形バネ75を介して保持される平板可動子71は、中心軸33の軸方向への移動が比較的容易であるが、平板の径方向への移動、すなわち中心軸33の軸方向に垂直な方向に移動することが比較的困難である特性を有する。換言すれば、平板可動子71は、中心軸33の軸方向をスラスト方向として、スラスト方向に自由度が大きいが、これに垂直なラジアル方向の運動が拘束される特性を有する。なお、ここでは、中心軸33が単純な円柱軸または角柱軸であってもよい。
上記では、対物パッドの中央部の吹出口から隙間制御用気体が吹き出すものとして説明したが、吹き出す気体を滑らかな流れとして整流性を持たせる構造をとることができる。図10に、吹き出す気体に整流性を持たせることができる対物パッドのいくつかの例を示す。
図10(a)は、対物パッド80の上面側に多孔質板84を設ける場合である。中心開口部82から供給された隙間制御用気体は、多孔質板を通過することで整流されて滑らかな流れとなる。
図10(b)は、対物パッド90の上面に表面絞り94を設ける場合である。表面絞りとしては、図4に説明した浅溝構造等を用いることができ、また、他の構成の表面絞りとしてもよい。表面絞りによって、中心開口部から供給された隙間制御用気体の流れを滑らかなものとすることができる。また、中心開口部には、前段絞り92として、適当なオリフィス絞り等を設けることができる。
図10(c)は、対物パッド96の上面にテーパ溝98を設ける場合である。テーパ溝98は、中心開口部から外周に向かって溝深さが次第に浅くなるものを用いることができる。テーパ溝98によって中心開口部から供給された流れは外周に向かって次第に広がり、これによって滑らかな流れとすることができる。ここでも中心開口部に前段絞り92を用いることができる。なお、テーパ溝に代えて、段付溝等を用いることもできる。
なお、図5で説明した構成においては、対物パッド22に気体排出溝44を設け、筐体部21の内部の空間49を経由して排気装置45によって、気体吹出口30から吹き出す気体を気体吸引溝46から回収する。そして、気体排出溝44の外周側にさらに気体吸引溝46を設ける。この構成によれば、気体圧支持機構20において可動台104を浮上させるのに用いられる気体が気体圧支持機構20の外側に漏れることがない。したがって、減圧下における作動等が可能になる。これに対し、浮上させるのに用いた気体の回収を厳密に行う必要がないシステムにおいては、気体吸引溝を省略することができる。
上記では、可動台104に与える加速度としては、隙間制御用気体の気体圧変化によるものとして説明した。この場合には、気体が流れる隙間が、公称標準隙間量を中心として前後に変化することになり、公称標準隙間量によって加速度の上限が制限されることが生じえる。そこで、隙間制御用気体とは別に、可動台104を支持する支持力を増加させるバイアス支持力を与えるためのバイアス制御用気体を供給することがよい。
図11は、隙間制御用気体圧制御弁150とは別にバイアス制御用気体圧制御弁152を備え、これによって可動台114にバイアス支持力を与えることができる微小振動制御装置110の構成を示す図である。図3と同様の要素には同一の符号を付し、詳細な説明を省略する。
この微小振動制御装置110においては、図3の微小振動制御装置100と比較して、独立の対物パッドが省略され、可動台104の底面側の部分が支持対象物に微小振動を与える対物パッドとしての機能を有している。勿論、図3と同様に対物パッドを設けるものとしてもよい。ここでは、対物パッドの機能を有する可動台104の底面と、筐体部112とがベロフラム116によって接続される。ベロフラム116は、対物パッドの機能を有する可動台104と筐体部112とを気密に接続する柔軟に変形可能な接続部材で、例えば、ゴムまたはプラスチックゴムで構成される。
このようにして、ベロフラム116と可動台104の底面と、筐体部112の内壁部とで、1つの密閉空間が形成される。この密閉空間が、図5における気体圧支持機構20の内部の密閉空間に相当する。図5においては、伸縮壁部24によってZ方向に対物パッド22が移動可能であったが、X方向およびY方向についての移動は制限されている。これに対し、図11の構成では、ベロフラム116を備えているので、可動台104はXYZの3方向に移動可能である。
ベロフラム116と可動台104の底面と筐体部112の内壁部とで構成される1つの密閉空間の内部には、複数の平板可動子50が配置される。そして、複数の平板可動子50の外周と、筐体部112の内壁部との間に空間120が設けられ、この空間に、バイアス制御用気体圧制御弁152からの気体が供給される。バイアス制御用気体圧制御弁152から供給される気体圧をPBとし、空間120において可動台104の底面の気体圧受面の面積をABとすれば、PB×ABのバイアス支持力が可動台104に与えられる。これによって、隙間制御用気体圧制御弁150から供給される気体圧の変化によって可動台104に与えられる加速度に対する制限を緩和することができる。
図11では、可動台104に対しZ方向のバイアス支持力を与える構成を説明したが、同様の構成を気体圧支持機構12,14等に適用し、可動台104に対しX方向のバイアス支持力、Y方向のバイアス支持力を与えるものとすることができる。
本発明に係る実施の形態の気体圧制御型微小振動制御装置が用いられる除振システムの構成を示す図である。 本発明に係る実施の形態における微小振動制御装置の構成を示す上面図である。 図2における微小振動制御装置の正面断面図である。 本発明に係る実施の形態において、気体圧支持機構の上面図である。 本発明に係る実施の形態において、気体圧支持機構と制御部を含むZ方向微小振動部の構成を示す図である。 本発明に係る実施の形態において、気体圧支持機構を構成する中心軸を示す図である。 本発明に係る実施の形態において、気体圧支持機構を構成する平板可動子を示す図である。 本発明に係る実施の形態において、他の平板可動子の構成を説明する図である。 本発明に係る実施の形態において、雲形ばねを用いて平板可動子を中心軸に保持する例を示す図である。 本発明に係る実施の形態において、対物パッドの他の例を示す図である。 本発明に係る実施の形態において、支持対象物にバイアス支持力を与えることができる微小振動制御装置の構成を示す図である。
符号の説明
10 Z方向微小振動部、12,14,16,18,20 気体圧支持機構、13,15,17,19,60 気体圧制御弁、21 筐体部、22,80,90,96 対物パッド、23 対物上面、24 伸縮壁部、26 筐体本体、30 気体吹出口、32,33 中心軸、34 連通穴、38 気体供給口、42 細溝、44 気体排出溝、45 排気装置、46 気体吸引溝、47 減圧源、48 排気口、49,120 空間、50,70,71 平板可動子、52,72,73 円板、52,54,74 開口部、40,56,58,76,77 くぼみ、75 雲形バネ、78,79 幅広溝、82 中心開口部、84 多孔質板、92 前段絞り、94 表面絞り、98 テーパ溝、100,110,200 (気体圧制御型)微小振動制御装置、102 筐体部、104,114 可動台、112 筐体部、116 ベロフラム、150 隙間制御用気体圧制御弁、152 バイアス制御用気体圧制御弁、200 除振システム、202 除振台、204 加速度検出器、206 制御部、210 取付部。

Claims (8)

  1. 支持対象物に向かい合う対物上面に気体吹出部を有し、対物上面と支持対象物との間の対物隙間に気体を流す対物パッドと、
    気体が流れることができる貫通窓を有し、対物パッドの対物上面と反対側のパッド裏面に平行に整列配置される複数の平板可動子と、
    複数の平板可動子をその整列配置される整列軸方向に沿って移動可能に収容する筐体部と、
    対物パッドの気体吹出部と、各平板可動子の貫通窓と、複数の平板可動子のうちでパッド裏面に向かい合う最先端側平板可動子とパッド裏面との隙間であるパッド側隙間と、隣接する平板可動子の間の隙間である各可動子間隙間と、複数の平板可動子のうちで筐体部の底面に向かい合う最後端側平板可動子と筐体部の底面との隙間である底面側隙間とに隙間制御用気体を供給する隙間制御用気体供給手段と、
    を備え、
    対物パッドは、気体吹出部から外周側に向かって延びる表面絞りであって、気体圧変化に対する対物隙間の変化量に関する気体軸受剛性特性が対物隙間量を制御可能な予め定めた所定値を有し、
    各平板可動子は、気体圧変化に対する各可動子隙間の変化量に関する気体軸受剛性特性が正方向の符号を有し、対物パッドにおける気体軸受剛性特性の所定値に対し1/10以下に設定される気体絞り部をそれぞれ有し、
    隙間制御用気体の気体圧を制御し、支持対象物からの押付力と釣り合わせつつ各隙間の間隔を調整しながら、支持対象物を微小振動させることを特徴とする気体圧制御型微小振動制御装置。
  2. 請求項1に記載の気体圧制御型微小振動制御装置において、
    対物パッドは、気体吹出部から吹き出し、支持対象物と対物上面との間の隙間を流れる気体を排出するための気体排出部を有し、
    筐体部は、その内部に複数の平板可動子の外周側に軸方向に沿って設けられる外周側空間を有し、
    気体排出部は、外周側空間を介して外部の排気装置に接続されることを特徴とする気体圧制御型微小振動制御装置。
  3. 請求項1に記載の気体圧制御型微小振動制御装置において、
    筐体部は、その内部に複数の平板可動子の外周側に軸方向に沿って設けられる外周側空間を有し、
    外周側空間に予め定めた所定気体圧の気体を供給し、支持対象物に予め定めたバイアス支持力を与えるバイアス気体供給手段を備えることを特徴とする気体圧制御型微小振動制御装置。
  4. 請求項3に記載の気体圧制御型微小振動制御装置において、
    支持対象物または対物パッドと筐体部とを気密に接続し、ゴムまたはプラスチックゴムで構成されるベロフラムを備えることを特徴とする気体圧制御型微小振動制御装置。
  5. 請求項1に記載の気体圧制御型微小振動制御装置において、
    対物パッドは、表面絞りとして、気体吹出部から外周側に向かって延びる複数の細溝を有し、
    各平板可動子は、気体絞り部として、貫通窓から外周側に向かって延びる複数の溝であって、対物パッドの細溝よりも溝幅が広く、溝深さが深いことを特徴とする気体圧制御型微小振動制御装置。
  6. 請求項1に記載の気体圧制御型微小振動制御装置において、
    筐体部の内部に設けられ、各平板可動子の中心部をそれぞれ支持する中心支持軸であって、整列軸方向への変位剛性が径方向への変位剛性よりも小さい支持部材を介して支持する中心支持軸を備えることを特徴とする気体圧制御型微小振動制御装置。
  7. 請求項1に記載の気体圧制御型微小振動制御装置において、
    支持対象物または対物パッドの加速度を取得し、取得された加速度に応じて隙間制御用気体の気体圧を制御する制御部を備えることを特徴とする気体圧制御型微小振動制御装置。
  8. 請求項1に記載の気体圧制御型微小振動制御装置において、
    対物パッドは、直交する3軸の方向で支持対象物を支持するように、支持対象物に対し複数設けられることを特徴とする気体圧制御型微小振動制御装置。
JP2008101153A 2008-04-09 2008-04-09 気体圧制御型微小振動制御装置 Active JP5102089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101153A JP5102089B2 (ja) 2008-04-09 2008-04-09 気体圧制御型微小振動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101153A JP5102089B2 (ja) 2008-04-09 2008-04-09 気体圧制御型微小振動制御装置

Publications (2)

Publication Number Publication Date
JP2009250390A JP2009250390A (ja) 2009-10-29
JP5102089B2 true JP5102089B2 (ja) 2012-12-19

Family

ID=41311293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101153A Active JP5102089B2 (ja) 2008-04-09 2008-04-09 気体圧制御型微小振動制御装置

Country Status (1)

Country Link
JP (1) JP5102089B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164527A (en) * 1981-04-01 1982-10-09 Toshiba Corp Positioning device
JP2004063653A (ja) * 2002-07-26 2004-02-26 Nikon Corp 防振装置、ステージ装置及び露光装置
JP2005268293A (ja) * 2004-03-16 2005-09-29 Psc Kk 微小移動機構
JP4106392B2 (ja) * 2005-12-27 2008-06-25 ピー・エス・シー株式会社 気体圧制御アクチュエータ、気体圧制御アクチュエータ用気体軸受機構及び気体圧制御アクチュエータを用いた微小変位出力装置

Also Published As

Publication number Publication date
JP2009250390A (ja) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2015139340A1 (zh) 一种主动式气浮支承装置
CN105179480A (zh) 一种主动调控节流孔入口气压的气浮支承装置
WO2015018236A1 (zh) 一种六自由度主动隔振装置
JP2008519456A5 (ja)
JP4106392B2 (ja) 気体圧制御アクチュエータ、気体圧制御アクチュエータ用気体軸受機構及び気体圧制御アクチュエータを用いた微小変位出力装置
JP5102089B2 (ja) 気体圧制御型微小振動制御装置
US11002313B2 (en) Active aerostatic bearing
JP5122350B2 (ja) 板材用気体圧支持機構
US6679632B2 (en) Lubricant retention design for disk drive fluid dynamic bearing spindle motor
JP2017133593A (ja) 流体圧アクチュエータ
JP2005003163A (ja) 精密気体圧制御弁
JP2002303323A (ja) 駆動装置
JP2009002734A (ja) 三次元測定プローブ
JP2009218389A (ja) 気体圧制御型微小傾斜装置
US8662754B1 (en) Damped air bearing
JP2009164246A (ja) ステージ装置及びその制御方法
KR20220157874A (ko) 제진장치, 반력 처리 시스템, 스테이지 장치, 노광 장치, 기판처리 장치, 및 물품의 제조방법
JP4890196B2 (ja) 振動除去装置
JP2018129356A (ja) Xyステージ移動機構
JP3143582B2 (ja) 静圧軸受装置およびこれを用いた位置決めステージ
JP4091610B2 (ja) 流体アクチュエータ及びこれを用いたハイブリッドアクチュエータ
JP2009063046A (ja) 気体圧制御アクチュエータ
JP2005351312A (ja) 移動機構
JP2006038073A (ja) オイル動圧軸受、モータおよびディスク装置
JP2005268293A (ja) 微小移動機構

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250