JP5099467B2 - Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface - Google Patents

Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface Download PDF

Info

Publication number
JP5099467B2
JP5099467B2 JP2005173472A JP2005173472A JP5099467B2 JP 5099467 B2 JP5099467 B2 JP 5099467B2 JP 2005173472 A JP2005173472 A JP 2005173472A JP 2005173472 A JP2005173472 A JP 2005173472A JP 5099467 B2 JP5099467 B2 JP 5099467B2
Authority
JP
Japan
Prior art keywords
titanium
porous
water
electrode
carbonitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005173472A
Other languages
Japanese (ja)
Other versions
JP2006348330A (en
Inventor
賢治 織戸
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005173472A priority Critical patent/JP5099467B2/en
Publication of JP2006348330A publication Critical patent/JP2006348330A/en
Application granted granted Critical
Publication of JP5099467B2 publication Critical patent/JP5099467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Powder Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

この発明は、骨格表面に炭窒化チタン層を有する水溶系電気化学セル用多孔質発泡チタン電極に関するものであり、この多孔質チタンは電解法によるオゾン水製造装置の給電電極、レドックスフロー電池や二次電池の給電・集電電極、固体高分子形燃料電池の集電電極などの水溶液系電気化学セルの電極に好適な接触抵抗の小さい水溶系電気化学セル用多孔質発泡チタン電極に関するものである。 The present invention relates to a porous foamed titanium electrode for a water-based electrochemical cell having a titanium carbonitride layer on the surface of the skeleton. The porous titanium is used as a power supply electrode for an ozone water production apparatus by electrolysis, a redox flow battery, The present invention relates to a porous titanium foam electrode for a water-soluble electrochemical cell having a low contact resistance suitable for an electrode of an aqueous electrochemical cell such as a power feeding / collecting electrode of a secondary battery and a collector electrode of a polymer electrolyte fuel cell. .

一般に、オゾン水は、その強力な酸化作用によって、殺菌、脱臭、有機物除去、有害物質除去、化学物質合成などの多岐にわたる用途に使用されている。オゾン水はオゾンガスを水に溶解すると製造できるが、オゾンを電解法で製造する場合には、発生したオゾンが電極近傍で水に溶解するので、とくに水への溶解工程を設けなくてもオゾン水を製造することができる。
この電解法によりオゾンを製造するには、例えば、電解質膜にパーフルオロスルホン酸陽イオン交換膜を、陽極に酸化鉛、白金、金等の触媒層を有するチタン多孔体を、陰極に白金、金、銀等の触媒層を有するチタン多孔体をそれぞれ用いて構成される電解セルの極間に直流電圧をかけて水を電気分解させることにより製造することができる。この時、陽極側に酸素とオゾンが発生し、陰極側に水素が発生する。
この水の電気分解反応においては、局所的に電流が集中すると電解質膜や電極の触媒層の劣化をまねくので、電極には均一に電流を供給することが望ましい。そのために、陽極及び陰極にそれぞれ金網やエキスパンドメタルを給電電極として重ね合わせて圧接させた構成の電気化学セルが用いられている。外部電源からその給電電極に直流電圧がかけられ、電流が供給される(特許文献1参照)。
特許第3375904号公報
In general, ozone water is used for various applications such as sterilization, deodorization, organic substance removal, harmful substance removal, chemical substance synthesis, etc. due to its strong oxidizing action. Ozone water can be produced by dissolving ozone gas in water. However, when ozone is produced by electrolysis, the generated ozone dissolves in water near the electrode, so there is no need to provide a water dissolution step. Can be manufactured.
In order to produce ozone by this electrolytic method, for example, a perfluorosulfonic acid cation exchange membrane is used as the electrolyte membrane, a titanium porous body having a catalyst layer such as lead oxide, platinum, or gold as the anode, and platinum, gold or the like as the cathode. It can be produced by subjecting water to electrolysis by applying a direct current voltage between the electrodes of an electrolytic cell constituted by using a porous titanium body having a catalyst layer such as silver. At this time, oxygen and ozone are generated on the anode side, and hydrogen is generated on the cathode side.
In this water electrolysis reaction, if current is locally concentrated, the electrolyte membrane and the catalyst layer of the electrode are deteriorated. Therefore, it is desirable to supply the current uniformly to the electrode. For this purpose, an electrochemical cell having a structure in which a metal mesh or an expanded metal is superimposed on the anode and the cathode as power feeding electrodes and pressed is used. A DC voltage is applied to the power supply electrode from an external power source, and a current is supplied (see Patent Document 1).
Japanese Patent No. 3375904

しかしながら、金網やエキスパンドメタルを給電電極に用いて、陽極及び陰極に圧接させた状態で長期間電気分解反応を継続すると、金網やエキスパンドメタルが接触する部位の陽極及び陰極が窪んでしまうとともに、発生するオゾン水のオゾン濃度が低下するという問題があった。その理由を検討した結果、金網やエキスパンドメタルは剛体であって圧接部位に締め付けの応力が集中し、さらに圧接部位に電流が集中して発熱するために窪みが発生する。窪みが発生すると、その部位の電解質膜も薄くなって電流集中が助長され、その近傍の触媒が劣化し、有効な触媒体積が減少する結果、オゾン発生量が減少し、オゾン水のオゾン濃度が低下する、とういことが判明した。
そこで、金網やエキスパンドメタルに代えて給電電極に使用できる材料を探索、検討した結果、多孔質金属を給電電極に用いればよいという結論に至った。多孔質金属は、金網やエキスパンドメタルに比べて、締め付け圧力に対して弾力があり、電極との接点が多く、通水性及び通気性に遜色がないからである。
一方、給電電極に使用できる金属は、水を電気分解する電位で溶解しない必要があるので、白金、金などの貴金属、及びチタンに限られるが、白金、金などの貴金属は高価であるので、チタンを適用できることが望ましい。したがって、給電電極として用いる多孔質金属は多孔質チタンが好ましい。
多孔質チタンの製造方法には、ポリウレタンフォーム基体にチタン金属粉含有スラリーを塗布、乾燥した後に焼成してポリウレタンフォームを除去するとともにチタン金属粉を焼結する方法、チタン金属粉含有スラリーに発泡剤を混合してスラリーを直接発泡させて乾燥した後にチタン金属粉末を焼結する方法、繊維状チタンを成形し焼結して不織布チタンを製造する方法などがある。そこで、それぞれの方法で多孔質チタンの製造を試みた。
その結果、ポリウレタンフォーム基体を用いる方法では、ポリウレタンフォーム基体を焼成、除去する工程でチタンと炭素が反応して炭窒化チタンになってしまい、多孔質チタンを製造することができない。
したがって、多孔質チタンを製造する方法としては、チタン金属粉末含有スラリーを直接発泡させる方法および繊細状チタンを成形し焼結して不織布チタンを製造する方法を用いることが好ましい。そして、このチタン金属粉末含有スラリーを直接発泡させる方法で製造した多孔質発泡チタンおよび繊細状チタンを成形し焼結して製造した不織布チタンは、いずれも外部に開口し内部の空孔に連続している空孔(以下、連続空孔という)とチタン金属の骨格とで構成されており、気孔率:60〜99容量%を有することが知られている。
このチタン金属粉末含有スラリーを直接発泡させる方法により得られた多孔質発泡チタンおよび繊細状チタンを成形し焼結して製造した不織布チタンを給電電極に用いてオゾン水製造用の電気化学セルを構成し、水の電気分解実験を行ったところ、圧接部位に窪みが発生することはなく、オゾン濃度の低下の問題は改善された。しかし、一方で、電気分解を長時間行うとセルの内部抵抗が大きくなって電気抵抗が増加し、電流ロスが増加してしまう、という新たな問題に直面した。その過電圧上昇の原因を調べるために試験に供した多孔質発泡チタンおよび不織布チタン(以下、多孔質発泡チタンおよび不織布チタンを「多孔質チタン」と総称する)を分析したところ、これら多孔質チタンの骨格表面に電気抵抗の大きな酸化チタン層が形成されることによることが判明し、この酸化チタン層の形成が電気分解のセルの内部抵抗を大きくし、電気抵抗が増加して電流ロスが増加してしまうことが原因であることが判明した。
However, if the electrolysis reaction is continued for a long time in a state where the metal mesh or expanded metal is used as the power supply electrode and in contact with the anode and the cathode, the anode and the cathode at the portion where the metal mesh or the expanded metal comes into contact will be depressed and generated. There was a problem that the ozone concentration of ozone water to be reduced. As a result of studying the reason, the wire mesh and the expanded metal are rigid bodies, and the tightening stress concentrates on the press contact part, and further, the current concentrates on the press contact part and heat is generated. When the dent is generated, the electrolyte membrane at that part is also thinned to promote current concentration, the catalyst in the vicinity deteriorates, and the effective catalyst volume decreases, resulting in a decrease in the amount of ozone generated and the ozone concentration of ozone water. It turned out to be down.
Thus, as a result of searching for and examining materials that can be used for the power supply electrode instead of the wire mesh and the expanded metal, it was concluded that a porous metal may be used for the power supply electrode. This is because the porous metal is more resilient to the tightening pressure than the metal mesh or expanded metal, has many contacts with the electrode, and has no inferiority in water permeability and air permeability.
On the other hand, the metal that can be used for the power supply electrode needs to be not dissolved at the potential for electrolyzing water, so is limited to noble metals such as platinum and gold, and titanium, but noble metals such as platinum and gold are expensive, It is desirable to be able to apply titanium. Therefore, the porous metal used as the feeding electrode is preferably porous titanium.
The method for producing porous titanium includes applying a titanium metal powder-containing slurry to a polyurethane foam substrate, drying and then firing to remove the polyurethane foam and sintering the titanium metal powder, and adding a foaming agent to the titanium metal powder-containing slurry. There are a method in which the titanium metal powder is sintered after the slurry is directly foamed and dried, and a method in which fibrous titanium is formed and sintered to produce non-woven titanium. Therefore, production of porous titanium was attempted by each method.
As a result, in the method using a polyurethane foam substrate, titanium and carbon react with each other in the step of firing and removing the polyurethane foam substrate to form titanium carbonitride, and porous titanium cannot be produced.
Therefore, as a method for producing porous titanium, it is preferable to use a method in which a titanium metal powder-containing slurry is directly foamed and a method in which fine titanium is formed and sintered to produce nonwoven titanium. And the non-woven titanium produced by molding and sintering the porous foam titanium and the fine titanium produced by the method of directly foaming the titanium metal powder-containing slurry is open to the outside and continues to the internal pores. It is known that it has a porosity of 60 to 99% by volume.
An electrochemical cell for ozone water production is constructed using non-woven titanium produced by molding and sintering porous foam titanium and fine titanium obtained by directly foaming this titanium metal powder-containing slurry as a feeding electrode However, when an electrolysis experiment of water was conducted, no depression was generated at the pressure contact portion, and the problem of a decrease in ozone concentration was improved. However, on the other hand, when electrolysis was performed for a long time, the internal resistance of the cell was increased, the electrical resistance was increased, and the new problem of current loss was faced. Analysis of the porous foamed titanium and non-woven fabric titanium (hereinafter collectively referred to as “porous titanium”) subjected to the test in order to investigate the cause of the overvoltage rise, It was found that a titanium oxide layer with high electrical resistance was formed on the surface of the skeleton, and the formation of this titanium oxide layer increased the internal resistance of the electrolysis cell, which increased electrical resistance and increased current loss. It became clear that the cause was.

そこで、本発明者らは、電気分解の初期からセルの内部抵抗が大きくなって電気抵抗が増加することのない多孔質チタンからなる給電電極を得るべく研究を行った。
その結果、多孔質チタンを真空またはアルゴンガス気流中、温度:400〜900℃に加熱し、次いでメタン−窒素−アルゴン系混合ガスを流すことにより骨格表面に炭窒化チタン層を有する多孔質チタンを製造することができ、このようにして得られた骨格表面に炭窒化チタン層が形成している多孔質チタンを給電電極として用いてオゾン水製造用の電気化学セルを構成し、水の電気分解実験を長時間行ったところ、電気抵抗の増加が見られない、という知見を得たのである。
Therefore, the present inventors have studied from the initial stage of electrolysis to obtain a feeding electrode made of porous titanium that does not increase the internal resistance of the cell and increase the electrical resistance.
As a result, porous titanium having a titanium carbonitride layer on the surface of the skeleton is heated by heating the porous titanium to a temperature of 400 to 900 ° C. in a vacuum or an argon gas flow, and then flowing a methane-nitrogen-argon mixed gas. An electrochemical cell for the production of ozone water is constructed using porous titanium with a titanium carbonitride layer formed on the surface of the skeleton thus obtained as a feeding electrode, and electrolysis of water As a result of conducting experiments for a long time, the inventors have found that there is no increase in electrical resistance.

この発明は、これら知見に基づいてなされたものであって、
チタン金属粉末含有スラリーに発泡剤を混合し発泡させた後、脱脂、焼結され、外部に開口し内部の空孔に連続している連続空孔とチタン金属の骨格からなる多孔質チタンを真空またはアルゴンガス気流中で加熱する表面酸素拡散処理が行われた後、炭窒化処理により、該多孔質発泡チタンの連続空孔内の骨格表面に炭窒化チタン層を形成してなる水溶系電気化学セル用多孔質発泡チタン電極、に特長を有するものである。
This invention was made based on these findings,
After a foaming agent is mixed with the titanium metal powder-containing slurry and foamed, degreased and sintered , vacuumed porous titanium consisting of continuous pores that open to the outside and continue to the internal pores, and a skeleton of titanium metal Alternatively, after surface oxygen diffusion treatment is performed by heating in an argon gas stream, a titanium carbonitride layer is formed on the surface of the skeleton in the continuous pores of the porous titanium foam by carbonitriding. It has a feature in the porous foamed titanium electrode for cells.

次に、この発明の骨格表面に炭窒化チタン層を形成してなる水溶系電気化学セル用多孔質発泡チタン電極の製造方法を説明する。
多孔質発泡チタンを真空またはアルゴンガス気流中、温度:400〜900℃に加熱する表面酸素拡散処理が行われた後で、多孔質発泡チタンの骨格表面に炭窒化チタン層を形成する炭窒化処理が行われる。この炭窒化処理は、アルゴンなどの不活性ガスをキャリアーガスとして用いてメタンおよび窒素を流すことによって行なわれる。炭窒化処理の温度は、低すぎると表面に炭窒化チタン層が形成せず、一方、必要以上に高くする必要がないことから、熱処理温度は400〜900℃、さらに望ましくは550〜750℃で行なうことが望ましい。
Next, the manufacturing method of the porous foaming titanium electrode for water-system electrochemical cells formed by forming a titanium carbonitride layer on the skeleton surface of the present invention will be described.
Porous foams Chita vacuum or argon gas stream to down, temperature: 400 to 900 after the surface oxygen diffusion treatment by heating is performed in ° C., charcoal to form a titanium carbonitride layer on the skeleton surface of the porous foamed titanium down Nitriding is performed. This carbonitriding process is performed by flowing methane and nitrogen using an inert gas such as argon as a carrier gas. If the temperature of carbonitriding treatment is too low, a titanium carbonitride layer is not formed on the surface, and on the other hand, it is not necessary to make it higher than necessary. Therefore, the heat treatment temperature is 400 to 900 ° C, more preferably 550 to 750 ° C. It is desirable to do so.

骨格表面に形成された炭窒化チタン層には酸化チタン層の形成を抑制する作用があることから、電気分解の初期からセルの内部抵抗が大きくなって電気抵抗が増加し、電流ロスが増加するのを抑制する効果があるが、その厚さが薄すぎると酸化チタン形成抑制効果が小さく、一方、厚すぎると多孔質発泡チタン自体が脆くなって陽極及び陰極への圧接時の締め付け圧に耐えられなくなってしまう。そのため、多孔質発泡チタンの骨格表面に形成された炭窒化チタン層の厚さは0.01〜2μm、さらに望ましくは0.05〜0.5μmであることが望ましい。 Since the titanium carbonitride layer formed on the surface of the skeleton has the action of suppressing the formation of the titanium oxide layer, the internal resistance of the cell increases from the initial stage of electrolysis, the electrical resistance increases, and the current loss increases. However, if the thickness is too thin, the effect of suppressing the formation of titanium oxide is small.On the other hand, if the thickness is too thick, the porous porous titanium itself becomes brittle and withstands the clamping pressure during pressure contact with the anode and cathode. It will not be possible. Therefore, the thickness of the titanium carbonitride layer formed on the skeleton surface of porous foamed titanium is preferably 0.01 to 2 μm, more preferably 0.05 to 0.5 μm.

この発明の骨格表面に炭窒化チタン層を形成してなる多孔質発泡チタンは、オゾン水製造装置の給電電極に限らず、レドックスフロー電池、二次電池、固体高分子形燃料電池などの水溶液系の電気化学セルを用いるシステムの電極に適用することによりこれら装置の耐久性を向上させ、電気化学産業の発展に大いに貢献し得るものである。   The porous titanium foam formed by forming a titanium carbonitride layer on the surface of the skeleton of the present invention is not limited to the power supply electrode of the ozone water production apparatus, but is an aqueous solution system such as a redox flow battery, a secondary battery, and a polymer electrolyte fuel cell. The durability of these devices can be improved by applying to the electrode of the system using the electrochemical cell, which can greatly contribute to the development of the electrochemical industry.

実施例1
原料粉末として、平均粒径:10μmのチタン粉末、水溶性樹脂結合剤としてヒドロキシプロピルメチルセルロース20%水溶液、可塑剤としてグリセリン、起泡剤としてアルキルベンゼンスルホン酸ナトリウム、発泡剤としてヘキサンを用意した。
原料粉末:20質量%、水溶性樹脂結合剤:10質量%、可塑剤:1質量%、起泡剤:1質量%、発泡剤:0.4質量%、残部:水となるように配合し、15分間混練し、発泡スラリーを作製した。得られた発泡スラリーをブレードギャップ:0.5mmでドクターブレード法によりPETフィルム上に成形し、高温高湿度槽に供給し、そこで温度:35℃、湿度:90%、25分間保持の条件で発泡させた後、温度:80℃、20分間保持の条件の温風乾燥を行い、スポンジ状グリーン成形体を作製した。
この成形体をPETフィルムから剥がし、アルミナ板上に載せ、アルゴン気流中、温度:800℃、4時間保持の条件で脱脂し、続いて真空焼結炉で雰囲気:5×10−3Pa、温度:1200℃、1時間保持の条件で焼結することにより多孔質発泡チタンを作製した。得られた多孔質発泡チタンを真空中、温度:600℃、60分間保持の条件で表面酸素拡散処理を行い、その後、メタン:20%、窒素:10%を含むアルゴンガス雰囲気中、温度:750℃、30分保持の条件で炭窒化処理を行うことにより、骨格表面に平均厚さ:500nmを有する炭窒化チタン層を形成した本発明多孔質発泡チタンを作製した。
Example 1
As a raw material powder, titanium powder having an average particle diameter of 10 μm, a 20% aqueous solution of hydroxypropylmethylcellulose as a water-soluble resin binder, glycerin as a plasticizer, sodium alkylbenzenesulfonate as a foaming agent, and hexane as a foaming agent were prepared.
Raw material powder: 20% by mass, water-soluble resin binder: 10% by mass, plasticizer: 1% by mass, foaming agent: 1% by mass, foaming agent: 0.4% by mass, balance: water The mixture was kneaded for 15 minutes to prepare a foamed slurry. The obtained foamed slurry was formed on a PET film by a doctor blade method with a blade gap of 0.5 mm, and supplied to a high-temperature and high-humidity tank where the temperature was 35 ° C., the humidity was 90%, and the foaming was carried out for 25 minutes. Then, warm air drying was performed at a temperature of 80 ° C. for 20 minutes to produce a sponge-like green molded body.
The molded body is peeled off from the PET film, placed on an alumina plate, degreased in an argon stream, at a temperature of 800 ° C. for 4 hours, and then in a vacuum sintering furnace, atmosphere: 5 × 10 −3 Pa, temperature : Porous titanium foam was produced by sintering under conditions of 1200 ° C. and holding for 1 hour. The obtained porous titanium foam was subjected to surface oxygen diffusion treatment in a vacuum at a temperature of 600 ° C. for 60 minutes, and then in an argon gas atmosphere containing methane: 20% and nitrogen: 10%, temperature: 750 By performing carbonitriding treatment under the conditions of holding at 30 ° C. for 30 minutes, the porous titanium foam of the present invention in which a titanium carbonitride layer having an average thickness of 500 nm was formed on the skeleton surface was produced.

参考例
炭素含有量:0.01質量%以下を含む厚さ:0.05mmの純チタン箔を巻き取った純チタンコイルを用意し、さらに、平均粒径:10μmの純チタン粉末を用意した。
この用意した純チタンコイルをコイルの軸方向に平行に切削工具を送るように切削して切屑からなる純チタン極細線材を作製し、得られた純チタン極細線材を長さ:約10mmに切断し、切断した純チタン極細線材に先に用意した純チタン粉末を質量%で7%添加し、混合して混合粉末を作製し、得られた混合粉末をプレスして薄板に成形し、得られた薄板を真空中、温度:1200℃、2時間保持の条件で焼結し、気孔率:88%を有する厚さ:1mmの不織布チタンを作製した。
得られた不織布チタンを、実施例1と同様にして真空中、温度:600℃、60分間保持の条件で表面酸素拡散処理を行い、その後、メタン:20%、窒素:10%を含むアルゴンガス雰囲気中、温度:750℃、30分保持の条件で炭窒化処理を行うことにより、骨格表面に平均厚さ:500nmを有する炭窒化チタン層を形成した参考不織布チタンを作製した。
Reference Example Carbon content: Thickness including 0.01% by mass or less: A pure titanium coil wound with a pure titanium foil having a thickness of 0.05 mm was prepared, and pure titanium powder having an average particle size of 10 μm was prepared.
The prepared pure titanium coil is cut so that a cutting tool is sent parallel to the axial direction of the coil to produce a pure titanium extra fine wire made of chips, and the obtained pure titanium extra fine wire is cut to a length of about 10 mm. The pure titanium powder previously prepared was added to the cut pure titanium ultrafine wire material by 7% by mass, mixed to prepare a mixed powder, and the obtained mixed powder was pressed into a thin plate to obtain The thin plate was sintered in a vacuum at a temperature of 1200 ° C. for 2 hours to prepare a titanium nonwoven fabric having a thickness of 1 mm and a porosity of 88%.
The obtained non-woven titanium was subjected to surface oxygen diffusion treatment in a vacuum, at a temperature of 600 ° C. for 60 minutes, in the same manner as in Example 1, and then argon gas containing methane: 20% and nitrogen: 10%. A reference non-woven fabric titanium having a titanium carbonitride layer having an average thickness of 500 nm formed on the surface of the skeleton was prepared by performing carbonitriding under conditions of temperature: 750 ° C. and holding for 30 minutes in the atmosphere.

従来例1
従来例として、厚さ:1mmのエキスパンドチタンを用意した。
Conventional Example 1
As a conventional example, expanded titanium having a thickness of 1 mm was prepared.

実施例1で作製した骨格表面に炭窒化チタン層を有する本発明多孔質発泡チタン、骨格表面に炭窒化チタン層を有する本発明不織布チタンおよび従来例1で用意したエキスパンドチタンをそれぞれ給電電極とし、さらにパーフルオロスルホン酸陽イオン交換膜を電解質膜とし、厚さ:0.1mmの酸化鉛を担持したチタン焼結体を陽極(アノード)とし、厚さ:0.1mmの白金めっきしたチタン焼結体を陰極(カソード)とし、これらをオゾン発生装置に組み込み、電流密度:0.5A/cm2 一定の条件で電気分解し、電気分解開始1時間後の電圧およびオゾン濃度(ppm)並びに電気分解開始500時間後の電圧およびオゾン濃度(ppm)を測定し、その結果を表1に示した。 The porous foamed titanium of the present invention having a titanium carbonitride layer on the skeleton surface prepared in Example 1, the non-woven fabric titanium of the present invention having a titanium carbonitride layer on the skeleton surface, and the expanded titanium prepared in Conventional Example 1 were used as feeding electrodes, respectively. Furthermore, a perfluorosulfonic acid cation exchange membrane was used as the electrolyte membrane, a titanium sintered body supporting lead oxide with a thickness of 0.1 mm was used as the anode (anode), and a platinum sintered titanium body with a thickness of 0.1 mm was prepared. The cathode (cathode) is incorporated into the ozone generator and electrolyzed under a constant current density of 0.5 A / cm 2. The voltage and ozone concentration (ppm) one hour after the start of electrolysis and 500 hours after the start of electrolysis The subsequent voltage and ozone concentration (ppm) were measured, and the results are shown in Table 1.


Figure 0005099467
Figure 0005099467

表1に示される結果から、実施例1で作製した骨格表面に炭窒化チタン層を有する本発明多孔質発泡チタンを給電電極としたオゾン発生装置は、従来例1で用意したエキスパンドチタンを給電電極としたオゾン発生装置に比べて長時間経過してもオゾン濃度が低下しないことが分かり、実施例1で作製した本発明多孔質発泡チタンは給電電極として優れたものであることがわかる。




From the results shown in Table 1, the ozone generating apparatus of the present invention porous foamed titanium down to a feeding electrode with a titanium carbonitride layer on the skeleton surface produced in Example 1, feeding the expanded titanium prepared in the conventional example 1 see that the ozone concentration even after the lapse of a long time in comparison with the ozone generating apparatus with electrode does not decrease, the present invention porous foamed titanium emissions produced in example 1 is found to be excellent as a feeding electrode.




Claims (1)

チタン金属粉末含有スラリーに発泡剤を混合し発泡させた後、脱脂、焼結され、外部に開口し内部の空孔に連続している連続空孔とチタン金属の骨格からなる多孔質発泡チタンを真空またはアルゴンガス気流中で加熱する表面酸素拡散処理が行われた後、炭窒化処理により、該多孔質発泡チタンの連続空孔内の骨格表面に炭窒化チタン層を形成してなることを特徴とする水溶系電気化学セル用多孔質発泡チタン電極。 After the titanium metal powder-containing slurry blowing agent mixture of foaming, degreasing, sintered, porous foamed titanium consisting of continuous pores and the titanium metal skeleton is continuous with the holes of the internal open to the outside After the surface oxygen diffusion treatment is performed by heating in a vacuum or argon gas stream, a titanium carbonitride layer is formed on the surface of the skeleton in the continuous pores of the porous titanium foam by carbonitriding A porous foamed titanium electrode for a water-based electrochemical cell.
JP2005173472A 2005-06-14 2005-06-14 Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface Active JP5099467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173472A JP5099467B2 (en) 2005-06-14 2005-06-14 Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173472A JP5099467B2 (en) 2005-06-14 2005-06-14 Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface

Publications (2)

Publication Number Publication Date
JP2006348330A JP2006348330A (en) 2006-12-28
JP5099467B2 true JP5099467B2 (en) 2012-12-19

Family

ID=37644476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173472A Active JP5099467B2 (en) 2005-06-14 2005-06-14 Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface

Country Status (1)

Country Link
JP (1) JP5099467B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852883B2 (en) * 2017-03-16 2021-03-31 国立大学法人九州大学 An electrode structure, an electrode catalyst layer / gas diffusion layer integrated sheet, and a membrane electrode assembly containing these.
CN115298362A (en) * 2020-03-16 2022-11-04 三菱综合材料株式会社 Spongy titanium sheet, electrode for water electrolysis, and water electrolysis device
JP2022151916A (en) * 2021-03-29 2022-10-12 三菱マテリアル株式会社 Titanium porous plate, and electrode for water electrolysis, water electrolysis apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613792B2 (en) * 1973-09-05 1981-03-31
JPH076052B2 (en) * 1988-09-02 1995-01-25 株式会社豊田中央研究所 Surface treatment method and apparatus
JPH03131385A (en) * 1989-10-16 1991-06-04 Tatsuo Okazaki Electric voltage reversible electrolytic cell
JPH04190812A (en) * 1990-11-22 1992-07-09 Nkk Corp Titanium nitride filter element
JPH0633284A (en) * 1992-07-14 1994-02-08 Mitsubishi Heavy Ind Ltd Water electrolytic cell
JP3508604B2 (en) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 Method for producing high-strength sponge-like fired metal composite plate
JP2001123288A (en) * 1999-10-27 2001-05-08 Tsukishima Kikai Co Ltd Electrolytic apparatus
WO2003010357A1 (en) * 2001-07-24 2003-02-06 Creatic Japan, Inc. Electroconductive structure and electroplating method using the structure
JP2003242983A (en) * 2002-02-14 2003-08-29 Nippon Mining & Metals Co Ltd Positive electrode collector foil for lead acid storage battery
JP2005030492A (en) * 2003-07-11 2005-02-03 Minebea Co Ltd Spherical bearing
JP2005097651A (en) * 2003-09-22 2005-04-14 Seiko Epson Corp Surface treatment method for ornament, and ornament

Also Published As

Publication number Publication date
JP2006348330A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
Maiyalagan et al. Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application
JP2016000401A (en) Ternary platinum alloy catalyst
JP4575330B2 (en) Anode for fuel cell, method for producing the same, and fuel cell having the same
JP2004349050A (en) Polymer electrolyte fuel cell activating method
CN1961443A (en) Nickel foam and felt-based anode for solid oxide fuel cells
JP2011099146A (en) Sintered metal sheet material for electrochemical member
KR20150104474A (en) Alkaline anion exchange membrane water electrolyzer using Ni electrodeposited hydrophilic porous carbon material and method for preparing the same
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
JP5099467B2 (en) Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface
JP6362007B2 (en) Electrochemical cell and method for producing the same
US20220002884A1 (en) Method for synthesizing ammonia using metal nanoparticles in a fuel cell
JP2004172107A (en) Electrocatalyst for fuel cells and manufacturing method thereof
JP2015506414A (en) Porous electrodes for proton exchange membranes
JP4066154B2 (en) Porous metal gas diffusion sheet for polymer electrolyte fuel cell that exhibits excellent contact surface conductivity over a long period of time
JP2009520881A (en) Ozone generating electrolysis cell
KR101860763B1 (en) Non-precious Metal Electrocatalyst, Proton Exchange Membrane Water Electrolyzer Using The Same And Method For Preparing The Same
JP5071610B2 (en) Porous foamed titanium electrode with titanium carbide layer on skeleton surface
JP2021504116A (en) Method for producing a gas-nitrided or liquid-nitrided core-shell catalyst
JP2010063952A (en) Catalyst having oxygen reduction reaction ability
JP2004119223A (en) Gas diffusion electrode and fuel cell using the same
JP4066155B2 (en) Porous metal gas diffusion sheet for polymer electrolyte fuel cell that exhibits excellent contact surface conductivity over a long period of time
JP5065727B2 (en) Method for manufacturing solid electrolyte membrane, solid electrolyte membrane, and water electrolysis device
WO2022250119A1 (en) Catalyst, method for producing catalyst, and intermediate product
US20230143743A1 (en) Titanium substrate, method for producing titanium substrate, electrode for water electrolysis, and water electrolysis apparatus
JP2012170833A (en) Dehumidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5099467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150