JP5097890B2 - Method for producing gold or gold alloy for vacuum deposition or sputtering, and method for producing hearth ingot - Google Patents

Method for producing gold or gold alloy for vacuum deposition or sputtering, and method for producing hearth ingot Download PDF

Info

Publication number
JP5097890B2
JP5097890B2 JP2001070733A JP2001070733A JP5097890B2 JP 5097890 B2 JP5097890 B2 JP 5097890B2 JP 2001070733 A JP2001070733 A JP 2001070733A JP 2001070733 A JP2001070733 A JP 2001070733A JP 5097890 B2 JP5097890 B2 JP 5097890B2
Authority
JP
Japan
Prior art keywords
gold
less
ppm
weight
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001070733A
Other languages
Japanese (ja)
Other versions
JP2002275561A (en
Inventor
哲治 上村
彰 大場
明 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001070733A priority Critical patent/JP5097890B2/en
Publication of JP2002275561A publication Critical patent/JP2002275561A/en
Application granted granted Critical
Publication of JP5097890B2 publication Critical patent/JP5097890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金又は金合金材料の製造方法に関し、特に半導体製造における薄膜形成プロセスに利用される真空蒸着やスパッタ法で用いられる金(Au)又は金合金材料の製造方法、並びにハースインゴットの製造方法に関する。
【0002】
【従来の技術】
近年の半導体技術の進歩は目覚しく、光半導体用デバイスのAu配線幅は、当初100μm程度あったものが最近では数μmになり、部分的には0.5μm程度になっているものまである。また、パワートランジスター等の大電流デバイスにおいても、より効率のよいデバイスにするため、ウェハーを部分的に研磨してウェハー厚みを200μm程度にしているデバイスがある。
【0003】
このような状況下で、Au蒸着において従来問題とならなかった1〜10数ミクロンの欠陥、つまりスプラッシュとか金ボールの発生が問題となっている。例えば、蒸着膜に雲形の波ができたり、1μm程度のボール状の金が付着してしまう現象であり、蒸着肌を悪くする。また、Auスパッタの場合も、Au蒸着の場合と同様に、スパッタ膜にボール状の金が付着するという現象がある(この場合、異常放電を起こす)。Au蒸着の場合に生じる現象の原因の大部分は、金材料中に含まれる揮発性金属不純物やガス不純物が蒸着中に噴き出して、スプラッシュとなったり、噴き出したガス成分と蒸着中のAu粒子とが衝突を起こし、Au粒子がエネルギーを失って金ボールが形成されるものであると考えられる。
【0004】
なお、従来の金材料は、Au自体を大気中で溶解しても酸化という問題が生じないため、大気溶解品又は1Pa程度の真空溶解品であり、不純物を1重量ppm以上含んでおり、その材料表面は必ずしも平滑ではなかった。
【0005】
【発明が解決しようとする課題】
上記したように、蒸着膜、スパッタ膜の表面におけるスプラッシュ、金ボールの形成という現象は、金又は金合金材料に含まれる揮発性金属不純物及びガス不純物により生じると共に、金又は金合金材料の表面に付着した金属不純物及びガス不純物によっても生じるものである。
【0006】
本発明は、上記従来技術の問題点を解決するものであり、内部に含まれる不純物及び外表面に付着する不純物を最小限にした真空蒸着又はスパッタ用金又は金合金の製造方法、並びにハースインゴットの製造方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、Au蒸着やAuスパッタ中に発生するスプラッシュや金ボールが金又は金合金材料中の揮発性金属不純物やガス不純物に起因することから、これら不純物を減少せしめればよいことに気が付き、また、インゴット等の金材料のミクロな表面積を小さくすることにより、金又は金合金材料表面の付着ガスを最小限にすることができることから、例えばインゴットの中央部を盛り上げる形状にし、かつ機械加工面の無い平滑な鋳肌とすればよいことに気が付き、本発明を完成するに至った。
【0008】
本発明による真空蒸着又はスパッタ用金又は金合金材料の製造方法により得られる真空蒸着又はスパッタ用金又は金合金材料は、4N(99.99%)以上の純度を有する金又は金の比率がモル比で50%を超えている金合金である。この金又は金合金材料は、揮発性金属不純物の含有量が1重量ppm以下、水素及び窒素の含有量が1重量ppm以下、並びに酸素の含有量が5重量ppm以下である。金又は金合金材料中の揮発性金属不純物及びガス不純物がこのような範囲を外れると、得られた材料を用いて真空蒸着やスパッタ法で薄膜を形成する際にスプラッシュや金ボールが発生するが、この範囲内であるとそのような現象は生じない。
【0009】
本発明による真空蒸着又はスパッタ用金又は金合金材料の製造方法により得られる真空蒸着又はスパッタ用金材料は、4N以上の純度を有する金を、ゾーンメルト精製法によって溶融精製することにより製造される。この製造方法において、ゾーンメルト精製法による溶融精製を1×10-3Pa以下の高真空中で行う。成形体を作製する場合は、該溶融精製により得られた金材料を容器に入れて加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、成形体を得ることが好ましい。また、この製造方法において、ゾーンメルト精製法による溶融精製により得られた金材料を容器に入れて1×10-3Pa以下の高真空中で加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、成形体を得ることが好ましい。ゾーンメルト精製法を利用し、かつ高真空中で加熱溶解して金又は金合金材料を製造することにより、揮発性金属不純物及びガス不純物の含有量が極めて少ない金又は金合金材料が得られる。さらに、本発明の真空蒸着又はスパッタ用金合金材料の製造方法において、ゾーンメルト精製法による溶融精製により得られた金材料と、4N以上の純度を有し、1×10-3Pa以下の高真空中で真空溶解された合金用材料とを、金の比率がモル比で50%を超える割合で容器に入れて1×10-3Pa以下の高真空中で加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、成形体を得る
【0010】
また、本発明によるハースインゴットの製造方法により得られるハースインゴットは、4N以上の純度を有する金又は金の比率がモル比で50%を超える金合金からなり、揮発性金属不純物、水素及び窒素の含有量が1重量ppm以下であり、酸素の含有量が5重量ppm以下である真空蒸着用ハースインゴットであって、その表面積をできるだけ少なくするために、その上表面の鋳肌の少なくとも一部が平滑な溶解表面からなっている。このハースインゴットはまた、その上表面の中央部が上表面の端部よりも盛り上がっている形状を有しているものであることが好ましい。上記範囲内の揮発性金属不純物及びガス不純物を含むハースインゴットの表面形状をこのようにすることにより、インゴットの表面にガス不純物の付着がなくなると共に、蒸着やスパッタ中にスプラッシュや金ボールの発生がなくなる。
【0011】
本発明によるハースインゴットの製造方法は、4N以上の純度を有する金を、ゾーンメルト精製法によって溶融精製することにより製造される。この製造方法において、ゾーンメルト精製法による溶融精製を1×10-3Pa以下の高真空中で行い、該溶融精製により得られた金材料をハース形状の容器に入れて加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却し、ハース形状のインゴットを得るものである。また、この製造方法において、前記溶融精製により得られた金材料をハース形状の容器に入れて1×10-3Pa以下の高真空中で加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却し、ハース形状のインゴットを得ることができ、さらに、前記溶融精製により得られた金材料と、4N以上の純度を有し、1×10-3Pa以下の高真空中で真空溶解された合金用材料とを、金の比率がモル比で50%を超える割合でハース形状の容器に入れて1×10-3Pa以下の高真空中で加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、ハース形状のインゴットを得ることができる。
【0012】
このようにして得られたインゴットは、その上表面の鋳肌の少なくとも一部が平滑な溶解表面からなっており、かつ、該上表面の中央部が上表面の端部よりも盛り上がっている形状を有する。ゾーンメルト精製法を利用し、かつ高真空中で加熱溶解することにより、揮発性金属不純物及びガス不純物の含有量が極めて少ないインゴットが得られる。
【0013】
【発明の実施の形態】
本発明によれば、金又は金合金材料中の揮発性金属不純物やガス不純物を減少せしめることにより、また、インゴット等の金又は金合金材料のミクロな表面積を少なくすること、例えばインゴットの中央を盛り上げる形状で機械加工面の無い平滑な鋳肌として金又は金合金材料表面の付着ガスを最小限にすることにより、このような金材料を用いて、半導体製造における薄膜形成プロセスに利用される真空蒸着やスパッタ法を行う場合、蒸着やスパッタ中に薄膜表面上にスプラッシュや金ボールが発生することもなく、また、薄膜表面にガス不純物が付着することもなく、良質なAu薄膜が得られる。
【0014】
本発明により得られる金又は金合金材料中に含まれる揮発性金属不純物やガス不純物には、金の原材料としての金鉱石の種類や精錬方法等に応じてその種類や量は異なるが、一般に、周期表Ia族の金属としてLi、Na、K、周期表IIa族の金属としてBe、Mg、Ca、周期表Va族の金属としてP、As、Sb、周期表IIa族の金属としてS、Se、Te等があり、また、水素ガス、窒素ガス、酸素ガス等がある。
【0015】
本発明により得られる金又は金合金材料の形状は特に制限されるものではないが、例えばインゴット、ペレット、ショット、ワイヤー、ロッド、ターゲット形状等が好ましい。
【0016】
本発明によれば、ゾーンメルト精製法を利用して棒状の金材料を作製し、この材料中の揮発性金属不純物やガス不純物の含有量を所定の量以下にし、この棒状材料をるつぼ等の容器内に入れ、1×10-3Pa以下の高真空中で所定の時間加熱溶解し、次いで固化物中に空洞が生じないようにこの溶解物を冷却し、上記したような所望の形状に成形し、これを用いて真空蒸着、スパッタを行い、所望の薄膜を形成できる。また、ゾーンメルト精製法を利用し、かつ1×10-3Pa以下の高真空中で加熱溶解して棒状の金材料を製造し、この材料中の揮発性金属不純物及びガス不純物の含有量を所定の量以下にし、これを用いて真空蒸着、スパッタを行い、所望の薄膜を形成できる。あるいはまた、上記のようにして作製された棒状の金材料を加熱溶融してインゴット等を製造し、これを用いて蒸着膜を形成してもよい。
【0017】
本発明では、単なる従来の真空溶解方法ではなく、上記不純物が、完全に揮発するような時間、高真空中で溶融することが必要である。
【0018】
このようにして得られた金又は金合金材料、例えばハースインゴットの場合は、その上表面の鋳肌の少なくとも一部が平滑な溶解表面からなっており、かつ該上表面の中央部が上表面の端部よりも盛り上がっている形状を有する。ゾーンメルト精製法を利用し、また、高真空中で加熱溶解して金材料を製造することにより、揮発性金属不純物及びガス不純物の含有量が極めて少ないインゴットが得られる。
【0019】
本発明によれば、4N(99.99%)以上の純度を有する金を原材料とし、揮発性の金属であるIa族、IIa族、Va族、及びVIa族の不純物含有量が、各々1重量ppm以下であり、水素ガス、窒素ガスの含有量が各々1重量ppm以下であり、また酸素ガスの含有量が5重量ppm以下である金又は金合金材料を作り、溶融状態から固体すなわちインゴット、ペレット、ショット、ワイヤー、ターゲット形状に成型時に空洞(いわゆる「ス」)ができないように冷却、成形する。
【0020】
【実施例】
以下、本発明の実施例を図1を参照して説明する。
(実施例1)
E/B蒸着用のハース形状のAuインゴットを以下のようにして作製した。
【0021】
4Nの純度を有する金を使用し、ゾーンメルト精製方法に従って溶融精製を行い、棒状の材料を作り、次いでこの棒状材料をE/B蒸着用のハース形状のるつぼに入れ、1×10-3Pa以下の高真空中にて、5時間かけて加熱溶解した。溶解後、るつぼの底面のみからこの溶解物を冷却し、E/B蒸着用のハース形状インゴットを得た。このように、溶解物の底面からのみ冷却したので、得られた成形体中には空洞が生じていなかった。上記精製方法で精製されたインゴット中の不純物は、Li、Na、K、Be、Mg、Ca、P、As、Sb、S、Se、Teの各々の含有量が1重量ppm以下であった。また、水素、窒素ガスの含有量が各々1重量ppm以下であり、また、酸素ガスの含有量が5重量ppm以下であった。
【0022】
上記のようにして得られた金材料を使用して公知の条件で真空蒸着を行い、Au薄膜を基板上に形成したところ、スプラッシュが生じることなく、また、蒸着膜表面にボール状の金の発生も見いだせなかった。
【0023】
また、このハースインゴットの上表面の鋳肌は平滑な溶解表面からなっており、その表面積は小さかった。このハースインゴットは、図1に示すように、その上表面の中央部1が上表面の端部2よりも盛り上がっている形状を有していた。
(実施例2)
電解精製して得た10mmφ×1000mmLのロッド形状の金材料を、1×10-3Pa以下の高真空中で、ゾーンメルト精製方法に従い、8時間かけて溶融精製した。かくして得られた金材料中の不純物は、Li、Na、K、Be、Mg、Ca、P、As、Sb、S、Se、Teの各々の含有量が1重量ppm以下であった。また、ゾーンメルトという特殊溶解であったので、水素、窒素ガスの含有量が各々1重量ppm以下、及び酸素ガスの含有量が5重量ppm以下であった。
【0024】
次いで、上記のようにして得られた金材料を使用して公知の条件で真空蒸着を行い、基板上にAu薄膜を形成したところ、スプラッシュが生じることなく、また、蒸着膜表面にボール状の金の発生も見いだせなかった。
【0025】
さらに、上記のようにして得られた金材料を使用して1×10-4Paの条件で、ハースインゴットを作製し、これを用いて同様に真空蒸着を行ったところ、上記と同様の結果が得られた。
(実施例3)
E/B蒸着用のハース形状のAu−Snインゴットを以下のように作製した。
【0026】
Sn原料として、4Nの純度を有する市販のSnを用いた。この原料は、酸素ガス含有量が非常に多いため、合金を製造する前に、予め真空溶解によりスラグを除去した。この時の真空度を1×10-4Paとした。次いで、同様の真空度で、Au80gとSn20gとを真空誘導加熱で溶解して、実施例1に準じてハースインゴットを製作した。
【0027】
このようにして製作した金合金インゴットと、従来技術による大気溶解インゴットとを用いて、公知の条件で真空蒸着を行い、両者の特性比較を行った。その結果、大気溶解インゴットを使用した場合は、蒸着前の溶融状態で、表面にスラグが浮出し、このスラグをEBで飛ばすだけで3〜4分かかった(約40g消失)。また、その後の2分間の蒸着では、蒸着膜に直径10μm以上のボールが40ヶ以上付着していた。しかし、本発明による真空溶解インゴットを使用した場合は、溶融時に、表面へのスラグの浮出しは無く、直ぐに2分間の蒸着ができた。得られた蒸着膜の表面にボールの付着は無かった。
【0028】
【発明の効果】
本発明真空蒸着又はスパッタ用金又は金合金材料の製造方法によれば、半導体製造における薄膜形成プロセスに利用される真空蒸着及びスパッタによるAu成膜において、スプラッシュや金ボールの発生という問題もなく、良質なAu薄膜を形成することのできる金又は金合金材料が提供され得る。
【0029】
本発明のハースインゴットの製造方法によれば、上記真空蒸着によるAu成膜において、スプラッシュや金ボールの発生という問題もなく、良質なAu薄膜を形成することのできる金又は金合金材料が提供され得る。
【図面の簡単な説明】
【図1】 本発明のハースインゴットの外観形状を示す斜視図。
【符号の説明】
1 表面の中央部 2 表面の端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a gold or gold alloy material , and in particular, a method for manufacturing gold (Au) or a gold alloy material used in a vacuum deposition or sputtering method used in a thin film formation process in semiconductor manufacturing , and manufacturing a hearth ingot. Regarding the method.
[0002]
[Prior art]
Recent advances in semiconductor technology have been remarkable, and the Au wiring width of optical semiconductor devices has initially been about 100 μm, but has recently become several μm, and is partially up to about 0.5 μm. In addition, even in a large current device such as a power transistor, there is a device in which the wafer is partially polished to have a wafer thickness of about 200 μm in order to make the device more efficient.
[0003]
Under such circumstances, the occurrence of defects of 1 to several tens of microns, that is, splash and gold balls, which has not been a problem in Au deposition, has become a problem. For example, it is a phenomenon in which a cloud-like wave is formed on the deposited film or a ball-shaped gold of about 1 μm adheres, which makes the deposited skin worse. In the case of Au sputtering, as in the case of Au deposition, there is a phenomenon that ball-shaped gold adheres to the sputtered film (in this case, abnormal discharge occurs). Most of the causes of the phenomenon that occurs in the case of Au deposition are volatile metal impurities and gas impurities contained in the gold material, which are ejected during the deposition, resulting in a splash, and the ejected gas components and the Au particles being deposited. Are caused to collide and Au particles lose energy to form gold balls.
[0004]
In addition, since the gold | metal | money material in the past does not produce the problem of oxidation even if Au itself melt | dissolves in air | atmosphere, it is an air melt | dissolution product or a vacuum melt | dissolution product of about 1 Pa, and contains 1 ppm or more of impurities, The material surface was not necessarily smooth.
[0005]
[Problems to be solved by the invention]
As described above, the phenomenon of splash on the surface of the deposited film, sputtered film, and formation of gold balls is caused by volatile metal impurities and gas impurities contained in the gold or gold alloy material, and on the surface of the gold or gold alloy material. It is also caused by adhered metal impurities and gas impurities.
[0006]
The present invention solves the above-mentioned problems of the prior art, a vacuum vapor deposition or sputtering gold or gold alloy manufacturing method, and a hearth ingot in which impurities contained inside and impurities attached to the outer surface are minimized. It is an object to provide a manufacturing method.
[0007]
[Means for Solving the Problems]
The present inventors are able to reduce these impurities because the splash and gold balls generated during Au deposition and Au sputtering are caused by volatile metal impurities and gas impurities in the gold or gold alloy material. Since it is possible to minimize the adhesion gas on the surface of the gold or gold alloy material by reducing the micro surface area of the gold material such as an ingot, for example, the shape of the center of the ingot is raised and the machine The present inventors have realized that a smooth casting surface with no processed surface may be used, and the present invention has been completed.
[0008]
The vacuum deposition or sputtering gold or gold alloy material obtained by the vacuum deposition or sputtering gold or gold alloy material manufacturing method according to the present invention has a molar ratio of gold or gold having a purity of 4N (99.99%) or more. It is a gold alloy with a ratio exceeding 50%. This gold or gold alloy material has a content of volatile metal impurities of 1 ppm by weight or less, a content of hydrogen and nitrogen of 1 ppm by weight or less, and a content of oxygen of 5 ppm by weight or less. If volatile metal impurities and gas impurities in the gold or gold alloy material are out of such a range, splash or gold balls may be generated when a thin film is formed by vacuum deposition or sputtering using the obtained material. In such a range, such a phenomenon does not occur.
[0009]
Vacuum deposition or sputtering gold material obtained by the method of vacuum deposition or sputtering gold or gold alloy material according to the invention, the gold having a purity of more than 4N, is produced by melt purified by zone melting refining method . In this production method, melt purification by zone melt purification is performed in a high vacuum of 1 × 10 −3 Pa or less. When producing a molded body, it is preferable to obtain a molded body by placing the gold material obtained by the melt purification in a container and heating and dissolving it, and then cooling the melt from only the bottom surface of the container. In this production method, the gold material obtained by the melt purification by the zone melt purification method is put into a container and heated and dissolved in a high vacuum of 1 × 10 −3 Pa or less, and thereafter, only from the bottom surface of the container It is preferable to cool the melt to obtain a molded body. A gold or gold alloy material having an extremely low content of volatile metal impurities and gas impurities can be obtained by using a zone melt purification method and producing a gold or gold alloy material by heating and melting in a high vacuum. Furthermore, in the method for producing a gold alloy material for vacuum deposition or sputtering according to the present invention, a gold material obtained by melt purification by a zone melt purification method and a purity of 4N or higher and a high value of 1 × 10 −3 Pa or less. The alloy material that has been vacuum-dissolved in vacuum is placed in a container at a gold ratio exceeding 50% in a molar ratio, and heated and melted in a high vacuum of 1 × 10 −3 Pa or less, and then the container The melt is cooled only from the bottom surface of to obtain a molded body .
[0010]
In addition, the hearth ingot obtained by the method for producing a hearth ingot according to the present invention is made of gold having a purity of 4N or higher or a gold alloy having a molar ratio of more than 50%, and contains volatile metal impurities, hydrogen and nitrogen. A hearth ingot for vacuum deposition having a content of 1 ppm by weight or less and an oxygen content of 5 ppm by weight or less, and in order to minimize the surface area, at least a part of the upper surface casting surface is It consists of a smooth melting surface. The hearth ingot also preferably has a shape in which the center portion of the upper surface is raised more than the end portion of the upper surface. By making the surface shape of the hearth ingot containing volatile metal impurities and gas impurities within the above range in this way, adhesion of gas impurities is eliminated on the surface of the ingot, and splash and gold balls are generated during vapor deposition and sputtering. Disappear.
[0011]
The method for producing a hearth ingot according to the present invention is produced by melting and purifying gold having a purity of 4N or higher by a zone melt purification method. In this production method, the melt purification by the zone melt purification method is performed in a high vacuum of 1 × 10 −3 Pa or less, the gold material obtained by the melt purification is put into a hearth-shaped container and heated and dissolved, The melt is cooled only from the bottom surface of the container to obtain a hearth-shaped ingot. Further, in this production method, the gold material obtained by the melt purification is put into a hearth-shaped container and heated and melted in a high vacuum of 1 × 10 −3 Pa or less, and then the melt is dissolved only from the bottom surface of the container. The product can be cooled to obtain a hearth-shaped ingot, and further, the gold material obtained by the above-described melt refining and the purity of 4N or higher, and vacuum melting in a high vacuum of 1 × 10 −3 Pa or lower The alloy material thus obtained is placed in a hearth-shaped container at a gold ratio exceeding 50% in a molar ratio and heated and melted in a high vacuum of 1 × 10 −3 Pa or less, and then the bottom surface of the container The melt can be cooled only from this to obtain a hearth-shaped ingot.
[0012]
The ingot obtained in this way has a shape in which at least a part of the casting surface on the upper surface is formed of a smooth melting surface, and the center of the upper surface is raised more than the end of the upper surface. Have By using the zone melt purification method and heating and dissolving in a high vacuum, an ingot having a very low content of volatile metal impurities and gas impurities can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, by reducing the volatile metal impurities and gas impurities in the gold or gold alloy material, and reducing the micro surface area of the gold or gold alloy material such as an ingot, for example, the center of the ingot. A vacuum used in thin film formation processes in semiconductor manufacturing using such gold materials by minimizing the gas adhering to the gold or gold alloy material surface as a smooth casting surface with a raised shape and no machined surface When vapor deposition or sputtering is performed, splash or gold balls are not generated on the surface of the thin film during vapor deposition or sputtering, and gas impurities do not adhere to the surface of the thin film, so that a high-quality Au thin film can be obtained.
[0014]
In the volatile metal impurities and gas impurities contained in the gold or gold alloy material obtained by the present invention, the type and amount differ depending on the type of gold ore as a raw material of gold, the refining method, etc. Li, Na, K as periodic group Ia metal, Be, Mg, Ca as periodic group IIa metal, P, As, Sb as periodic group Va metal, S, Se, as periodic group IIa metal Te and the like, and there are hydrogen gas, nitrogen gas, oxygen gas and the like.
[0015]
Although the shape of the gold | metal | money or gold alloy material obtained by this invention is not restrict | limited in particular, For example, an ingot, a pellet, a shot, a wire, a rod, a target shape etc. are preferable.
[0016]
According to the present invention, a rod-shaped gold material is produced using a zone melt refining method, the content of volatile metal impurities and gas impurities in the material is set to a predetermined amount or less, and the rod-shaped material is made into a crucible or the like. Put in a container, heat and dissolve for a predetermined time in a high vacuum of 1 × 10 −3 Pa or less, then cool the melt so that no cavities occur in the solidified product, and make it into the desired shape as described above A desired thin film can be formed by forming and vacuum-depositing and sputtering using this. In addition, using a zone melt refining method and heating and melting in a high vacuum of 1 × 10 −3 Pa or less to produce a rod-shaped gold material, the content of volatile metal impurities and gas impurities in the material is determined. A desired thin film can be formed by reducing the amount to a predetermined amount or less and performing vacuum vapor deposition and sputtering. Alternatively, the rod-shaped gold material produced as described above may be heated and melted to produce an ingot or the like, and a vapor deposition film may be formed using this.
[0017]
In the present invention, it is necessary to melt the impurities in a high vacuum for such a time that the impurities are completely volatilized, not just a conventional vacuum melting method.
[0018]
In the case of the gold or gold alloy material thus obtained, for example, a hearth ingot, at least a part of the casting surface on the upper surface is a smooth melting surface, and the center of the upper surface is the upper surface. It has a shape that is raised from the end of the. An ingot having a very low content of volatile metal impurities and gas impurities can be obtained by using a zone melt purification method and producing a gold material by heating and melting in a high vacuum.
[0019]
According to the present invention, gold having a purity of 4N (99.99%) or higher is used as a raw material, and the content of impurities of the volatile metals Ia group, IIa group, Va group, and VIa group is 1 weight each. a gold or gold alloy material having a content of hydrogen gas and nitrogen gas of 1 ppm by weight or less and an oxygen gas content of 5 ppm by weight or less, Cool and mold pellets, shots, wires, and target shapes so that there are no cavities (so-called “su”) during molding.
[0020]
【Example】
An embodiment of the present invention will be described below with reference to FIG.
Example 1
A hearth-shaped Au ingot for E / B deposition was produced as follows.
[0021]
Using gold having a purity of 4N, melt purification is performed according to the zone melt purification method to produce a rod-shaped material, and this rod-shaped material is then placed in a hearth crucible for E / B deposition, 1 × 10 −3 Pa The solution was heated and dissolved in the following high vacuum over 5 hours. After melting, this melt was cooled only from the bottom of the crucible to obtain a hearth-shaped ingot for E / B deposition. Thus, since it cooled only from the bottom face of a melt, the cavity was not produced in the obtained molded object. Impurities in the ingot purified by the above purification method were such that each content of Li, Na, K, Be, Mg, Ca, P, As, Sb, S, Se, and Te was 1 ppm by weight or less. Further, the contents of hydrogen and nitrogen gas were each 1 ppm by weight or less, and the content of oxygen gas was 5 ppm by weight or less.
[0022]
Using the gold material obtained as described above, vacuum deposition was performed under known conditions, and when an Au thin film was formed on the substrate, no splash occurred, and the surface of the deposited film was made of ball-shaped gold. The outbreak was not found.
[0023]
Further, the casting surface on the upper surface of the hearth ingot was a smooth melting surface, and the surface area was small. As shown in FIG. 1, this hearth ingot had a shape in which the central portion 1 of the upper surface thereof was raised more than the end portion 2 of the upper surface.
(Example 2)
A 10 mmφ × 1000 mmL rod-shaped gold material obtained by electrolytic purification was melt-purified for 8 hours in a high vacuum of 1 × 10 −3 Pa or less according to the zone melt purification method. As for the impurities in the gold material thus obtained, each content of Li, Na, K, Be, Mg, Ca, P, As, Sb, S, Se, and Te was 1 ppm by weight or less. Moreover, since it was special dissolution called zone melt, the content of hydrogen and nitrogen gas was 1 ppm by weight or less, and the content of oxygen gas was 5 ppm by weight or less.
[0024]
Next, vacuum deposition was carried out under known conditions using the gold material obtained as described above, and when an Au thin film was formed on the substrate, no splash occurred and the surface of the deposited film was ball-shaped. I couldn't find any money.
[0025]
Furthermore, when a hearth ingot was produced under the conditions of 1 × 10 −4 Pa using the gold material obtained as described above, and vacuum vapor deposition was similarly performed using this, the same result as above was obtained. was gotten.
(Example 3)
A hearth-shaped Au-Sn ingot for E / B deposition was produced as follows.
[0026]
Commercially available Sn having a purity of 4N was used as the Sn raw material. Since this raw material has a very high oxygen gas content, slag was removed in advance by vacuum melting before producing the alloy. The degree of vacuum at this time was 1 × 10 −4 Pa. Next, Au 80 g and Sn 20 g were dissolved by vacuum induction heating at the same degree of vacuum, and a hearth ingot was manufactured according to Example 1.
[0027]
Using the gold alloy ingot produced in this way and the atmospheric melting ingot according to the prior art, vacuum deposition was performed under known conditions, and the characteristics of both were compared. As a result, in the case of using an air-melting ingot, slag emerged on the surface in a molten state before vapor deposition, and it took 3 to 4 minutes (only about 40 g disappeared) just by flying this slag with EB. In the subsequent 2-minute vapor deposition, 40 or more balls having a diameter of 10 μm or more adhered to the vapor deposition film. However, when the vacuum melting ingot according to the present invention was used, there was no slag floating on the surface at the time of melting, and vapor deposition for 2 minutes was immediately possible. There was no adhesion of balls on the surface of the obtained deposited film.
[0028]
【Effect of the invention】
According to the production method of the present invention vacuum deposition or sputtering gold or gold alloy, Oite the Au film formation by vacuum deposition and sputtering is used in thin film formation process in the semiconductor manufacturing, the problem that the occurrence of splash gold ball In addition, a gold or gold alloy material capable of forming a high-quality Au thin film can be provided.
[0029]
According to the hearth ingot manufacturing method of the present invention, there is provided a gold or gold alloy material capable of forming a high-quality Au thin film without the problem of occurrence of splash or gold balls in the Au film formation by vacuum deposition. obtain.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an external shape of a hearth ingot according to the present invention.
[Explanation of symbols]
1 Center of the surface 2 Edge of the surface

Claims (5)

4N以上の純度を有する金を、ゾーンメルト精製法によって1×10-3Pa以下の高真空中で溶融精製し、揮発性金属不純物の含有量が1重量ppm以下、水素及び窒素の含有量が1重量ppm以下、並びに酸素の含有量が5重量ppm以下の真空蒸着又はスパッタ用金を得ることを特徴とする真空蒸着又はスパッタ用金材料の製造方法。 Gold having a purity of 4N or higher is melt-purified in a high vacuum of 1 × 10 −3 Pa or less by a zone melt refining method, the content of volatile metal impurities is 1 ppm by weight or less, the content of hydrogen and nitrogen is A method for producing a vacuum deposition or sputtering gold material, characterized in that a vacuum deposition or sputtering gold having an oxygen content of 1 ppm by weight or less and an oxygen content of 5 ppm by weight or less is obtained . 請求項1で得られた4N以上の純度を有する金材料を容器に入れて1×10-3Pa以下の高真空中で揮発性金属不純物の含有量が1重量ppm以下となるまで加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、水素及び窒素の含有量が1重量ppm以下、並びに酸素の含有量が5重量ppm以下である成形体を得ることを特徴とする真空蒸着又はスパッタ用金材料の製造方法。 The gold material having a purity of 4N or more obtained in claim 1 is placed in a container and heated and dissolved in a high vacuum of 1 × 10 −3 Pa or less until the content of volatile metal impurities is 1 ppm by weight or less. Thereafter, the melt is cooled only from the bottom surface of the container to obtain a molded body having a hydrogen and nitrogen content of 1 ppm by weight or less and an oxygen content of 5 ppm by weight or less. A method for producing a gold material for vacuum deposition or sputtering. 請求項で得られた4N以上の純度を有する金材料と、4N以上の純度を有する合金材料とを、金の比率がモル比で50%を超える割合で容器に入れて1×10-3Pa以下の高真空中で揮発性金属不純物の含有量が1重量ppm以下となるまで加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、水素及び窒素の含有量が1重量ppm以下、並びに酸素の含有量が5重量ppm以下である成形体を得ることを特徴とする真空蒸着又はスパッタ用金合金材料の製造方法。The gold material having a purity of 4N or more obtained in claim 1 and the alloy material having a purity of 4N or more are placed in a container at a ratio of gold exceeding 50% in molar ratio to 1 × 10 −3. The solution is heated and dissolved in a high vacuum of Pa or less until the content of volatile metal impurities is 1 ppm by weight or less, and then the melt is cooled only from the bottom of the container, so that the content of hydrogen and nitrogen is 1 A method for producing a gold alloy material for vacuum vapor deposition or sputtering, wherein a molded body having a weight ppm or less and an oxygen content of 5 ppm by weight or less is obtained. 請求項で得られた4N以上の純度を有する金材料をハース形状の容器に入れて1×10-3Pa以下の高真空中で揮発性金属不純物の含有量が1重量ppm以下となるまで加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、水素及び窒素の含有量が1重量ppm以下、並びに酸素の含有量が5重量ppm以下であるハース形状のインゴットを得ることを特徴とする金のハースインゴットの製造方法。The gold material having a purity of 4N or more obtained in claim 1 is put in a hearth-shaped container and the content of volatile metal impurities is 1 ppm by weight or less in a high vacuum of 1 × 10 −3 Pa or less. After melting by heating, the melt is cooled only from the bottom of the container to obtain a hearth-shaped ingot having a hydrogen and nitrogen content of 1 ppm by weight or less and an oxygen content of 5 ppm by weight or less. A method for producing a gold hearth ingot. 請求項で得られた4N以上の純度を有する金材料と、4N以上の純度を有する合金用材料とを、金の比率がモル比で50%を超える割合でハース形状の容器に入れて1×10-3Pa以下の高真空中で揮発性金属不純物の含有量が1重量ppm以下となるまで加熱溶解し、その後、該容器の底面のみからこの溶解物を冷却して、水素及び窒素の含有量が1重量ppm以下、並びに酸素の含有量が5重量ppm以下であるハース形状のインゴットを得ることを特徴とする金合金のハースインゴットの製造方法。The gold material having a purity of 4N or more obtained in claim 1 and the alloy material having a purity of 4N or more are placed in a hearth-shaped container at a gold ratio exceeding 50% in a molar ratio. The solution is heated and dissolved until the content of volatile metal impurities is 1 ppm by weight or less in a high vacuum of 10 −3 Pa or less, and then the melt is cooled only from the bottom surface of the container to remove hydrogen and nitrogen. A method for producing a hearth ingot of a gold alloy, characterized in that a hearth-shaped ingot having a content of 1 ppm by weight or less and an oxygen content of 5 ppm by weight or less is obtained.
JP2001070733A 2001-03-13 2001-03-13 Method for producing gold or gold alloy for vacuum deposition or sputtering, and method for producing hearth ingot Expired - Fee Related JP5097890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070733A JP5097890B2 (en) 2001-03-13 2001-03-13 Method for producing gold or gold alloy for vacuum deposition or sputtering, and method for producing hearth ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070733A JP5097890B2 (en) 2001-03-13 2001-03-13 Method for producing gold or gold alloy for vacuum deposition or sputtering, and method for producing hearth ingot

Publications (2)

Publication Number Publication Date
JP2002275561A JP2002275561A (en) 2002-09-25
JP5097890B2 true JP5097890B2 (en) 2012-12-12

Family

ID=18928550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070733A Expired - Fee Related JP5097890B2 (en) 2001-03-13 2001-03-13 Method for producing gold or gold alloy for vacuum deposition or sputtering, and method for producing hearth ingot

Country Status (1)

Country Link
JP (1) JP5097890B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114188B1 (en) * 2010-08-30 2012-02-14 Corning Incorporated Method for eliminating carbon contamination of precious metal components
CN103305717A (en) * 2013-05-23 2013-09-18 中国航空工业集团公司北京航空材料研究院 Fusion casting method for preparing precise AuNiFeZr resistance alloy
WO2021020223A1 (en) * 2019-07-26 2021-02-04 松田産業株式会社 Vapor deposition material and method for manufacturing same
JP7175456B2 (en) * 2019-12-06 2022-11-21 松田産業株式会社 Evaporation material and its manufacturing method
WO2022040334A1 (en) 2020-08-18 2022-02-24 Enviro Metals, LLC Metal refinement
JP6896966B1 (en) * 2020-10-01 2021-06-30 松田産業株式会社 Gold vapor deposition material
JP7499370B1 (en) 2023-03-13 2024-06-13 松田産業株式会社 Precious metal deposition materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3605483B2 (en) * 1996-10-04 2004-12-22 神鋼電機株式会社 Purification method of high purity metal and alloy and high frequency vacuum melting equipment
JPH04304335A (en) * 1991-03-30 1992-10-27 Mitsubishi Materials Corp Pure gold foil for noble metal card
JPH059717A (en) * 1991-07-05 1993-01-19 Ricoh Co Ltd Thin film forming device
JP2960652B2 (en) * 1994-09-21 1999-10-12 実 一色 Method and apparatus for purifying high purity metal
JP3608581B2 (en) * 1995-03-28 2005-01-12 株式会社ブリヂストン Thin film formation method
JP4318325B2 (en) * 1998-02-05 2009-08-19 三井金属鉱業株式会社 Manufacturing method of high purity gold for ultra fine bonding wire
JP2001271161A (en) * 2000-01-20 2001-10-02 Mitsui Mining & Smelting Co Ltd Method for manufacturing sputtering target

Also Published As

Publication number Publication date
JP2002275561A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
US4190404A (en) Method and apparatus for removing inclusion contaminants from metals and alloys
TWI546401B (en) Cu-Ga alloy sputtering target and its manufacturing method
KR20020028890A (en) Copper sputtering target assembly and method of making same
JP2010280944A (en) Cu-Ga ALLOY, SPUTTERING TARGET, METHOD FOR PRODUCING THE Cu-Ga ALLOY, AND METHOD FOR PRODUCING THE SPUTTERING TARGET
JP3727115B2 (en) Manufacturing method of sputtering target
JP2001240949A (en) Method of manufacturing for worked billet of high- purity copper having fine crystal grain
CN114369736B (en) Nickel-based high-temperature alloy capable of improving use proportion of return materials and smelting process
JP5097890B2 (en) Method for producing gold or gold alloy for vacuum deposition or sputtering, and method for producing hearth ingot
JP5960282B2 (en) Cu-Ga alloy sputtering target and method for producing the same
JP2005330591A (en) Sputtering target
TWI570252B (en) Cu-Ga alloy sputtering target and its manufacturing method
TWI714491B (en) Evaporation material
JPH09248665A (en) Manufacture of al base alloy ingot containing high melting point metal by spray forming method
JPS62501548A (en) Continuous casting method
JP3673919B2 (en) High-purity titanium recovery method
TWI308598B (en)
US6478895B1 (en) Nickel-titanium sputter target alloy
TWI807395B (en) Gold evaporation material
JP2003293051A (en) METHOD FOR MANUFACTURING Ti ALLOY CONTAINING LOW MELTING POINT METAL AND REFRACTORY METAL
JP2018145518A (en) Cu-Ni alloy sputtering target
JP2002060886A (en) Method for manufacturing high purity bearing steel
JP2002060887A (en) Method for manufacturing high purity bearing steel
CN111318657A (en) Method for manufacturing titanium target copper-chromium alloy back plate
JP2002327216A (en) Method for purifying metals and for manufacturing sputtering target of high purity metal
CN111607729A (en) Moulded article made of molybdenum-aluminium-titanium alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5097890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees