JP5096872B2 - Application tool tip member and application tool having the same - Google Patents

Application tool tip member and application tool having the same Download PDF

Info

Publication number
JP5096872B2
JP5096872B2 JP2007284103A JP2007284103A JP5096872B2 JP 5096872 B2 JP5096872 B2 JP 5096872B2 JP 2007284103 A JP2007284103 A JP 2007284103A JP 2007284103 A JP2007284103 A JP 2007284103A JP 5096872 B2 JP5096872 B2 JP 5096872B2
Authority
JP
Japan
Prior art keywords
cemented carbide
weight
tip member
coating
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007284103A
Other languages
Japanese (ja)
Other versions
JP2008132539A (en
Inventor
卓洋 中川
澄春 友納
賢治 中原
州一 今里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2007284103A priority Critical patent/JP5096872B2/en
Publication of JP2008132539A publication Critical patent/JP2008132539A/en
Application granted granted Critical
Publication of JP5096872B2 publication Critical patent/JP5096872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シート状部材への塗布、パネル状部材への塗布、特に液晶ディスプレイパネルを製造するときのガラス基板表面にカラーレジスト等の塗布液を塗布する工程等に用いられる複数の超硬合金焼結体部材を拡散接合してなる塗布工具用先端部材とそれを具備する塗布工具に関する。 The present invention relates to a plurality of cemented carbides used for coating a sheet-like member, coating a panel-like member, particularly a step of applying a coating solution such as a color resist on the surface of a glass substrate when manufacturing a liquid crystal display panel. The present invention relates to a tip member for an application tool formed by diffusion bonding of a sintered body member and an application tool including the tip member.

超硬合金製塗布工具用先端部材とそれを具備する塗布工具として、各種超硬材料を用いたものが特許文献1から特許文献11に記載されているが、2m以上の長尺のものについての提案はなかった。
特に、液晶ディスプレイパネルを製造するときのガラス基板表面にカラーレジスト等の塗布液を塗布する工程等については、2m以上の長尺の塗布工具用先端部材とそれを具備する塗布工具が必要であった。最近では液晶ディスプレイ等の大型化が著しく、塗布工具用先端部材とそれを具備する塗布工具は益々、長尺化の傾向にあるため4m以上の長尺のものが必要となっていた。
しかしながら、超硬製塗布工具用先端部材については、長尺のものを製造しようとしても、原料粉末の長尺用プレス成形金型、長尺焼結炉が必要等現実的に限界があり、またプレス成形金型や長尺焼結炉が揃っても、炉内温度の制御が難しく焼結体の各部が均質でなくソリ、変形、残留応力等の問題が発生する。現在、生産可能な超硬製塗布工具用先端部材の長さは、実質上1.5m〜2m程度である。液晶ディスプレイの大型化に伴い、液晶ディスプレイパネルの製造工程では、2m以上、望ましくは4m以上の長さの塗布工具用先端部材とそれを具備する塗布工具が必要とされている。
現在、超硬製塗布工具用先端部材は、粉末冶金法で製造されているが、プレス成形の代わりに押し出し成形を行い、焼結して製造する方法もあるが、押し出し成形で形成されるグリーン体はポアが多く、この焼結体を研削、ラップするとピンホールが多くみられ、高精度の塗布が要求される液晶ディスプレイパネル製造工程等では使用できない。
また、複数の超硬合金焼結体部材を溶接、ロウ付け、圧接、接着剤による接着等による接合方法を用いて長尺の超硬合金製塗布工具用先端部材を製造しても、接合部では溶接欠陥、ロウ付け欠陥、圧接欠陥、接着欠陥、接合部の強度や硬さの低下等の影響で接合部の溶接層、ロウ層、接着剤層の磨耗や変形が大きいために、高い塗布精度を要求される液晶ディスプレイパネル製造工程等では使用できない。また、塗布溶剤の影響を受けたり、ロウ付け部、接着層等接合部で腐食や溶解の恐れがあり、同様に液晶ディスプレイパネル製造工程等では使用できない。
Although the thing using various cemented carbide materials is described in patent documents 1 to patent documents 11 as a tip member for application tools made of a cemented carbide alloy, and a coating tool provided with it, about the thing of 2m or more long There was no suggestion.
In particular, for the step of applying a coating solution such as a color resist on the surface of a glass substrate when manufacturing a liquid crystal display panel, a long coating tool tip member of 2 m or longer and a coating tool including the coating member are required. It was. Recently, the size of liquid crystal displays and the like has been remarkably increased, and the tip member for a coating tool and the coating tool provided with the tip member have been increasing in length.
However, as for the tip member for carbide coating tool, even if it is going to manufacture a long one, there are practical limitations such as the need for a long press molding die for raw material powder and a long sintering furnace, Even if a press mold and a long sintering furnace are prepared, it is difficult to control the temperature in the furnace, and each part of the sintered body is not homogeneous, and problems such as warpage, deformation, and residual stress occur. At present, the length of the tip member for the carbide coating tool that can be produced is substantially about 1.5 m to 2 m. Along with the increase in size of liquid crystal displays, in the manufacturing process of liquid crystal display panels, a tip member for a coating tool having a length of 2 m or more, preferably 4 m or more, and a coating tool including the tip member are required.
Currently, the tip member for cemented carbide application tools is manufactured by powder metallurgy, but there is also a method of manufacturing by extruding instead of press forming and sintering, but green formed by extrusion forming. The body has many pores, and when this sintered body is ground and lapped, many pinholes are seen and cannot be used in a liquid crystal display panel manufacturing process or the like that requires high-precision coating.
Even if a plurality of cemented carbide alloy sintered body members are joined by welding, brazing, pressure welding, adhesive bonding, or the like to produce a long cemented carbide tip member for a coating tool, In the case of welding defects, brazing defects, pressure welding defects, adhesion defects, and the weld layer, brazing layer, and adhesive layer of the joints are greatly worn and deformed due to the effects of reduced strength and hardness of the joints. It cannot be used in liquid crystal display panel manufacturing processes that require precision. Further, there is a risk of corrosion or dissolution at the joints such as the brazing part and the adhesive layer due to the influence of the coating solvent, and similarly it cannot be used in the liquid crystal display panel manufacturing process.

特開2002−086042号公報JP 2002-060442 A 特開2002−346456号公報JP 2002-346456 A 特開2003−175354号公報JP 2003-175354 A 特開2004−066016号公報JP 2004-0666016 A 特開2004−243152号公報Japanese Patent Laid-Open No. 2004-243152 特開2004−261678号公報JP 2004-261678 A 特開2004−298812号公報JP 2004-298812 A 特開2005−052820号公報JP 2005-052820 A 特開2005−161451号公報Japanese Patent Laid-Open No. 2005-161451 特開2006−272204号公報JP 2006-272204 A 特開2007−021415号公報JP 2007-021415 A

本発明の課題は、圧着、接着、溶接やロウ付けのような接合部での強度低下や接合欠陥が生じる方法ではなく、接合部で強度低下や接合欠陥が発生せず、たわみ等の変形がない2m以上の長尺の超硬合金製塗布工具用先端部材とそれを具備する塗布装置用塗布工具を得ることである。 The problem of the present invention is not a method of causing a strength drop or a joint defect at a joint part such as crimping, adhesion, welding or brazing, but a strength drop or a joint defect does not occur at the joint part, and deformation such as deflection is caused. The object is to obtain a long cemented carbide alloy coating tool tip member having a length of 2 m or more and a coating tool for a coating apparatus including the tip member.

以下の本発明の塗布工具用先端部材とそれを具備する塗布工具を得ることにより前記課題を解決することができる。
1回以上の焼結処理(HIPを含む)を施した2個以上の超硬合金焼結体部材を、拡散接合してなる塗布工具用先端部材(請求項1の本発明の塗布工具用先端部材)。長尺の超硬合金製塗布工具用先端部材を得るため、2個以上の超硬合金焼結体部材を拡散接合して一体となるように形成しているので、2個以上の超硬合金焼結体部材を圧着、接着、溶接やロウ付けで一体としたものと比較すると、接合部での強度低下や接合欠陥が発生せず、たわみ等の変形がない長尺の超硬合金製塗布工具用先端部材とそれを具備する塗布装置用塗布工具を得ることができる。
超硬合金が、4〜23重量%のCoと残部がWCである請求項1に記載の塗布工具用先端部材(請求項2の本発明の塗布工具用先端部材)。Coの含有量は、4重量%より少ないと靭性が低下し、接合部でのボイド等の接合欠陥を無くすためには結合材としては、4重量%以上必要であり、23重量%より多くなると硬度、剛性、耐食性が低下し、変形しやすくなるので、4〜23重量%とする必要がある。このような組成の超硬合金を用いると拡散接合を容易に行うことができ、接合部での強度が大きく、靭性が高く、被塗布部材と接触する等衝撃が加わる塗布に適している。
超硬合金が、4〜23重量%のCoと残部がWCからなる超硬合金の重量を100重量部とした場合、これに対し0.1〜2.2重量部のCr、V又はそれらの炭化物のうちいずれか1種以上を添加して総重量が100.1〜102.2重量部となる組成を有する請求項1に記載の塗布工具用先端部材(請求項3の本発明の塗布工具用先端部材)。請求項2で使用する超硬合金に、前記の割合でCr、V又はそれらの炭化物のうちいずれか1種以上を添加すれば、WC結晶粒子の成長を抑制し、全体的に結晶粒子径の成長を抑えることになり工具表面の面粗さや先端部の加工による形状精度を向上させることができる。Cr、V又はそれらの炭化物のうちいずれか1種以上からなる添加物の量としては、0.1重量部より少ないとWC結晶粒子の成長を抑制することができないし、全体的に結晶粒子径の成長を抑えることができない。また、2.2重量部より多くなると、焼結性が悪くなったり、拡散接合したとき接合欠陥ができたりする。そのため、Cr、V又はそれらの炭化物のうちいずれか1種以上からなる添加物の量としては、0.1〜2.2重量部とする必要がある。
超硬合金が、4〜23重量%のCo又はNiの少なくとも1種と残部がTi、Ta、Mo又はそれらの炭化物、窒化物、炭窒化物のいずれか1種以上を含有する組成からなる請求項1に記載の塗布工具用先端部材(請求項4の本発明の塗布工具用先端部材)。結合材のCo又はNiの少なくとも1種の含有量は、4重量%より少ないと靭性が低下し、接合部でのボイド等の接合欠陥を無くすためには結合材としては、4重量%以上必要であり、23重量%より多くなると硬度、剛性が低下し、変形しやすくなり、結合材がCoの場合は、耐食性が低下するので、4〜23重量%とする必要がある。このような組成の超硬合金を用いると拡散接合を容易に行うことができ、接合部での強度が大きく、靭性が高く、被塗布部材と接触する等衝撃が加わる塗布に適している。WCの代わりに、Ti、Ta、Mo又はそれらの炭化物、窒化物、炭窒化物のいずれか1種以上からなるものを用いれば、耐酸化性を向上でき、工具先端を高精度な状態に保つことができる。
超硬合金が、4〜20重量系%のNiと残部がWCの組成よりなる請求項1に記載の塗布工具用先端部材(請求項5の本発明の塗布工具用先端部材)。Niの含有量は、4重量%より少ないと靭性が低下し、接合部でのボイド等の接合欠陥を無くすためには結合材としては、4重量%以上必要であり、20重量%より多くなると硬度、剛性が低下し、変形しやすくなるので、4〜20重量%とする必要がある。このような組成の超硬合金を用いると拡散接合を容易に行うことができ、接合部での強度が大きく、靭性が高く、被塗布部材と接触する等衝撃が加わる塗布に適している。特に結合材がNiであるので、結合材がCoの超硬合金と比較して耐食性に優れ、塗布する液体またはスラリーに腐食されにくい。
超硬合金が、4〜20重量系%のNiと残部がWCからなる超硬合金の重量を100重量部とした場合、これに対し0.3〜4.0重量部のCr又はCr炭化物を添加して総重量を100.3〜104.0重量部となる組成を有する請求項1に記載の塗布工具用先端部材(請求項6の本発明の塗布工具用先端部材)。請求項5で使用する超硬合金に、前記の割合でCr又はCr炭化物を添加すれば、耐食性だけでなく、WC結晶粒子の成長を抑制し、全体的に結晶粒子径の成長を抑えることになり工具表面の面粗さや先端部の加工による形状精度を向上させることができ、非磁性であるために、塗布する液体やスラリーが磁性を帯びている場合は、磁気の影響を受けることなく良好な塗布ができる。添加するCr又はCr炭化物の量としては、0.3重量部より少ないとWC結晶粒子の成長を抑制し、全体的に結晶粒子径の成長を抑えることができず、工具表面の粗さや先端部の加工精度を向上させることができないだけでなく、磁性を帯びるので、磁性のある塗布剤の塗布ができない。また、4.0重量部を超えると、WC結晶粒子の成長を抑制し、全体的に結晶粒子径の成長を抑えることになり工具表面の面粗さや先端部の加工による形状精度を向上させることができるが、拡散接合した場合、接合欠陥ができるので、添加するCr又はCr炭化物の量としては、4.0重量部以下とする必要がある。
請求項1から請求項6のいずれかに記載の塗布工具用先端部材を塗布工具本体に具備することを特徴とする塗布工具(請求項7の本発明の塗布工具)。拡散接合により請求項1から請求項6のいずれかに記載の長尺の本発明の塗布工具用先端部材が得られるが、高剛性で接合部での結合強度が高く、変形もなく、それぞれ請求項1から請求項6の特性を有するが、これを塗布工具本体にネジ止め、ロウ付け、圧入、嵌合その他の方法等により装着した塗布工具を用いれば、長寿命で塗布精度よく大面積の部材への塗布ができる。
The said subject can be solved by obtaining the application | coating tool front-end | tip member of the following this invention, and the coating tool which comprises it.
A tip member for an application tool formed by diffusion bonding two or more sintered cemented carbide members subjected to one or more sintering processes (including HIP) (the tip for an application tool of the present invention according to claim 1) Element). In order to obtain a long tip member for a coated tool made of cemented carbide, two or more cemented carbide sintered body members are formed so as to be integrated by diffusion bonding. Compared to a single unit of sintered body by pressure bonding, adhesion, welding, or brazing, long cemented carbide coating that does not cause strength reduction or bonding defects at the joints and is not deformed such as deflection. A tool tip member and a coating tool for a coating apparatus including the tip member can be obtained.
The tip member for a coating tool according to claim 1, wherein the cemented carbide is 4 to 23% by weight of Co and the balance is WC (the tip member for a coating tool of the present invention according to claim 2). If the Co content is less than 4% by weight, the toughness will decrease, and in order to eliminate joint defects such as voids at the joints, the binder needs to be 4% by weight or more, and if it exceeds 23% by weight. Since hardness, rigidity, and corrosion resistance are lowered and deformation is likely to occur, it is necessary to be 4 to 23% by weight. When a cemented carbide having such a composition is used, diffusion bonding can be easily performed, the strength at the joint is high, the toughness is high, and it is suitable for application where an impact such as contact with the member to be applied is applied.
When the cemented carbide is 100 to 30 parts by weight of the cemented carbide consisting of 4 to 23% by weight of Co and the balance of WC, 0.1 to 2.2 parts by weight of Cr, V or their The tip member for an application tool according to claim 1 having a composition in which any one or more of carbides are added to a total weight of 100.1 to 102.2 parts by weight. Tip member). If any one or more of Cr, V or their carbides is added to the cemented carbide used in claim 2 in the above proportion, the growth of WC crystal particles is suppressed, and the overall crystal particle size is reduced. Growth is suppressed, and the surface roughness of the tool surface and the shape accuracy by machining the tip can be improved. The amount of the additive consisting of one or more of Cr, V or their carbides is less than 0.1 parts by weight, and the growth of WC crystal particles cannot be suppressed, and the overall crystal particle size Can't suppress the growth of On the other hand, if the amount is more than 2.2 parts by weight, the sinterability may be deteriorated or a bonding defect may be formed when diffusion bonding is performed. Therefore, it is necessary to set it as 0.1-2.2 weight part as the quantity of the additive which consists of any 1 or more types among Cr, V, or those carbide | carbonized_materials.
The cemented carbide is composed of a composition containing at least one of Co or Ni of 4 to 23% by weight and the balance containing any one or more of Ti, Ta, Mo or carbides, nitrides, and carbonitrides thereof. Claim | item 1 tip member for coating tools (tip member for coating tools of this invention of Claim 4). If the content of at least one of Co or Ni in the binder is less than 4% by weight, the toughness will be reduced, and in order to eliminate joint defects such as voids at the joint, the binder needs to be 4% by weight or more. If the amount exceeds 23% by weight, the hardness and rigidity are lowered, and deformation tends to occur. When the binder is Co, the corrosion resistance is lowered, so it is necessary to be 4 to 23% by weight. When a cemented carbide having such a composition is used, diffusion bonding can be easily performed, the strength at the joint is high, the toughness is high, and it is suitable for application where an impact such as contact with the member to be applied is applied. If WC is replaced with Ti, Ta, Mo or any one or more of those carbides, nitrides, and carbonitrides, the oxidation resistance can be improved and the tool tip is kept in a highly accurate state. be able to.
The tip member for a coating tool according to claim 1, wherein the cemented carbide is composed of 4 to 20% by weight of Ni and the balance is WC (the tip member for coating tool of the present invention according to claim 5). If the Ni content is less than 4% by weight, the toughness will be reduced, and in order to eliminate joint defects such as voids at the joint, the binder needs to be 4% by weight or more, and if it exceeds 20% by weight. Since hardness and rigidity are lowered and deformation is likely to occur, it is necessary to be 4 to 20% by weight. When a cemented carbide having such a composition is used, diffusion bonding can be easily performed, the strength at the joint is high, the toughness is high, and it is suitable for application where an impact such as contact with the member to be applied is applied. In particular, since the binder is Ni, the binder is excellent in corrosion resistance as compared with the cemented carbide of Co, and is hardly corroded by the liquid or slurry to be applied.
When the cemented carbide is 4 to 20% by weight of Ni and the balance of the cemented carbide consisting of WC is 100 parts by weight, 0.3 to 4.0 parts by weight of Cr or Cr carbide is added thereto. The tip member for an application tool according to claim 1, wherein the tip member is a total weight of 100.3 to 104.0 parts by weight (the tip member for an application tool of the present invention according to claim 6). If Cr or Cr carbide is added to the cemented carbide used in claim 5 at the above ratio, not only corrosion resistance but also growth of WC crystal particles is suppressed, and overall growth of crystal particle diameter is suppressed. It is possible to improve the surface roughness of the tool surface and the shape accuracy by processing the tip, and because it is non-magnetic, it is good without being affected by magnetism when the liquid or slurry to be applied is magnetic Can be applied. If the amount of Cr or Cr carbide added is less than 0.3 parts by weight, the growth of WC crystal particles cannot be suppressed, and the overall growth of crystal particle diameter cannot be suppressed. In addition to not being able to improve the processing accuracy, it is magnetized, so that a magnetic coating agent cannot be applied. When the amount exceeds 4.0 parts by weight, the growth of the WC crystal particles is suppressed, and the growth of the crystal particle diameter is suppressed as a whole, thereby improving the surface roughness of the tool surface and the shape accuracy by processing the tip portion. However, when diffusion bonding is performed, bonding defects are formed, so the amount of Cr or Cr carbide to be added needs to be 4.0 parts by weight or less.
A coating tool (coating tool of the present invention according to claim 7), wherein the coating tool main body comprises the coating tool tip member according to any one of claims 1 to 6. A long tip member for a coating tool of the present invention according to any one of claims 1 to 6 can be obtained by diffusion bonding, but the rigidity is high, the bonding strength at the bonding portion is high, and there is no deformation. Although it has the characteristics of Item 1 to Claim 6, if a coating tool mounted on the coating tool body by screwing, brazing, press-fitting, fitting, or other methods is used, it has a long service life and a large area with high coating accuracy. Application to the member is possible.

本発明の超硬合金製塗布工具用先端部材とそれを具備する塗布工具は、従来の圧着、接着、溶接やロウ付けのような方法で製造したものと比較すると、接合部での断面組織は他の部分の組織と変わらず、接合部での強度の低下も無く、ボイドも無いので、所望する長さの超硬合金製塗布工具用先端部材とそれを具備する塗布工具を得られるだけでなく、接合部での強度が他の部分と変わらないので、変形や破断が起こらず、高精度の塗布が要求される液晶ディスプレイパネル製造工程等で使用することができる。 The tip member for the application tool made of cemented carbide of the present invention and the application tool comprising the same are compared with those manufactured by methods such as conventional crimping, bonding, welding and brazing, and the cross-sectional structure at the joint is The structure of the other parts is the same, there is no decrease in strength at the joint, and there are no voids, so it is only possible to obtain the tip member for the application tool made of cemented carbide with the desired length and the application tool equipped with it. In addition, since the strength at the joint is not different from that of the other parts, it can be used in a liquid crystal display panel manufacturing process or the like that requires high-precision coating without deformation or breakage.

以下図面を参照し、本発明の実施の形態について説明する。
図1は、本発明の塗布工具に使用される第1の実施形態の超硬合金製の塗布工具用先端部材4を超硬合金焼結体部材1、2を拡散接合して製造する状態を示す図である。3は拡散接合面を示す。この図では、1回以上の焼結処理(HIP処理を含む)を施した2個の超硬合金焼結体部材1、2の端部同士を密着した状態で両端から圧力を加えながら、真空焼結炉中で拡散接合により接合する場合を示しているが、長尺な塗布工具用先端部材を得ようとするときは、3個以上の超硬合金焼結体部材を適当数使用し、拡散接合する場合もある。また、本発明の超硬合金製塗布工具用先端部材の製造に用いられる超硬合金焼結体部材の端面は、予め機械加工やサンドブラスト加工などにより酸化被膜やいわゆる黒皮を除去し、拡散接合反応が促進されるようにしておくことが好ましい。
実際に拡散接合する場合は、図2に示すように、真空焼結炉中に2個以上の超硬合金焼結体部材を水平なカーボン製支持台6の上に下端部の滑止板7で止まるように傾斜させて載置し、端部におもり5を載せ超硬合金焼結体部材同士に接合面で両端から圧力がかかるようにして、超硬合金焼結体部材1、2を拡散接合することにより得られる。ここでは、カーボン製支持台等カーボン製治具を使用する場合を例示したが、その他カーボン繊維、超硬合金と反応しない酸化物セラミックス等を使用することができる。
尚、本発明の超硬合金製塗布工具用先端部材の製造に用いられる超硬合金の原料粉末の平均粒子径は、好ましくは1μm以下より好ましくは0.7μm以下が良い。これは粒子が微細になるほど強度が高くなることに加え、先端が微細粒子になることで高精度な先端形状が得られるためである。
又、焼結は基本的にその材料が十分焼結する範囲で行う必要があり、得られた焼結体の気孔率が2%未満とすることが好ましい。気孔を無くし、高密度とするためHIP処理や複数回の焼結を行ってもよい。焼結温度は、材料によっても異なるが、例えばWC−4質量%Coの超硬材料であれば、約1500℃である。また、雰囲気は真空雰囲気が好ましく、少なくとも希ガス雰囲気等非酸化性雰囲気とする必要がある。
この状態で、熱処理が可能な炉中に密着固定した部分または全部を真空または不活性ガス中で焼結温度に対して±50℃の範囲で熱処理を行う。熱処理温度が焼結温度より50℃以上低ければ液相の拡散が十分に起こらず、超硬合金焼結体部材同士の拡散接合欠陥が生じ、逆に50℃以上高ければ結晶粒子の成長が顕著になり、いずれも接合部での強度等特性に悪影響を及ぼす。この熱処理により超硬合金焼結体部材1、2が密着した部分では、CoやNiの金属バインダが相互に拡散して結合する(拡散接合)。冷却時にCoやNiからはWCの相が析出し、拡散接合部では超硬合金焼結体部材本体とほとんど変わりのない断面組織を形成し、実質的に超硬合金焼結体部材本体と同一の特性を有し、全長に渡り均質な超硬合金製の塗布工具用先端部材4を得ることが出来る。
この際用いられる炉は、ヒーターにより少なくとも局部加熱が可能な炉であればよく、例えば真空引き可能な細長い円筒の一部に、抵抗加熱、高周波加熱の装置を取り付けたような簡単な構造でも構わない。
本発明の超硬合金製の塗布工具用先端部材4は、抵抗加熱方式あるいは高周波誘導加熱方式により加熱された治具より被接合界面近傍あるいは被接合体全体を熱伝導により加熱し接合するもので、2m以上の長さでも接合部の組織を超硬合金焼結体部材本体と同一の均一な組織に製作できるよう接合部あるいは合金全体を真空雰囲気にする。これにより、接合部の抗折力強度が、母材部と同等の強度となる。ここで言う真空雰囲気とは、0Pa〜500Paであり、通常の大気、窒素ガスあるいはアルゴンガス雰囲気から真空排気して形成される雰囲気をいう。
図3の8、9はそれぞれ本発明の超硬合金製の塗布工具用先端部材4の拡散接合部3、超硬合金焼結体部材2の横断面組織観察用試料の採取部分である。図4a、図4bは、それぞれ拡散接合部3、超硬合金焼結体部材2の横断面組織写真を示す。これらの組織を比較してわかるが、双方の断面組織について相違がなく、拡散接合部においてはボイド等の接合欠陥もないことがわかる。
更に、次の組成の超硬合金焼結体を第1の実施形態の超硬合金材料として用いると、第2から第6の実施形態の本発明の超硬合金製塗布工具用先端部材を得ることができる。
第2の実施形態に用いる超硬合金の組成:4〜23重量%のCoと残部がWCからなるもの
第3の実施形態に用いる超硬合金の組成:4〜23重量%のCoと残部がWCからなる超硬合金の重量を100重量部とした場合、これに対し0.1〜2.2重量部のCr、V又はそれらの炭化物のうちいずれか1種以上を添加して総重量を100.1〜102.2重量部となる組成にしたもの
第4の実施形態に用いる超硬合金の組成:4〜23重量%のCo又はNiの少なくとも1種と残部がTi、Ta、Mo又はそれらの炭化物、窒化物、炭窒化物のいずれか1種以上からなるもの
第5の実施形態に用いる超硬合金の組成:4〜20質量系%のNiと残部がWCからなるもの
第6の実施形態に用いる超硬合金の組成:4〜20重量系%のNiと残部がWCからなる超硬合金の重量を100重量部とした場合、これに対し0.3〜4.0重量部のCrまたはCr炭化物を添加して総重量を100.3〜104.0重量部となる組成としたもの
このようにして得られた第2から第6の実施形態の本発明の超硬合金製塗布工具用先端部材は、前記第1の実施形態の本発明の超硬合金製塗布工具用先端部材の基本的特徴に加えて、それぞれ課題を解決するための手段で述べた特徴がある。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a state in which a cemented carbide tip member 4 made of cemented carbide according to the first embodiment used in the coating tool of the present invention is manufactured by diffusion bonding cemented carbide sintered members 1 and 2. FIG. Reference numeral 3 denotes a diffusion bonding surface. In this figure, a vacuum is applied while applying pressure from both ends in a state where the ends of two cemented carbide sintered bodies 1 and 2 subjected to one or more sintering processes (including HIP process) are in close contact with each other. Shows the case of joining by diffusion bonding in a sintering furnace, but when trying to obtain a long tip member for coating tools, use an appropriate number of three or more cemented carbide sintered body members, In some cases, diffusion bonding is also performed. Further, the end face of the cemented carbide sintered body member used for manufacturing the tip member for the application tool made of the cemented carbide according to the present invention is preliminarily removed from the oxide film or so-called black skin by machining or sandblasting, and diffusion bonding is performed. It is preferable to promote the reaction.
When actually performing diffusion bonding, as shown in FIG. 2, two or more cemented carbide sintered body members are placed on a horizontal carbon support base 6 in a vacuum sintering furnace and a non-slip plate 7 at the lower end. The cemented carbide sintered body members 1 and 2 are placed so that the cemented carbide sintered body members 1 and 2 are placed so as to stop at the ends, the weights 5 are placed on the end portions, and pressure is applied to the cemented carbide sintered body members from both ends at the joining surfaces. It can be obtained by diffusion bonding. Here, the case where a carbon jig such as a carbon support is used has been exemplified, but other oxide ceramics that do not react with carbon fiber and cemented carbide can be used.
In addition, the average particle diameter of the raw material powder of the cemented carbide used for manufacturing the tip member for the coated tool of the present invention is preferably 1 μm or less, more preferably 0.7 μm or less. This is because the finer the particle, the higher the strength, and the finer the tip, the more accurate tip shape can be obtained.
Sintering basically needs to be performed within a range where the material is sufficiently sintered, and the porosity of the obtained sintered body is preferably less than 2%. In order to eliminate pores and increase the density, HIP treatment or multiple times of sintering may be performed. Although the sintering temperature varies depending on the material, for example, it is about 1500 ° C. for a super hard material of WC-4 mass% Co. Further, the atmosphere is preferably a vacuum atmosphere, and at least a non-oxidizing atmosphere such as a rare gas atmosphere is required.
In this state, heat treatment is performed in a range of ± 50 ° C. with respect to the sintering temperature in vacuum or in an inert gas for the part or the whole that is tightly fixed in a heat-treatable furnace. If the heat treatment temperature is 50 ° C. or more lower than the sintering temperature, the liquid phase will not diffuse sufficiently, and diffusion bonding defects will occur between the cemented carbide sintered body members. Conversely, if the heat treatment temperature is higher than 50 ° C., crystal grain growth will be remarkable. Both have adverse effects on properties such as strength at the joint. In the portion where the cemented carbide sintered body members 1 and 2 are in close contact with each other by this heat treatment, Co and Ni metal binders are diffused and bonded to each other (diffusion bonding). During cooling, a WC phase precipitates from Co and Ni, and forms a cross-sectional structure almost unchanged from the cemented carbide sintered body member body at the diffusion bonding portion, which is substantially the same as the cemented carbide alloy body body. It is possible to obtain a tip member 4 for a coating tool made of a cemented carbide that is homogeneous over the entire length.
The furnace used at this time may be a furnace that can be at least locally heated by a heater. For example, a simple structure in which an apparatus for resistance heating and high-frequency heating is attached to a part of an elongated cylinder that can be evacuated may be used. Absent.
The tip member 4 for a coating tool made of a cemented carbide according to the present invention is to join by heating the vicinity of the bonded interface or the entire bonded body by heat conduction from a jig heated by a resistance heating method or a high frequency induction heating method. Even in a length of 2 m or more, the joint or the entire alloy is set in a vacuum atmosphere so that the joint structure can be produced in the same uniform structure as the cemented carbide sintered body member body. As a result, the bending strength of the joint is equal to that of the base material. The vacuum atmosphere referred to here is 0 Pa to 500 Pa, and refers to an atmosphere formed by evacuating from normal air, nitrogen gas or argon gas atmosphere.
Reference numerals 8 and 9 in FIG. 3 are sampling portions of the diffusion bonding portion 3 of the application tool tip member 4 made of cemented carbide according to the present invention and the sample for observing the cross-sectional structure of the cemented carbide sintered body member 2, respectively. 4a and 4b show cross-sectional structure photographs of the diffusion bonding portion 3 and the cemented carbide sintered body member 2, respectively. As can be seen by comparing these structures, it can be seen that there is no difference between the two cross-sectional structures, and that there is no bonding defect such as a void in the diffusion bonding portion.
Further, when a cemented carbide sintered body having the following composition is used as the cemented carbide material of the first embodiment, the tip member for a cemented carbide application tool of the present invention of the second to sixth embodiments is obtained. be able to.
The composition of the cemented carbide used in the second embodiment: 4 to 23% by weight of Co and the balance consisting of WC The composition of the cemented carbide used in the third embodiment: 4 to 23% by weight of Co and the balance When the weight of the cemented carbide made of WC is 100 parts by weight, the total weight is obtained by adding at least one of 0.1 to 2.2 parts by weight of Cr, V, or carbides thereof. The composition of the cemented carbide used in the fourth embodiment: 10 to 102.2 parts by weight At least one of 4 to 23% by weight of Co or Ni and the balance is Ti, Ta, Mo or Those composed of at least one of those carbides, nitrides, carbonitrides Composition of the cemented carbide used in the fifth embodiment: 4-20% by mass of Ni and the balance consisting of WC Composition of cemented carbide used in the embodiment: 4 to 20% by weight of Ni and the balance When the weight of the cemented carbide composed of WC is 100 parts by weight, 0.3 to 4.0 parts by weight of Cr or Cr carbide is added thereto, and the total weight is 100.3 to 104.0 parts by weight. The tip member for a cemented carbide application tool of the present invention of the second to sixth embodiments obtained in this way is made of the cemented carbide of the present invention of the first embodiment. In addition to the basic characteristics of the tip member for an application tool, there are characteristics described in the means for solving the respective problems.

図5は、第7の実施形態の塗布工具12を示す図である。塗布工具12は、塗布工具本体10に塗布工具用先端部材4が塗布工具本体10の先端部に固着するように設けられている。一例として、液晶ディスプレイパネルを製造する工程で3m×3mのガラス基板表面にカラーレジストの塗布液を塗布する工程で使用したが、高剛性の超硬合金で製造されており、塗布工具用先端部材は超硬合金部材同士の接合部での強度低下、変形がないので高精度の平面が要求されるような用途でも、平滑で水平なカラーレジスト膜を形成することが出来る。   FIG. 5 is a view showing the application tool 12 of the seventh embodiment. The coating tool 12 is provided on the coating tool body 10 so that the coating tool tip member 4 is fixed to the tip of the coating tool body 10. As an example, it was used in the process of manufacturing a liquid crystal display panel in the process of applying a color resist coating solution on the surface of a 3 m × 3 m glass substrate, but it was manufactured with a high-rigidity cemented carbide and is a tip member for coating tools. Since there is no decrease in strength or deformation at the joint between cemented carbide members, a smooth and horizontal color resist film can be formed even in applications where a highly accurate plane is required.

以下実施例により、本発明の塗布工具用先端部材とそれを具備する塗布工具を詳細に説明する。   Hereinafter, the tip member for an application tool of the present invention and the application tool including the same will be described in detail with reference to examples.

本発明の塗布工具用先端部材に用いる超硬合金焼結体部材の原料粉末として、次のa〜eに示す組成のものを準備した。
これらの原料粉末は、WCの平均粒子径は0.7μm、それ以外の金属および炭化物の粉末の平均粒子径は0.5〜3μmのものを用いた。
粉末混合は、アトライターにて2時間行った。
得られた混合粉末をプレス成形用金型に充填して、1500mm×30mm×5mmの棒状の圧粉体を得た。プレスは100MPaで行い、それぞれの圧粉体を20本ずつ作成した。
a. 95重量%WC−5重量%Coからなる超硬合金焼結体部材用粉末
b.95重量%WC−5重量%Coからなる超硬合金焼結体部材用粉末の重量を100重量部とすると、これに対し、1重量部のCr3C2、1重量部のVを添加して総重量を102重量部の組成とする超硬合金焼結体部材用粉末
c.71重量%TiC−12重量%Ni−5重量%Co−10重量%Mo−2重量%TaCからなる超硬合金焼結体部材用粉末
d.90重量%WC−10重量%Niからなる超硬合金焼結体部材用粉末
e.90重量%WC−10重量%Niからなる超硬合金の重量を100重量部とした場合、これに対し2.5重量部のCr3C2を添加して総重量を102.5重量部となる組成を有する超硬合金焼結体部材用粉末
焼結は、真空雰囲気で1400℃〜1600℃との間で行った。それぞれの温度条件および理論密度との相対密度を表1に示す。
得られた超硬合金焼結体部材は、それぞれ線方向に約20%ずつ収縮し、およそ1200mm×24mm×4mmの棒状となった。超硬合金焼結体部材の原料粉末a〜eに対して、それぞれの超硬合金焼結体部材をA、B、C、D、Eとする。
As the raw material powder of the cemented carbide sintered body member used for the tip member for a coating tool of the present invention, those having the compositions shown in the following a to e were prepared.
As these raw material powders, WC has an average particle size of 0.7 μm, and other metal and carbide powders have an average particle size of 0.5 to 3 μm.
The powder mixing was performed with an attritor for 2 hours.
The obtained mixed powder was filled into a press molding die to obtain a 1500 mm × 30 mm × 5 mm rod-shaped green compact. The pressing was performed at 100 MPa, and 20 pieces of each green compact were produced.
a powder for cemented carbide sintered body member comprising 95 wt% WC-5 wt% Co b. When the weight of the cemented carbide sintered body member powder composed of 95% by weight WC-5% by weight Co is 100 parts by weight, 1 part by weight of Cr3C2 and 1 part by weight of V are added to the total weight. Powder for sintered cemented carbide member having a composition of 102 parts by weight c. Powder for cemented carbide sintered body member composed of 71 wt% TiC-12 wt% Ni-5 wt% Co-10 wt% Mo-2 wt% TaC d. Powder for sintered cemented carbide member made of 90 wt% WC-10 wt% Ni e. When the weight of cemented carbide composed of 90 wt% WC-10 wt% Ni is 100 parts by weight, a composition in which 2.5 parts by weight of Cr3C2 is added to make the total weight 102.5 parts by weight. Powder sintering for the cemented carbide sintered body member was performed between 1400 ° C. and 1600 ° C. in a vacuum atmosphere. Table 1 shows the relative density with respect to each temperature condition and theoretical density.
The obtained cemented carbide sintered body member contracted by about 20% in the linear direction, and became a bar shape of approximately 1200 mm × 24 mm × 4 mm. Let each cemented carbide sintered body member be A, B, C, D, and E with respect to the raw material powders a to e of the cemented carbide alloy member.

Figure 0005096872
Figure 0005096872

これらの超硬合金焼結体部材の端部(24mm×4mmの面)を平面研削盤により#200の砥石で平面研削を行った。
つぎに、A〜Eの各超硬合金焼結体部材をそれぞれの種類ごとに研削した端部を向かい合わせて密着した状態で長さ5mのパイプ状の真空炉に投入した。炉内には中央部を約200mmの範囲で加熱できるヒーターを備えている。
得ようとする塗布工具用先端部材の長さが、長くなるにつれ変形も発生するため、カーボン系の反応防止剤やアルミナを主成分とするセラミック系の反応防止剤を塗布または貼り付けたカーボン製治具を用いて図2のように両端から接合部に圧力がかかる構造とする。
炉内を真空にした後に、ヒーターに通電し、それぞれの試料の焼結温度と同じ温度まで昇温し、その状態で1時間保持を行った後、冷却した。
このようにして得られた本発明の塗布工具用先端部材は、それぞれ約2400mm×24mm×4mmの形状であった。超硬合金焼結体部材A〜Eから得られる本発明の超硬合金焼結体製の塗布工具用先端部材をそれぞれA1、B1、C1、D1、E1とする。
比較試料として、複数の超硬合金焼結体部材(A〜E)を溶接、Cu板を介したAgロウ付け、加熱加圧圧接、エポキシ樹脂接着剤による接合方法を用いて長尺の超硬合金製の塗布工具用先端部材を試作した。それぞれの比較試料をS1、S2、S3、S4とする。
(本発明の塗布工具用先端部材の断面組織)
図3に示すようにして得られた本発明の超硬合金焼結体製の塗布工具用先端部材の拡散接合部3を含むように、50mm×6mm×2mmの試料8を採取し、拡散接合部3を鏡面ラップ加工した。また、同様に超硬合金焼結体部材本体の断面組織観察用に試料9を採取し、同様の加工を行い、比較した。本発明の超硬合金焼結体製の塗布工具用先端部材A1についての拡散接合部3および超硬合金焼結体部材本体の光学顕微鏡による縦断面組織写真(1000倍)を図4a、図4bに示す。これらを比較しても、拡散接合部と超硬合金焼結体部材本体では断面組織に違いはなく、拡散接合部では粒成長やボイド等の接合欠陥も観察されなかった。本発明の塗布工具用先端部材B1〜E1についても、同様に拡散接合部と超硬合金焼結体部材本体では断面組織に違いはなく、拡散接合部では粒成長やボイド等の接合欠陥も観察されなかった。
(比較試料S1〜S4の特性)
本発明の超硬合金焼結体製の塗布工具用先端部材A1〜E1と同様にして、比較試料S1、S2、S3、S4について接合部とそれ以外の部分の断面組織を観察した。S1については、溶接は接合面の中心部より外側の部分が溶接されていて中心部は殆ど溶接されていなかった。S2について、接合部の断面組織を見ると、ボイドが多数存在し、接合欠陥の影響が大きく、接合部で引張強度が小さく、本発明のものの1/10以下であった。接合層は、剛性、硬度も低く接合部を中心として容易にたわみ塑性変形をする。S3については、接合部にはボイドが多数みられ、自重により接合部から折れてしまった。S4については、接合部に小さな気泡が見られ、S3と同様に自重により接合部から折れてしまった。比較試料S1〜S4については、接合部の断面組織を観察したが、ボイドが多数存在し、接合欠陥、接合部の強度不足のため本用途には、使用できなかった。
(本発明の塗布工具用先端部材の表面粗さ)
前記接合部を含む部分と、接合部を含まない超硬合金焼結体部材本体に当たる部分を同じ条件で#400番の平面研削盤による鏡面加工を施し、その最大面粗さ(JIS規格1982年度版)を比較した。結果を表2に示す。表2からも拡散接合部とそれ以外の部分の表面粗度に差がないことがわかった。これは、拡散接合部で粒成長が起きていないことを示しており、断面組織写真の結果と一致する。
The end portions (surface of 24 mm × 4 mm) of these cemented carbide alloy sintered body members were subjected to surface grinding with a # 200 grindstone using a surface grinder.
Next, each cemented carbide sintered body member of A to E was put into a pipe-shaped vacuum furnace having a length of 5 m in a state where the end parts ground for each type face each other and closely contact each other. A heater capable of heating the central part within a range of about 200 mm is provided in the furnace.
Since the tip of the application tool tip member to be obtained also deforms as it becomes longer, it is made of carbon coated or pasted with a carbon-based reaction inhibitor or a ceramic-based reaction inhibitor mainly composed of alumina. A structure in which pressure is applied to the joint from both ends as shown in FIG. 2 using a jig.
After the inside of the furnace was evacuated, the heater was energized, the temperature was raised to the same temperature as the sintering temperature of each sample, held in that state for 1 hour, and then cooled.
The tip members for coating tools of the present invention thus obtained each had a shape of about 2400 mm × 24 mm × 4 mm. The tip members for coating tools made of cemented carbide sintered bodies of the present invention obtained from the cemented carbide sintered body members A to E are respectively A1, B1, C1, D1, and E1.
As a comparative sample, a plurality of cemented carbide sintered body members (A to E) are welded, Ag brazed via a Cu plate, heat and pressure welding, and a joining method using an epoxy resin adhesive. An alloy tip member for an application tool was prototyped. The respective comparative samples are designated as S1, S2, S3, and S4.
(Cross-sectional structure of tip member for coating tool of the present invention)
A sample 8 having a size of 50 mm × 6 mm × 2 mm was collected so as to include the diffusion bonding portion 3 of the tip member for a coating tool made of the cemented carbide sintered body of the present invention obtained as shown in FIG. Part 3 was mirror-wrapped. Similarly, a sample 9 was taken for observation of the cross-sectional structure of the cemented carbide sintered body member main body, and the same processing was performed for comparison. 4a and 4b are longitudinal cross-sectional structure photographs (1000 times) of the diffusion bonding part 3 and the cemented carbide sintered body member main body of the coated tool tip member A1 made of the cemented carbide sintered body of the present invention by an optical microscope. Shown in Even when these were compared, there was no difference in the cross-sectional structure between the diffusion bonded portion and the cemented carbide sintered body member body, and no bonding defects such as grain growth and voids were observed at the diffusion bonded portion. Similarly, for the tip members B1 to E1 for the coating tool of the present invention, there is no difference in the cross-sectional structure between the diffusion bonded portion and the cemented carbide sintered body member body, and bonding defects such as grain growth and voids are also observed at the diffusion bonded portion. Was not.
(Characteristics of comparative samples S1 to S4)
In the same manner as the tip members A1 to E1 for the application tool made of the cemented carbide sintered body of the present invention, the cross-sectional structures of the joint portion and other portions of the comparative samples S1, S2, S3, and S4 were observed. As for S1, the outer part of the welded surface was welded, and the center was hardly welded. Regarding S2, when the cross-sectional structure of the joint portion was observed, many voids existed, the influence of the joint defect was large, the tensile strength was small at the joint portion, and it was 1/10 or less of that of the present invention. The bonding layer is low in rigidity and hardness and easily bends and plastically deforms around the bonding portion. About S3, many voids were seen in the junction and it broke from the junction due to its own weight. About S4, the small bubble was seen by the junction part, and it broke from the junction part by dead weight similarly to S3. For Comparative Samples S1 to S4, the cross-sectional structure of the joint was observed, but a large number of voids existed, and it could not be used in this application because of a joint defect and insufficient strength of the joint.
(Surface roughness of the tip member for coating tool of the present invention)
The part including the joint part and the part corresponding to the cemented carbide sintered body member main body not including the joint part are mirror-finished with a # 400 surface grinder under the same conditions, and the maximum surface roughness (JIS standard 1982) Version). The results are shown in Table 2. Table 2 also shows that there is no difference in the surface roughness between the diffusion bonding portion and the other portions. This indicates that grain growth does not occur at the diffusion bonding portion, which is consistent with the result of the cross-sectional structure photograph.

Figure 0005096872
Figure 0005096872

(本発明の塗布工具用先端部材の耐食性)
前記で用いた試料を酸性の溶液中に浸漬し、腐食についての各試料および母材との差異を測定した。酸性の溶液は1N(規定)の塩酸水溶液を80℃に保持した溶液を用いて、100時間浸漬後の状態を面粗度について比較した。結果を表3に示す。
表3の結果からわかるように、耐食性についてはNiを結合材とする本発明の塗布工具用先端部材D1、E1が他の試料に対して耐食性が高いことがわかる。また、拡散接合部分とそれ以外の本体部分とでは、耐食性に差は見られないことがわかった。断面組織写真の結果と一致する。
(Corrosion resistance of the tip member for coating tool of the present invention)
The sample used above was immersed in an acidic solution, and the difference in corrosion between each sample and the base material was measured. The acidic solution was a solution in which a 1N (normal) hydrochloric acid aqueous solution was maintained at 80 ° C., and the state after immersion for 100 hours was compared in terms of surface roughness. The results are shown in Table 3.
As can be seen from the results in Table 3, it can be seen that the corrosion resistance of the tip members D1 and E1 for the application tool of the present invention using Ni as a binder is higher than other samples. It was also found that there was no difference in corrosion resistance between the diffusion bonded portion and the other body portion. It agrees with the results of the cross-sectional structure photograph.

Figure 0005096872
Figure 0005096872

(本発明の塗布工具用先端部材の曲げ強度)
次に拡散接合部分を含む前記断面組織観察を行った試料を用いて、抗折力試験(3点曲げ強度試験)を行った。接合部分を含まない本体の試料を同様に切り取り、比較した。この結果を表4に示す。
この結果より接合部分と接合部分を含まない本体の強度は同じであることがわかる。
以上の結果より、接合部分は超硬合金焼結体本体と実質的に同一ということができる。
(Bending strength of tip member for coating tool of the present invention)
Next, a bending strength test (three-point bending strength test) was performed using the sample subjected to the cross-sectional structure observation including the diffusion bonding portion. Samples of the body that did not include the joint were cut and compared in the same manner. The results are shown in Table 4.
From this result, it can be seen that the strength of the joined portion and the body not including the joined portion are the same.
From the above results, it can be said that the joint portion is substantially the same as the cemented carbide sintered body.

Figure 0005096872
Figure 0005096872

以上A1〜E1までは、請求項1から請求項6に記載の本発明の塗布工具用先端部材の1実施例を示すが、それぞれの請求項に記載の他の組成のものについても、同様の結果となった。
(請求項2の発明の実施例の説明)
超硬合金が、95重量%WC−3重量%Co(請求項2を外れる組成)のものを用いて、前記と同様に拡散接合して、塗布工具用先端部材を作成したが、Coの含有量が、このように4重量%より少なくなるものについては靭性が低下し、接合部でのボイド等の接合欠陥を無くすためには結合材のCo量が不足であることがわかった。結合材のCo量としては、4重量%以上必要であることがわかった。76重量%WC−24重量%Co(請求項2を外れる組成)のものを用いて、前記と同様に拡散接合して、塗布工具用先端部材を作成したが、Coの含有量が、このように23重量%より多くなる材料は硬度、剛性、耐食性が低下し、変形しやすくなるので、4〜23重量%とする必要があることがわかった。
(請求項3の発明の実施例の説明)
超硬合金が、95重量%WC−4重量%Coからなる超硬合金の重量を100重量部とした場合、これに対し0.09重量部のCr、V又はそれらの炭化物のうちいずれか1種以上を添加して総重量が100.09重量部となる組成を有する塗布工具用先端部材(請求項3を外れる組成)を作成しても、焼結時等にWC結晶粒子の成長を抑制したり、全体的に結晶粒子径の成長を抑えることはできず、工具表面の面粗さや先端部の加工による形状精度を向上させることができないので、添加するCr、V又はそれらの炭化物のうちいずれか1種以上の重量としては、0.1重量部以上必要なことがわかった。また、添加するCr、V又はそれらの炭化物のうちいずれか1種以上の重量が、2.3重量部を超えると焼結性が悪くなったり、拡散接合したとき接合欠陥ができたりする。そのため、Cr、V又はそれらの炭化物のうちいずれか1種以上からなる添加物の量としては、0.1〜2.2重量部とする必要があることがわかった。
(請求項4の発明の実施例の説明)
超硬合金が、Co又はNiの少なくとも1種が3重量%であるように4重量%より少なく、残部がTi、Ta、Mo又はそれらの炭化物、窒化物、炭窒化物のいずれか1種以上からなる請求項1に記載の塗布工具用先端部材(請求項4を外れる組成)のものは、靭性が低下し、接合部でのボイド等の接合欠陥を無くすためには結合材の量としては、4重量%以上必要であり、Co又はNiの少なくとも1種が24重量%のように23重量%より多くなると硬度、剛性が低下し、変形しやすくなり、結合材がCoの場合は、耐食性が低下するので、4〜23重量%とする必要があることがわかった。
(請求項5の発明の実施例の説明)
超硬合金が、97重量%WC−3重量%Ni(請求項5を外れる組成)となるようにNiが4重量%より少ない組成の塗布工具用先端部材を製造しても、Niの含有量が、4重量%より少ないと靭性が低下し、接合部でのボイド等の接合欠陥を無くすためには結合材の量が不足し、4重量%以上必要であり、Niの含有量が、21重量%のように20重量%より多くなると硬度、剛性が低下し、変形しやすくなるので、4〜20重量%とする必要があることがわかった。
(請求項6の発明の実施例の説明)
超硬合金が、4〜20重量%のNiと残部がWCからなる超硬合金の重量を100重量部とした場合、これに対し0.2重量部のCrまたはCr炭化物を添加して総重量を100.2重量部となる組成にした超硬合金である請求項1に記載の塗布工具用先端部材(請求項6を外れる組成)に関しては、添加するCr又はCr炭化物の量としては、0.3重量部より少ないとWC結晶粒子の成長を抑制することが出来ず、全体的に結晶粒子径の成長を抑えることができず、工具表面の粗さや先端部の加工精度を向上させることができないだけでなく、磁性を帯びるので、磁性のある塗布剤の塗布ができない。また、CrまたはCr炭化物の添加量が4.1重量部のように4.0重量部を超えると、WC結晶粒子の成長を抑制し、全体的に結晶粒子径の成長を抑えることになり工具表面の面粗さや先端部の加工による形状精度を向上させることができるが、拡散接合した場合、接合欠陥ができるので、添加するCr又はCr炭化物の量としては、4.0重量部以下とする必要があることがわかった。
(請求項7の発明の実施例の説明)
前記と同様にして、長さは3200mmのA1〜E1の塗布工具用先端部材4を作成した。これらの作成には各4本の超硬合金焼結体部材A〜Eを3回の拡散接合により一体とした後、研削盤にて研削加工を行い、図5に示すような塗布工具用先端部材4を製造した。
次に、塗布工具用先端部材4を保持するクロムメッキされた鋼部材(塗布工具本体10)にボルトで固定した。このようにして本発明の塗布工具12を得ることができる(請求項7の発明)。
得られた塗布工具12で3.2m×2.4mの大きさの液晶ディスプレイパネルを製造するときのガラス基板表面にカラーレジストを塗布した。塗布、乾燥後に膜厚を測定したところ一定であり、良好な膜を得ることができた。膜には塗布によるスジや、ムラも全く見られなかった。
The above A1 to E1 show one embodiment of the tip member for an application tool of the present invention described in claims 1 to 6, but the same applies to the other compositions described in the respective claims. As a result.
(Explanation of the embodiment of the invention of claim 2)
Using a cemented carbide of 95 wt% WC-3 wt% Co (composition outside of claim 2), diffusion bonding was performed in the same manner as described above to create a tip member for a coating tool. It was found that when the amount is less than 4% by weight, the toughness is lowered and the amount of Co in the binder is insufficient to eliminate bonding defects such as voids at the joint. It was found that the amount of Co in the binder is required to be 4% by weight or more. Using 76% by weight WC-24% by weight Co (composition out of claim 2), diffusion tip bonding was performed in the same manner as described above to prepare a tip member for a coating tool. Further, it has been found that a material exceeding 23% by weight has a lower hardness, rigidity, and corrosion resistance and is easily deformed.
(Explanation of Embodiment of Invention of Claim 3)
When the weight of the cemented carbide composed of 95 wt% WC-4 wt% Co is 100 parts by weight, 0.09 part by weight of Cr, V or any one of those carbides is used. Suppresses growth of WC crystal particles during sintering, etc. even when a tip member for a coating tool (composition outside of claim 3) having a composition with a total weight of 100.09 parts by adding seeds or more is prepared. However, the growth of the crystal grain diameter cannot be suppressed as a whole, and the surface roughness of the tool surface and the shape accuracy due to the processing of the tip cannot be improved. Therefore, among the added Cr, V or their carbides It was found that 0.1 weight part or more is necessary as the weight of any one or more kinds. Moreover, when the weight of any one or more of Cr, V or their carbides to be added exceeds 2.3 parts by weight, the sinterability is deteriorated or a bonding defect is formed when diffusion bonding is performed. Therefore, it turned out that it is necessary to set it as 0.1-2.2 weight part as the quantity of the additive which consists of any 1 or more types among Cr, V, or those carbide | carbonized_materials.
(Explanation of Embodiment of Invention of Claim 4)
The cemented carbide is less than 4% by weight so that at least one of Co or Ni is 3% by weight, and the balance is Ti, Ta, Mo or their carbides, nitrides, carbonitrides. The tip member for an application tool according to claim 1 (composition deviating from claim 4) has a reduced toughness, and in order to eliminate joint defects such as voids at the joint, 4% by weight or more is necessary, and when at least one of Co or Ni is more than 23% by weight, such as 24% by weight, the hardness and rigidity are lowered, and deformation tends to occur. When the binder is Co, corrosion resistance It has been found that it is necessary to be 4 to 23% by weight.
(Explanation of Embodiment of Claim 5)
Even if the tip member for a coating tool having a composition of Ni less than 4 wt% is manufactured so that the cemented carbide has 97 wt% WC-3 wt% Ni (composition out of claim 5), the Ni content However, if it is less than 4% by weight, the toughness is lowered, and in order to eliminate joint defects such as voids at the joint, the amount of the binder is insufficient, and 4% by weight or more is required, and the Ni content is 21%. When the amount exceeds 20% by weight, such as% by weight, the hardness and rigidity are lowered and deformation is likely to occur.
(Explanation of Embodiment of Invention of Claim 6)
When the cemented carbide is 4 to 20% by weight of Ni and the balance of cemented carbide is 100 parts by weight, the total weight is 0.2 parts by weight of Cr or Cr carbide. Is a cemented carbide alloy having a composition of 100.2 parts by weight. With regard to the tip member for a coating tool according to claim 1 (a composition that deviates from claim 6), the amount of Cr or Cr carbide to be added is 0. If the amount is less than 3 parts by weight, the growth of the WC crystal particles cannot be suppressed, the growth of the crystal particle diameter cannot be suppressed as a whole, and the roughness of the tool surface and the processing accuracy of the tip portion can be improved. In addition to being unable to do so, it is magnetized, so that a magnetic coating agent cannot be applied. Further, when the added amount of Cr or Cr carbide exceeds 4.0 parts by weight, such as 4.1 parts by weight, the growth of WC crystal particles is suppressed and the growth of the crystal particle diameter is suppressed as a whole. The surface roughness and shape accuracy by processing the tip can be improved, but when diffusion bonding is performed, a bonding defect is generated, so the amount of Cr or Cr carbide to be added is 4.0 parts by weight or less. I found it necessary.
(Explanation of Embodiment of Claim 7)
In the same manner as described above, the tip member 4 for an application tool having an A1 to E1 length of 3200 mm was prepared. For these preparations, each of the four cemented carbide sintered bodies A to E is integrated by three diffusion bondings, and then ground with a grinder, and the tip of the coating tool as shown in FIG. Member 4 was manufactured.
Next, it fixed to the chrome-plated steel member (coating tool main body 10) holding the coating tool tip member 4 with a bolt. Thus, the coating tool 12 of the present invention can be obtained (the invention of claim 7).
The color resist was apply | coated to the glass substrate surface when manufacturing the liquid crystal display panel of a magnitude | size of 3.2 m x 2.4 m with the obtained apply | coating tool 12. FIG. When the film thickness was measured after coating and drying, it was constant and a good film could be obtained. No streaks or unevenness due to coating were observed on the film.

このほかに脂肪酸、防錆材、含金属皮膜部剤、含磁性粉末塗布剤、含セラミックス粉末塗布剤などでも同様の塗布を行ったが、いずれも膜には塗布によるスジやムラは全く見られなかった。
さらに、これらのいずれの用途についても、10000時間を越える使用に対して、面粗れやチッピング、摩耗、腐食などが起こらず、経時的に性能が変わらなかった。
In addition, the same application was carried out with fatty acids, rust preventives, metal-containing film coating agents, magnetic-containing powder coating agents, ceramic-containing powder coating agents, etc., but there were no streaks or unevenness due to coating in any film. There wasn't.
Furthermore, for any of these applications, surface roughness, chipping, wear, corrosion, etc. did not occur and the performance did not change over time for use exceeding 10,000 hours.

本発明の塗布工具用先端部材とそれを具備する塗布工具は、シート状部材への塗布、パネル状部材への塗布等大面積の部材への各種塗布剤の塗布に適している。
The tip member for an application tool of the present invention and the application tool having the same are suitable for application of various coating agents to a large-area member such as application to a sheet-like member and application to a panel-like member.

本発明の塗布工具用先端部材を拡散接合により製造する状態を示す図The figure which shows the state which manufactures the tip member for coating tools of this invention by diffusion bonding 代表的な拡散接合の状態を示す図Diagram showing typical diffusion bonding state 試料採取箇所を示す図Diagram showing sampling location a拡散接合部の組織写真 b拡散接合部以外の超硬合金焼結体本体の組織写真a Structure photograph of diffusion joint b Structure photograph of cemented carbide body other than diffusion joint 請求項7記載の塗布工具および塗布の模式図Schematic diagram of application tool and application according to claim 7

符号の説明Explanation of symbols

1 超硬合金焼結体部材
2 超硬合金焼結体部材
3 拡散接合部
4 塗布工具用先端部材
5 おもり
6 カーボン製支持台
7 滑止板
8 試料採取部(接合部)
9 試料採取部(接合部以外の本体)
10塗布工具本体
11 塗布液ポケット
12 塗布工具
13 塗布部分
14 液晶ディスプレイパネル用ガラス基板
DESCRIPTION OF SYMBOLS 1 Cemented carbide sintered body member 2 Cemented carbide sintered body member 3 Diffusion joining part 4 Tip member 5 for application tools Weight 6 Carbon support stand 7 Non-slip plate 8 Sampling part (joining part)
9 Sampling part (main body other than joint)
DESCRIPTION OF SYMBOLS 10 Coating tool main body 11 Coating liquid pocket 12 Coating tool 13 Coating part 14 Glass substrate for liquid crystal display panels

Claims (7)

2以上の超硬合金焼結体部材同士を直接拡散接合してなる塗布工具用先端部材。 A tip member for an application tool formed by direct diffusion bonding of two or more cemented carbide sintered bodies. 超硬合金が、4〜23重量%のCoと残部がWCからなる請求項1に記載の塗布工具用先端部材。 The tip member for a coating tool according to claim 1, wherein the cemented carbide comprises 4 to 23 wt% Co and the balance is WC. 超 硬合金が、4〜23重量%のCoと残部がWCからなる超硬合金の重量を100重量部とした場合、これに対し0.1〜2.2重量部のCr、V又はそれらの炭 化物のうちいずれか1種以上を添加して総重量を100.1〜102.2重量部となる組成にした超硬合金である請求項1に記載の塗布工具用先端部材。 When the cemented carbide is 4 to 23 wt% Co and the balance of the cemented carbide consisting of WC is 100 parts by weight, 0.1 to 2.2 parts by weight of Cr, V or their The tip member for a coating tool according to claim 1, wherein the tip member is a cemented carbide made by adding any one or more of carbides to a total weight of 100.1 to 102.2 parts by weight. 超硬合金が、4〜23重量%のCo又はNiの少なくとも1種と残部がTi、Ta、Mo又はそれらの炭化物、窒化物、炭窒化物のいずれか1種以上からなる請求項1に記載の塗布工具用先端部材。 2. The cemented carbide according to claim 1, wherein the cemented carbide is composed of at least one of Co to Ni of 4 to 23 wt% and the balance is Ti, Ta, Mo, or any one or more of carbides, nitrides, and carbonitrides thereof. The tip member for coating tools. 超硬合金が、4〜20重量%のNiと残部がWCからなる請求項1に記載の塗布工具用先端部材。 The tip member for a coating tool according to claim 1, wherein the cemented carbide comprises 4 to 20% by weight of Ni and the balance is WC. 超硬合金が、4〜20重量%のNiと残部がWCからなる超硬合金の重量を100重量部とした場合、これに対し0.3〜4.0重量部のCrまたはCr炭化物を添加して総重量を100.3〜104.0重量部となる組成にした超硬合金である請求項1に記載の塗布工具用先端部材。 When the cemented carbide is 4 to 20% by weight of Ni and the balance of the cemented carbide is 100 parts by weight, 0.3 to 4.0 parts by weight of Cr or Cr carbide is added. The tip member for an application tool according to claim 1, wherein the tip member is a cemented carbide having a total weight of 100.3 to 104.0 parts by weight. 請求項1から請求項6のいずれかに記載の塗布工具用先端部材を塗布工具本体に具備することを特徴とする塗布工具。 A coating tool comprising the coating tool tip member according to any one of claims 1 to 6 in a coating tool main body.
JP2007284103A 2006-10-31 2007-10-31 Application tool tip member and application tool having the same Active JP5096872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284103A JP5096872B2 (en) 2006-10-31 2007-10-31 Application tool tip member and application tool having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006296751 2006-10-31
JP2006296751 2006-10-31
JP2007284103A JP5096872B2 (en) 2006-10-31 2007-10-31 Application tool tip member and application tool having the same

Publications (2)

Publication Number Publication Date
JP2008132539A JP2008132539A (en) 2008-06-12
JP5096872B2 true JP5096872B2 (en) 2012-12-12

Family

ID=39557746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284103A Active JP5096872B2 (en) 2006-10-31 2007-10-31 Application tool tip member and application tool having the same

Country Status (1)

Country Link
JP (1) JP5096872B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882015B2 (en) * 2010-05-07 2012-02-22 平井工業株式会社 Notch roll and manufacturing method thereof
JP4882017B2 (en) * 2010-07-13 2012-02-22 平井工業株式会社 Coating die and manufacturing method thereof
TWI520832B (en) * 2010-07-13 2016-02-11 Hirai Kogyo Corp Mold and its manufacturing method
JP5930505B2 (en) * 2012-02-13 2016-06-08 国立大学法人豊橋技術科学大学 Diffusion bonding method of cemented carbide
EP2644299B2 (en) * 2012-03-29 2022-01-26 Seco Tools Ab Cemented carbide body and method for manufacturing the cemented carbide body
KR101367108B1 (en) 2012-04-18 2014-02-27 주식회사 코엠테크 Dispensing nozzle structure for coating fluorescent liquid and manufacturing method thereof
EP2969325A1 (en) * 2013-03-15 2016-01-20 Sandvik Intellectual Property AB Method of joining sintered parts of different sizes and shapes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141880A (en) * 1982-02-16 1983-08-23 Sumitomo Electric Ind Ltd Joining method of sintered hard alloy
JPS603987A (en) * 1983-06-21 1985-01-10 Toshiba Corp Assembly
JPH11165098A (en) * 1997-12-03 1999-06-22 Matsushita Electric Ind Co Ltd Liquid coating nozzle, liquid coating device and liquid coating method using the nozzle and coating device
JP2002346456A (en) * 2001-05-28 2002-12-03 Sony Corp Coating device, coating method and coating tool
JP4644059B2 (en) * 2005-07-08 2011-03-02 東洋刃物株式会社 Application head

Also Published As

Publication number Publication date
JP2008132539A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5096872B2 (en) Application tool tip member and application tool having the same
Blugan et al. Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy
EP2380686A2 (en) A functionally graded material shape and method for producing such a shape
US20070235701A1 (en) Nanostructured titanium monoboride monolithic material and associated methods
EP2564968A1 (en) Rotation tool
Wang et al. Microstructure and mechanical properties of Si3N4/42CrMo joints brazed with TiNp modified active filler
JP7248235B2 (en) Tool member for friction stir welding, friction stir welding apparatus using the same, and friction stir welding method
KR101425330B1 (en) Joint
CN111892418A (en) Connecting material for connecting silicon carbide ceramics and application method thereof
JP4709223B2 (en) Sintered body, manufacturing method thereof, sliding member using the sintered body, film forming material, hot extrusion die, hot extrusion molding apparatus and hot extrusion using the hot extrusion die Molding method
Miao et al. Influence of graphite addition on bonding properties of abrasive layer of metal-bonded CBN wheel
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
WO2015098819A1 (en) Brazing material for joining, and composite member and cutting tool using same
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP6242616B2 (en) Resistance welding electrode
JP2005342744A (en) Wear resistant sintered tool, and its manufacturing method
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JPWO2007052743A1 (en) Sputtering target and manufacturing method thereof
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP5656076B2 (en) cBN insert
JP2001187431A (en) Laminated structural material
CN116790953B (en) High-performance nano hard alloy product and preparation method thereof
JP2007131505A (en) Sintered material for ultra-high-hardness sintered tool and method for manufacturing the same
Chen et al. Qing Miao, Wenfeng Ding, Dengkui Fu
JP5804380B2 (en) Cutting tool made of ultra high pressure sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5096872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3