JP5094368B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5094368B2
JP5094368B2 JP2007331733A JP2007331733A JP5094368B2 JP 5094368 B2 JP5094368 B2 JP 5094368B2 JP 2007331733 A JP2007331733 A JP 2007331733A JP 2007331733 A JP2007331733 A JP 2007331733A JP 5094368 B2 JP5094368 B2 JP 5094368B2
Authority
JP
Japan
Prior art keywords
coating layer
silicon nitride
mass
terms
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007331733A
Other languages
Japanese (ja)
Other versions
JP2009154219A (en
Inventor
孝 渡邊
達行 中岡
ヨウセン シュ
武郎 福留
周一 立野
宏 吉満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007331733A priority Critical patent/JP5094368B2/en
Publication of JP2009154219A publication Critical patent/JP2009154219A/en
Application granted granted Critical
Publication of JP5094368B2 publication Critical patent/JP5094368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は基体の表面に被覆層が成膜されている切削工具に関する。   The present invention relates to a cutting tool having a coating layer formed on the surface of a substrate.

現在、切削工具や耐摩部材、摺動部材といった耐摩耗性や摺動性、耐欠損性を必要とする部材では、超硬合金やサーメット等の焼結合金、ダイヤモンドやcBN(立方晶窒化硼素)の高硬度焼結体、アルミナや窒化珪素等のセラミックスからなる基体の表面に被覆層を成膜して、耐摩耗性、摺動性、耐欠損性を向上させる手法が使われている。中でも、セラミック工具は安価で耐摩耗性に優れることから高硬度材料の切削に用いられている。   Currently, for members that require wear resistance, slidability, and fracture resistance, such as cutting tools, wear-resistant members, and sliding members, sintered alloys such as cemented carbide and cermet, diamond, and cBN (cubic boron nitride) A method of improving the wear resistance, slidability, and fracture resistance by forming a coating layer on the surface of a high hardness sintered body and a substrate made of a ceramic such as alumina or silicon nitride is used. Among them, ceramic tools are used for cutting high-hardness materials because they are inexpensive and have excellent wear resistance.

例えば、特許文献1では、イットリア(Y)を0.2重量%以上、マグネシア(MgO)を0.2重量%、両者の合計が3.5重量%以下であり、酸素を1.3〜3.5重量%の割合で含有する窒化珪素質焼結体からなる切削工具が開示され、多孔度を0.2容量%以下に緻密化できることが記載されている。 For example, in Patent Document 1, yttria (Y 2 O 3 ) is 0.2 wt% or more, magnesia (MgO) is 0.2 wt%, the total of both is 3.5 wt% or less, and oxygen is 1. A cutting tool made of a silicon nitride sintered body containing 3 to 3.5% by weight is disclosed, and it is described that the porosity can be reduced to 0.2% by volume or less.

また、かかる窒化珪素質焼結体の表面に被覆層を形成した切削工具も開発されている。例えば、特許文献2では、窒化珪素質焼結体の表面をTiAlNからなる被覆層で被覆した切削工具が開示されている。さらに、被覆層についても種々の開発が進められており、特許文献3では、基体の表面に(TiNbSi)N組成でNbとSiの比率が異なる2層を積層した構成の被覆層について開示されている。
特表平8−503664号公報 特開平4−201003号公報 特開2005−199420号公報
A cutting tool in which a coating layer is formed on the surface of the silicon nitride sintered body has also been developed. For example, Patent Document 2 discloses a cutting tool in which the surface of a silicon nitride-based sintered body is coated with a coating layer made of TiAlN. Furthermore, various developments have also been made on the coating layer, and Patent Document 3 discloses a coating layer having a structure in which two layers having a (TiNbSi) N composition and different ratios of Nb and Si are stacked on the surface of a substrate. Yes.
JP-T 8-503664 Japanese Patent Laid-Open No. 4-201003 JP-A-2005-199420

しかしながら、窒化珪素質焼結体からなる基体の表面にTiAlN被覆層を形成した特許文献2、および窒化珪素質焼結体からなる基体の表面に(TiNbSi)N被覆層を形成した特許文献3のいずれにおいても、さらなる切削性能の向上が求められていた。   However, Patent Document 2 in which a TiAlN coating layer is formed on the surface of a substrate made of a silicon nitride-based sintered body and Patent Document 3 in which a (TiNbSi) N coating layer is formed on the surface of a substrate made of a silicon nitride-based sintered body. In any case, further improvement in cutting performance has been demanded.

そこで、本発明の切削工具は、窒化形素質焼結体を基体として、さらに長寿命な切削工具を提供することを目的とする。   Therefore, an object of the cutting tool of the present invention is to provide a cutting tool having a longer life by using a nitrided raw sintered body as a base.

本発明の切削工具は、希土類金属(RE)をRE換算量で0.1〜3質量%、アルミニウム(Al)をAl換算量で0〜0.6質量%、マグネシウム(Mg)をMgO換算量で0〜1質量%、酸素を0〜2.5質量%の割合で含有する窒化珪素質焼結体からなる基体の表面に、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であり、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1である。)の被覆層が被着形成されているものである。
In the cutting tool of the present invention, rare earth metal (RE) is 0.1 to 3% by mass in terms of RE 2 O 3 , aluminum (Al) is 0 to 0.6% by mass in terms of Al 2 O 3 , magnesium ( On the surface of the substrate made of a silicon nitride sintered body containing 0 to 1% by mass of Mg) in terms of MgO and 0 to 2.5% by mass of oxygen, Ti 1- abc -d al a W b Si c M d (C x N 1-x) ( however, M is at Nb, Mo, Ta, Hf, 1 or more selected from Y, 0.45 ≦ a ≦ 0.55,0 .01 is ≦ b ≦ 0.1,0 .01 ≦ c ≦ 0.05,0.01 ≦ d ≦ 0.1,0 ≦ x ≦ 1.) in which the coating layer of is deposited and formed is there.

ここで、上記構成において、前記窒化珪素質焼結体中に、さらにタングステン(W)をWSi換算で0.1〜2質量%の割合で含有していることが望ましい。 Here, in the above configuration, in the silicon nitride sintered body, it is desirable to contain more tungsten (W) in a proportion of 0.1 to 2% by weight WSi 2 terms.

また、上記構成において、前記基体と前記被覆層との界面の粗さが0.3〜2μmであることが望ましい。   Moreover, in the said structure, it is desirable that the roughness of the interface of the said base | substrate and the said coating layer is 0.3-2 micrometers.

さらに、前記被覆層の厚みが0.5〜2μmであることが望ましい。   Furthermore, it is desirable that the coating layer has a thickness of 0.5 to 2 μm.

本発明の切削工具に用いられるTi1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であり、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1である。)の被覆層は耐酸化性が高いので、切削時の熱によって切刃表面が酸化されてクレータ摩耗が進行するのを抑制できる。
Used in the cutting tool of the present invention Ti 1-a-b-c -d Al a W b Si c M d (C x N 1-x) ( however, M is selected Nb, Mo, Ta, Hf, from Y It is is one or more, 0.45 ≦ a ≦ 0.55,0.01 ≦ b ≦ 0.1,0 .01 ≦ c ≦ 0.05,0.01 ≦ d ≦ 0.1,0 ≦ x Since the coating layer of ≦ 1 has high oxidation resistance, it is possible to suppress the progress of crater wear due to oxidation of the surface of the cutting edge by heat during cutting.

また、上記被覆層は硬度が高くかつ内部応力が小さいものであり、しかも本発明の窒化形素質焼結体からなる基体との密着性もよいので、本発明の切削工具は耐摩耗性と耐チッピング性に優れたものとなる。 In addition, since the coating layer has high hardness and low internal stress, and also has good adhesion to the substrate made of the nitrided elementary sintered body of the present invention, the cutting tool of the present invention is resistant to wear and resistance. Excellent chipping property.

ここで、上記構成において、前記窒化珪素質焼結体中に、さらにタングステン(W)をWSi換算で0.1〜2質量%の割合で含有していることが、被覆層との密着性を高めるために望ましく、また、この成分を添加すると焼結体の色を黒色または灰色に制御することができる。 Here, in the above configuration, in the silicon nitride sintered body, that the further tungsten (W) was contained in a proportion of 0.1 to 2% by weight WSi 2 terms, the adhesion between the coating layer It is desirable to increase the thickness of the sintered body, and when this component is added, the color of the sintered body can be controlled to black or gray.

また、前記基体と前記被覆層との界面の表面粗さが0.3〜2μmであることが、被覆層を安定して形成できるとともに被覆層との密着性を高めるために望ましい。   In addition, it is desirable that the surface roughness of the interface between the substrate and the coating layer is 0.3 to 2 μm in order to stably form the coating layer and to improve the adhesion to the coating layer.

さらに、前記被覆層の厚みが0.5〜2μmであることが望ましく、この厚みであっても被覆層が内部応力によって破壊することなく耐欠損性が高く、しかも耐摩耗性も高いものである。   Furthermore, it is desirable that the thickness of the coating layer is 0.5 to 2 μm, and even at this thickness, the coating layer has high fracture resistance without being broken by internal stress, and also has high wear resistance. .

本発明の切削工具の一例について、図1の(a)概略斜視図および(b)概略断面図を基に説明する。   An example of the cutting tool of the present invention will be described on the basis of (a) a schematic perspective view and (b) a schematic sectional view of FIG.

図1(a)のように、本発明の切削工具(以下、単に工具と略す。)1は、すくい面2と逃げ面3との交差稜線が切刃4である形状をなし、かつ図1(b)に示すように、窒化形素質焼結体からなる基体(以下、単に基体と略す。)6の表面に被覆層7を成膜した構成となっている。   As shown in FIG. 1 (a), a cutting tool (hereinafter simply referred to as a tool) 1 of the present invention has a shape in which a crossing edge line between a rake face 2 and a flank 3 is a cutting edge 4, and FIG. As shown in FIG. 5B, a coating layer 7 is formed on the surface of a base body (hereinafter simply referred to as a base body) 6 made of a nitride-type elementary sintered body.

基体6は、希土類金属(RE)をRE換算量で0.1〜3質量%、アルミニウム(Al)をAl換算量で0〜0.6質量%、マグネシウム(Mg)をMgO換算量で0〜1質量%、酸素を0〜2.5質量%の割合で含有する窒化珪素質焼結体からなる。この組成によって、基体6自体の塑性変形性が向上して切刃における耐摩耗性が改善されるとともに本発明の被覆層7との密着性が高いものである。 The base 6 is composed of rare earth metal (RE) 0.1 to 3% by mass in terms of RE 2 O 3 , aluminum (Al) 0 to 0.6% by mass in terms of Al 2 O 3 , and magnesium (Mg). It consists of a silicon nitride sintered body containing 0 to 1% by mass in terms of MgO and 0 to 2.5% by mass of oxygen. With this composition, the plastic deformability of the substrate 6 itself is improved, the wear resistance of the cutting edge is improved, and the adhesiveness with the coating layer 7 of the present invention is high.

すなわち、希土類金属(RE)の含有量がRE換算量で0.1質量%よりも少ないと、基体6と被覆層7との密着性が悪くなって耐欠損性が低下する。逆に、希土類金属(RE)の含有量がRE換算量で3質量%よりも多いと基体6の耐塑性変形性が悪くなって工具1の耐摩耗性が低下する。また、アルミニウム(Al)の含有量がAl換算量で0.6質量%より多い場合、マグネシウム(Mg)の含有量がMgO換算量で1質量%より多い場合、酸素の含有量が2.5質量%よりも多い場合には、いずれも基体6の耐塑性変形性が低下して工具1の耐摩耗性が低下する。 That is, if the content of rare earth metal (RE) is less than 0.1% by mass in terms of RE 2 O 3 , the adhesion between the substrate 6 and the coating layer 7 is deteriorated and the fracture resistance is lowered. On the contrary, if the content of rare earth metal (RE) is more than 3% by mass in terms of RE 2 O 3 , the plastic deformation resistance of the base 6 is deteriorated and the wear resistance of the tool 1 is lowered. Further, when the content of aluminum (Al) is more than 0.6% by mass in terms of Al 2 O 3, when the content of magnesium (Mg) is more than 1% by mass in terms of MgO, the content of oxygen is When the amount is more than 2.5% by mass, the plastic deformation resistance of the base 6 is lowered and the wear resistance of the tool 1 is lowered.

ここで、窒化珪素質焼結体は、窒化珪素の結晶粒子と、希土類金属、アルミニウム、マグネシウム、珪素、酸素及び窒素を含む非晶質の粒界相とを含み、顕微鏡で観察した写真で確認される粒界相の存在割合は5面積%以下であることが望ましい。   Here, the silicon nitride-based sintered body includes crystal grains of silicon nitride and an amorphous grain boundary phase containing rare earth metal, aluminum, magnesium, silicon, oxygen, and nitrogen, and is confirmed by a photograph observed with a microscope. The ratio of the grain boundary phase to be formed is desirably 5 area% or less.

また、上記粒界相形成成分の望ましい含有比率は、希土類金属(RE)がRE換算量で1〜2質量%、アルミニウム(Al)がAl換算量で0.2〜0.6質量%、マグネシウム(Mg)がMgO換算量で0.2〜0.8質量%、酸素が0.2〜1.5質量%である。さらに、希土類金属(RE)としては、イットリウム(Y)、ランタン(La)、イッテリビウム(Yb)、エルビウム(Er)が特に好適に採用でき、中でもランタン(La)を含有することが、窒化珪素粒子を微粒化して焼結体の硬度を高めるために望ましい。 Further, the desirable content ratio of the grain boundary phase forming component is as follows: rare earth metal (RE) is 1 to 2% by mass in terms of RE 2 O 3 , and aluminum (Al) is 0.2 to 0 in terms of Al 2 O 3. 0.6% by mass, magnesium (Mg) in terms of MgO is 0.2 to 0.8% by mass, and oxygen is 0.2 to 1.5% by mass. Furthermore, as the rare earth metal (RE), yttrium (Y), lanthanum (La), ytterbium (Yb), and erbium (Er) can be particularly preferably employed. This is desirable for increasing the hardness of the sintered body by atomizing the particles.

ここで、前記窒化珪素質焼結体中には、さらにタングステン(W)をWSi換算で0.1〜2質量%の割合で含有していることが、被覆層7との密着性を高める点で望ましい。 Here, the silicon nitride-based sintered body further contains tungsten (W) at a ratio of 0.1 to 2 % by mass in terms of WSi 2 to improve the adhesion with the coating layer 7. Desirable in terms.

ここで、窒化珪素質焼結体中に含有される窒化珪素粒子は針状結晶として存在することが、基体6の靭性を高めて切削工具としての耐欠損性を向上させるために望ましい。また、針状結晶のサイズは、耐摩耗性、強度の点から平均粒径が0.1〜0.8μm、望ましくは0.2〜0.7μmであり、平均アスペクト比が1.2〜4、望ましくは1.5〜3.5であることが望ましい。また、タングステン(W)はWSi粒子として存在し、平均粒径0.2〜3μm、望ましくは0.5〜1μmの範囲にあることが、被覆層7との密着力の点で望ましい。また、窒化珪素粒子やWSi粒子等の上記化合物粒子の粒径測定は、窒化珪素質焼結体を切断して鏡面研磨を行い、研磨面を所望によりエッチングした面について行う。具体的には、走査型電子顕微鏡(SEM)による組織観察を行い、その写真について画像解析装置により100個以上の粒子の形状を観察する。なお、粒子が針状となる窒化珪素粒子の場合には各粒子についてその粒子の重心を通る直線を引いてその長さを測定する。そして、角度を2°づつ変えながら1周分についてそれぞれの線分長さを測定し、その平均値を平均粒径として計算する。また、この線分のうちで最も長い線分長さをその粒子の長軸径とし、100個以上の粒子の長軸径を測定してその平均を平均長軸径とする。また、長軸に対して垂直方向で最も幅が大きい部分の線分長さをその粒子の短軸径とし、上記各粒子の短軸径を測定して平均短軸径を見積もる。そして、各粒子について長軸径/短軸径の比率をその粒子のアスペクト比として算出し、これらの平均値である平均アスペクト比を見積もる。 Here, it is desirable that the silicon nitride particles contained in the silicon nitride-based sintered body exist as acicular crystals in order to increase the toughness of the substrate 6 and improve the fracture resistance as a cutting tool. Further, the size of the needle-like crystal is 0.1 to 0.8 μm, preferably 0.2 to 0.7 μm in average particle size from the viewpoint of wear resistance and strength, and the average aspect ratio is 1.2 to 4 μm. , Desirably 1.5 to 3.5. In addition, tungsten (W) exists as WSi 2 particles, and it is desirable in terms of adhesion to the coating layer 7 that the average particle diameter is in the range of 0.2 to 3 μm, preferably 0.5 to 1 μm. The particle size of the compound particles such as silicon nitride particles and WSi 2 particles is measured on a surface obtained by cutting the silicon nitride sintered body and performing mirror polishing, and etching the polished surface as desired. Specifically, the structure is observed with a scanning electron microscope (SEM), and the shape of 100 or more particles is observed with an image analysis apparatus for the photograph. In the case of silicon nitride particles having a needle shape, the length of each particle is measured by drawing a straight line passing through the center of gravity of the particle. Then, each line segment length is measured for one turn while changing the angle by 2 °, and the average value is calculated as the average particle diameter. Moreover, the longest line segment length among these line segments is defined as the major axis diameter of the particles, the major axis diameters of 100 or more particles are measured, and the average is defined as the average major axis diameter. Further, the length of the line segment having the largest width in the direction perpendicular to the major axis is defined as the minor axis diameter of the particle, and the minor axis diameter of each particle is measured to estimate the average minor axis diameter. Then, for each particle, the ratio of major axis diameter / minor axis diameter is calculated as the aspect ratio of the particle, and the average aspect ratio, which is the average value of these, is estimated.

ところで、基体6と被覆層7との界面の表面粗さが0.3〜2μmであることが、被覆層7を安定して均一に形成できるとともに被覆層7との密着性を高めるために望ましい。   By the way, it is desirable that the surface roughness of the interface between the substrate 6 and the coating layer 7 is 0.3 to 2 μm in order to form the coating layer 7 stably and uniformly and to improve the adhesion to the coating layer 7. .

また、被覆層7の厚みが0.5〜2μmであることが望ましく、この厚みであれば被覆層7が内部応力によって破壊することなく耐欠損性が高く、しかも耐摩耗性も高いのである。   Moreover, it is desirable that the thickness of the coating layer 7 is 0.5 to 2 μm. With this thickness, the coating layer 7 has high fracture resistance without being broken by internal stress, and also has high wear resistance.

一方、被覆層7は、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であり、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1である。)にて構成されている被覆層8を具備している。 On the other hand, the coating layer 7, Ti 1-a-b- c-d Al a W b Si c M d (C x N 1-x) ( however, M is selected Nb, Mo, Ta, Hf, from Y It is at least one, 0.45 ≦ a ≦ 0.55,0.01 ≦ b ≦ 0.1,0 .01 ≦ c ≦ 0.05,0.01 ≦ d ≦ 0.1,0 ≦ x ≦ 1)).

被覆層8の組成領域では酸化開始温度が高いので耐酸化性が高く、工具1の切削時の耐摩耗性が向上する、特に焼入鋼等の難削材を加工する際のクレータ摩耗の進行を抑制できる。しかも、被覆層8に内在する内部応力を低減することができるので、切刃4の先端に発生しやすいチッピングが抑制できて耐欠損性が高いものとなる。   Since the oxidation start temperature is high in the composition region of the coating layer 8, the oxidation resistance is high, and the wear resistance during cutting of the tool 1 is improved, especially the progress of crater wear when machining difficult-to-cut materials such as hardened steel. Can be suppressed. In addition, since the internal stress inherent in the coating layer 8 can be reduced, chipping that tends to occur at the tip of the cutting edge 4 can be suppressed, and the chipping resistance is high.

すなわち、a(Al組成比)が0.45よりも少ないと被覆層8の耐酸化性が低下してしまい、a(Al組成比)が0.55よりも多いと被覆層8の結晶構造が立方晶から六方晶に変化する傾向があり硬度が低下する。aの特に望ましい範囲は0.48≦a≦0.52である。また、b(W組成比)が0.01よりも少ないと被覆層8の内部応力が高くて耐欠損性が低下するとともに、基体6と被覆層8との密着性が低下して切削中にチッピングや被覆層7の剥離が発生しやすくなり、b(W組成比)が0.1よりも多いと被覆層8の硬度が低下する。bの特に望ましい範囲は0.01≦b≦0.08である。さらに、c(Si組成比)が0.05よりも多いと被覆層8の硬度が低下する。cの特に望ましい範囲は0.01≦c≦0.04である。また、d(M組成比)が0.01よりも少ないと酸化開始温度が低くなってしまい、d(M組成比)が0.1よりも多いと金属Mの一部が立方晶とは別の低硬度相として存在して被覆層8の硬度が低下する。dの特に望ましい範囲は0.01≦d≦0.08である。   That is, if a (Al composition ratio) is less than 0.45, the oxidation resistance of the coating layer 8 is lowered. If a (Al composition ratio) is more than 0.55, the crystal structure of the coating layer 8 is reduced. There is a tendency to change from cubic to hexagonal and the hardness decreases. A particularly desirable range of a is 0.48 ≦ a ≦ 0.52. On the other hand, if b (W composition ratio) is less than 0.01, the internal stress of the coating layer 8 is high and the fracture resistance is lowered. Chipping and peeling of the coating layer 7 are likely to occur, and if b (W composition ratio) is more than 0.1, the hardness of the coating layer 8 decreases. A particularly desirable range of b is 0.01 ≦ b ≦ 0.08. Furthermore, if c (Si composition ratio) is more than 0.05, the hardness of the coating layer 8 is lowered. A particularly desirable range for c is 0.01 ≦ c ≦ 0.04. Further, when d (M composition ratio) is less than 0.01, the oxidation start temperature becomes low, and when d (M composition ratio) is more than 0.1, a part of the metal M is different from the cubic crystal. As a low hardness phase, the hardness of the coating layer 8 decreases. A particularly desirable range of d is 0.01 ≦ d ≦ 0.08.

なお、金属MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であるが、中でもNbまたはMoを含有することが耐摩耗性・耐酸化性に最も優れる点があるから望ましい。   The metal M is at least one selected from Nb, Mo, Ta, Hf, and Y. Among them, the inclusion of Nb or Mo is desirable because it has the most excellent wear resistance and oxidation resistance.

また、上記被覆層8の非金属成分であるC、Nは切削工具に必要な硬度および靭性に優れたものであり、被覆層8の表面に発生するドロップレット(粗大粒子)を抑制するために、x(C組成比)の特に望ましい範囲は0≦x≦0.5である。ここで、本発明によれば、上記被覆層8の組成は、エネルギー分散型X線分光分析法(EDX)またはX線光電子分光分析法(XPS)にて測定できる。   Further, C and N which are non-metallic components of the coating layer 8 are excellent in hardness and toughness required for the cutting tool, and are intended to suppress droplets (coarse particles) generated on the surface of the coating layer 8. , X (C composition ratio) is particularly preferably in a range of 0 ≦ x ≦ 0.5. Here, according to the present invention, the composition of the coating layer 8 can be measured by energy dispersive X-ray spectroscopy (EDX) or X-ray photoelectron spectroscopy (XPS).

また、上記被覆層8は内部応力がさほど高くないものであるから厚膜化しても被覆層7がチッピングしにくく、焼結助剤量が少なくて靭性がさほど高くない本発明の窒化珪素質焼結体において被覆層8の膜厚が0.5〜2μmであっても、被覆層8自身の内部応力によって剥離やチッピングすることを防止できて十分な耐摩耗性を維持することができる。被覆層8の膜厚の望ましい範囲は0.5〜1.5μmである。   Further, since the coating layer 8 is not so high in internal stress, the coating layer 7 is not easily chipped even if it is thickened, the amount of sintering aid is small, and the toughness is not so high. Even if the film thickness of the coating layer 8 is 0.5 to 2 μm in the bonded body, it is possible to prevent peeling or chipping due to the internal stress of the coating layer 8 itself, and to maintain sufficient wear resistance. A desirable range of the film thickness of the coating layer 8 is 0.5 to 1.5 μm.

さらに、被覆層(全体)7は、被覆層8と、AlN、周期表第4、5および6族金属の炭化物、窒化物、炭窒化物のうち1つから選ばれる他の被覆層9との2層以上の多層とすることが耐チッピング性を向上させる点で望ましい。なお、被覆層7の膜厚(被覆層8と他の被覆層9との総膜厚)が0.5〜2μmであることが、被覆層8の膜剥離やチッピングを防止し、十分な耐摩耗性を維持することができるため望ましい。なお、高硬度材加工用の切削工具として用いる場合には被覆層7の厚みが1μm〜2μmであり、鋳鉄加工用の切削工具として用いる場合には被覆層7の厚みが0.5μm〜1.5μmであることが望ましい。   Furthermore, the coating layer (whole) 7 is composed of the coating layer 8 and another coating layer 9 selected from one of AlN, carbides, nitrides, and carbonitrides of periodic table groups 4, 5 and 6 metals. Two or more layers are desirable in terms of improving chipping resistance. The film thickness of the coating layer 7 (total film thickness of the coating layer 8 and the other coating layers 9) is 0.5 to 2 μm to prevent film peeling and chipping of the coating layer 8 and provide sufficient resistance. This is desirable because it can maintain wear. In addition, when using as a cutting tool for high-hardness material processing, the thickness of the coating layer 7 is 1 μm to 2 μm, and when using as a cutting tool for processing cast iron, the thickness of the coating layer 7 is 0.5 μm to 1 μm. 5 μm is desirable.

ここで、基体6と被覆層7との界面粗さが0.3〜2μmであることが、被覆層7の密着性を高めるために望ましい。なお、本発明における界面粗さとは、走査型電子顕微鏡により基体と被覆層との界面付近を観察して界面の凹凸をトレースし、このトレースした線をJISB0601−2001に規格された算術平均高さ(Ra)の算出方法に準拠して算出した値である。ここで、算術平均高さ(Ra)の算出に用いるトレースした線の長さ(カットオフ値)は10μm以上とする。   Here, the interface roughness between the substrate 6 and the coating layer 7 is preferably 0.3 to 2 μm in order to improve the adhesion of the coating layer 7. The interface roughness in the present invention refers to the vicinity of the interface between the substrate and the coating layer observed by a scanning electron microscope to trace the unevenness of the interface, and the traced line is the arithmetic average height standardized in JISB0601-2001. It is a value calculated according to the calculation method of (Ra). Here, the length (cut-off value) of the traced line used for calculating the arithmetic average height (Ra) is 10 μm or more.

(製造方法)
次に、上述した切削工具の製造方法について、その好適な例を挙げて説明する。
(Production method)
Next, the manufacturing method of the cutting tool described above will be described with a suitable example.

まず、出発原料として、例えば、窒化珪素粉末と、所定の焼結助剤粉末とを準備する。また、必要に応じて珪化タングステン(WSi)を形成する粉末を準備する。 First, for example, silicon nitride powder and a predetermined sintering aid powder are prepared as starting materials. Further, to prepare a powder to form a tungsten silicide (WSi 2) if necessary.

窒化珪素の原料粉末は、α−窒化珪素、β−窒化珪素、又はこれらの混合物のいずれも用いることができる。これらの粒径は、1μm以下、特に0.5μm以下であることが好ましい。また、ランタンを供給源として用いる際は、酸化ランタン粉末を用いても良いが、酸化ランタンは吸湿性が高いため、水酸化ランタン等のように吸水性が低く、焼成過程で酸化ランタンとなる化合物を用いることが好ましい。また、希土類金属成分としてはもちろんランタン(La)以外の金属成分でもよい。   As the raw material powder of silicon nitride, any of α-silicon nitride, β-silicon nitride, or a mixture thereof can be used. These particle sizes are preferably 1 μm or less, particularly 0.5 μm or less. In addition, when using lanthanum as a supply source, lanthanum oxide powder may be used. However, since lanthanum oxide has high hygroscopicity, it is a compound that has low water absorption, such as lanthanum hydroxide, and becomes lanthanum oxide in the firing process. Is preferably used. Of course, the rare earth metal component may be a metal component other than lanthanum (La).

また、珪化タングステン(WSi)を形成する原料粉末としては、酸化タングステン粉末または炭化タングステン粉末を用いることが望ましいが、珪化タングステン(WSi)粉末も使用可能である。 Moreover, as a raw material powder for forming tungsten silicide (WSi 2 ), it is desirable to use tungsten oxide powder or tungsten carbide powder, but tungsten silicide (WSi 2 ) powder can also be used.

これらの原料粉末を、所定の組成となるように調合して、アトライタミル等の公知の粉砕手段を用いて混合、粉砕する。そして、この混合粉末に適宜バインダや溶剤を添加し、スプレードライ法等により造粒する。   These raw material powders are mixed so as to have a predetermined composition, and mixed and pulverized using a known pulverizing means such as an attritor mill. Then, a binder or a solvent is appropriately added to the mixed powder, and granulated by a spray drying method or the like.

次に、上記造粒粉末を用いて、例えば金型プレス成形、鋳込み成形、押出成形、射出成形、冷間静水圧プレス成形等の公知の成形手段により所定の工具形状に成形する。その後、この成形体を公知の焼成手段、例えば窒素雰囲気中での常圧焼成法、ガス圧力焼成法、ホットプレス法等により1650〜1800℃の温度で焼成することにより本発明の窒化珪素質焼結体を得ることができる。   Next, the granulated powder is used to form a predetermined tool shape by known molding means such as die press molding, casting molding, extrusion molding, injection molding, cold isostatic pressing. Thereafter, the molded body is fired at a temperature of 1650 to 1800 ° C. by a known firing means, for example, a normal pressure firing method in a nitrogen atmosphere, a gas pressure firing method, a hot press method or the like. A ligation can be obtained.

なお、この焼成に用いる雰囲気は、窒素を主体とするもので、窒化珪素質焼結体が焼成工程で酸化しない範囲で微量の酸素を含む場合もある。また、原料の窒化珪素粉末中にも不可避の酸素が含まれており、焼成時にこれがシリカ(SiO)となって焼結助剤として存在する。さらに、窒化珪素質成形体とともに焼成中にSiOやMgOなどの成分を蒸発させて焼成雰囲気を調整するための焼成雰囲気調整粉末を存在させる場合もある。また、焼成温度や雰囲気によっては、成形体中の焼結助剤成分が揮発する場合があるが、その場合には揮発する分を予め原料中に増加させて調合する。 The atmosphere used for the firing is mainly nitrogen, and may contain a small amount of oxygen as long as the silicon nitride sintered body is not oxidized in the firing step. In addition, the raw silicon nitride powder contains unavoidable oxygen, which becomes silica (SiO 2 ) during sintering and exists as a sintering aid. Furthermore, there may be a firing atmosphere adjusting powder for adjusting the firing atmosphere by evaporating components such as SiO and MgO during firing together with the silicon nitride-based molded body. Depending on the firing temperature and atmosphere, the sintering aid component in the molded body may volatilize. In this case, the volatilized component is added to the raw material in advance.

上記焼成によって緻密な窒化珪素質焼結体が得られるが、相対密度を高める必要がある場合には、さらに、圧力5MPa〜300MPa、温度1500〜1700℃の条件で熱間性水圧プレス焼成を施すこともできる。   A dense silicon nitride-based sintered body can be obtained by the above-mentioned firing. However, when it is necessary to increase the relative density, a hot hydraulic press firing is further performed under conditions of a pressure of 5 MPa to 300 MPa and a temperature of 1500 to 1700 ° C. You can also.

次に、上記焼結体を所望により研削加工した後、この基体6の表面に被覆層7を成膜する。被覆層8の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の一例についての詳細として、被覆層8をイオンプレーティング法で作製する場合について説明すると、金属チタン(Ti)、金属アルミニウム(Al)、金属タングステン(W)、金属シリコン(Si)、金属M(MはNb、Mo、Ta、Hf、Yから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用い、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させて成膜する。 Next, after grinding the sintered body as desired, a coating layer 7 is formed on the surface of the substrate 6. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as a method for forming the coating layer 8. As a detailed example of the film forming method, the case where the coating layer 8 is produced by an ion plating method will be described. Metal titanium (Ti), metal aluminum (Al), metal tungsten (W), metal silicon (Si), Using metal M (M is one or more selected from Nb, Mo, Ta, Hf, Y) independently or a composite alloy target, the metal source is evaporated by arc discharge or glow discharge. Simultaneously with the ionization, a film is formed by reacting with nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) gas as a carbon source.

なお、イオンプレーティング法やスパッタリング法で被覆層8を成膜する際には、被覆層8の結晶構造および配向性を制御して高硬度な被覆層を作製できるとともに基体6との密着性を高めるために成膜時に30〜200Vのバイアス電圧を印加することが好ましい。   When the coating layer 8 is formed by ion plating or sputtering, the crystal structure and orientation of the coating layer 8 can be controlled to produce a high-hardness coating layer, and the adhesion to the substrate 6 can be improved. In order to increase it, it is preferable to apply a bias voltage of 30 to 200 V during film formation.

窒化珪素(Si)粉末、希土類金属酸化物(RE)粉末、水酸化マグネシウム(Mg(OH))粉末、アルミナ(Al)粉末および酸化タングステン(W)粉末を用いて、焼結体の組成が表1の組成となるように調合し、この混合粉末を、アルミナ製ボールを用いたボールミルで72時間混合した。次に混合した粉体を圧力98MPaでJIS・SNGA120408のスローアウェイチップ形状にプレス成形した。この成形体を脱バインダ処理した後、窒素(N)ガス雰囲気中、1780℃で焼成して窒化珪素質焼結体を得た。そして、この窒化珪素質焼結体の両主面を研削加工するとともに、基体の切刃部分に対してダイヤモンドホイールを用いて刃先処理を施して、切刃先端にすくい面側から見て0.20mm幅で角度20°のチャンファホーニングを形成した。 Silicon nitride (Si 3 N 4 ) powder, rare earth metal oxide (RE 2 O 3 ) powder, magnesium hydroxide (Mg (OH) 2 ) powder, alumina (Al 2 O 3 ) powder and tungsten oxide (W 2 O 5) ) Using powder, the sintered compact was prepared so as to have the composition shown in Table 1, and this mixed powder was mixed for 72 hours in a ball mill using alumina balls. Next, the mixed powder was press-molded into a throwaway tip shape of JIS / SNGA120408 at a pressure of 98 MPa. The molded body was treated to remove the binder and then fired at 1780 ° C. in a nitrogen (N 2 ) gas atmosphere to obtain a silicon nitride sintered body. Then, both the main surfaces of the silicon nitride sintered body are ground, and the cutting edge portion of the base is subjected to a cutting edge treatment using a diamond wheel, so that the cutting edge tip is viewed from the rake face side by 0. A chamfa honing with a width of 20 mm and an angle of 20 ° was formed.

このようにして作製した基体に対して、アークイオンプレーティング法により被覆層の成膜を行った。具体的な成膜方法は、上記基体をアークイオンプレーティング装置にセットし500℃に加熱した後、窒素ガスを圧力4Pa導入した雰囲気中、アーク電流100A、バイアス電圧50V、加熱温度500℃として表2に示す組成の被覆層を成膜した。   A coating layer was formed on the thus prepared substrate by an arc ion plating method. A specific film forming method is described as follows: an arc current of 100 A, a bias voltage of 50 V, and a heating temperature of 500 ° C. are set in an atmosphere in which nitrogen gas is introduced at a pressure of 4 Pa after the substrate is set in an arc ion plating apparatus and heated to 500 ° C. A coating layer having the composition shown in 2 was formed.

また、被覆層の組成はキーエンス社製走査型電子顕微鏡(VE8800)を用いて倍率500倍にて観察を行い、同装置に付随のEDAXアナライザ(AMETEK EDAX−VE9800)を用いて加速電圧15kVにてエネルギー分散型X線分光分析(EDX)法の一種であるZAF法により組成の定量分析を行った。また、この方法で測定できなかった元素については、PHI社製X線光電子分光分析装置(Quantum2000)を用い、X線源はモノクロAlK(200μm、35W、15kV)を測定領域約200μmに照射して測定を行い、より正確な組成を算出した。また、上記走査型電子顕微鏡により基体と被覆層との界面付近を観察して界面の凹凸をトレースし、このトレースした線をJISB0601−2001に規格された算術平均高さ(Ra)の算出方法に準拠して界面の粗さを見積もった。測定結果は表2に被覆層の組成として示した。   The composition of the coating layer was observed at a magnification of 500 using a scanning electron microscope (VE8800) manufactured by Keyence, and at an acceleration voltage of 15 kV using an EDAX analyzer (AMETEK EDAX-VE9800) attached to the apparatus. The composition was quantitatively analyzed by the ZAF method, which is a type of energy dispersive X-ray spectroscopy (EDX) method. For elements that could not be measured by this method, an X-ray photoelectron spectrometer (Quantum 2000) manufactured by PHI was used, and the X-ray source was irradiated with monochrome AlK (200 μm, 35 W, 15 kV) to a measurement region of about 200 μm. Measurement was performed to calculate a more accurate composition. Further, the vicinity of the interface between the substrate and the coating layer is observed with the scanning electron microscope to trace the unevenness of the interface, and the traced line is converted into an arithmetic average height (Ra) calculation method standardized in JISB0601-2001. Based on this, the roughness of the interface was estimated. The measurement results are shown in Table 2 as the composition of the coating layer.

さらに、基体の断面鏡面研磨面について、走査型電子顕微鏡(SEM)による組織観察を行い、その写真について画像解析装置(日本ローパー社製イメージプロプラス)により平均粒径とアスペクト比を見積もった。   Further, the cross-sectional mirror-polished surface of the substrate was observed with a scanning electron microscope (SEM), and the average particle diameter and aspect ratio of the photograph were estimated by an image analyzer (Image Pro Plus manufactured by Nippon Roper).

次に、得られた切削工具形状のスローアウェイチップ(切削工具)を用いて以下の切削条件にて切削試験を行った。結果は表2に合わせて示した。   Next, a cutting test was performed under the following cutting conditions using the obtained throw-away tip (cutting tool) having a cutting tool shape. The results are shown in Table 2.

切削方法:外周加工
被削材 :FCD450スリーブ材
切削速度:500m/分
送り :0.5mm/rev
切り込み:2mm
切削状態:湿式
評価方法:上記の条件で50秒間切削後の切刃の状態確認とノーズ摩耗幅を測定。

Figure 0005094368
Cutting method: Peripheral workpiece: FCD450 sleeve material Cutting speed: 500 m / min Feed: 0.5 mm / rev
Cutting depth: 2mm
Cutting state: Wet evaluation method: Check the state of the cutting edge after cutting for 50 seconds under the above conditions and measure the nose wear width.
Figure 0005094368

Figure 0005094368
Figure 0005094368

表1、2に示される結果から、基体である窒化珪素質焼結体中の希土類金属(RE)の含有量がRE換算量で0.1質量%よりも少ない試料No.10では、フレーキングが発生した。まら、希土類金属(RE)の含有量がRE換算量で3質量%よりも多い試料No.11、アルミニウム(Al)の含有量がAl換算量で0.6質量%より多い試料No.12、マグネシウム(Mg)の含有量がMgO換算量で1質量%より多い試料No.13、酸素の含有量が2.5質量%よりも多い試料No.14では、いずれも摩耗幅が大きかった。 From the results shown in Tables 1 and 2, the sample No. 1 in which the content of rare earth metal (RE) in the silicon nitride sintered body as the substrate is less than 0.1% by mass in terms of RE 2 O 3 is obtained. At 10, flaking occurred. In addition, Sample No. with a rare earth metal (RE) content of more than 3% by mass in terms of RE 2 O 3 . 11, Sample No. whose content of aluminum (Al) is more than 0.6% by mass in terms of Al 2 O 3 . 12, Sample No. in which the content of magnesium (Mg) is more than 1% by mass in terms of MgO. 13, Sample No. with an oxygen content of more than 2.5 mass%. No. 14 had a large wear width.

また、a(Al組成比)が0.55よりも大きい試料No.19では被覆層の結晶構造が一部立方晶から六方晶に変化してしまい工具の耐摩耗性が悪くなってクレータ摩耗が進行した。逆に、a(Al組成比)が0.45よりも小さい試料No.24でも被覆層の酸化開始温度が低く工具の耐摩耗性が悪くてクレータ摩耗が進行した。そして、Wを含まずにb(W組成比)が0である試料No.17、18では工具にフレーキングが発生してしまい、逆に、b(W組成比)が0.1を超える試料No.20では工具の耐摩耗性が悪く、いずれも工具寿命の短いものであった。さらに、c(Si組成比)が0.05を超える試料No.23でも工具の耐摩耗性が悪くてクレータ摩耗が進行した。また、M(Nb、Mo、Ta、Hf、Yから選ばれる1種以上)を含有しない試料No.15、16、18、21では、酸化開始温度が低下して切削した際に工具の摩耗量が大きく、逆に、d(M組成比)が0.1を超える試料No.22でも耐摩耗性が低下してクレータ摩耗が進行し工具寿命の短いものであった。   In addition, sample No. a having an a (Al composition ratio) larger than 0.55 is used. In No. 19, the crystal structure of the coating layer partially changed from cubic to hexagonal, resulting in poor wear resistance of the tool and crater wear. On the contrary, the sample No. in which a (Al composition ratio) is smaller than 0.45. 24, the oxidation start temperature of the coating layer was low and the wear resistance of the tool was poor, and crater wear progressed. And sample No. which b (W composition ratio) is 0 without including W is included. In Nos. 17 and 18, flaking occurs in the tool, and conversely, sample Nos. With b (W composition ratio) exceeding 0.1. In No. 20, the wear resistance of the tool was poor, and all of them had a short tool life. Further, sample No. c with a c (Si composition ratio) exceeding 0.05 23, the wear resistance of the tool was poor and crater wear progressed. In addition, Sample No. containing no M (one or more selected from Nb, Mo, Ta, Hf, Y) was used. Nos. 15, 16, 18, and 21 show that the amount of wear of the tool is large when cutting is performed at a lower oxidation start temperature, and conversely, sample Nos. With d (M composition ratio) exceeding 0.1. No. 22 also had a short tool life due to a decrease in wear resistance and crater wear.

これに対し、硬質層の組成が本発明の範囲内の試料No.1〜9では、耐酸化性が向上して優れた耐摩耗性を発揮するとともに耐欠損性も良好であり、その結果、工具寿命が長いものであった。   On the other hand, the composition of the hard layer is within the range of the present invention. In Nos. 1 to 9, oxidation resistance was improved and excellent wear resistance was exhibited, and fracture resistance was also good. As a result, the tool life was long.

本発明の切削工具の一例を示し、(a)概略斜視図および(b)概略断面図である。An example of the cutting tool of this invention is shown, (a) schematic perspective view and (b) schematic sectional drawing.

符号の説明Explanation of symbols

1 切削工具(工具)
2 すくい面
3 逃げ面
4 切刃
6 基体(窒化珪素質焼結体からなる基体)
7 被覆層(全体)
8 被覆層
9 他の被覆層
1 Cutting tool
2 rake face 3 flank face 4 cutting edge 6 base (base made of silicon nitride sintered body)
7 Coating layer (whole)
8 Coating layer 9 Other coating layer

Claims (4)

希土類金属(RE)をRE換算量で0.1〜3質量%、アルミニウム(Al)をAl換算量で0〜0.6質量%、マグネシウム(Mg)をMgO換算量で0〜1質量%、酸素を0〜2.5質量%の割合で含有する窒化珪素質焼結体からなる基体の表面に、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であり、0.45≦a≦0.55、0.01≦b≦0.1、0.01≦c≦0.05、0.01≦d≦0.1、0≦x≦1である。)の被覆層が被着形成されている切削工具。 Rare earth metal (RE) 0.1 to 3% by mass in terms of RE 2 O 3 , aluminum (Al) 0 to 0.6% by mass in terms of Al 2 O 3 , magnesium (Mg) in terms of MgO 0 to 1 mass%, oxygen on the surface of the substrate made of silicon nitride sintered body containing a proportion of 0 to 2.5 wt%, Ti 1-a-b -c-d Al a W b Si c M d (C x N 1-x ) (where M is at least one selected from Nb, Mo, Ta, Hf, and Y, and 0.45 ≦ a ≦ 0.55, 0.01 ≦ b ≦ 0. 1,0 .01 ≦ c ≦ 0.05,0.01 ≦ d ≦ 0.1,0 is ≦ x ≦ 1.) cutting tool coating layer is deposited and formed of. 前記窒化珪素質焼結体中に、さらにタングステン(W)をWSi換算で0.1〜2質量%の割合で含有している請求項1記載の切削工具。 The cutting tool according to claim 1, wherein the silicon nitride sintered body further contains tungsten (W) in a proportion of 0.1 to 2 % by mass in terms of WSi2. 前記基体と前記被覆層との界面の粗さが0.3〜2μmである請求項1または2記載の切削工具。   The cutting tool according to claim 1 or 2, wherein the roughness of the interface between the substrate and the coating layer is 0.3 to 2 µm. 前記被覆層の厚みが0.5〜2μmである請求項1乃至3のいずれか記載の切削工具。   The cutting tool according to claim 1, wherein the coating layer has a thickness of 0.5 to 2 μm.
JP2007331733A 2007-12-25 2007-12-25 Cutting tools Active JP5094368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331733A JP5094368B2 (en) 2007-12-25 2007-12-25 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331733A JP5094368B2 (en) 2007-12-25 2007-12-25 Cutting tools

Publications (2)

Publication Number Publication Date
JP2009154219A JP2009154219A (en) 2009-07-16
JP5094368B2 true JP5094368B2 (en) 2012-12-12

Family

ID=40958793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331733A Active JP5094368B2 (en) 2007-12-25 2007-12-25 Cutting tools

Country Status (1)

Country Link
JP (1) JP5094368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009327A (en) * 2013-06-28 2015-01-19 京セラ株式会社 Cutting insert

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703103B1 (en) * 2011-04-28 2016-10-05 Kyocera Corporation Cutting tool
JP7015979B2 (en) * 2018-03-14 2022-02-04 三菱マテリアル株式会社 cBN sintered body and cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071506A (en) * 1996-08-29 1998-03-17 Mitsubishi Materials Corp Cutting tool made of surface coated silicon nitride sintered material whose hard coating layer has excellent cohesion
JP2000052105A (en) * 1998-08-05 2000-02-22 Mitsubishi Materials Corp Surface coated silicon nitride ceramics throwaway type cutting tip excellent in chipping resistance
JP3248898B2 (en) * 1999-03-19 2002-01-21 日立ツール株式会社 Hard coating tool
JP2005212048A (en) * 2004-01-29 2005-08-11 Kyocera Corp Ceramics and cutting tool using the same
JP2005298239A (en) * 2004-04-08 2005-10-27 Tungaloy Corp Tool made from coated silicon nitride based sintered compact
JP5060714B2 (en) * 2004-09-30 2012-10-31 株式会社神戸製鋼所 Hard coating excellent in wear resistance and oxidation resistance, and target for forming the hard coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009327A (en) * 2013-06-28 2015-01-19 京セラ株式会社 Cutting insert

Also Published As

Publication number Publication date
JP2009154219A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4987081B2 (en) Cutting tools
JP5188133B2 (en) Cutting tools
JP4927559B2 (en) Cubic boron nitride sintered body and cutting tool using the same
EP2554303B1 (en) Cutting tool
JP5038303B2 (en) Surface coating tool and method for machining workpiece
EP2000237A1 (en) Surface-coated tool
JP2005271190A (en) Surface coated cutting tool
WO2011129422A1 (en) Coated sintered cbn
KR100667639B1 (en) Surface-coated high hardness material for tool
JP4405835B2 (en) Surface coated cutting tool
JP3374599B2 (en) Hard wear-resistant composite coated cutting tool
JP2010253594A (en) Surface coated tool
JP5094368B2 (en) Cutting tools
JP2011093003A (en) Surface-coated member
JP5515734B2 (en) Surface coated cutting tool
JP5004690B2 (en) Cutting tool manufacturing method
JP2010029980A (en) Cutting tool
JP5680465B2 (en) Cutting edge exchangeable cutting tip, cutting method using the same, and manufacturing method of cutting edge exchangeable cutting tip
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP5201936B2 (en) Surface coating tool
WO2023053441A1 (en) Cubic boron nitride sintered body
JP2006299422A (en) Production method of surface coated body
JP4752536B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting of high-hardness materials.
JP4591815B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material with excellent wear resistance due to hard coating layer
JP2005153100A (en) Cutting tool for finishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3