JP5092878B2 - Discharge detection / identification device - Google Patents

Discharge detection / identification device Download PDF

Info

Publication number
JP5092878B2
JP5092878B2 JP2008119153A JP2008119153A JP5092878B2 JP 5092878 B2 JP5092878 B2 JP 5092878B2 JP 2008119153 A JP2008119153 A JP 2008119153A JP 2008119153 A JP2008119153 A JP 2008119153A JP 5092878 B2 JP5092878 B2 JP 5092878B2
Authority
JP
Japan
Prior art keywords
discharge
sound
signal
component
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008119153A
Other languages
Japanese (ja)
Other versions
JP2009261202A (en
Inventor
清佳 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008119153A priority Critical patent/JP5092878B2/en
Publication of JP2009261202A publication Critical patent/JP2009261202A/en
Application granted granted Critical
Publication of JP5092878B2 publication Critical patent/JP5092878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、例えば稼働中の電力設備で発生する放電を検出するための放電検出/同定装置に関する。   The present invention relates to a discharge detection / identification device for detecting, for example, a discharge generated in an operating power facility.

工場変電設備は複数の設備に電力を供給するため、高い信頼性が要求されるが、一方で頻繁な停電保全が難しく、無停電で診断できるオンライン診断技術へ期待が寄せられている。特に、充電中に内部を容易に覗くことの出来ない配電盤や遮断器等を簡易に診断できる技術は、これまで有効な技術がなく開発課題になっている。   Factory substation equipment supplies power to multiple facilities, so high reliability is required. On the other hand, frequent power outage maintenance is difficult, and there is an expectation for online diagnosis technology that can diagnose without power outage. In particular, a technology capable of easily diagnosing a switchboard, a circuit breaker, or the like that cannot be easily looked into during charging has been a development subject because there is no effective technology so far.

従来、特許文献1には、稼働中の電力設備のコロナ放電による絶縁劣化等の異常を音響により検出する装置が開示されている。この装置は、部分放電で生じる超音波を検出し、放電音のゆらぎ成分を計算するため包絡線検波後、周波数スペクトルを算出し、電源周波数の2倍の成分を多く含んでいる場合に放電と判定する事で、S/N比を向上させた特徴を持っていた。
特許第334780号公報
Conventionally, Patent Document 1 discloses an apparatus for detecting abnormalities such as insulation deterioration due to corona discharge of an operating power facility by sound. This device detects the ultrasonic wave generated by partial discharge, calculates the fluctuation component of the discharge sound, calculates the frequency spectrum after envelope detection, and discharges when it contains many components twice the power supply frequency. By judging, it had the characteristic which improved S / N ratio.
Japanese Patent No. 334780

ところが、電磁振動で生じる音響(磁歪音、金属の摩擦音)に、部分放電と同じように電源周波数の2倍のゆらぎ成分を持つ音響があり、従来の装置では、部分放電と電磁振動音との弁別ができず、誤診断する場合があった。   However, the sound generated by electromagnetic vibration (magnetostrictive sound, metal friction sound) has sound having a fluctuation component that is twice the power supply frequency as in the case of partial discharge. There was a case that it could not be discriminated and was misdiagnosed.

本発明の目的は、誤診断することなく確実に放電音を検出することが可能な放電検出/同定装置を提供することにある。   An object of the present invention is to provide a discharge detection / identification apparatus capable of reliably detecting discharge sound without making a misdiagnosis.

本発明の一例に係わる放電検出装置は、放電が発生した時に生じる音響を検出するための音響検出部と、周辺ノイズを除去するために前記音響検出部の検出信号から高周波成分を抽出するノイズ除去部と、放電音の強弱成分を抽出するためにノイズ除去後の信号を整流によって包絡線検波する強弱成分抽出部と、前記抽出された高周波成分の信号と、当該高周波成分の信号に対して電源周波数の1周期遅れた信号との相関係数を演算する相関係数演算部と、前期強弱成分中での前記電源周波数の2倍周波数成分と、前記相関係数とから前記放電音を検出/同定する検出/同定部とを具備することを特徴とする。   A discharge detection apparatus according to an example of the present invention includes a sound detection unit for detecting sound generated when a discharge occurs, and noise removal for extracting a high frequency component from a detection signal of the sound detection unit in order to remove ambient noise. A strong and weak component extracting unit for detecting an envelope of the signal after noise removal by rectification in order to extract a strong and weak component of the discharge sound, a power supply for the extracted high frequency component signal, and the high frequency component signal Detecting the discharge sound from a correlation coefficient calculation unit for calculating a correlation coefficient with a signal delayed by one period of frequency, a frequency component twice the power supply frequency in the first and second strength components, and the correlation coefficient / And a detection / identification unit for identification.

本発明によれば、誤診断することなく確実に放電音を検出することが可能になる。   According to the present invention, it is possible to reliably detect a discharge sound without erroneous diagnosis.

本発明の実施の形態を以下に図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の一実施形態に係る放電検出/同定装置の構成を示すブロック図である。
放電検出/同定装置は、音響検出部11、A/D変換器12、ハイパスフィルタ13、包絡線検波部14、高速フーリエ変換器(FFT)15、相関係数演算部16、および放電検出/同定部17等を有する。これらの機器は、可搬が容易な寸法に一体的に組み立てられ、電気保全員が現場に持ち運んで測定できるように構成される。
FIG. 1 is a block diagram showing a configuration of a discharge detection / identification apparatus according to an embodiment of the present invention.
The discharge detection / identification apparatus includes an acoustic detection unit 11, an A / D converter 12, a high-pass filter 13, an envelope detection unit 14, a fast Fourier transformer (FFT) 15, a correlation coefficient calculation unit 16, and a discharge detection / identification. Part 17 and the like. These devices are integrally assembled in dimensions that are easy to carry and are configured so that electrical maintenance personnel can take them to the site for measurement.

音響検出部11は、放電による音響を検出するために設けられ、指向性の強い超音波マイクロフォンなどで構成される。A/D変換器12は、音響検出部11で集音されたアナログの音響信号をデジタル信号に変換する。ハイパスフィルタ13は、FIRデジタルフィルタ(カットオフ周波数10kHz、阻止帯減衰量45dB)によって構成され、10kHz以上の高周波成分の信号だけを抽出する。包絡線検波部14は、ダイオードによる検波部と、FIRデジタルフィルタ(カットオフ周波数300Hz)とによって構成され、ダイオードによる片側検波後、FIRデジタルフィルタによって300Hz以下の音域だけを抽出し、高周波成分の強弱成分を抽出する。高速フーリエ変換器15は、放電音の強弱成分の周波数成分を求める。相関係数演算部16は、ハイパスフィルタ13によって抽出された高周波成分の信号と、高周波成分の信号に対して電源周波数(60Hz)の1周期遅れた信号との相関係数rを演算する。放電検出/同定部17は、高周波成分の周波数成分から電源周波数(60Hz)の2倍周波数成分(120Hz)の含有率と相関係数rとから集音された音響信号に放電音が含まれるか否かを判別する。   The sound detection unit 11 is provided to detect sound due to electric discharge, and includes an ultrasonic microphone having strong directivity. The A / D converter 12 converts the analog acoustic signal collected by the acoustic detection unit 11 into a digital signal. The high-pass filter 13 is composed of an FIR digital filter (cutoff frequency: 10 kHz, stopband attenuation: 45 dB), and extracts only high-frequency component signals of 10 kHz or higher. The envelope detection unit 14 includes a diode detection unit and an FIR digital filter (cut-off frequency 300 Hz). After one-side detection using a diode, the FIR digital filter extracts only the sound range of 300 Hz or less, and the strength of high-frequency components Extract ingredients. The fast Fourier transformer 15 obtains the frequency component of the strength component of the discharge sound. The correlation coefficient calculator 16 calculates a correlation coefficient r between the high frequency component signal extracted by the high pass filter 13 and the signal delayed by one cycle of the power supply frequency (60 Hz) with respect to the high frequency component signal. Does the discharge detection / identification unit 17 include the discharge sound in the acoustic signal collected from the content ratio of the frequency component of the high frequency component to the double frequency component (120 Hz) of the power supply frequency (60 Hz) and the correlation coefficient r? Determine whether or not.

次に、このように構成された本発明の放電検出/同定装置の動作について説明する。まず、音響検出部1によって例えば図2に示すような波形の放電音を採取する。   Next, the operation of the thus configured discharge detection / identification apparatus of the present invention will be described. First, a discharge sound having a waveform as shown in FIG.

この音響検出部1で採取された音響信号は、ハイパスフィルタ13を通過してノイズが除去され、高周波成分の信号が包絡線検波部14に出力される。包絡線検波部14に出力される信号の例を図3に示す。ここで、ハイパスフィルタ13でのノイズ除去の機能について説明すると、通常、放電で生じる音響は10kHz以上の高い周波数で広い周波数帯域にわたって存在するが、一般の変電設備の環境音は大半が10kHz以下の周波数成分であるため、ハイパスフィルタ13で容易に放電音だけ抽出することができるのである。   The acoustic signal collected by the acoustic detection unit 1 passes through the high-pass filter 13 to remove noise, and a high-frequency component signal is output to the envelope detection unit 14. An example of a signal output to the envelope detector 14 is shown in FIG. Here, the function of noise removal in the high-pass filter 13 will be described. Usually, the sound generated by the discharge exists over a wide frequency band at a high frequency of 10 kHz or more, but most of the environmental sound of a general substation equipment is 10 kHz or less. Since it is a frequency component, only the discharge sound can be easily extracted by the high-pass filter 13.

図3から分かるように、抽出した波形は、高い周波数成分を持った音響が、周期性を持って強弱を繰り返している。ここで、図3の波形をf(t)とし、高周波成分を持った音響をP(t)、周期性を持った強弱のゆらぎをA(t)とすると、f(t)は、P(t)がA(t)の周期で一種の振幅変調を受けていると考え次のように表すことができる。   As can be seen from FIG. 3, in the extracted waveform, the sound having a high frequency component repeats the intensity with periodicity. Here, assuming that the waveform of FIG. 3 is f (t), the sound having a high frequency component is P (t), and the fluctuation of the intensity with periodicity is A (t), f (t) is P (t). Considering that t) has undergone a kind of amplitude modulation with a period of A (t), it can be expressed as follows.

f(t)=A(t)×P(t) … (1)
そして、高周波成分の信号を包絡線検波部14によって包絡線検波することで、包絡線(ゆらぎ成分)を求め、元の波形f(t)からA(t)を除すことで、高周波成分を持った音響P(t)を抽出する。図4、図5に各波形の時系列変化ならびに周波数スペクトルを示す。図4は、ゆらぎ成分A(t)の波形を示し、図5は高周波成分の波形P(t)を示す。
f (t) = A (t) × P (t) (1)
Then, the envelope detection unit 14 detects the envelope (fluctuation component) by detecting the envelope of the high-frequency component by the envelope detection unit 14, and removes A (t) from the original waveform f (t). Extracted sound P (t). 4 and 5 show the time series change and frequency spectrum of each waveform. 4 shows the waveform of the fluctuation component A (t), and FIG. 5 shows the waveform P (t) of the high frequency component.

さらに、高速フーリエ変換器15では、FFT(高速フーリエ変換)処理により包絡線検波後の信号(A(t))の周波数成分を演算する。図6は包絡線検波後のボイド放電の波形を示したものであるが、電源周波数(60Hz)の2倍周波数成分である120Hzの安定した波形となることがわかる。   Further, the fast Fourier transformer 15 calculates the frequency component of the signal (A (t)) after envelope detection by FFT (Fast Fourier Transform) processing. FIG. 6 shows the waveform of the void discharge after the envelope detection, and it can be seen that the waveform is stable at 120 Hz, which is a frequency component twice the power supply frequency (60 Hz).

A(t)が電源周波数の2倍の周波数を主体にした波形であることは、交流に於ける気中放電は、印加された電圧が空気の絶縁破壊電圧を越えた時に生じ、電圧の降下と共に一旦消滅し、極性を転じて再び生じる。従って1サイクルに2回の放電がON/OFFするため放電音は電源周波数の2倍の周波数で強弱するものと考えられる。   The fact that A (t) is a waveform whose main frequency is twice the power supply frequency is that air discharge in alternating current occurs when the applied voltage exceeds the breakdown voltage of air, and the voltage drops. At the same time, it disappears and turns around again. Therefore, since the discharge is turned on and off twice in one cycle, the discharge sound is considered to be strong and weak at a frequency twice the power supply frequency.

次に、相関係数演算部16では、(2)式を演算して、ハイパスフィルタ通過後の波形f(t)と、f(t)を電源周波数の1周期(T)分だけ遅らせた波形f(t+T)との相関係数rを求める。

Figure 0005092878
Next, the correlation coefficient calculation unit 16 calculates the equation (2), and the waveform f (t) after passing through the high-pass filter and the waveform obtained by delaying f (t) by one cycle (T) of the power supply frequency. A correlation coefficient r with f (t + T) is obtained.
Figure 0005092878

放電は、電源電圧の波高値付近で生じるものの、個々の放電の発生は、電界と気圧に影響されランダムに発生するため、1周期遅らせた波形と、元の波形を比較した場合、相関係数は小さくなる。一方、電磁振動による音響は、電磁力に依存するため放電に比較し安定しており、高い相関となる。図7(A)に針−針放電のf(t)とf(t+T)との相関図を示し、図7(B)にテレメータの電磁振動で生じる音響のf(t)とf(t+T)との相関図を示す。図7から分かるように、電磁振動の音響の1周期遅れの相関係数は、放電音の1周期遅れの相関係数より高い。   Although discharge occurs near the peak value of the power supply voltage, the occurrence of individual discharges is generated randomly by being affected by the electric field and atmospheric pressure. Therefore, when the waveform delayed by one cycle is compared with the original waveform, the correlation coefficient Becomes smaller. On the other hand, sound due to electromagnetic vibration depends on electromagnetic force and is more stable than discharge and has a high correlation. FIG. 7A shows a correlation diagram between f (t) and f (t + T) of needle-needle discharge, and FIG. 7B shows acoustic f (t) and f (f) generated by electromagnetic vibration of the telemeter. The correlation diagram with t + T) is shown. As can be seen from FIG. 7, the correlation coefficient of the one-cycle delay of the electromagnetic vibration is higher than the correlation coefficient of the one-cycle delay of the discharge sound.

そして、放電検出/同定部17は、高速フーリエ変換器15によって演算された高周波の周波数成分から電源周波数の2倍成分の含有率を演算する。放電検出/同定部17は、演算された含有率が一定値より大きく、且つ相関係数演算部16で演算された相関係数rが小さい場合に、集音した音響信号中に放電音が含まれていると判断する。   Then, the discharge detection / identification unit 17 calculates the content rate of the double component of the power supply frequency from the high frequency component calculated by the fast Fourier transformer 15. The discharge detection / identification unit 17 includes a discharge sound in the collected acoustic signal when the calculated content rate is larger than a certain value and the correlation coefficient r calculated by the correlation coefficient calculation unit 16 is small. It is judged that

図8に、放電音を含む音響信号と電磁振動で生じる音響を含む音響信号とから得られた電源周波数の2倍成分の含有率と相関関数rをプロットしたものを示す。図8に示すように、含有率が3%より大きく、且つ相関関数rが0.1より小さい場合に、放電が生じていることが分かる。   FIG. 8 shows a plot of the content of the double component of the power supply frequency and the correlation function r obtained from the acoustic signal including the discharge sound and the acoustic signal including the sound generated by the electromagnetic vibration. As shown in FIG. 8, it can be seen that discharge occurs when the content rate is larger than 3% and the correlation function r is smaller than 0.1.

従って、放電検出/同定部17は、電源周波数の2倍成分の含有率が3%以上より大きく、生波形の1周期遅れの相関係数が0.1より小さい場合に、放電音と同定する。なお、これらの値は発明者の実験によって得られたものであるが、これらの値に限定されるものではない。   Therefore, the discharge detection / identification unit 17 identifies the discharge sound when the content rate of the double component of the power supply frequency is greater than 3% and the correlation coefficient of one cycle delay of the raw waveform is smaller than 0.1. . These values are obtained by the inventors' experiments, but are not limited to these values.

本装置によって、電磁振動で生じる音響(磁歪音、金属の摩擦音)を放電音として誤って検出することが無く、確実に放電音のみを検出することが出来る。   With this apparatus, it is possible to reliably detect only discharge sound without erroneously detecting sound (magnetostriction sound, metal friction sound) generated by electromagnetic vibration as discharge sound.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の一実施形態に係わる放電検出/同定装置の構成を示すブロック図。The block diagram which shows the structure of the discharge detection / identification apparatus concerning one Embodiment of this invention. 図1に示す音響検出部によって採取される音の波形を示す図。The figure which shows the waveform of the sound extract | collected by the acoustic detection part shown in FIG. ハイパスフィルタから出力される信号の波形を示す図。The figure which shows the waveform of the signal output from a high pass filter. ゆらぎ成分A(t)の波形を示す図。The figure which shows the waveform of fluctuation component A (t). 高周波成分の波形P(t)を示す図。The figure which shows the waveform P (t) of a high frequency component. 包絡線検波後の放電の波形を示す図。The figure which shows the waveform of the discharge after an envelope detection. 針−針放電のf(t)とf(t+T)との相関と、電磁振動で生じる音響のf(t)とf(t+T)との相関を示す図。The figure which shows the correlation with f (t) and f (t + T) of needle-needle discharge, and the correlation with f (t) and f (t + T) of the sound which arises by electromagnetic vibration. 放電音を含む音響信号と電磁振動で生じる音響を含む音響信号とから得られた電源周波数の2倍成分の含有率と相関関数rとを示す図。The figure which shows the content rate and the correlation function r of the 2 times component of the power supply frequency obtained from the acoustic signal containing a discharge sound and the acoustic signal containing the sound which arises by electromagnetic vibration.

符号の説明Explanation of symbols

11…音響検出部,12…A/D変換器,13…ハイパスフィルタ,14…包絡線検波部,15…高速フーリエ変換器,16…相関係数演算部,17…放電検出/同定部。   DESCRIPTION OF SYMBOLS 11 ... Sound detection part, 12 ... A / D converter, 13 ... High pass filter, 14 ... Envelope detection part, 15 ... Fast Fourier transformer, 16 ... Correlation coefficient calculating part, 17 ... Discharge detection / identification part.

Claims (1)

放電が発生した時に生じる音響を検出するための音響検出部と、
周辺ノイズを除去するために前記音響検出部の検出信号から高周波成分を抽出するノイズ除去部と、
放電音の強弱成分を抽出するためにノイズ除去後の信号を包絡線検波する強弱成分抽出部と、
前記抽出された高周波成分の信号と、当該高周波成分の信号に対して電源周波数の1周期遅れた信号との相関係数を演算する相関係数演算部と、
前期強弱成分中での前記電源周波数の2倍周波数成分と、前記相関係数とから前記放電音を検出する検出部と
を具備することを特徴とする放電検出/同定装置。
An acoustic detection unit for detecting acoustics generated when a discharge occurs;
A noise removing unit that extracts a high-frequency component from the detection signal of the acoustic detection unit in order to remove ambient noise;
A strength component extraction unit for detecting an envelope of the signal after noise removal in order to extract the strength component of the discharge sound;
A correlation coefficient calculator that calculates a correlation coefficient between the extracted high-frequency component signal and a signal delayed by one cycle of the power supply frequency with respect to the high-frequency component signal;
A discharge detection / identification apparatus comprising: a detection unit configured to detect the discharge sound from a frequency component twice the power supply frequency in a strong and weak component in the previous period and the correlation coefficient.
JP2008119153A 2008-03-25 2008-04-30 Discharge detection / identification device Active JP5092878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119153A JP5092878B2 (en) 2008-03-25 2008-04-30 Discharge detection / identification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008078940 2008-03-25
JP2008078940 2008-03-25
JP2008119153A JP5092878B2 (en) 2008-03-25 2008-04-30 Discharge detection / identification device

Publications (2)

Publication Number Publication Date
JP2009261202A JP2009261202A (en) 2009-11-05
JP5092878B2 true JP5092878B2 (en) 2012-12-05

Family

ID=41387891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119153A Active JP5092878B2 (en) 2008-03-25 2008-04-30 Discharge detection / identification device

Country Status (1)

Country Link
JP (1) JP5092878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230044529A (en) 2020-09-08 2023-04-04 제이에프이 스틸 가부시키가이샤 Partial discharge monitoring device and partial discharge monitoring method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554284B (en) * 2019-08-23 2022-03-15 国网江苏省电力有限公司电力科学研究院 GIS (geographic information System) -based correlation analysis method and system for partial discharge detection mode
CN110706721A (en) * 2019-10-17 2020-01-17 南京林业大学 Electric precipitation spark discharge identification method based on BP neural network
EP3907502A1 (en) * 2020-05-08 2021-11-10 ABB Schweiz AG Sensing arrangement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631327A (en) * 1979-08-24 1981-03-30 Hitachi Ltd Method of diagnosing vibration of rotary machine
JPH0718746B2 (en) * 1985-05-21 1995-03-06 株式会社明電舍 Rotor abnormality detection device
JPS638571A (en) * 1986-06-30 1988-01-14 Tokyo Electric Power Co Inc:The Diagnosis of deterioration for power cable connection
JP2740179B2 (en) * 1988-03-28 1998-04-15 株式会社日立製作所 Abnormality diagnosis device for gas insulation equipment
JPH0921842A (en) * 1995-07-10 1997-01-21 Kansai Electric Power Co Inc:The Device and method for detecting internal partial-discharge of capacitive instrument transformer
JPH09127181A (en) * 1995-10-30 1997-05-16 Kawasaki Steel Corp Detecting device for corona discharge of electric power equipment
JP3334780B2 (en) * 1996-02-22 2002-10-15 川崎製鉄株式会社 Corona discharge detector for power equipment
JPH11223654A (en) * 1998-02-05 1999-08-17 Mitsubishi Electric Corp Partial discharge identifier
JP2000137053A (en) * 1998-10-30 2000-05-16 Kawasaki Steel Corp On-line diagnostic method and device for diagnosing insulation deterioration
JP3891065B2 (en) * 2002-07-23 2007-03-07 Jfeスチール株式会社 Diagnosis method of winding looseness of AC rotating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230044529A (en) 2020-09-08 2023-04-04 제이에프이 스틸 가부시키가이샤 Partial discharge monitoring device and partial discharge monitoring method
EP4212893A4 (en) * 2020-09-08 2024-03-13 JFE Steel Corporation Partial discharge monitoring device and partial discharge monitoring method

Also Published As

Publication number Publication date
JP2009261202A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
EP2016656B1 (en) Electrical switching apparatus and method employing acoustic and current signals to distinguish between parallel and series arc faults
US10120013B2 (en) Device and method for monitoring an electrical network
JP5513870B2 (en) Arc detection using detailed and approximate coefficients of discrete wavelet transform
US10690713B2 (en) Method of detecting an electric arc by analysis of its acoustic signature
JP4735470B2 (en) Insulation diagnostic device and insulation diagnostic method
CA2532628A1 (en) Electrical switching apparatus and method including fault detection employing acoustic signature
JP5092878B2 (en) Discharge detection / identification device
CN110568329B (en) Arc detection method, household appliance and computer readable storage medium
KR101477755B1 (en) A distribution board, motor control panel and cabinet panel with a detecting system for arc or corona generation using ultra-sonic probes
US10359466B2 (en) Device for detecting an electric arc based on its acoustic signature
CN101771261A (en) Parallel arc detection using discrete wavelet transforms
JP2006517672A (en) Arc fault detection system
KR101385318B1 (en) Apparatus for diagnosing partial discharge and method therefor
CN109406965A (en) A kind of partial discharge detecting system and its detection method based on sound signal collecting
WO2022054482A1 (en) Partial discharge monitoring device and partial discharge monitoring method
Charbkaew et al. Vibration signal analysis for condition monitoring of puffer‐type high‐voltage circuit breakers using wavelet transform
JP5599982B2 (en) Insulation degradation diagnosis device for high-voltage power receiving equipment
JP3334780B2 (en) Corona discharge detector for power equipment
KR100645113B1 (en) Noise reduction and Quantity decision method in partial discharge measurement
JP5130985B2 (en) Discharge aspect judgment device
JPH09127181A (en) Detecting device for corona discharge of electric power equipment
KR101333178B1 (en) Method for diagnosing partial discharge using technique of oil immersed transformer
KR20080095338A (en) Electric fire prevention equipment
JP6605992B2 (en) Insulation diagnostic apparatus and insulation diagnostic method for power equipment
CN105259446A (en) Wide-spectrum rapid high-sensitivity fault arc detection sensor and protector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250