JP5091977B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP5091977B2
JP5091977B2 JP2010091160A JP2010091160A JP5091977B2 JP 5091977 B2 JP5091977 B2 JP 5091977B2 JP 2010091160 A JP2010091160 A JP 2010091160A JP 2010091160 A JP2010091160 A JP 2010091160A JP 5091977 B2 JP5091977 B2 JP 5091977B2
Authority
JP
Japan
Prior art keywords
exhaust gas
reducing agent
temperature
catalyst
black smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010091160A
Other languages
Japanese (ja)
Other versions
JP2010180888A (en
Inventor
哲 山田
浩之 遠藤
晃 今道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010091160A priority Critical patent/JP5091977B2/en
Publication of JP2010180888A publication Critical patent/JP2010180888A/en
Application granted granted Critical
Publication of JP5091977B2 publication Critical patent/JP5091977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、排ガス通路にNOx(窒素酸化物)吸蔵触媒装置をそなえた排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus provided with a NOx (nitrogen oxide) storage catalyst device in an exhaust gas passage.

内燃機関からの排ガス通路に、NOx吸蔵触媒装置と排ガス中の黒煙を除去する黒煙除去装置とを併設した内燃機関の排ガス浄化装置については、多くの技術が提供されているが、その一つに特許文献1(特開2005−16317号公報)の技術がある。
かかる技術においては、内燃機関からの排ガス通路にNOx吸蔵触媒装置と排ガス中の黒煙を除去する黒煙除去装置とを直列に配設し、黒煙除去装置に流入する排ガスの温度が黒煙の自己燃焼温度以上であって、黒煙除去装置の前後差圧増加率が基準値以上のときにNOx吸蔵触媒を再生するための触媒再生制御を、排ガスをリッチにする頻度を少なくする制御またはリッチを浅くする制御の少なくとも一方を行うことにより、黒煙除去装置の連続再生可能な範囲で最適なNOx浄化率を維持可能としている。
Many technologies have been provided for an exhaust gas purification apparatus for an internal combustion engine in which a NOx occlusion catalyst device and a black smoke removal device for removing black smoke in the exhaust gas are provided in the exhaust gas passage from the internal combustion engine. In particular, there is a technique disclosed in Japanese Patent Application Laid-Open No. 2005-16317.
In such a technique, a NOx occlusion catalyst device and a black smoke removal device for removing black smoke in exhaust gas are arranged in series in an exhaust gas passage from an internal combustion engine, and the temperature of the exhaust gas flowing into the black smoke removal device is black smoke. The catalyst regeneration control for regenerating the NOx storage catalyst when the rate of increase in the differential pressure across the black smoke removal device is equal to or higher than the reference value when the temperature is higher than the self-combustion temperature of By performing at least one of the control for shallowing the rich, it is possible to maintain the optimum NOx purification rate within the range in which the black smoke removal device can be continuously regenerated.

特開2005−16317号公報JP 2005-16317 A

一般に、排ガス通路にNOx吸蔵触媒装置と黒煙除去装置とを併設した内燃機関(以下エンジンという)の排ガス浄化装置においては、エンジンの始動時や低負荷時には排ガス温度が触媒の活性温度及び黒煙除去装置での黒煙の所要燃焼温度よりも低くなることから、かかる問題に対処するため、前記特許文献1(特開2005−16317号公報)に示されるような、黒煙除去装置の連続再生可能な範囲で最適なNOx浄化率を維持できるように、低温側で活性の高い触媒を用いる技術が種々提供されている。   In general, in an exhaust gas purification apparatus for an internal combustion engine (hereinafter referred to as an engine) in which an NOx occlusion catalyst device and a black smoke removal device are provided in the exhaust gas passage, the exhaust gas temperature is the catalyst activation temperature and the black smoke when the engine is started or when the load is low. Since it becomes lower than the required combustion temperature of the black smoke in the removal device, in order to cope with such a problem, the continuous regeneration of the black smoke removal device as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2005-16317) is performed. Various techniques using a catalyst having high activity on the low temperature side are provided so that the optimum NOx purification rate can be maintained within a possible range.

しかるに、エンジンにより発電機を直結駆動する発電用エンジンでは、高速の定格回転数での高負荷運転を連続して行なう運転割合が多く、NOx吸蔵触媒装置を流れる排ガス温度は常時高温レベルになる。
一方、NOx吸蔵触媒装置に用いられる触媒にあっては、図7に示されるように、触媒温度Tが一定温度Tを超えると触媒性能が低下する触媒が多く、排ガス温度が高温レベルで運転される発電用エンジンにかかる触媒を用いる場合には、触媒温度Tが最適触媒温度範囲ΔTを超えたTにまで上昇することがあり、触媒性能が低下した状態でNOx吸蔵触媒装置を作動させる事態となる。
However, in a power generation engine in which a generator is directly driven by an engine, there is a large operation ratio in which high load operation at a high rated speed is continuously performed, and the temperature of exhaust gas flowing through the NOx occlusion catalyst device is always at a high temperature level.
On the other hand, in the catalyst used in the NOx storage catalytic device, as shown in FIG. 7, the catalyst the catalyst temperature T is constant temperatures T 1 by weight, the catalyst performance is reduced a lot, the exhaust gas temperature at a high temperature level operation When the catalyst for the power generation engine to be used is used, the catalyst temperature T may rise to T 0 exceeding the optimum catalyst temperature range ΔT, and the NOx occlusion catalyst device is operated with the catalyst performance lowered. Things will happen.

本発明はかかる従来技術の課題に鑑み、排ガス供給源からの排ガス温度に影響されることなく常時高い触媒性能を維持可能として、発電用エンジンのように高温の排ガス供給源からの排ガスに対しても、高効率のNOx浄化機能をそなえた排ガス浄化装置を提供することを目的とする。   In view of the problems of the prior art, the present invention makes it possible to always maintain high catalyst performance without being affected by the exhaust gas temperature from the exhaust gas supply source, and to deal with exhaust gas from a high temperature exhaust gas supply source such as a power generation engine. Another object of the present invention is to provide an exhaust gas purification apparatus having a highly efficient NOx purification function.

本発明はかかる目的を達成するもので、排ガス通路にNOx(窒素酸化物)吸蔵触媒装置と該NOx(窒素酸化物)吸蔵触媒装置の下流側に排ガス中の黒煙を除去する黒煙除去装置とをそなえた排ガス浄化装置において、前記排ガス通路の前記NOx吸蔵触媒装置の上流部位に、該排ガス通路中の排ガスを冷却する排ガス冷却装置及び排ガス中に還元剤を供給する還元剤供給装置を設けるとともに、前記NOx吸蔵触媒装置入口の排ガス温度を検出する排ガス温度センサと、前記NOx吸蔵触媒装置入口の排ガス圧力を検出する排ガス圧力センサと、前記排ガス温度センサからの排ガス温度の検出値及び前記排ガス圧力センサからの排ガス圧力の検出値が入力されて、該排ガス温度の検出値に基づき前記NOx吸蔵触媒装置に導入される排ガス温度が触媒作動温度範囲中で触媒性能が最も良い最適触媒作動温度になるように前記排ガス冷却装置への冷却流体の供給量を調整する冷却流体調整弁を制御し、且つ前記排ガス温度の検出値及び排ガス圧力の検出値に基づき前記還元剤供給装置からの還元剤供給量及び還元剤供給圧力を制御するコントローラとをそなえ、さらに、前記黒煙除去装置の前後の差圧を検出して前記コントローラに入力する差圧センサを設け、前記コントローラは、前記差圧の検出値が前記黒煙除去装置の許容差圧を超えたとき前記冷却流体調整弁を閉止して前記排ガス冷却装置への冷却流体の供給を遮断するとともに、前記還元剤供給装置からの還元剤供給量を前記NOx吸蔵触媒の前記最適触媒作動温度への制御による還元剤噴射量より増加して、前記黒煙除去装置への排ガス温度を上昇せしめるように構成されることを特徴とする。 The present invention achieves such an object, and a NOx (nitrogen oxide) storage catalyst device in an exhaust gas passage and a black smoke removal device that removes black smoke in the exhaust gas downstream of the NOx (nitrogen oxide) storage catalyst device. In the exhaust gas purifying apparatus, an exhaust gas cooling device that cools the exhaust gas in the exhaust gas passage and a reducing agent supply device that supplies the reducing agent into the exhaust gas are provided in the exhaust gas passage upstream of the NOx storage catalyst device. An exhaust gas temperature sensor for detecting the exhaust gas temperature at the inlet of the NOx storage catalyst device, an exhaust gas pressure sensor for detecting the exhaust gas pressure at the inlet of the NOx storage catalyst device, a detected value of the exhaust gas temperature from the exhaust gas temperature sensor, and the exhaust gas The exhaust gas pressure detected value from the pressure sensor is input, and the exhaust gas introduced into the NOx occlusion catalyst device based on the detected exhaust gas temperature value. Temperature controls the cooling fluid control valve for adjusting the supply amount of the cooling fluid into the exhaust gas cooling device so that the catalyst performance is the best the optimum catalyst operating temperatures in the catalyst operating temperature range, and the detection value of the exhaust gas temperature And a controller for controlling the reducing agent supply amount and the reducing agent supply pressure from the reducing agent supply device based on the detected value of the exhaust gas pressure, and further detecting the differential pressure before and after the black smoke removing device to detect the controller A differential pressure sensor that inputs to the exhaust gas cooling device, the controller closes the cooling fluid regulating valve when the detected value of the differential pressure exceeds an allowable differential pressure of the black smoke removal device, and supplies the cooling fluid to the exhaust gas cooling device. The amount of reducing agent supplied from the reducing agent supply device is increased more than the amount of reducing agent injected by controlling the NOx storage catalyst to the optimum catalyst operating temperature, and the black smoke is increased. Characterized in that it is configured to allowed to increase the exhaust gas temperature to removed by device.

かかる発明によれば、前記コントローラによって、排ガス温度センサからの排ガス温度の検出値に基づき前記冷却流体調整弁の開度をNOx吸蔵触媒装置に導入される排ガス温度が該NOx吸蔵触媒装置の触媒作動温度範囲中で触媒性能が最も良い最適触媒作動温度になるように制御するので、NOx吸蔵触媒装置に導入される排ガス温度がNOx吸蔵触媒装置の触媒作動温度範囲を超えて、触媒性能が低下した状態で該NOx吸蔵触媒装置を作動させるのを回避できる。
又前記コントローラによって、該排ガス温度の検出値及び排ガス圧力の検出値に基づき、還元剤供給装置からの還元剤供給量及び還元剤供給圧力を、検出排ガス温度及び検出排ガス圧力に適合するように制御するので、NOx吸蔵触媒装置への還元剤を常時所要の温度及び圧力条件で安定供給することができて、NOx吸蔵触媒装置における脱硝性能が安定するとともに、最低限の還元剤供給量で以ってNOx吸蔵触媒装置における脱硝率を高く維持できる。
これにより、前記冷却流体調整弁の開度を制御し、且つ前記排ガス温度の検出値及び排ガス圧力の検出値に基づき前記還元剤供給装置からの還元剤供給量及び還元剤供給圧力を制御するコントローラにより、発電用エンジンのように高温の排ガス供給源からの排ガスに対しても、NOx吸蔵触媒装置に導入される排ガス温度を前記触媒作動温度範囲に保持できて、高効率のNOx浄化機能を発揮できる。
According to this invention, the exhaust gas temperature introduced into the NOx storage catalyst device by the controller based on the detected value of the exhaust gas temperature from the exhaust gas temperature sensor is the catalyst operation of the NOx storage catalyst device. Since control is performed so that the catalyst performance becomes the best optimum catalyst operating temperature in the temperature range, the exhaust gas temperature introduced into the NOx storage catalyst device exceeds the catalyst operation temperature range of the NOx storage catalyst device , and the catalyst performance is reduced. It is possible to avoid operating the NOx storage catalyst device in the state.
Further, the controller controls the reducing agent supply amount and the reducing agent supply pressure from the reducing agent supply device so as to match the detected exhaust gas temperature and the detected exhaust gas pressure based on the detected value of the exhaust gas temperature and the detected value of the exhaust gas pressure. Therefore, the reducing agent to the NOx occlusion catalyst device can be constantly supplied stably at the required temperature and pressure conditions, the denitration performance in the NOx occlusion catalyst device is stabilized, and the minimum amount of reducing agent can be supplied. Thus, the NOx removal rate in the NOx storage catalyst device can be maintained high.
Thereby, the controller for controlling the opening degree of the cooling fluid regulating valve and controlling the reducing agent supply amount and the reducing agent supply pressure from the reducing agent supply device based on the detected value of the exhaust gas temperature and the detected value of the exhaust gas pressure. Accordingly, even for the exhaust gas from the hot gas supply source as generator engine, and can be held in front Symbol catalyst operating temperature range of the exhaust gas temperature to be introduced into the NOx storage catalyst device, the NOx purification function of high efficiency Can demonstrate.

また、かかる発明によれば、前記排ガス通路に排ガス中の黒煙を除去する黒煙除去装置を前記NOx吸蔵触媒装置の下流側に設けるとともに、該黒煙除去装置の前後の差圧を検出して前記コントローラに入力する差圧センサを設け、前記コントローラは、前記差圧の検出値が前記黒煙除去装置の許容差圧を超えたとき前記冷却流体調整弁を閉止して前記排ガス冷却装置への冷却流体の供給を遮断するように構成されてなる。
そして、さらに前記構成に加えて、前記コントローラは、前記差圧の検出値が前記黒煙除去装置の許容差圧を超えたとき、前記還元剤供給装置からの還元剤供給量を前記NOx吸蔵触媒の前記最適触媒作動温度への制御による還元剤噴射量より増加して前記黒煙除去装置への排ガス温度を上昇せしめるように構成されてなる。
Further, according to the invention, along with the pre-Symbol black smoke removing apparatus for removing black smoke in the exhaust gas in the exhaust gas passage provided downstream of the NOx storage catalytic device, detecting the differential pressure before and after the black-smoke-removal device A differential pressure sensor that inputs to the controller, and the controller closes the cooling fluid regulating valve when the detected value of the differential pressure exceeds an allowable differential pressure of the black smoke removal device, and the exhaust gas cooling device It is comprised so that supply of the cooling fluid to may be interrupted.
Further, in addition to the above-described configuration, when the detected value of the differential pressure exceeds the allowable differential pressure of the black smoke removing device, the controller calculates the reducing agent supply amount from the reducing agent supply device as the NOx storage catalyst. The exhaust gas temperature to the black smoke removing device is increased by increasing the amount of the reducing agent injected by the control to the optimum catalyst operating temperature .

このように構成すれば、排ガス冷却装置を作動させて黒煙除去装置への排ガス温度を低下させて運転している場合に、黒煙除去装置前後の差圧の検出値が許容差圧を超えて該黒煙除去装置を再生する際には、前記排ガス冷却装置への冷却流体の供給を遮断することにより、さらには還元剤供給装置からの還元剤供給量を増加して黒煙除去装置への排ガス温度を上昇せしめることにより、黒煙除去装置での黒煙の再燃焼を促進することができ、黒煙除去装置の機能低下や、黒煙除去装置の詰まりに伴うエンジン背圧の増加による燃料消費率の増加を回避できる。   With this configuration, when the exhaust gas cooling device is operated and the exhaust gas temperature to the black smoke removal device is lowered, the detected differential pressure value before and after the black smoke removal device exceeds the allowable differential pressure. When the black smoke removal device is regenerated, the supply of the cooling fluid to the exhaust gas cooling device is shut off, and the amount of reducing agent supplied from the reducing agent supply device is increased to the black smoke removal device. By increasing the exhaust gas temperature of the black smoke, it is possible to promote the recombustion of black smoke in the black smoke removal device, due to a decrease in the function of the black smoke removal device and an increase in the engine back pressure accompanying the clogging of the black smoke removal device Increase in fuel consumption rate can be avoided.

本発明によれば、排ガス通路のNOx吸蔵触媒装置の上流部位に排ガス冷却装置を設けるとともに、該排ガス冷却装置への冷却流体の流量を調整する冷却流体調整弁を設けて、該冷却流体調整弁の開度をNOx吸蔵触媒装置に導入される排ガス温度が該NOx吸蔵触媒装置の触媒作動温度範囲中で触媒性能が最も良い最適触媒作動温度になるように制御するので、NOx吸蔵触媒装置に導入される排ガス温度が触媒作動温度範囲を超えて、触媒性能が低下した状態で該NOx吸蔵触媒装置を作動させるのを回避でき、これにより、発電用エンジンのように高温の排ガス供給源からの排ガスに対しても、NOx吸蔵触媒装置に導入される排ガス温度を前記触媒作動温度範囲に保持できて、高効率のNOx浄化機能を発揮できる。 According to the present invention, the exhaust gas cooling device is provided in the upstream portion of the NOx occlusion catalyst device in the exhaust gas passage, and the cooling fluid adjustment valve for adjusting the flow rate of the cooling fluid to the exhaust gas cooling device is provided. Is controlled so that the exhaust gas temperature introduced into the NOx occlusion catalyst device becomes the optimum catalyst operation temperature with the best catalyst performance within the catalyst operation temperature range of the NOx occlusion catalyst device. It is possible to avoid operating the NOx occlusion catalyst device in a state in which the exhaust gas temperature exceeds the catalyst operating temperature range and the catalyst performance is deteriorated, so that exhaust gas from a high temperature exhaust gas supply source such as a power generation engine can be avoided. However, the exhaust gas temperature introduced into the NOx storage catalyst device can be maintained within the catalyst operating temperature range, and a highly efficient NOx purification function can be exhibited.

また本発明によれば、排ガス通路のNOx吸蔵触媒装置の上流部位に還元剤供給装置を設けて、排ガス温度の検出値及び排ガス圧力の検出値に基づき、前記還元剤供給装置からの還元剤供給量及び還元剤供給圧力を、検出排ガス温度及び検出排ガス圧力に適合するように制御するので、前記還元剤を常時所要の温度及び圧力条件でNOx吸蔵触媒装置に安定供給することができて、該NOx吸蔵触媒装置における脱硝性能が安定するとともに、最低限の還元剤供給量で以ってNOx吸蔵触媒装置における脱硝率を高く維持できる。   Further, according to the present invention, a reducing agent supply device is provided upstream of the NOx storage catalyst device in the exhaust gas passage, and the reducing agent supply from the reducing agent supply device based on the detected value of the exhaust gas temperature and the detected value of the exhaust gas pressure. Since the amount and the reducing agent supply pressure are controlled so as to match the detected exhaust gas temperature and the detected exhaust gas pressure, the reducing agent can be stably supplied to the NOx occlusion catalyst device at the required temperature and pressure conditions at all times. The denitration performance in the NOx occlusion catalyst device is stabilized, and the denitration rate in the NOx occlusion catalyst device can be kept high with the minimum amount of reducing agent supplied.

また本発明によれば、NOx吸蔵触媒装置の下流側に設けた黒煙除去装置前後の差圧の検出値が許容差圧を超えて該黒煙除去装置を再生する際には、排ガス冷却装置への冷却流体の供給を遮断することにより、さらには還元剤供給装置からの還元剤供給量を前記NOx吸蔵触媒の前記最適触媒作動温度への制御による還元剤噴射量より増加して黒煙除去装置への排ガス温度を上昇せしめることにより、黒煙の再燃焼を促進することができ、黒煙除去装置の機能低下や、黒煙除去装置の詰まりに伴うエンジン背圧の増加による燃料消費率の増加を回避できる。 Further, according to the present invention, when the detected value of the differential pressure before and after the black smoke removing device provided on the downstream side of the NOx storage catalyst device exceeds the allowable differential pressure, the exhaust gas cooling device is regenerated. By removing the supply of the cooling fluid to the exhaust gas, the reducing agent supply amount from the reducing agent supply device is further increased than the reducing agent injection amount by controlling the NOx storage catalyst to the optimum catalyst operating temperature, thereby removing black smoke. By raising the exhaust gas temperature to the equipment, it is possible to promote the recombustion of black smoke, reducing the function of the black smoke removal device, and the fuel consumption rate due to the increase in the engine back pressure accompanying the clogging of the black smoke removal device Increase can be avoided.

本発明の第1前提構成に係るディーゼルエンジンの排ガス浄化装置の系統図である。 1 is a system diagram of an exhaust gas purification apparatus for a diesel engine according to a first premise configuration of the present invention. 本発明の第2前提構成を示す図1対応図である。It is a figure corresponding to FIG. 1 which shows the 2nd premise structure of this invention. 本発明の実施形態を示す図1対応図である。FIG. 2 is a view corresponding to FIG. 1 showing an embodiment of the present invention. (A)は前記第1前提構成における制御ブロック図、(B)は触媒作動温度と排ガス冷却装置の冷却水量との関係線図である。(A) is a control block diagram in the first premise configuration , and (B) is a relationship diagram between the catalyst operating temperature and the cooling water amount of the exhaust gas cooling device. (A)は前記第2前提構成における制御ブロック図、(B)は排ガス作動温度と還元剤噴射量との関係線図である。(A) is a control block diagram in the second premise configuration , and (B) is a relationship diagram between the exhaust gas operating temperature and the reducing agent injection amount. 前記実施形態における制御ブロック図である。It is a control block diagram in the embodiment . NOx吸蔵触媒装置における触媒性能の1例を示す線図である。It is a diagram which shows one example of the catalyst performance in a NOx storage catalyst apparatus. 前記実施形態の説明用線図である。It is a diagram for explanation of the embodiment .

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specifically described. Only.

(第1前提構成)
図1は本発明の第1前提構成に係るディーゼルエンジンの排ガス浄化装置の系統図である。
図1において、2は図示しないエンジンの排気口に接続される排ガス管、1は排気管2設けられた排ガス中のNOx(窒素酸化物)を吸収し除去するNOx吸蔵触媒装置である。
3は排ガス冷却装置で、前記排ガス管2の前記NOx吸蔵触媒装置1の上流部位に設けられ、内部を通流する冷却水と排ガスとを熱交換して排ガスの温度を所定温度まで降温させるものである。5は該排ガス冷却装置3への冷却水入口管、6は該排ガス冷却装置3からの冷却水出口管である。4は前記冷却水入口管5に設けられて、前記排ガス冷却装置3への冷却水の流量を調整する冷却水調整弁である。
7は前記NOx吸蔵触媒装置1入口の排ガス温度を検出する排ガス温度センサである。10は該排ガス温度センサ7からの排ガス温度の検出値が入力されて、該排ガス温度の検出値に基づき前記NOx吸蔵触媒装置1に導入される排ガス温度が該NOx吸蔵触媒装置1の必要触媒作動温度になるように前記冷却水調整弁4の開度を制御するコントローラで、詳細は後述する。
(First prerequisite structure)
FIG. 1 is a system diagram of an exhaust gas purification apparatus for a diesel engine according to a first premise configuration of the present invention.
In FIG. 1, 2 is an exhaust gas pipe connected to an exhaust port of an engine (not shown), and 1 is a NOx occlusion catalyst device that absorbs and removes NOx (nitrogen oxide) in the exhaust gas provided in the exhaust pipe 2.
3 is an exhaust gas cooling device, which is provided at an upstream portion of the NOx occlusion catalyst device 1 of the exhaust gas pipe 2 and heat-exchanges the cooling water flowing through the inside and the exhaust gas to lower the temperature of the exhaust gas to a predetermined temperature. It is. 5 is a cooling water inlet pipe to the exhaust gas cooling device 3, and 6 is a cooling water outlet pipe from the exhaust gas cooling device 3. A cooling water adjusting valve 4 is provided in the cooling water inlet pipe 5 and adjusts the flow rate of the cooling water to the exhaust gas cooling device 3.
Reference numeral 7 denotes an exhaust gas temperature sensor for detecting the exhaust gas temperature at the inlet of the NOx storage catalyst device 1. Reference numeral 10 denotes an exhaust gas temperature detection value input from the exhaust gas temperature sensor 7, and the exhaust gas temperature introduced into the NOx storage catalyst device 1 based on the detection value of the exhaust gas temperature is the required catalyst operation of the NOx storage catalyst device 1. A controller for controlling the opening degree of the cooling water regulating valve 4 so as to reach a temperature, which will be described in detail later.

図4(A)は、かかる第1前提構成における、コントローラ10による制御ブロック図である。
図4(A)において、前記排ガス温度センサ7からの前記NOx吸蔵触媒装置1入口の排ガス温度の検出値はコントローラ10の温度偏差算出部11に入力される。12は触媒作動温度設定部で、図7に示すように、NOx吸蔵触媒装置1の必要触媒性能を発揮する触媒作動温度範囲ΔTが、触媒毎に設定されている。
前記温度偏差算出部11においては、前記排ガス温度の検出値と当該NOx吸蔵触媒装置1に用いられている触媒の触媒作動温度範囲ΔT中の最適触媒作動温度Tとの温度偏差ΔTを算出して、冷却水量変化量算出部13に入力する。
FIG. 4A is a control block diagram of the controller 10 in the first premise configuration .
In FIG. 4A, the detected value of the exhaust gas temperature at the inlet of the NOx storage catalyst device 1 from the exhaust gas temperature sensor 7 is input to the temperature deviation calculation unit 11 of the controller 10. Reference numeral 12 denotes a catalyst operating temperature setting unit. As shown in FIG. 7, a catalyst operating temperature range ΔT that exhibits the required catalyst performance of the NOx storage catalyst device 1 is set for each catalyst.
The temperature deviation calculator 11 calculates a temperature deviation ΔT 1 between the detected value of the exhaust gas temperature and the optimum catalyst operating temperature T 1 in the catalyst operating temperature range ΔT of the catalyst used in the NOx storage catalyst device 1. And it inputs into the cooling water amount variation | change_quantity calculation part 13.

該冷却水量変化量算出部13においては、図4(B)のように、触媒作動温度Tと該排ガス冷却装置3の冷却水量Wとの関係が設定されており、前記温度偏差の算出値ΔTに対応する冷却水量の変化量を算出して、冷却水弁開度算出部14に入力する。該冷却水弁開度算出部14においては、前記冷却水量の変化量の算出値に基づき、冷却水弁4の現状開度からの開度調整量を算出して、該冷却水弁4の開度を調整せしめる。これにより、前記冷却水弁4は、前記NOx吸蔵触媒装置1入口の排ガス温度を前記最適触媒作動温度Tにせしめるような前記排ガス冷却装置3の冷却水量に相当する開度に制御される。 In the cooling water amount change amount calculation unit 13, as shown in FIG. 4B, the relationship between the catalyst operating temperature T and the cooling water amount W of the exhaust gas cooling device 3 is set, and the calculated value ΔT of the temperature deviation is set. 1 is calculated and input to the coolant valve opening calculation unit 14. The cooling water valve opening calculation unit 14 calculates an opening adjustment amount from the current opening of the cooling water valve 4 based on the calculated value of the amount of change of the cooling water, and opens the cooling water valve 4. Adjust the degree. Thus, the cooling water valve 4 is controlled to the opening degree corresponding to the amount of cooling water of the exhaust gas cooling device 3 such as allowed to the NOx storage catalytic device 1 inlet exhaust gas temperature to the optimum catalyst operating temperature T 1.

かかる第1前提構成によれば、排ガス管2のNOx吸蔵触媒装置1の上流部位に該排ガス管2を流れる排ガスを冷却する排ガス冷却装置3を設けるとともに、該排ガス冷却装置3への冷却水の流量を調整する冷却水調整弁4を設け、コントローラ10によって、排ガス温度センサ7からの排ガス温度の検出値に基づき前記冷却水調整弁4の開度をNOx吸蔵触媒装置1に導入される排ガス温度が該NOx吸蔵触媒装置1の必要触媒作動温度Tになるように制御するので、NOx吸蔵触媒装置1に導入される排ガス温度が該NOx吸蔵触媒装置1の必要触媒作動温度範囲ΔTを超えて、触媒性能が低下した状態で該NOx吸蔵触媒装置1を作動させるのを回避できる。
これにより、発電用エンジンのように高温の排ガス供給源からの排ガスに対しても、NOx吸蔵触媒装置1に導入される排ガス温度を前記必要触媒作動温度範囲ΔTに保持できて、高効率のNOx浄化機能を発揮できる。
According to the first premise configuration , the exhaust gas cooling device 3 that cools the exhaust gas flowing through the exhaust gas pipe 2 is provided at the upstream portion of the NOx storage catalyst device 1 of the exhaust gas pipe 2, and the cooling water to the exhaust gas cooling device 3 is provided. A cooling water adjustment valve 4 for adjusting the flow rate is provided, and the controller 10 introduces the opening of the cooling water adjustment valve 4 into the NOx occlusion catalyst device 1 based on the detected value of the exhaust gas temperature from the exhaust gas temperature sensor 7. since but controlled to be required catalyst operating temperature T 1 of the said NOx storage catalytic device 1, the exhaust gas temperature to be introduced into the NOx storage catalytic device 1 exceeds the required catalyst operating temperature range ΔT of the NOx storage catalytic device 1 Thus, it is possible to avoid operating the NOx occlusion catalyst device 1 in a state where the catalyst performance is lowered.
As a result, the exhaust gas temperature introduced into the NOx occlusion catalyst device 1 can be maintained in the necessary catalyst operating temperature range ΔT even for exhaust gas from a high temperature exhaust gas supply source such as a power generation engine, and highly efficient NOx. The purification function can be demonstrated.

(第2前提構成)
図2は、本発明の第2前提構成を示す図1対応図である。
かかる第2前提構成においては、前記第1前提構成に加えて、排ガス管2の前記排ガス冷却装置3の上流部位に、排ガス管2内を流れる排ガス中に軽油等の還元剤を噴射する還元剤噴射装置9を設置し、また、前記第1前提構成と同様な排ガス温度を検出する排ガス温度センサ7とともにNOx吸蔵触媒装置1入口の排ガス圧力を検出する排ガス圧力センサ8を設けている。
(Second prerequisite structure)
FIG. 2 is a diagram corresponding to FIG. 1 showing a second premise configuration of the present invention.
In the second premise configuration , in addition to the first premise configuration , a reducing agent that injects a reducing agent such as light oil into the exhaust gas flowing in the exhaust gas pipe 2 to the upstream portion of the exhaust gas cooling device 3 of the exhaust gas pipe 2. An injection device 9 is installed, and an exhaust gas pressure sensor 8 that detects the exhaust gas pressure at the inlet of the NOx storage catalyst device 1 is provided together with an exhaust gas temperature sensor 7 that detects the exhaust gas temperature similar to the first premise configuration .

従って、かかる第2前提構成においては、O(酸素)リッチの排ガス中に前記還元剤噴射装置9から軽油等の還元剤を噴射して燃焼せしめることにより、O(酸素)を消費し還元雰囲気の排ガスにしてNOx吸蔵触媒装置1に送り込むことにより、該NOx吸蔵触媒装置1でのNOx吸蔵作用を促進している。
そして、かかる第2前提構成においては、前記コントローラ10は詳細を後述するように、前記第1前提構成と同様な冷却水弁4の開度制御に加えて、前記排ガス温度センサ7からの排ガス温度の検出値及び前記排ガス圧力センサ8からの排ガス圧力の検出値が入力されて、該排ガス温度の検出値及び排ガス圧力の検出値に基づき前記還元剤噴射装置9からの還元剤供給量及び還元剤供給圧力を制御している。
Therefore, in the second premise configuration , the reducing agent injection device 9 injects a reducing agent such as light oil into the O 2 (oxygen) -rich exhaust gas and burns it, thereby consuming and reducing O 2 (oxygen). The NOx occlusion action in the NOx occlusion catalyst device 1 is promoted by sending it to the NOx occlusion catalyst device 1 as exhaust gas in the atmosphere.
In the second premise configuration , as will be described in detail later, the controller 10 performs exhaust gas temperature from the exhaust gas temperature sensor 7 in addition to the opening degree control of the cooling water valve 4 similar to the first premise configuration. And the detected value of the exhaust gas pressure from the exhaust gas pressure sensor 8 are input, and the reducing agent supply amount and the reducing agent from the reducing agent injection device 9 based on the detected value of the exhaust gas temperature and the detected value of the exhaust gas pressure. The supply pressure is controlled.

図5は、かかる第2前提構成における、コントローラ10による制御ブロック図である。
図5において、前記排ガス温度センサ7からの前記NOx吸蔵触媒装置1入口の排ガス温度の検出値はコントローラ10の温度偏差算出部11に入力される。12は触媒作動温度設定部で、図7に示すように、NOx吸蔵触媒装置1の必要触媒性能を発揮する触媒作動温度範囲ΔTが、触媒毎に設定されている。
前記温度偏差算出部11においては、前記排ガス温度の検出値と当該NOx吸蔵触媒装置1に用いられている触媒の触媒作動温度範囲ΔT中の最適触媒作動温度Tとの温度偏差ΔTを算出して、還元剤供給要否判定部15に入力する。
FIG. 5 is a control block diagram of the controller 10 in the second premise configuration .
In FIG. 5, the detected value of the exhaust gas temperature at the inlet of the NOx storage catalyst device 1 from the exhaust gas temperature sensor 7 is input to the temperature deviation calculator 11 of the controller 10. Reference numeral 12 denotes a catalyst operating temperature setting unit. As shown in FIG. 7, a catalyst operating temperature range ΔT that exhibits the required catalyst performance of the NOx storage catalyst device 1 is set for each catalyst.
The temperature deviation calculator 11 calculates a temperature deviation ΔT 1 between the detected value of the exhaust gas temperature and the optimum catalyst operating temperature T 1 in the catalyst operating temperature range ΔT of the catalyst used in the NOx storage catalyst device 1. Then, it is input to the reducing agent supply necessity determination unit 15.

該還元剤供給要否判定部15においては、前記最適触媒作動温度Tと排ガス温度の検出値Tとの温度偏差ΔTが、
ΔT(=T−T)≧0のとき、
つまりNOx吸蔵触媒装置1入口の排ガス温度Tが前記最適触媒作動温度Tに達していない場合には、還元剤投入量算出部16を作動させる。
一方、前記最適触媒作動温度Tと排ガス温度の検出値Tとの温度偏差ΔTが、
ΔT(=T−T)<0のとき、
つまりNOx吸蔵触媒装置1入口の排ガス温度Tが前記最適触媒作動温度Tを超える場合には、前記第1前提構成と同様に、冷却水量変化量算出部13を作動させる。冷却水量変化量算出部13以降の作動は、前記第1前提構成と同様である。
In the reducing agent supply necessity determination unit 15, a temperature deviation ΔT 1 between the optimum catalyst operating temperature T 1 and the detected value T of the exhaust gas temperature is calculated as follows:
When ΔT 1 (= T 1 −T) ≧ 0,
That is, if the NOx storage catalytic device 1 inlet of the exhaust gas temperature T has not reached the optimum catalyst operating temperature T 1 operates the reducing agent charged amount calculation unit 16.
On the other hand, a temperature deviation ΔT 1 between the optimum catalyst operating temperature T 1 and the detected value T of the exhaust gas temperature is:
When ΔT 1 (= T 1 −T) <0,
That is, if the NOx storage catalytic device 1 inlet of the exhaust gas temperature T exceeds the optimum catalyst operating temperature T 1, as in the first premise configured to actuate the cooling water change calculator 13. The operations after the cooling water amount change amount calculation unit 13 are the same as those in the first premise configuration .

還元剤投入量算出部16においては、図5(B)のように排ガス温度Tと還元剤噴射量Qとの関係が設定されており、前記排ガス温度Tの検出値に対応する還元剤噴射量Qを算出して還元剤噴射条件算出部17に入力する。
該還元剤噴射条件算出部17には、前記排ガス圧力センサ8から排ガス圧力の検出値Pが入力されており、該還元剤噴射条件算出部17においては、前記還元剤噴射装置9からの還元剤噴射圧力P1を前記排ガス圧力の検出値P以上に設定する(P1≧P)。これにより、該排ガス管2内への還元剤の円滑な噴射が可能となる。
In the reducing agent input amount calculation unit 16, the relationship between the exhaust gas temperature T and the reducing agent injection amount Q is set as shown in FIG. 5B, and the reducing agent injection amount corresponding to the detected value of the exhaust gas temperature T is set. Q is calculated and input to the reducing agent injection condition calculation unit 17.
The reducing agent injection condition calculation unit 17 receives the detected value P of the exhaust gas pressure from the exhaust gas pressure sensor 8, and the reducing agent injection condition calculation unit 17 receives the reducing agent from the reducing agent injection device 9. The injection pressure P1 is set to be equal to or higher than the detected value P of the exhaust gas pressure (P1 ≧ P). Thereby, smooth injection of the reducing agent into the exhaust gas pipe 2 becomes possible.

該還元剤噴射条件算出部17にて算出された排ガス圧力の検出値Pに対応する還元剤噴射圧力P1、及び前記還元剤投入量算出部16にて算出された排ガス温度の検出値Tに対応する還元剤噴射量Qは前記還元剤噴射装置9に入力される。
従って、該還元剤噴射装置9においては、前記還元剤噴射圧力P1及び還元剤噴射量Qで以って、NOx吸蔵触媒装置1入口の排ガス中に還元剤を噴射して燃焼せしめる。
かかる還元剤噴射装置9からの還元剤の排ガス中への噴射及び燃焼によって、前記NOx吸蔵触媒装置1に導入される排ガスを還元雰囲気の排ガスにして該NOx吸蔵触媒装置1に送り込むとともに、排ガス温度Tを前記最適触媒作動温度T近傍まで上昇せしめて、該NOx吸蔵触媒装置1でのNOx吸蔵作用を促進する。
Corresponds to the reducing agent injection pressure P1 corresponding to the detected value P of the exhaust gas pressure calculated by the reducing agent injection condition calculating unit 17 and the detected value T of the exhaust gas temperature calculated by the reducing agent input amount calculating unit 16. The reducing agent injection amount Q to be input is input to the reducing agent injection device 9.
Therefore, the reducing agent injection device 9 injects the reducing agent into the exhaust gas at the inlet of the NOx storage catalyst device 1 and burns it with the reducing agent injection pressure P1 and the reducing agent injection amount Q.
By the injection and combustion of the reducing agent from the reducing agent injection device 9 into the exhaust gas, the exhaust gas introduced into the NOx storage catalyst device 1 is sent to the NOx storage catalyst device 1 as exhaust gas in a reducing atmosphere, and the exhaust gas temperature. the T and raised to the optimum catalyst operating temperature T 1 near promotes NOx occlusion effect in the NOx storage catalytic device 1.

かかる第2前提構成によれば、前記第1前提構成と同様な作用、効果に加えて、次のような作用、効果が得られる。
即ち、排ガス管2のNOx吸蔵触媒装置1の上流部位に排ガス中に還元剤を供給する還元剤噴射装置9を設けるとともに、NOx吸蔵触媒装置1入口の排ガス温度及び排ガス圧力を検出し、コントローラ10によって、該排ガス温度の検出値T及び排ガス圧力の検出値Pに基づき、還元剤噴射装置9からの還元剤噴射量Q及び還元剤噴射圧力P1を、検出排ガス温度T及び検出排ガス圧力Pに適合するように制御するので、NOx吸蔵触媒装置1への還元剤を常時所要の温度及び圧力条件で安定供給することができて、該NOx吸蔵触媒装置1における脱硝性能が安定するとともに、最低限の還元剤供給量で以ってNOx吸蔵触媒装置1における脱硝率を高く維持できる。
According to the second premise configuration , in addition to the same operations and effects as the first premise configuration , the following operations and effects can be obtained.
That is, a reducing agent injection device 9 for supplying a reducing agent into the exhaust gas is provided at an upstream portion of the NOx storage catalyst device 1 in the exhaust gas pipe 2, and the exhaust gas temperature and exhaust gas pressure at the inlet of the NOx storage catalyst device 1 are detected, and the controller 10 Based on the detected value T of the exhaust gas temperature and the detected value P of the exhaust gas pressure, the reducing agent injection amount Q and the reducing agent injection pressure P1 from the reducing agent injection device 9 are adapted to the detected exhaust gas temperature T and the detected exhaust gas pressure P. Therefore, the reducing agent to the NOx occlusion catalyst device 1 can be always stably supplied at the required temperature and pressure conditions, the denitration performance in the NOx occlusion catalyst device 1 is stabilized, and the minimum The denitration rate in the NOx occlusion catalyst device 1 can be maintained high with the amount of reducing agent supplied.

(実施形態)
図3は、本発明の実施形態を示す図1対応図である。
かかる実施形態おいては、前記第2前提構成に加えて、前記排ガス管2の前記NOx吸蔵触媒装置1の下流部位に排ガス中の黒煙を除去する黒煙フィルタ120を設置するとともに、該黒煙フィルタ120の前後の差圧を検出して前記コントローラ10に入力する差圧センサ130を設けている。
(Embodiment)
FIG. 3 is a view corresponding to FIG. 1 showing an embodiment of the present invention.
In this embodiment , in addition to the second premise configuration , a black smoke filter 120 for removing black smoke in the exhaust gas is installed at a downstream portion of the NOx storage catalyst device 1 of the exhaust gas pipe 2, and the black A differential pressure sensor 130 for detecting the differential pressure before and after the smoke filter 120 and inputting the differential pressure to the controller 10 is provided.

そして、かかる実施形態においては、前記コントローラ10は、前記第2前提構成の制御に加えて、前記差圧センサ130による差圧の検出値ΔPが前記黒煙フィルタ(DPF)12の許容差圧ΔPを超えたとき、前記冷却水調整弁4を閉止して前記排ガス冷却装置3への冷却水の供給を遮断するとともに、前記還元剤噴射装置9からの還元剤噴射量を増加して前記黒煙フィルタ120への排ガス温度を上昇せしめるように制御する。 In this embodiment , in addition to the control of the second premise configuration , the controller 10 determines that the detected pressure value ΔP of the differential pressure sensor 130 is the allowable differential pressure ΔP of the black smoke filter (DPF) 12. The cooling water regulating valve 4 is closed to cut off the supply of the cooling water to the exhaust gas cooling device 3, and the reducing agent injection amount from the reducing agent injection device 9 is increased to increase the black smoke. Control is performed so as to raise the exhaust gas temperature to the filter 120.

図6は、かかる実施形態における、コントローラ10による制御ブロック図である。
図6において、前記差圧センサ130からの前記黒煙フィルタ120出入口の差圧の検出値ΔPはコントローラ10の差圧比較部20に入力される。21は差圧設定部で、前記黒煙フィルタ120の許容差圧ΔP0、つまり該黒煙フィルタ120の再生を要する差圧の限界値が設定されている。
前記差圧比較部20においては、前記差圧の検出値ΔPと前記差圧設定部21に設定されている許容差圧ΔP0とを比較し、その比較結果をDPF再生要否判断部22に入力する。
FIG. 6 is a control block diagram of the controller 10 in this embodiment .
In FIG. 6, the detected value ΔP of the differential pressure at the inlet / outlet of the black smoke filter 120 from the differential pressure sensor 130 is input to the differential pressure comparison unit 20 of the controller 10. Reference numeral 21 denotes a differential pressure setting unit, which sets an allowable differential pressure ΔP0 of the black smoke filter 120, that is, a limit value of the differential pressure that requires regeneration of the black smoke filter 120.
The differential pressure comparison unit 20 compares the detected differential pressure value ΔP with the allowable differential pressure ΔP 0 set in the differential pressure setting unit 21, and inputs the comparison result to the DPF regeneration necessity determination unit 22. To do.

該DPF再生要否判断部22においては、前記比較結果が、差圧の検出値ΔPが許容差圧ΔP0以上の場合(ΔP≧ΔP0)には、前記黒煙フィルタ120の再生を判断するとともに、冷却水弁閉止指令部23を作動させ、該冷却水弁閉止指令部23は前記冷却水調整弁4を遮断せしめて、黒煙フィルタ120への排ガス温度の低下を回避する。
また該DPF再生要否判断部22においては、前記比較結果が、差圧の検出値ΔPが許容差圧ΔP0以上の場合(ΔP≧ΔP0)には、還元剤噴射量増加指令部24を作動させ、還元剤噴射量増加指令部24は、還元剤噴射装置9の作動指令を前記還元剤噴射条件算出部17に入力する。
そして、該還元剤噴射条件算出部17以後の制御は、前記第2前提構成と同様に行ない、
前記還元剤噴射装置9からの還元剤噴射量を増加して前記黒煙フィルタ120への排ガス温度を上昇せしめる。
図8は、かかる実施形態における、黒煙フィルタ(DPF)12の再生と前記冷却水調整弁4の遮断のタイミング線図である。
In the DPF regeneration necessity determination unit 22, when the comparison result indicates that the differential pressure detection value ΔP is equal to or larger than the allowable differential pressure ΔP0 (ΔP ≧ ΔP0), the regeneration of the black smoke filter 120 is determined, The cooling water valve closing command unit 23 is operated, and the cooling water valve closing command unit 23 blocks the cooling water adjustment valve 4 to avoid a decrease in exhaust gas temperature to the black smoke filter 120.
The DPF regeneration necessity determination unit 22 operates the reducing agent injection amount increase command unit 24 when the comparison result indicates that the detected differential pressure value ΔP is equal to or greater than the allowable differential pressure ΔP0 (ΔP ≧ ΔP0). The reducing agent injection amount increase command unit 24 inputs an operation command for the reducing agent injection device 9 to the reducing agent injection condition calculation unit 17.
The control after the reducing agent injection condition calculation unit 17 is performed in the same manner as in the second premise configuration ,
The amount of reducing agent injected from the reducing agent injection device 9 is increased to raise the exhaust gas temperature to the black smoke filter 120.
FIG. 8 is a timing diagram of the regeneration of the black smoke filter (DPF) 12 and the shutoff of the cooling water adjustment valve 4 in this embodiment .

かかる実施形態によれば、排ガス冷却装置3を作動させて黒煙フィルタ120への排ガス温度を低下させて運転している場合に、黒煙フィルタ120前後の差圧の検出値ΔPが許容差圧ΔP0を超えて該黒煙フィルタ120を再生する際には、前記排ガス冷却装置3への冷却水の供給を遮断することにより、さらには還元剤噴射装置9からの還元剤噴射量を増加して黒煙フィルタ120への排ガス温度を上昇せしめることにより、該黒煙フィルタ120での黒煙の再燃焼を促進することができる。
これにより、黒煙フィルタ120の機能低下や、該黒煙フィルタ120の詰まりに伴うエンジン背圧の増加による燃料消費率の増加を回避できる。
According to this embodiment , when the exhaust gas cooling device 3 is operated and the exhaust gas temperature to the black smoke filter 120 is lowered, the detected differential pressure ΔP before and after the black smoke filter 120 is the allowable differential pressure. When the black smoke filter 120 is regenerated exceeding ΔP0, the amount of reducing agent injected from the reducing agent injection device 9 is further increased by blocking the supply of cooling water to the exhaust gas cooling device 3. By increasing the exhaust gas temperature to the black smoke filter 120, the black smoke re-burning in the black smoke filter 120 can be promoted.
Accordingly, it is possible to avoid a decrease in the function of the black smoke filter 120 and an increase in the fuel consumption rate due to an increase in the engine back pressure accompanying the clogging of the black smoke filter 120.

尚、かかる実施形態において、黒煙フィルタ120前後の差圧の検出値ΔPが許容差圧ΔP0を超えて該黒煙フィルタ120を再生する際に、前記排ガス冷却装置3への冷却水の供給の遮断のみを行ない、還元剤噴射装置9からの還元剤噴射量を増加して黒煙フィルタ120への排ガス温度を上昇せしめる操作を省略することも可能である。 In this embodiment , when the detected value ΔP of the differential pressure before and after the black smoke filter 120 exceeds the allowable differential pressure ΔP0 and the black smoke filter 120 is regenerated, the supply of cooling water to the exhaust gas cooling device 3 is performed. It is also possible to omit only the operation of blocking and increasing the amount of reducing agent injected from the reducing agent injection device 9 to raise the exhaust gas temperature to the black smoke filter 120.

本発明によれば、排ガス供給源からの排ガス温度に影響されることなく常時高い触媒性能を維持可能として、発電用エンジンのように高温の排ガス供給源からの排ガスに対しても、高効率のNOx浄化機能をそなえた排ガス浄化装置を提供できる。   According to the present invention, high catalyst performance can be maintained at all times without being affected by the exhaust gas temperature from the exhaust gas supply source, and high efficiency can be achieved even for exhaust gas from a high temperature exhaust gas supply source such as a power generation engine. An exhaust gas purification apparatus having a NOx purification function can be provided.

1 NOx吸蔵触媒装置
2 排ガス管
3 排ガス冷却装置
4 冷却水調整弁
7 排ガス温度センサ
8 排ガス圧力センサ
9 還元剤噴射装置
10 コントローラ
120 黒煙フィルタ
130 差圧センサ
52 噴孔
DESCRIPTION OF SYMBOLS 1 NOx occlusion catalyst apparatus 2 Exhaust gas pipe 3 Exhaust gas cooling apparatus 4 Cooling water adjustment valve 7 Exhaust gas temperature sensor 8 Exhaust gas pressure sensor 9 Reducing agent injection apparatus 10 Controller 120 Black smoke filter 130 Differential pressure sensor 52 Injection hole

Claims (1)

排ガス通路にNOx(窒素酸化物)吸蔵触媒装置と該NOx(窒素酸化物)吸蔵触媒装置の下流側に排ガス中の黒煙を除去する黒煙除去装置とをそなえた排ガス浄化装置において、
前記排ガス通路の前記NOx吸蔵触媒装置の上流部位に、該排ガス通路中の排ガスを冷却する排ガス冷却装置及び排ガス中に還元剤を供給する還元剤供給装置を設けるとともに、前記NOx吸蔵触媒装置入口の排ガス温度を検出する排ガス温度センサと、前記NOx吸蔵触媒装置入口の排ガス圧力を検出する排ガス圧力センサと、前記排ガス温度センサからの排ガス温度の検出値及び前記排ガス圧力センサからの排ガス圧力の検出値が入力されて、該排ガス温度の検出値に基づき前記NOx吸蔵触媒装置に導入される排ガス温度が触媒作動温度範囲中で触媒性能が最も良い最適触媒作動温度になるように前記排ガス冷却装置への冷却流体の供給量を調整する冷却流体調整弁を制御し、且つ前記排ガス温度の検出値及び排ガス圧力の検出値に基づき前記還元剤供給装置からの還元剤供給量及び還元剤供給圧力を制御するコントローラとをそなえ、
さらに、前記黒煙除去装置の前後の差圧を検出して前記コントローラに入力する差圧センサを設け、前記コントローラは、前記差圧の検出値が前記黒煙除去装置の許容差圧を超えたとき前記冷却流体調整弁を閉止して前記排ガス冷却装置への冷却流体の供給を遮断するとともに、前記還元剤供給装置からの還元剤供給量を前記NOx吸蔵触媒の前記最適触媒作動温度への制御による還元剤噴射量より増加して、前記黒煙除去装置への排ガス温度を上昇せしめるように構成されることを特徴とする排ガス浄化装置。
In an exhaust gas purification apparatus comprising a NOx (nitrogen oxide) storage catalyst device in an exhaust gas passage and a black smoke removal device for removing black smoke in exhaust gas downstream of the NOx (nitrogen oxide) storage catalyst device,
An exhaust gas cooling device for cooling the exhaust gas in the exhaust gas passage and a reducing agent supply device for supplying a reducing agent into the exhaust gas are provided at an upstream portion of the NOx storage catalyst device in the exhaust gas passage, and an inlet of the NOx storage catalyst device is provided. An exhaust gas temperature sensor for detecting the exhaust gas temperature, an exhaust gas pressure sensor for detecting the exhaust gas pressure at the inlet of the NOx storage catalyst device, a detected value of the exhaust gas temperature from the exhaust gas temperature sensor, and a detected value of the exhaust gas pressure from the exhaust gas pressure sensor Is input to the exhaust gas cooling device so that the exhaust gas temperature introduced into the NOx storage catalyst device based on the detected value of the exhaust gas temperature becomes the optimum catalyst operating temperature with the best catalyst performance in the catalyst operating temperature range. and controlling the cooling fluid control valve for adjusting the supply amount of the cooling fluid, and based on the detection value of the detection value and the exhaust gas pressure of the exhaust gas temperature And a controller for controlling the reducing agent supply amount and a reducing agent supply pressure from the reducing agent supply device can,
Further, a differential pressure sensor that detects a differential pressure before and after the black smoke removal device and inputs the differential pressure to the controller is provided, and the controller detects a detected value of the differential pressure that exceeds an allowable differential pressure of the black smoke removal device. When the cooling fluid regulating valve is closed, the supply of the cooling fluid to the exhaust gas cooling device is shut off, and the amount of reducing agent supplied from the reducing agent supply device is controlled to the optimum catalyst operating temperature of the NOx storage catalyst. The exhaust gas purifying device is configured to increase the exhaust gas temperature to the black smoke removing device by increasing the amount of the reducing agent injected by the gas.
JP2010091160A 2010-04-12 2010-04-12 Exhaust gas purification device Expired - Fee Related JP5091977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091160A JP5091977B2 (en) 2010-04-12 2010-04-12 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091160A JP5091977B2 (en) 2010-04-12 2010-04-12 Exhaust gas purification device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005304137A Division JP4533832B2 (en) 2005-10-19 2005-10-19 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2010180888A JP2010180888A (en) 2010-08-19
JP5091977B2 true JP5091977B2 (en) 2012-12-05

Family

ID=42762584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091160A Expired - Fee Related JP5091977B2 (en) 2010-04-12 2010-04-12 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP5091977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041429A (en) * 2015-06-26 2015-11-11 山西潞安矿业(集团)有限责任公司 Self-cooling exhausting system of anti-explosion diesel engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932540A (en) * 1995-07-13 1997-02-04 Hino Motors Ltd Exhaust emission control device of diesel engine
JP3600522B2 (en) * 2000-11-20 2004-12-15 トヨタ自動車株式会社 Reducing agent supply device for internal combustion engine
JP2002364439A (en) * 2001-06-07 2002-12-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005036770A (en) * 2003-07-18 2005-02-10 Toyota Motor Corp Exhaust-emission control treatment system of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041429A (en) * 2015-06-26 2015-11-11 山西潞安矿业(集团)有限责任公司 Self-cooling exhausting system of anti-explosion diesel engine

Also Published As

Publication number Publication date
JP2010180888A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
KR100496459B1 (en) Exhaust emission control device for internal combustion engine
JP4640066B2 (en) Exhaust gas purification device for internal combustion engine
JP2010031833A (en) Exhaust emission control device for diesel engine
JP4995117B2 (en) DPF accumulation amount estimation device
JP2008255905A (en) Exhaust emission control system of internal combustion engine
EP3165744A1 (en) Control device for internal combustion engine
JP5830832B2 (en) Filter regeneration device
JP2007120397A5 (en)
KR20160055203A (en) Engine exhaust gas purifier
JP4969225B2 (en) Engine exhaust system with DPF device
JP4533832B2 (en) Exhaust gas purification device
JP2010144525A (en) Device and method of controlling exhaust gas post processing of diesel engine
WO2016125738A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP5091977B2 (en) Exhaust gas purification device
WO2009016896A1 (en) Exhaust purification device for internal combustion engine
WO2020045090A1 (en) Dpf regeneration control device and dpf regeneration control method
JP2008063987A (en) Exhaust emission control system of internal combustion engine
JP4492390B2 (en) Exhaust gas purification device
JP2006274806A (en) Exhaust emission control device of internal combustion engine
JP2010077894A (en) Dpf regeneration control device
JP6100666B2 (en) Engine additive supply device
JP5623341B2 (en) Regeneration control device for exhaust gas aftertreatment device of hydraulic work machine
JP6485035B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2018044498A (en) Exhaust emission control device and exhaust emission control method
US20150369142A1 (en) Method for Controlling an Engine System

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5091977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees