JP5088773B2 - Film forming method and film forming material - Google Patents

Film forming method and film forming material Download PDF

Info

Publication number
JP5088773B2
JP5088773B2 JP2007069939A JP2007069939A JP5088773B2 JP 5088773 B2 JP5088773 B2 JP 5088773B2 JP 2007069939 A JP2007069939 A JP 2007069939A JP 2007069939 A JP2007069939 A JP 2007069939A JP 5088773 B2 JP5088773 B2 JP 5088773B2
Authority
JP
Japan
Prior art keywords
film
film forming
compound
forming
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007069939A
Other languages
Japanese (ja)
Other versions
JP2008231473A (en
Inventor
真人 石川
祥雄 大下
厚志 小椋
英明 町田
育世 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRI Chemical Laboratorories Inc
Original Assignee
TRI Chemical Laboratorories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRI Chemical Laboratorories Inc filed Critical TRI Chemical Laboratorories Inc
Priority to JP2007069939A priority Critical patent/JP5088773B2/en
Publication of JP2008231473A publication Critical patent/JP2008231473A/en
Application granted granted Critical
Publication of JP5088773B2 publication Critical patent/JP5088773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば半導体素子における膜技術に関する。   The present invention relates to a film technology in a semiconductor element, for example.

現在、半導体分野における進歩は著しく、LSIからULSIに移って来ている。そして、信号の処理速度を向上させる為、又、その他の要請から微細化が進んでいる。これに伴って配線幅も狭くなり、超細線化している。このようなことから、従来のW配線膜、更にはAl配線膜では、細線化に耐えられないと言われている。そして、配線膜の材料としてCuを採用することが提案されている。   At present, the progress in the semiconductor field is remarkable, and the LSI is moving from ULSI. In order to improve the processing speed of signals, miniaturization is progressing from other demands. Along with this, the wiring width is also narrowed to make it ultra-thin. For this reason, it is said that conventional W wiring films and further Al wiring films cannot withstand thinning. It has been proposed to employ Cu as a material for the wiring film.

又、配線膜の他にも、例えば配線膜間の絶縁膜・誘電膜(配線間絶縁膜・誘電膜や層間絶縁膜・誘電膜)に対する研究開発が盛んに進められている。例えば、ゲート酸化膜もSiOからHfO等の金属酸化膜が提案されている。そして、これらの膜についても薄膜化が求められている。 In addition to the wiring film, for example, research and development on an insulating film / dielectric film (inter-wiring insulating film / dielectric film, interlayer insulating film / dielectric film) between the wiring films has been actively promoted. For example, a metal oxide film such as SiO 2 to HfO 2 has been proposed as the gate oxide film. These films are also required to be thinned.

さて、より一段の微細化に伴って、ソース・ドレイン部の拡散層は極端に浅くなり、抵抗が増大し、これまでの技術では信号の処理速度向上に限界が有る。   With the further miniaturization, the diffusion layers in the source / drain portions become extremely shallow and the resistance increases, and there is a limit to the improvement in signal processing speed with the conventional techniques.

そして、今日では、ソース・ドレイン部のコンタクトに限らず、ゲート電極部分の抵抗も問題視され、更なる研究が推し進められている。   Today, not only the contact of the source / drain part but also the resistance of the gate electrode part is regarded as a problem, and further research is being promoted.

このような観点から、NiSiやPtSi等の金属シリサイトが提案され始めた。例えば、NiSi,PtSi等の金属シリサイトをソース領域/ドレイン領域やゲート電極部分に用いることが提案されている。   From this point of view, metal silicites such as NiSi and PtSi have begun to be proposed. For example, it has been proposed to use metal silicite such as NiSi or PtSi for the source region / drain region or the gate electrode portion.

ところで、NiSi(NiSi)やPtSi(PtSi)薄膜は、スパッタリング技術で容易に作成される。 By the way, a NiSi (NiSi x ) or PtSi (PtSi x ) thin film is easily formed by a sputtering technique.

しかしながら、スパッタリングでは、半導体素子に物理的ダメージを与える。しかも、NiSiやPtSiは、高温下では、下地基板のSiを反応消費し、NiSiやPtSi2を形成する反応を起こす恐れが有る。更には、段差被覆性(成膜性)に乏しいと言った欠点があり、大面積への均一成膜性にも限界が有る。 However, sputtering causes physical damage to the semiconductor element. In addition, NiSi and PtSi may cause reaction to form NiSi 2 and PtSi 2 by reaction consumption of Si on the base substrate at high temperatures. Furthermore, there is a drawback that the step coverage (film forming property) is poor, and there is a limit to the uniform film forming property over a large area.

このような観点から、CVD(化学気相成長方法)による低温でのNiSiやPtSi膜を成膜する技術が求められ、本発明者らは、Ni(PF4とシランとを原料としたCVDによってNiSi膜の作成技術を提案(特許文献1)した。 From such a viewpoint, a technique for forming a NiSi or PtSi film at a low temperature by CVD (Chemical Vapor Deposition Method) is required, and the present inventors have used Ni (PF 3 ) 4 and silane as raw materials. A technique for forming a NiSi film by CVD has been proposed (Patent Document 1).

しかしながら、CVDのメリットの一つである段差被覆性が期待するほど高くはなく、更なる改善が求められた。
特開2006−45649 特開2007−59870 特開2007−67225
However, the step coverage which is one of the merits of CVD is not so high as expected, and further improvement has been demanded.
JP 2006-45649 A JP2007-59870 JP2007-67225A

従って、本発明が解決しようとする課題は、上記の問題点を解決することである。特に、Ni,Pt,NiPt,NiSi,PtSi等の膜を綺麗に、即ち、段差被覆性良く形成できる技術を提供することである。   Therefore, the problem to be solved by the present invention is to solve the above problems. In particular, it is to provide a technique capable of forming a film of Ni, Pt, NiPt, NiSi, PtSi, etc. neatly, that is, with good step coverage.

前記の課題についての検討を鋭意推し進めて行く中に、本発明者らは、PFの存在下で、Ni(PF(及び/又はPt(PF)を分解させると、膜が綺麗に、即ち、段差被覆性良く成膜される現象を見出すに至った。 Some go intensively promote the discussion of the problems, the present inventors have found that in the presence of a PF 3, the degrade Ni (PF 3) 4 (and / or Pt (PF 3) 4), film As a result, the inventors have found that a film is formed beautifully, that is, with good step coverage.

このような知見に基づいて本発明がなされたものである。
すなわち、前記の課題は、
膜をCVDにより形成する方法であって、
M(PF(MはNi又はPt)を膜形成室に供給するM(PF供給工程と、
PFを膜形成室に供給するPF供給工程と、
前記膜形成室に供給された化合物を分解させ、基板上に堆積させてM系膜を形成する膜形成工程
とを具備することを特徴とする膜形成方法によって解決される。
The present invention has been made based on such findings.
That is, the above problem is
A method of forming a film by CVD,
M (PF 3) 4 (M is Ni or Pt) and M (PF 3) 4 supplying step of supplying the film-forming chamber,
A PF 3 supply step of supplying PF 3 to the film forming chamber;
It is solved by a film forming method comprising: a film forming step of decomposing a compound supplied to the film forming chamber and depositing it on a substrate to form an M-based film.

又、膜をCVDにより形成する方法であって、
M(PF(MはNi又はPt)を膜形成室に供給するM(PF供給工程と、
PFを膜形成室に供給するPF供給工程と、
Si化合物を膜形成室に供給するSi化合物供給工程と、
前記膜形成室に供給された化合物を分解させ、基板上に堆積させてM系膜を形成する膜形成工程
とを具備することを特徴とする膜形成方法によって解決される。
Also, a method of forming a film by CVD,
M (PF 3) 4 (M is Ni or Pt) and M (PF 3) 4 supplying step of supplying the film-forming chamber,
A PF 3 supply step of supplying PF 3 to the film forming chamber;
A Si compound supply step of supplying the Si compound to the film forming chamber;
It is solved by a film forming method comprising: a film forming step of decomposing a compound supplied to the film forming chamber and depositing it on a substrate to form an M-based film.

又、CVDにより膜を形成する為の材料であって、
PFと、
M(PF(MはNi又はPt)
とを具備することを特徴とする膜形成材料によって解決される。
Also, a material for forming a film by CVD,
PF 3 ,
M (PF 3 ) 4 (M is Ni or Pt)
It solves by the film forming material characterized by comprising.

又、CVDにより膜を形成する為の材料であって、
PFと、
M(PF(MはNi又はPt)と、
Si2n+2(nは1以上の整数)
とを具備することを特徴とする膜形成材料によって解決される。
Also, a material for forming a film by CVD,
PF 3 ,
M (PF 3 ) 4 (M is Ni or Pt);
Si n H 2n + 2 (n is an integer of 1 or more)
It solves by the film forming material characterized by comprising.

上記の発明において、好ましくは、膜形成室に供給されるM(PFとPFとの割合がM(PF/PF=1/500〜100/1(モル比)である。すなわち、M(PFの割合が多くなり過ぎ(逆に、PFの割合が少なくなり過ぎ)ると、段差被覆性の向上度が小さく、本発明の特長が大きく奏され難くなる。従って、M(PF/PFは1/500以上が好ましい。更に好ましくは1/50以上である。逆に、M(PFの割合が少なくなり過ぎ(逆に、PFの割合が多くなり過ぎ)ると、M系膜が成膜され難く、本発明の特長が奏され難くなる。従って、M(PF/PFは100/1以下が好ましい。更に好ましくは20/1以下である。 In the above invention, preferably, the ratio of M (PF 3 ) 4 and PF 3 supplied to the film forming chamber is M (PF 3 ) 4 / PF 3 = 1/500 to 100/1 (molar ratio). is there. That is, if the ratio of M (PF 3 ) 4 increases too much (conversely, the ratio of PF 3 decreases too much), the degree of improvement in the step coverage is small, and the features of the present invention are hardly exerted. Therefore, M (PF 3 ) 4 / PF 3 is preferably 1/500 or more. More preferably, it is 1/50 or more. On the other hand, if the ratio of M (PF 3 ) 4 is too small (conversely, the ratio of PF 3 is too large), it is difficult to form an M-based film, and the features of the present invention are hardly exhibited. Therefore, M (PF 3 ) 4 / PF 3 is preferably 100/1 or less. More preferably, it is 20/1 or less.

又、上記の発明において、良好なシリサイト膜を成膜する為には、膜形成室に供給されるM(PFとSi化合物との割合がM(PF/Si化合物=1/10〜1000/1(モル比)であることが好ましい。特に好ましくは1/5〜100/1(モル比)である。尚、好ましいSi化合物はSi2n+2(nは1以上の整数)である。特に、SiH,Si,Siである。 Further, in the above invention, good to deposition of silicide films, M (PF 3) 4 and the ratio of the Si compound is M (PF 3) supplied to the film forming chamber 4 / Si compound = It is preferably 1/10 to 1000/1 (molar ratio). Particularly preferred is 1/5 to 100/1 (molar ratio). A preferred Si compound is Si n H 2n + 2 (n is an integer of 1 or more). In particular, SiH 4 , Si 2 H 6 , and Si 3 H 8 are used.

本発明の実施で得られる膜は、M膜、M合金膜、Mシリサイト膜、窒化M膜、炭化M膜、酸化膜である。例えば、Ni,Pt,NiPt等の金属膜である。或いは、NiSi,PtSi,NiPtSi等のシリサイト膜である。酸化性(酸素など)雰囲気下でCVDが行われれば酸化膜が得られる。窒化性雰囲気下でCVDが行われれば窒化膜が得られる。炭化性雰囲気下でCVDが行われれば炭化膜が得られる。そして、本発明は、特に、半導体素子における成膜に用いられる。   The film obtained by carrying out the present invention is an M film, an M alloy film, an M silicite film, a nitrided M film, a carbonized M film, or an oxide film. For example, it is a metal film such as Ni, Pt, NiPt. Alternatively, it is a silicite film such as NiSi, PtSi, NiPtSi. If CVD is performed in an oxidizing (oxygen or the like) atmosphere, an oxide film can be obtained. A nitride film can be obtained if CVD is performed in a nitriding atmosphere. If CVD is performed in a carbonizing atmosphere, a carbonized film can be obtained. The present invention is particularly used for film formation in a semiconductor element.

本発明によれば、Ni,Pt,NiPt等の金属膜やNiSi,PtSi,NiPtSi等のシリサイト膜などの膜が綺麗に成膜できる。特に、溝などの段差を有する箇所においても、例えば溝底部にも綺麗に膜が成膜される。従って、高性能な半導体素子が得られる。   According to the present invention, a film such as a metal film such as Ni, Pt, or NiPt, or a silicite film such as NiSi, PtSi, or NiPtSi can be formed beautifully. In particular, even in a portion having a step such as a groove, a film is formed beautifully, for example, on the groove bottom. Therefore, a high-performance semiconductor element can be obtained.

本発明は、膜をCVDにより形成する方法である。そして、M(PF(MはNi又はPt)を膜形成室に供給するM(PF供給工程を有する。M(PFの供給は、例えば不活性ガスのバブリングにより行なわれる。この時の不活性ガスの流量は、例えば10〜500sccm(特に、10sccm以上。300sccm以下。)である。かつ、PFを膜形成室に供給するPF供給工程を有する。特に、同時期に、M(PFとPFとが膜形成室に供給される。或いは、M(PFの供給に先立ってPFが膜形成室に供給される。つまり、M(PFの分解に際してPFが生成するものの、これ以外にも、PFを特に供給する。又、場合によっては、Si化合物(特に、SiH,Si,Si等のSi2n+2(nは1以上の整数))を膜形成室に供給するSi化合物供給工程を有する。尚、PFやシランはガスであるから、バブリングに寄らずにそのまま供給される。そして、前記膜形成室に供給された化合物を分解させ、基板上に堆積させてM系膜を形成する膜形成工程を有する。M(PF等の化合物の分解には、公知の手段が採用される。例えば、プラズマ手段、加熱手段、或いはこれ等の手段を併用した手段が有る。膜形成室に供給されるM(PFとPFとの割合は、特に、M(PF/PF=1/500〜100/1(モル比)である。中でも1/50〜20/1(モル比)である。膜形成室に供給されるM(PFとSi化合物との割合は、特に、M(PF/Si化合物=1/10〜1000/1(モル比)である。中でも1/5〜100/1(モル比)である。又、好ましいSi化合物はSi2n+2(nは1以上の整数)である。特に、SiH,Si,Siである。上記のようにして成膜が行なわれると、例えばNi,Pt,NiPt等の金属膜、或いはNiSi,PtSi,NiPtSi等のシリサイト膜、その他にも酸化膜、窒化膜、炭化膜が条件次第で得られる。そして、特に、半導体素子における成膜に用いられる。 The present invention is a method of forming a film by CVD. Then, M (PF 3) 4 ( M is Ni or Pt) supplies the film forming chamber M (PF 3) having a fourth supply process. The supply of M (PF 3 ) 4 is performed by bubbling of an inert gas, for example. The flow rate of the inert gas at this time is, for example, 10 to 500 sccm (particularly 10 sccm or more, 300 sccm or less). And has a PF 3 supply step of supplying a PF 3 for film formation chamber. In particular, at the same time, M (PF 3 ) 4 and PF 3 are supplied to the film forming chamber. Alternatively, PF 3 is supplied to the film forming chamber prior to the supply of M (PF 3 ) 4 . In other words, although during the decomposition of M (PF 3) 4 is PF 3 generates, also, in particular for supplying a PF 3 than this. In some cases, a Si compound supplying step of supplying a Si compound (particularly, Si n H 2n + 2 (n is an integer of 1 or more) such as SiH 4 , Si 2 H 6 , Si 3 H 8 ) to the film forming chamber. Have. Since PF 3 and silane are gases, they are supplied as they are without bubbling. And it has the film formation process which decomposes | disassembles the compound supplied to the said film formation chamber, deposits it on a board | substrate, and forms an M-type film | membrane. Known means are employed for the decomposition of the compound such as M (PF 3 ) 4 . For example, there are plasma means, heating means, or means using these means together. The ratio of M (PF 3 ) 4 and PF 3 supplied to the film forming chamber is, in particular, M (PF 3 ) 4 / PF 3 = 1/500 to 100/1 (molar ratio). Among these, it is 1/50 to 20/1 (molar ratio). The ratio of M (PF 3 ) 4 and Si compound supplied to the film forming chamber is, in particular, M (PF 3 ) 4 / Si compound = 1/10 to 1000/1 (molar ratio). Among these, it is 1/5 to 100/1 (molar ratio). A preferred Si compound is Si n H 2n + 2 (n is an integer of 1 or more). In particular, SiH 4 , Si 2 H 6 , and Si 3 H 8 are used. When film formation is performed as described above, for example, a metal film such as Ni, Pt, or NiPt, or a silicite film such as NiSi, PtSi, or NiPtSi, or an oxide film, a nitride film, or a carbide film, depending on conditions. can get. And it is used especially for the film-forming in a semiconductor element.

又、本発明は、上記のような膜を形成する為の材料である。そして、必須原料として、M(PF(MはNi又はPt)が挙げられる。かつ、PFも挙げられる。更に、必要に応じて、即ち、MOSFET等におけるシリサイト膜を形成する場合には、Si2n+2等のシリコン化合物が必須原料として挙げられる。 The present invention is also a material for forming the film as described above. Then, as an essential raw material, M (PF 3) 4 ( M is Ni or Pt) and the like. And, PF 3 may also be mentioned. Furthermore, if necessary, that is, when a silicite film in a MOSFET or the like is formed, a silicon compound such as Si n H 2n + 2 is listed as an essential raw material.

以下、具体的な実施例を幾つか挙げて説明する。勿論、下記の実施例は単に実施例に過ぎず、本発明が下記実施例に限定されるもので無いことは当分野の技術者ならば当然に理解できる。   Hereinafter, some specific examples will be described. Of course, those skilled in the art can naturally understand that the following embodiments are merely examples, and the present invention is not limited to the following embodiments.

[実施例1]
図1は成膜装置(CVD)の概略図である。同図中、1,2は原料容器、3は加熱器、4は分解反応炉(膜形成室)、5はSi(半導体)基板、6はガス流量制御器、7は微差圧駆動型ガス流量制御器、8は原料ガスの吹出口、9はSi等のシラン及びHの導入ライン、10はPF3ガス導入ライン、11は排気ラインである。
そして、容器1にはNi(PFが入れられており、20℃に保持されている。分解反応炉4は真空に排気されている。基板5は250℃に加熱されている。
そして、気化したNi(PFが、微差圧駆動型ガス流量制御器7を経て分解反応炉4に導入された。尚、この時の分解反応炉4へのNi(PF供給量は14ml/minである。分解反応炉4内へのNi(PFの導入時に、ライン10より分解反応炉4にPFが30ml/minで導入された。更に、反応ガスとしてSiとHとの混合ガスがライン9より20ml/minの割合で導入され、NiSi膜が成膜された。
[Example 1]
FIG. 1 is a schematic view of a film forming apparatus (CVD). In the figure, 1 and 2 are raw material containers, 3 is a heater, 4 is a decomposition reaction furnace (film formation chamber), 5 is a Si (semiconductor) substrate, 6 is a gas flow controller, and 7 is a differential pressure driven gas. A flow rate controller, 8 is a source gas outlet, 9 is a silane such as Si 3 H 8 and H 2 introduction line, 10 is a PF 3 gas introduction line, and 11 is an exhaust line.
The container 1 contains Ni (PF 3 ) 4 and is kept at 20 ° C. The decomposition reactor 4 is evacuated to a vacuum. The substrate 5 is heated to 250 ° C.
Then, vaporized Ni (PF 3 ) 4 was introduced into the decomposition reaction furnace 4 via the fine differential pressure drive type gas flow controller 7. At this time, the supply amount of Ni (PF 3 ) 4 to the decomposition reaction furnace 4 is 14 ml / min. When Ni (PF 3 ) 4 was introduced into the decomposition reaction furnace 4, PF 3 was introduced into the decomposition reaction furnace 4 from the line 10 at 30 ml / min. Further, a mixed gas of Si 3 H 8 and H 2 was introduced as a reaction gas at a rate of 20 ml / min from the line 9 to form a NiSi film.

尚、比較の為、PFが導入されない場合を同様に行なった。 For comparison, the case where PF 3 was not introduced was performed in the same manner.

図2はライン10よりPFが導入された場合のNiSi膜の出来具合を示すもので、図3はライン10よりPFが導入されなかった(但し、Hを30ml/min導入し、系内の流速・圧力を同じに揃えた。)場合のNiSi膜の出来具合を示すものである。 Figure 2 shows the doneness of the NiSi film when the PF 3 from line 10 is introduced, FIG. 3 is PF 3 from line 10 was introduced (however, of H 2 was introduced 30 ml / min, the system The flow rate and pressure in the inner layer are the same.) This shows the result of the NiSi film.

これによれば、PFが導入された場合、溝底部のNiSi膜厚と溝開口部でのNiSi膜厚との比が約0.6であるのに対して、PFが導入されなかった場合、溝底部のNiSi膜厚と溝開口部でのNiSi膜厚との比が約0.4であり、本発明は段差被覆性に優れていることが判る。すなわち、本発明によれば、溝の底面や側面にもNiSi膜が綺麗に出来る。 According to this, when PF 3 was introduced, the ratio of the NiSi film thickness at the groove bottom to the NiSi film thickness at the groove opening was about 0.6, whereas PF 3 was not introduced. In this case, the ratio between the NiSi film thickness at the groove bottom and the NiSi film thickness at the groove opening is about 0.4, which indicates that the present invention is excellent in step coverage. That is, according to the present invention, the NiSi film can be cleanly formed on the bottom and side surfaces of the groove.

[実施例2]
実施例1において、Ni(PFの代わりにPt(PFを用いて同様に行った。
その結果、PFが導入された場合、溝底部のPtSi膜厚と溝開口部でのPtSi膜厚との比が約0.6であるのに対して、PFが導入されなかった場合、溝底部のPtSi膜厚と溝開口部でのPtSi膜厚との比が約0.36であり、本発明は段差被覆性に優れていることが判る。すなわち、本発明によれば、溝の底面や側面にもPtSi膜が綺麗に出来る。
[Example 2]
In Example 1, it was carried out in the same manner by using a Pt (PF 3) 4 in place of Ni (PF 3) 4.
As a result, when PF 3 is introduced, the ratio of the PtSi film thickness at the groove bottom to the PtSi film thickness at the groove opening is about 0.6, whereas when PF 3 is not introduced, The ratio of the PtSi film thickness at the groove bottom part to the PtSi film thickness at the groove opening part is about 0.36, and it can be seen that the present invention is excellent in step coverage. That is, according to the present invention, the PtSi film can be made beautiful on the bottom and side surfaces of the groove.

[実施例3]
実施例1において、容器1からNi(PFを供給するだけでは無く、容器2からPt(PFをバブリングによって供給した。尚、Ni(PF供給量は7ml/min、Pt(PF供給量は7ml/minであった。その他は、実施例1と同様なCVD条件で成膜した。
その結果、PFが導入された場合、溝底部のNiPtSi膜厚と溝開口部でのNiPtSi膜厚との比が約0.6であるのに対して、PFが導入されなかった場合、溝底部のNiPtSi膜厚と溝開口部でのNiPtSi膜厚との比が約0.39であり、本発明は段差被覆性に優れていることが判る。すなわち、本発明によれば、溝の底面や側面にもNiPtSi膜が綺麗に出来る。
[Example 3]
In Example 1, not only Ni (PF 3 ) 4 was supplied from the container 1, but Pt (PF 3 ) 4 was supplied from the container 2 by bubbling. The supply amount of Ni (PF 3 ) 4 was 7 ml / min, and the supply amount of Pt (PF 3 ) 4 was 7 ml / min. Others were formed under the same CVD conditions as in Example 1.
As a result, when PF 3 is introduced, the ratio of the NiPtSi film thickness at the bottom of the groove to the NiPtSi film thickness at the groove opening is about 0.6, whereas when PF 3 is not introduced, The ratio of the NiPtSi film thickness at the groove bottom to the NiPtSi film thickness at the groove opening is about 0.39, indicating that the present invention is excellent in step coverage. That is, according to the present invention, the NiPtSi film can be cleanly formed on the bottom and side surfaces of the groove.

[実施例4]
実施例1において、SiとHとの混合ガスを供給しなかった以外は同様に行った。
その結果、PFが導入された場合、溝底部のNi膜厚と溝開口部でのNi膜厚との比が約0.7であるのに対して、PFが導入されなかった場合、溝底部のNi膜厚と溝開口部でのNi膜厚との比が約0.4であり、本発明は段差被覆性に優れていることが判る。すなわち、本発明によれば、溝の底面や側面にもNi膜が綺麗に出来る。
[Example 4]
In Example 1, it was carried out as except for not supplying a mixed gas of Si 3 H 8 and H 2.
As a result, when PF 3 is introduced, the ratio of the Ni film thickness at the groove bottom and the Ni film thickness at the groove opening is about 0.7, whereas when PF 3 is not introduced, The ratio of the Ni film thickness at the groove bottom and the Ni film thickness at the groove opening is about 0.4, indicating that the present invention is excellent in step coverage. That is, according to the present invention, the Ni film can be cleanly formed on the bottom and side surfaces of the groove.

[実施例5]
実施例2において、SiとHとの混合ガスを供給しなかった以外は同様に行った。
その結果、PFが導入された場合、溝底部のPt膜厚と溝開口部でのPt膜厚との比が約0.68であるのに対して、PFが導入されなかった場合、溝底部のPt膜厚と溝開口部でのPt膜厚との比が約0.31であり、本発明は段差被覆性に優れていることが判る。すなわち、本発明によれば、溝の底面や側面にもPt膜が綺麗に出来る。
[Example 5]
In Example 2, it was performed in the same manner except for not supplying a mixed gas of Si 3 H 8 and H 2.
As a result, when PF 3 is introduced, the ratio of the Pt film thickness at the groove bottom to the Pt film thickness at the groove opening is about 0.68, whereas when PF 3 is not introduced, The ratio of the Pt film thickness at the groove bottom to the Pt film thickness at the groove opening is about 0.31, indicating that the present invention is excellent in step coverage. That is, according to the present invention, the Pt film can be cleanly formed on the bottom and side surfaces of the groove.

[実施例6]
実施例3において、SiとHとの混合ガスを供給しなかった以外は同様に行った。
その結果、PFが導入された場合、溝底部のNiPtSi膜厚と溝開口部でのNiPt膜厚との比が約0.67であるのに対して、PFが導入されなかった場合、溝底部のNiPt膜厚と溝開口部でのNiPt膜厚との比が約0.4であり、本発明は段差被覆性に優れていることが判る。すなわち、本発明によれば、溝の底面や側面にもNiPt膜が綺麗に出来る。
[Example 6]
In Example 3, it was carried out as except for not supplying a mixed gas of Si 3 H 8 and H 2.
As a result, when PF 3 is introduced, the ratio of the NiPtSi film thickness at the groove bottom to the NiPt film thickness at the groove opening is about 0.67, whereas when PF 3 is not introduced, The ratio of the NiPt film thickness at the groove bottom to the NiPt film thickness at the groove opening is about 0.4, indicating that the present invention is excellent in step coverage. That is, according to the present invention, the NiPt film can be cleanly formed on the bottom and side surfaces of the groove.

半導体分野において特に有用に用いられる。   It is particularly useful in the semiconductor field.

成膜装置(CVD)の概略図Schematic diagram of film deposition equipment (CVD) 成膜後の断面SEM写真Cross-sectional SEM photograph after film formation 成膜後の断面SEM写真Cross-sectional SEM photograph after film formation

符号の説明Explanation of symbols

1 原料(Ni(PF)容器
2 原料(Pt(PF)容器
3 加熱器
4 分解反応炉
5 Si(半導体)基板
6 ガス流量制御器
7 微差圧駆動型ガス流量制御器
8 原料ガスの吹出口
9 Si/H導入ライン
10 PFガス導入ライン
11 排気ライン

代 理 人 宇 高 克 己
1 Raw Material (Ni (PF 3 ) 4 ) Container 2 Raw Material (Pt (PF 3 ) 4 ) Container 3 Heater 4 Decomposition Reactor 5 Si (Semiconductor) Substrate 6 Gas Flow Controller 7 Fine Differential Pressure Drive Type Gas Flow Controller 8 Material gas outlet 9 Si 3 H 8 / H 2 introduction line 10 PF 3 gas introduction line 11 Exhaust line

Representative Katsumi Udaka

Claims (9)

膜をCVDにより形成する方法であって、
M(PF(MはNi又はPt)を膜形成室に供給するM(PF供給工程と、
PFを膜形成室に供給するPF供給工程と、
前記膜形成室に供給された化合物を分解させ、基板上に堆積させてM系膜を形成する膜形成工程
とを具備することを特徴とする膜形成方法。
A method of forming a film by CVD,
M (PF 3) 4 (M is Ni or Pt) and M (PF 3) 4 supplying step of supplying the film-forming chamber,
A PF 3 supply step of supplying PF 3 to the film forming chamber;
A film forming method comprising: decomposing a compound supplied to the film forming chamber and depositing the compound on a substrate to form an M-based film.
膜形成室に供給されるM(PFとPFとの割合がM(PF/PF= 1/500〜100/1(モル比)であることを特徴とする請求項1の膜形成方法。 The ratio of M (PF 3 ) 4 and PF 3 supplied to the film forming chamber is M (PF 3 ) 4 / PF 3 = 1/500 to 100/1 (molar ratio). 1. The film forming method of 1. Si化合物を膜形成室に供給するSi化合物供給工程を具備することを特徴とする請求項1の膜形成方法。   2. The film forming method according to claim 1, further comprising a Si compound supplying step of supplying the Si compound to the film forming chamber. Si化合物がSi2n+2(nは1以上の整数)であることを特徴とする請求項3の膜形成方法。 4. The film forming method according to claim 3, wherein the Si compound is Si n H 2n + 2 (n is an integer of 1 or more). 膜形成室に供給されるM(PFとSi化合物との割合がM(PF/Si化合物=1/10〜1000/1(モル比)であることを特徴とする請求項3又は請求項4の膜形成方法。 The ratio of M (PF 3 ) 4 and Si compound supplied to the film forming chamber is M (PF 3 ) 4 / Si compound = 1/10 to 1000/1 (molar ratio). The film forming method according to claim 3 or 4. M系膜がM膜、M合金膜、Mシリサイト膜、窒化M膜、炭化M膜であることを特徴とする請求項1〜請求項5いずれかの膜形成方法。   6. The film forming method according to claim 1, wherein the M-based film is an M film, an M alloy film, an M silicite film, a nitrided M film, or a carbonized M film. 半導体素子におけるM系膜を形成する方法であることを特徴とする請求項1〜請求項6いずれかの膜形成方法。   7. The film forming method according to claim 1, which is a method of forming an M-based film in a semiconductor element. CVDにより膜を形成する為の材料であって、
PFと、
M(PF(MはNi又はPt)
とを具備することを特徴とする膜形成材料。
A material for forming a film by CVD,
PF 3 ,
M (PF 3 ) 4 (M is Ni or Pt)
A film forming material characterized by comprising:
CVDにより膜を形成する為の材料であって、
PFと、
M(PF(MはNi又はPt)と、
Si2n+2(nは1以上の整数)
とを具備することを特徴とする膜形成材料。
A material for forming a film by CVD,
PF 3 ,
M (PF 3 ) 4 (M is Ni or Pt);
Si n H 2n + 2 (n is an integer of 1 or more)
A film forming material characterized by comprising:
JP2007069939A 2007-03-19 2007-03-19 Film forming method and film forming material Active JP5088773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069939A JP5088773B2 (en) 2007-03-19 2007-03-19 Film forming method and film forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069939A JP5088773B2 (en) 2007-03-19 2007-03-19 Film forming method and film forming material

Publications (2)

Publication Number Publication Date
JP2008231473A JP2008231473A (en) 2008-10-02
JP5088773B2 true JP5088773B2 (en) 2012-12-05

Family

ID=39904639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069939A Active JP5088773B2 (en) 2007-03-19 2007-03-19 Film forming method and film forming material

Country Status (1)

Country Link
JP (1) JP5088773B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853078B2 (en) * 2011-01-30 2014-10-07 Fei Company Method of depositing material
EP2700646B1 (en) 2011-04-20 2015-10-14 Tanaka Kikinzoku Kogyo K.K. Chemical vapor deposition method using organic platinum compound
JP5156120B1 (en) 2011-10-14 2013-03-06 田中貴金属工業株式会社 Chemical vapor deposition material comprising an organic platinum compound and chemical vapor deposition method using the chemical vapor deposition material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437636B2 (en) * 2002-05-16 2010-03-24 株式会社トリケミカル研究所 Film formation method
JP4581119B2 (en) * 2003-09-17 2010-11-17 株式会社トリケミカル研究所 NiSi film forming material and NiSi film forming method
JP4353371B2 (en) * 2004-08-06 2009-10-28 株式会社トリケミカル研究所 Film formation method
JP4860176B2 (en) * 2005-05-02 2012-01-25 株式会社トリケミカル研究所 Method for producing Ni (PF3) 4

Also Published As

Publication number Publication date
JP2008231473A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4512098B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
US7211506B2 (en) Methods of forming cobalt layers for semiconductor devices
KR102271768B1 (en) Gap Filling Using Reactive Annealing
TW200422424A (en) Low temperature deposition of silicon oxides and oxynitrides
TW200537571A (en) Forming method of barrier film, and forming method of electrode film
TWI661080B (en) Selective formation of metal silicides
JP2009177161A (en) Method for forming insulation film
US7674710B2 (en) Method of integrating metal-containing films into semiconductor devices
KR100930434B1 (en) A film forming method of a film, a method of forming a gate electrode, and a method of manufacturing a semiconductor device
JP4542807B2 (en) Film forming method and apparatus, and gate insulating film forming method
JP5088773B2 (en) Film forming method and film forming material
JP2005029821A (en) Film-forming method
US20060068103A1 (en) Film forming method
KR20040088110A (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
JP4581119B2 (en) NiSi film forming material and NiSi film forming method
JP2011166160A (en) Method of forming multilayer film
KR101548129B1 (en) Protection of conductors from oxidation in deposition chambers
WO2020184284A1 (en) Film formation method and film formation device
US8980742B2 (en) Method of manufacturing multi-level metal thin film and apparatus for manufacturing the same
JP2011018718A (en) Silicon material for vapor phase deposition having dialkylamino group, and method of manufacturing silicon-containing thin film using the material
JP2006097100A (en) Film deposition material, film deposition method and element
US20210028013A1 (en) Surface Roughness for Flowable CVD Film
US20060068101A1 (en) Film forming method
US20220375747A1 (en) Flowable CVD Film Defect Reduction
CN108475638B (en) Method for forming Cu film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250