JP5085634B2 - Membrane filtration system - Google Patents

Membrane filtration system Download PDF

Info

Publication number
JP5085634B2
JP5085634B2 JP2009295622A JP2009295622A JP5085634B2 JP 5085634 B2 JP5085634 B2 JP 5085634B2 JP 2009295622 A JP2009295622 A JP 2009295622A JP 2009295622 A JP2009295622 A JP 2009295622A JP 5085634 B2 JP5085634 B2 JP 5085634B2
Authority
JP
Japan
Prior art keywords
activated carbon
membrane
flocculant
water
pond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009295622A
Other languages
Japanese (ja)
Other versions
JP2011131191A (en
Inventor
武士 松代
勝也 横川
卓 毛受
美意 福田
孝浩 相馬
秀司 関
和彦 納田
和彦 君島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009295622A priority Critical patent/JP5085634B2/en
Publication of JP2011131191A publication Critical patent/JP2011131191A/en
Application granted granted Critical
Publication of JP5085634B2 publication Critical patent/JP5085634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、浄水場における水処理プロセスにおいて、活性炭と膜ろ過を組み合わせて水と不溶解性成分または水と溶質成分を分離する膜ろ過処理システムに関する。   The present invention relates to a membrane filtration treatment system for separating water and an insoluble component or water and a solute component by combining activated carbon and membrane filtration in a water treatment process at a water purification plant.

浄水場において、活性炭処理は、緩速ろ過、急速ろ過、膜ろ過といった不溶解性成分を対象とした処理プロセスでは除去できない溶解性成分、例えば、2−メチルイソボルネオール(2−MIB)、ジェオスミン等の異臭味成分や、陰イオン界面活性剤、フェノール類、トリハロメタン及びその前駆物質、トリクロロエチレン等の低沸点有機塩素化合物、農薬などの微量有害物質を吸着除去する目的で導入されている。浄水場で用いられる活性炭には粒状活性炭と粉末活性炭、さらに粉末活性炭を微細化した微粉炭があり、それぞれ粒径、使用法が異なっている。   In water purification plants, activated carbon treatment is a soluble component that cannot be removed by a treatment process for insoluble components such as slow filtration, rapid filtration, membrane filtration, such as 2-methylisoborneol (2-MIB), geosmin, etc. It is introduced for the purpose of adsorbing and removing trace toxic substances such as odor components, anionic surfactants, phenols, trihalomethanes and their precursors, low-boiling organic chlorine compounds such as trichloroethylene, and agricultural chemicals. The activated carbon used in the water purification plant includes granular activated carbon, powdered activated carbon, and pulverized coal obtained by further refined powdered activated carbon, each having a different particle size and usage.

粉末活性炭あるいは微粉炭と膜ろ過を併用する技術としては、例えば、特許文献1が知られている。特許文献1は、活性炭供給装置を原水の臭気濃度に応じた時間ずつ間欠運転し、膜モジュール内に保持される粉末活性炭により臭気を吸着させるものである。特許文献1には、粉末活性炭として、平均粒径が20μm以下の微粉炭を使用することが好ましい旨記載されている。しかしながら、特許文献1のように、粉末活性炭や微粉活性炭と膜ろ過を併用した場合、活性炭の微細な粉末により膜の目詰まりを引き起こすという問題がある。   For example, Patent Document 1 is known as a technique for using powdered activated carbon or pulverized coal in combination with membrane filtration. In Patent Document 1, an activated carbon supply device is intermittently operated every time according to the odor concentration of raw water, and odor is adsorbed by powdered activated carbon held in a membrane module. Patent Document 1 describes that it is preferable to use pulverized coal having an average particle size of 20 μm or less as powdered activated carbon. However, as in Patent Document 1, when powdered activated carbon or finely powdered activated carbon and membrane filtration are used in combination, there is a problem in that the membrane is clogged by the fine powder of activated carbon.

特開2008−229581号公報JP 2008-229581 A

本発明はこうした事情を考慮してなされたもので、粒状活性炭、粉末活性炭、微粉炭を膜ろ過装置の前段で分離あるいは回収することで膜の目詰まりを抑制しながら、溶解性成分、例えば、2−MIB、ジェオスミン等の異臭味成分や、陰イオン界面活性剤、フェノール類、トリハロメタン及びその前駆物質、トリクロロエチレン等の低沸点有機塩素化合物、農薬などの微量有害物質を吸着除去する膜ろ過処理システムを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and by dissolving or recovering granular activated carbon, powdered activated carbon, pulverized coal in the previous stage of the membrane filtration device while suppressing clogging of the membrane, a soluble component, for example, 2-Membrane filtration system that adsorbs and removes off-flavor components such as MIB and geosmin, anionic surfactants, phenols, trihalomethanes and their precursors, low-boiling organic chlorine compounds such as trichlorethylene, and pesticides The purpose is to provide.

本発明に係る膜ろ過処理システムは、水源から取水した原水を貯留する着水井と、前記着水井に活性炭を供給する活性炭添加設備と、前記着水井の下流側に配置されて処理すべき原水に含まれる活性炭を水から分離する液体サイクロンと、この液体サイクロンの下流側に配置された混和池と、この混和池に凝集剤を供給する凝集剤添加設備と、前記混和池の下流側に配置され,活性炭と凝集剤により生成したフロックを成長させるためのフロック形成池と、このフロック形成池の下流側に配置されて水と不溶解性成分を分離する、精密ろ過膜,限外ろ過膜,ナノろ過膜あるいは逆浸透膜のいずれかとを備えていることを特徴とする。 The membrane filtration treatment system according to the present invention includes a landing well for storing raw water taken from a water source, an activated carbon addition facility for supplying activated carbon to the landing well, and raw water to be disposed on the downstream side of the landing well. A liquid cyclone that separates the activated carbon contained from water, a mixing pond disposed downstream of the liquid cyclone, a flocculant addition facility that supplies a flocculant to the mixing pond, and a downstream of the mixing pond , A floc formation pond for growing flocs generated by activated carbon and flocculant, and a microfiltration membrane, ultrafiltration membrane, nano, placed downstream of this floc formation pond to separate water and insoluble components It is provided with either a filtration membrane or a reverse osmosis membrane .

また、本発明に係る膜ろ過処理システムは、水源から取水した原水を貯留する着水井と、前記着水井に活性炭を供給する活性炭添加設備と、前記着水井の下流側に配置された混和池と、この混和池に凝集剤を供給する凝集剤添加設備と、前記混和池の下流側に配置され,活性炭と凝集剤により生成したフロックを成長させるためのフロック形成池と、このフロック形成池の下流側に配置されて処理すべき原水に含まれる活性炭を水から分離する液体サイクロンと、この液体サイクロンの下流側に配置されて水と溶質成分を分離する、精密ろ過膜,限外ろ過膜,ナノろ過膜あるいは逆浸透膜のいずれかとを備えていることを特徴とする。 Moreover, the membrane filtration processing system according to the present invention includes a landing well for storing raw water taken from a water source, an activated carbon addition facility for supplying activated carbon to the landing well, and a mixing pond disposed downstream of the landing well. a flocculant facilities for supplying coagulant to the mixing basin, arranged downstream of the mixing basin, the flocculation basin for growing flocs produced by activated carbon and flocculants, downstream of the flocculation basin A liquid cyclone that separates activated carbon contained in the raw water to be treated from the water, and a microfiltration membrane, ultrafiltration membrane, nano, which is arranged downstream of this liquid cyclone to separate water and solute components It is provided with either a filtration membrane or a reverse osmosis membrane .

本発明によれば、粒状活性炭、粉末活性炭、微粉炭を膜ろ過装置の前段で分離あるいは回収することで膜の目詰まりを抑制しながら、溶解性成分や低沸点有機塩素化合物、農薬などの微量有害物質を吸着除去することができる。   According to the present invention, granular activated carbon, powdered activated carbon, and pulverized coal are separated or collected at the front stage of the membrane filtration device, so that clogging of the membrane is suppressed, while trace amounts of soluble components, low boiling point organic chlorine compounds, agricultural chemicals, and the like are reduced. Hazardous substances can be removed by adsorption.

本発明の実施例1に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 1 of this invention. 本発明の実施例2に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 2 of this invention. 本発明の実施例7に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 7 of this invention. 本発明の実施例8に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 8 of this invention. 本発明の実施例9に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 9 of this invention. 本発明の実施例10に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 10 of this invention. 本発明の実施例11に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 11 of this invention. 本発明の実施例12に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 12 of this invention. 本発明の実施例14に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 14 of this invention. 本発明の実施例15に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 15 of this invention. 本発明の実施例16に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 16 of this invention. 本発明の実施例17に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 17 of this invention. 本発明の実施例18に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 18 of this invention. 本発明の実施例19に係る膜ろ過処理システムのブロック図。The block diagram of the membrane filtration processing system which concerns on Example 19 of this invention.

次に、本発明に係る膜ろ過処理システムについて更に詳しく説明する。
本発明において、活性炭添加設備に収容される活性炭としては、平均粒径150μm以上の粒状活性炭、もしくは平均粒径150μm未満の粉末活性炭、もしくは粉末活性炭を微細化した平均粒径20μm未満の微粉炭が挙げられる。
Next, the membrane filtration processing system according to the present invention will be described in more detail.
In the present invention, as the activated carbon accommodated in the activated carbon addition facility, granular activated carbon having an average particle diameter of 150 μm or more, powdered activated carbon having an average particle diameter of less than 150 μm, or pulverized coal having an average particle diameter of less than 20 μm obtained by refining powdered activated carbon. Can be mentioned.

粒状活性炭は、一般に、急速ろ過プロセスにおける砂ろ過の後段に設置され、カラムに1〜2mの厚さでろ過槽に充填される。除去対象は、低分子量の着色成分(分子量:約1500以下)や、その他の有機化合物である。粒状活性炭は吸着とともに活性炭の破過が進む。破過とは、吸着速度と脱着速度がつりあって平衡となり、吸着能力を示さなくなった状態を表す。粒状活性炭は回収により再生が可能である。再生方法としては、900℃前後の高温で水蒸気を用いて活性化する水蒸気賦活法と、塩化亜鉛、硫酸等の薬品に浸漬した後、炭化させる薬品賦活法が知られている。薬品賦活法は処理水中に亜鉛などの薬品が溶出することがあるため、浄水処理用の活性炭再生には水蒸気賦活法が主流となっている。再生された活性炭の吸着能力は、新品の活性炭と比べて劣り、再生操作を繰り返すと徐々に吸着能力は低下していく。粒状活性炭による処理は、対象物質を恒久的に除去する際に用いられる。   Granular activated carbon is generally installed after the sand filtration in the rapid filtration process, and packed in a filtration tank at a thickness of 1 to 2 m in a column. The removal target is a low molecular weight colored component (molecular weight: about 1500 or less) and other organic compounds. Granular activated carbon breaks through activated carbon with adsorption. Breakthrough refers to a state where the adsorption rate and the desorption rate are balanced and become in equilibrium and no longer exhibit adsorption capability. Granular activated carbon can be regenerated by recovery. As a regeneration method, a steam activation method in which activation is performed using steam at a high temperature of about 900 ° C. and a chemical activation method in which carbonization is performed after immersion in a chemical such as zinc chloride or sulfuric acid are known. In the chemical activation method, chemicals such as zinc may be eluted in the treated water. Therefore, the steam activation method is mainly used for the regeneration of activated carbon for water purification. The adsorption capacity of the regenerated activated carbon is inferior to that of new activated carbon, and the adsorption capacity gradually decreases as the regeneration operation is repeated. The treatment with granular activated carbon is used when the target substance is permanently removed.

粉末活性炭は、浄水場では、特に粒径75μm以下の水蒸気賦活法で作られたものが多く用いられる。渇水時や夏季に藻類および放線菌の増殖により生じる臭気発生時や、水質事故などによる一時的な原水水質悪化時に、原水に粉末活性炭を投入して吸着除去する。一般に、取水井や着水井などの凝集沈殿より前のプロセスに適用される。粉末活性炭はその粒径の細かさから回収が難しいため再生処理も困難である。通常、粉末活性炭は凝集沈殿槽でフロック化され、沈降、分離される。粉末活性炭は、夏季の臭気発生時や緊急・非常時の一時的な対策として用いられる。微粉炭は、通常の粉末活性炭に比べ比表面積が大きいため、投入量を抑制することができる。   Powdered activated carbon is often used in water purification plants, especially those made by a steam activation method with a particle size of 75 μm or less. When drought, summertime, odor caused by growth of algae and actinomycetes, or temporary deterioration of raw water quality due to water quality accidents, powdered activated carbon is introduced into the raw water for adsorption removal. Generally, it is applied to processes prior to coagulation sedimentation such as intake wells and landing wells. Since powdered activated carbon is difficult to recover due to its fine particle size, it is difficult to regenerate it. Usually, powdered activated carbon is flocked in a coagulation sedimentation tank, and settled and separated. Powdered activated carbon is used as a temporary measure in the summer when odors occur and in emergencies and emergencies. Since pulverized coal has a larger specific surface area than ordinary powdered activated carbon, the input amount can be suppressed.

次に、本発明に係る膜ろ過処理システムの具体的な例について図面を参照して説明する。
(実施例1)
図1を参照する。
図中の符番1は、沈砂池である。この沈砂池1の下流側には、着水井2、固液分離装置3、混和池4、フロック形成池5、膜ろ過装置6、浄水池7が順次接続されている。着水井2には、平均粒径150μm未満の粉末活性炭を供給する活性炭添加設備8が接続されている。前記混和池4には、凝集剤を供給する凝集剤添加設備9が接続されている。ここで、着水井2は、水源から取水した原水を貯留する機能を有する。固液分離装置3は、処理すべき原水に含まれる活性炭を水から分離する機能を有する。混和池4は、粉末活性炭を分離した原水と凝集剤添加設備9からの凝集剤を攪拌するための機能を有する。フロック形成池5は、固液分離装置3で分離されなかった微細な活性炭のフロックを成長させるための機能を有する。膜ろ過装置6には精密ろ過膜または限外ろ過膜等が配置され、水と不溶解性成分が分離される。
Next, a specific example of the membrane filtration processing system according to the present invention will be described with reference to the drawings.
Example 1
Please refer to FIG.
Number 1 in the figure is a sand basin. On the downstream side of the sand basin 1, a landing well 2, a solid-liquid separator 3, a mixing basin 4, a flock formation basin 5, a membrane filtration device 6, and a water purification basin 7 are sequentially connected. An activated carbon addition facility 8 for supplying powdered activated carbon having an average particle size of less than 150 μm is connected to the landing well 2. A flocculant addition facility 9 for supplying a flocculant is connected to the mixing basin 4. Here, the landing well 2 has a function of storing raw water taken from a water source. The solid-liquid separation device 3 has a function of separating activated carbon contained in raw water to be treated from water. The mixing basin 4 has a function for stirring the raw water from which the powdered activated carbon has been separated and the flocculant from the flocculant addition facility 9. The floc formation pond 5 has a function for growing a floc of fine activated carbon that has not been separated by the solid-liquid separator 3. The membrane filtration device 6 is provided with a microfiltration membrane, an ultrafiltration membrane or the like to separate water and insoluble components.

次に、図1のろ過膜処理システムの作用について説明する。
原水は水源から取水され、沈砂池1を経て着水井2に一時的に貯留される。原水の水質状況に応じて、活性炭添加設備8により活性炭を着水井2に投入し、不溶解性成分の吸着除去を行う。投入する活性炭の量は、取水水質の状況に応じて調整する。活性炭が供給された原水は、固液分離装置3へ導入され、活性炭が分離・回収される。分離されなかった微細な活性炭(微粉炭)は凝集剤添加設備9により供給される凝集剤と混和池4で混和されてフロックを生成し、フロック形成池5で成長する。膜ろ過装置6に供給された活性炭を含むフロックは膜ろ過装置6に配置された精密ろ過膜、限外ろ過膜などにより分離され、膜の処理水等による定期的な逆洗により膜面から除去される。膜ろ過装置6で処理された処理水は、浄水池7に送られる。浄水池7には消毒剤10が供給される。
Next, the operation of the filtration membrane treatment system of FIG. 1 will be described.
The raw water is taken from the water source and temporarily stored in the landing well 2 through the sand basin 1. Depending on the quality of the raw water, activated carbon is introduced into the landing well 2 by the activated carbon addition facility 8 to remove the insoluble components by adsorption. The amount of activated carbon to be added is adjusted according to the quality of the water intake. The raw water supplied with the activated carbon is introduced into the solid-liquid separator 3, and the activated carbon is separated and recovered. The fine activated carbon (pulverized coal) that has not been separated is mixed with the flocculant supplied by the flocculant addition equipment 9 in the mixing basin 4 to generate flocs, and grows in the floc-forming pond 5. The floc containing activated carbon supplied to the membrane filtration device 6 is separated by a microfiltration membrane, an ultrafiltration membrane or the like disposed in the membrane filtration device 6 and removed from the membrane surface by periodic backwashing with membrane treated water or the like. Is done. The treated water treated by the membrane filtration device 6 is sent to the water purification tank 7. Disinfectant 10 is supplied to the clean water reservoir 7.

実施例1に係るろ過膜処理システムは、図1に示すように、沈砂池1と、この沈砂池1の下流側に順次配置された、着水井2、固液分離装置3、混和池4、フロック形成池5、膜ろ過装置6、浄水池7と、粉末活性炭を着水井2に供給する活性炭添加設備8と、凝集剤を混和池4に供給する凝集剤添加設備9を備えた構成になっている。このシステムによれば、以下に述べる効果が得られる。   As shown in FIG. 1, the filtration membrane treatment system according to Example 1 includes a sedimentation basin 1, a landing well 2, a solid-liquid separation device 3, a mixing basin 4, which are sequentially arranged on the downstream side of the sedimentation basin 1. The floc formation pond 5, the membrane filtration device 6, the water purification pond 7, the activated carbon addition facility 8 for supplying powdered activated carbon to the landing well 2, and the flocculant addition facility 9 for supplying the flocculant to the mixing basin 4 are provided. ing. According to this system, the following effects can be obtained.

膜ろ過装置6の上流側に配置された固液分離装置3で活性炭を分離することで、膜の目詰まりを抑制しながら、溶解性成分、例えば、2−MIB、ジェオスミン等の異臭味成分や、陰イオン界面活性剤、フェノール類、トリハロメタン及びその前駆物質、トリクロロエチレン等の低沸点有機塩素化合物、農薬などの微量有害物質を吸着除去することができる。特に、凝集剤を添加する前に分離・回収された活性炭は凝集剤を添加したものに比べて再生が容易であるため、分離回収した活性炭を再利用することができる。   By separating the activated carbon with the solid-liquid separation device 3 arranged on the upstream side of the membrane filtration device 6, while suppressing clogging of the membrane, soluble components such as 2-MIB, geosmin and other off-flavor components It is possible to adsorb and remove trace amounts of harmful substances such as anionic surfactants, phenols, trihalomethanes and their precursors, low-boiling organic chlorine compounds such as trichlorethylene, and agricultural chemicals. In particular, since the activated carbon separated and recovered before adding the flocculant is easier to regenerate than the one added with the flocculant, the separated and recovered activated carbon can be reused.

なお、上記実施例1では、混和池に凝集剤添加設備から凝集剤を直接供給する場合について述べたが、これに限らず、固液分離装置とフロック形成池を接続する配管に凝集剤を注入してもよい。この場合、混和池を省略することができる。   In the first embodiment, the case where the coagulant is directly supplied to the mixing pond from the coagulant addition facility has been described. However, the present invention is not limited thereto, and the coagulant is injected into the pipe connecting the solid-liquid separator and the flock formation pond. May be. In this case, the mixing pond can be omitted.

(実施例2)
図2を参照する。但し、図1と同部材は同符番を付して説明を省略する。
沈砂池1の下流側には、着水井2、混和池4、フロック形成池5、固液分離装置3、膜ろ過装置16、浄水池7が順次配置されている。混和池4には、凝集剤添加設備9が接続されている。膜ろ過装置16は、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などにより、水と溶質成分を分離する機能を有する。
(Example 2)
Please refer to FIG. However, the same members as those in FIG.
On the downstream side of the settling basin 1, a landing well 2, a mixing basin 4, a flock formation pond 5, a solid-liquid separation device 3, a membrane filtration device 16, and a water purification pond 7 are sequentially arranged. A flocculant addition facility 9 is connected to the mixing basin 4. The membrane filtration device 16 has a function of separating water and solute components by a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, or the like.

次に、図2のろ過膜処理システムの作用について説明する。
原水は水源から取水され、沈砂池1を経て着水井2に一時的に貯留される。原水の水質状況に応じて、活性炭添加設備8により粉末活性炭を着水井2に投入し、不溶解性成分の吸着除去を行う。投入する粉末活性炭の量は、取水水質の状況に応じて調整する。原水に投入された粉末活性炭は、凝集剤添加設備9により供給される凝集剤と混和池4で混和されてフロックを生成し、フロック形成池5で成長する。粉末活性炭を含む成長したフロックは固液分離装置3へ導入され、粉末活性炭が分離・回収される。固液分離されなかった微細な活性炭(微粉炭)は膜ろ過装置16に供給され、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などにより分離され、膜の処理水等による定期的な逆洗により膜面から除去される。
Next, the operation of the filtration membrane treatment system of FIG. 2 will be described.
The raw water is taken from the water source and temporarily stored in the landing well 2 through the sand basin 1. Depending on the quality of the raw water, activated carbon addition equipment 8 is used to introduce powdered activated carbon into the landing well 2 and remove the insoluble components by adsorption. The amount of powdered activated carbon to be added is adjusted according to the quality of the intake water. The powdered activated carbon charged into the raw water is mixed with the flocculant supplied from the flocculant addition equipment 9 in the mixing basin 4 to generate flocs, and grows in the floc-forming pond 5. Grown floc containing powdered activated carbon is introduced into the solid-liquid separator 3, and the powdered activated carbon is separated and recovered. Fine activated carbon (pulverized coal) that has not been solid-liquid separated is supplied to the membrane filtration device 16 and separated by a microfiltration membrane, ultrafiltration membrane, nanofiltration membrane, reverse osmosis membrane, etc. Is removed from the film surface by a typical backwash.

実施例2に係るろ過膜処理システムは、図2に示すように、沈砂池1と、この沈砂池1の下流側に順次配置された、着水井2、混和池4、フロック形成池5、固液分離装置3、膜ろ過装置16、浄水池7と、粉末活性炭を着水井2に供給する活性炭添加設備8と、凝集剤を混和池4に供給する凝集剤添加設備9を備えた構成になっている。このシステムによれば、以下に述べる効果が得られる。   As shown in FIG. 2, the filtration membrane treatment system according to Example 2 includes a sedimentation basin 1, a landing well 2, a mixing basin 4, a flock formation basin 5, The liquid separator 3, the membrane filtration device 16, the water purification pond 7, the activated carbon addition facility 8 that supplies powdered activated carbon to the landing well 2, and the flocculant addition facility 9 that supplies the flocculant to the mixing basin 4 are provided. ing. According to this system, the following effects can be obtained.

膜ろ過装置16の前段の固液分離装置3で大部分の粉末活性炭を分離することで、膜の目詰まりを抑制しながら、溶解性成分、例えば、2−MIB、ジェオスミン等の異臭味成分や、陰イオン界面活性剤、フェノール類、トリハロメタン及びその前駆物質、トリクロロエチレン等の低沸点有機塩素化合物、農薬などの微量有害物質を吸着除去することができる。   By separating most of the powdered activated carbon with the solid-liquid separation device 3 at the front stage of the membrane filtration device 16, while suppressing clogging of the membrane, soluble components such as 2-MIB, geosmin and other off-flavor components It is possible to adsorb and remove trace amounts of harmful substances such as anionic surfactants, phenols, trihalomethanes and their precursors, low-boiling organic chlorine compounds such as trichlorethylene, and agricultural chemicals.

(実施例3)
本実施例3は、実施例1と比べて固液分離装置の構成のみ異なり、他は実施例1と同様な構成であり、各部材の配置は図1に示すとおりである。
本実施例3の固液分離装置は、活性炭を水との比重差と遠心力を利用して水と活性炭とに分離する液体サイクロンであり、流入する液体の旋回力によって生じる遠心力によって固液分離を行う装置である。なお、液体サイクロンで分離・回収できるのは、粒状活性炭と粉末活性炭のうち粒径の大きいものである。例えば、比重2.6〜2.7の珪砂の場合、20μmまで液体サイクロンで分離・回収することができる。従って、活性炭の再利用を前提とした回収を行う場合には、粒状活性炭が望ましい。また、本実施例3の固液分離装置では、固体に加わる遠心力を分離に利用しているため、対象粒子の粒径や比重、形状といった因子が分離性能に影響する。
本実施例3に係るろ過膜処理システムの作用は、固液分離装置での水と活性炭の分離の仕方を除いて、実施例1の場合と同様である。実施例3によれば、実施例1と同様の効果の他、固液分離装置が液体サイクロンであるため、稼動部分がなく、構造が単純であるので、床占有面積あたりの処理能力が大きいといった効果が得られる。
(Example 3)
The third embodiment is different from the first embodiment only in the configuration of the solid-liquid separator, and the other configurations are the same as those in the first embodiment. The arrangement of each member is as shown in FIG.
The solid-liquid separation device of the third embodiment is a liquid cyclone that separates activated carbon into water and activated carbon using a difference in specific gravity with water and centrifugal force, and the solid-liquid is separated by centrifugal force generated by the swirling force of the flowing liquid. It is a device that performs separation. In addition, what can be isolate | separated and collect | recovered with a liquid cyclone is a thing with a large particle diameter among granular activated carbon and powdered activated carbon. For example, in the case of silica sand having a specific gravity of 2.6 to 2.7, it can be separated and collected with a hydrocyclone up to 20 μm. Therefore, granular activated carbon is desirable when recovery is performed on the premise of reuse of activated carbon. Further, in the solid-liquid separation device of the third embodiment, since the centrifugal force applied to the solid is used for separation, factors such as the particle size, specific gravity, and shape of the target particles affect the separation performance.
The operation of the filtration membrane treatment system according to the third embodiment is the same as that of the first embodiment except for the method of separating water and activated carbon in the solid-liquid separator. According to the third embodiment, in addition to the same effects as in the first embodiment, the solid-liquid separation device is a liquid cyclone, so there is no operating part and the structure is simple, so that the processing capacity per floor occupied area is large. An effect is obtained.

(実施例4)
本実施例4は、実施例2と比べて固液分離装置の構成のみ異なり、他は実施例2と同様な構成であり、各部材の配置は図2に示すとおりである。
本実施例4の固液分離装置は、活性炭を水との比重差と遠心力を利用して水と活性炭とに分離する液体サイクロンであり、流入する液体の旋回力によって生じる遠心力によって固液分離を行う装置である。なお、粒状活性炭等に関する考察は実施例3で述べたとおりである。
本実施例4に係るろ過膜処理システムの作用は、固液分離装置での水と活性炭の分離の仕方を除いて、実施例2の場合と同様である。実施例4によれば、実施例2と同様の効果の他、稼動部分がなく、構造が単純であるので、床占有面積あたりの処理能力が大きいといった効果が得られる。
Example 4
The fourth embodiment is different from the second embodiment only in the configuration of the solid-liquid separator, and the other configurations are the same as those of the second embodiment. The arrangement of the members is as shown in FIG.
The solid-liquid separation device of Example 4 is a liquid cyclone that separates activated carbon into water and activated carbon using a specific gravity difference with water and centrifugal force, and the solid-liquid is separated by centrifugal force generated by the swirling force of the flowing liquid. It is a device that performs separation. In addition, consideration regarding granular activated carbon etc. is as having described in Example 3. FIG.
The operation of the filtration membrane treatment system according to the fourth embodiment is the same as that of the second embodiment except for the method of separating water and activated carbon in the solid-liquid separator. According to the fourth embodiment, in addition to the same effects as those of the second embodiment, there are no operating parts and the structure is simple, so that the processing capacity per floor occupation area is large.

(実施例5)
本実施例5は、実施例1と比べて固液分離装置の構成のみ異なり、他は実施例1と同様な構成であり、各部材の配置は図1に示すとおりである。
本実施例5の固液分離装置は、金属またはセラミックを主材料とする膜フィルタにより、水と活性炭とに分離する機能を有している。ここで、膜フィルタの目開きは、活性炭の粒径に応じて、活性炭の粒径よりも小さなものを選択することが望ましい。金属またはセラミックを主材料とする膜フィルタにより分離された活性炭は、膜フィルタの透過水または膜の処理水等による定期的な逆洗によりフィルタ面より分離される。
本実施例5に係るろ過膜処理システムの作用は、実施例1の場合と同様である。実施例5によれば、実施例1と同様の効果が得られる。
(Example 5)
The fifth embodiment is different from the first embodiment only in the configuration of the solid-liquid separator, and the other configurations are the same as those in the first embodiment. The arrangement of each member is as shown in FIG.
The solid-liquid separator of the fifth embodiment has a function of separating water and activated carbon by a membrane filter mainly made of metal or ceramic. Here, it is desirable to select an opening of the membrane filter smaller than the particle size of the activated carbon according to the particle size of the activated carbon. Activated carbon separated by a membrane filter mainly composed of metal or ceramic is separated from the filter surface by regular backwashing with permeated water of the membrane filter or treated water of the membrane.
The operation of the filtration membrane treatment system according to the fifth embodiment is the same as that of the first embodiment. According to the fifth embodiment, the same effect as the first embodiment can be obtained.

(実施例6)
本実施例6は、実施例2と比べて固液分離装置の構成のみ異なり、他は実施例2と同様な構成であり、各部材の配置は図2に示すとおりである。
本実施例6の固液分離装置は、金属またはセラミックを主材料とする膜フィルタにより、水と活性炭とに分離する機能を有している。ここで、膜フィルタの目開きは、活性炭の粒径に応じて、活性炭の粒径よりも小さなものを選択することが望ましい。金属またはセラミックを主材料とする膜フィルタにより分離された活性炭は、膜フィルタの透過水または膜の処理水等による定期的な逆洗によりフィルタ面より分離される。
本実施例6に係るろ過膜処理システムの作用は、実施例2の場合と同様である。実施例6によれば、実施例2と同様の効果が得られる。
(Example 6)
The sixth embodiment is different from the second embodiment only in the configuration of the solid-liquid separator, and the other configuration is the same as that of the second embodiment. The arrangement of each member is as shown in FIG.
The solid-liquid separation device of Example 6 has a function of separating water and activated carbon by a membrane filter mainly made of metal or ceramic. Here, it is desirable to select an opening of the membrane filter smaller than the particle size of the activated carbon according to the particle size of the activated carbon. Activated carbon separated by a membrane filter mainly composed of metal or ceramic is separated from the filter surface by regular backwashing with permeated water of the membrane filter or treated water of the membrane.
The operation of the filtration membrane treatment system according to the sixth embodiment is the same as that in the second embodiment. According to the sixth embodiment, the same effect as in the second embodiment can be obtained.

(実施例7)
図3を参照する。但し、図1と同部材は同符番を付して説明を省略する。
本実施例7は、実施例1(図1参照)と比べ、固液分離装置3として金属またはセラミックを主材料とする膜フィルタにより、水と活性炭とに分離する機能を有した固液分離装置を用いる点、着水井2と固液分離装置3を接続する配管21aにプレコート槽22及びプレコート剤添加設備23を順次接続させた点、及びプレコート液を固液分離装置3とプレコート槽22間で循環させる点が異なり、他は実施例1と同様な構成である。ここで、プレコート剤添加設備23はプレコート助剤をプレコート槽22に供給するものである。プレコート槽22は、プレコート助剤とプレコート液を混合するものである。
(Example 7)
Please refer to FIG. However, the same members as those in FIG.
Compared with Example 1 (see FIG. 1), Example 7 is a solid-liquid separator having a function of separating water and activated carbon by a membrane filter mainly made of metal or ceramic as the solid-liquid separator 3. , The point where the precoat tank 22 and the precoat agent addition equipment 23 are sequentially connected to the pipe 21a connecting the landing well 2 and the solid-liquid separator 3, and the precoat liquid between the solid-liquid separator 3 and the precoat tank 22 The other configuration is the same as that of the first embodiment except that it is circulated. Here, the precoat agent addition equipment 23 supplies a precoat auxiliary agent to the precoat tank 22. The precoat tank 22 mixes a precoat auxiliary and a precoat liquid.

実施例7の作用は、プレコート助剤の導入、プレコート液の循環の点を除き、実施例1のそれと基本的に同様であるので、相違点のみ説明する。プレコート助剤には、珪藻土や活性炭などを原水の性状に応じて選定する。プレコート助剤をプレコート槽22に供給して、プレコート液と充分に攪拌、混合する。このプレコート液を図示しないポンプで固液分離装置3の膜フィルタに送液し、固液分離装置3とプレコート槽22間を循環させる。プレコート助剤は、前記膜フィルタの膜面に堆積し、プレコート層を作る。プレコート層で分離された活性炭は、膜フィルタの透過水または膜の処理水等による定期的な逆洗により、プレコート層とともにフィルタ面より分離される。   The operation of Example 7 is basically the same as that of Example 1 except for the introduction of the precoat auxiliary and the circulation of the precoat solution, and only the differences will be described. For the precoat aid, diatomaceous earth or activated carbon is selected according to the properties of the raw water. A precoat auxiliary is supplied to the precoat tank 22 and sufficiently stirred and mixed with the precoat liquid. This precoat liquid is sent to the membrane filter of the solid-liquid separator 3 by a pump (not shown), and is circulated between the solid-liquid separator 3 and the precoat tank 22. The precoat aid is deposited on the membrane surface of the membrane filter to form a precoat layer. The activated carbon separated in the precoat layer is separated from the filter surface together with the precoat layer by regular backwashing with permeated water of the membrane filter or treated water of the membrane.

実施例7によれば、膜ろ過装置6の上流側の金属またはセラミックを主材料とする膜フィルタを備えた固液分離装置3で活性炭を分離することで、膜の目詰まりを抑制しながら、溶解性成分、例えば、2−MIB、ジェオスミン等の異臭味成分や、陰イオン界面活性剤、フェノール類、トリハロメタン及びその前駆物質、トリクロロエチレン等の低沸点有機塩素化合物、農薬などの微量有害物質を吸着除去することができる。特に、凝集剤を添加する前に分離・回収された活性炭は凝集剤を添加したものに比べて再生が容易であるため、分離回収した活性炭を再利用することができる。   According to Example 7, while separating activated carbon with the solid-liquid separation device 3 including a membrane filter whose main material is a metal or ceramic upstream of the membrane filtration device 6, while suppressing clogging of the membrane, Adsorbs soluble components such as 2-MIB and geosmin off-flavor components, anionic surfactants, phenols, trihalomethane and its precursors, low-boiling organic chlorine compounds such as trichlorethylene, and trace harmful substances such as agricultural chemicals Can be removed. In particular, since the activated carbon separated and recovered before adding the flocculant is easier to regenerate than the one added with the flocculant, the separated and recovered activated carbon can be reused.

(実施例8)
図4を参照する。但し、図1、図3と同部材は同符番を付して説明を省略する。
本実施例8は、実施例2(図2参照)と比べ、固液分離装置として金属またはセラミックを主材料とする膜フィルタにより、水と活性炭とに分離する機能を有した固液分離装置を用いる点、フロック形成池5と固液分離装置3を接続する配管21bにプレコート槽22及びプレコート剤添加設備23を順次接続させた点、及びプレコート液を固液分離装置3とプレコート槽22間で循環させる点を除いて実施例2と同様な構成である。
実施例8の作用、効果は実施例7と同様である。
(Example 8)
Please refer to FIG. However, the same members as those in FIG. 1 and FIG.
Compared with Example 2 (see FIG. 2), this Example 8 is a solid-liquid separator having a function of separating water and activated carbon by a membrane filter mainly made of metal or ceramic as a solid-liquid separator. The point to be used, the point where the precoat tank 22 and the precoat agent addition equipment 23 are sequentially connected to the pipe 21b connecting the flock formation pond 5 and the solid-liquid separator 3, and the precoat liquid between the solid-liquid separator 3 and the precoat tank 22 are used. The configuration is the same as that of the second embodiment except that it is circulated.
The operation and effect of the eighth embodiment are the same as those of the seventh embodiment.

(実施例9)
図5を参照する。但し、図1、図3、図4と同部材は同符番を付して説明を省略する。
本実施例9は、実施例7(図3参照)と比べ、固液分離装置3とプレコート剤添加設備23とを循環配管21cで接続し、プレコート剤添加設備23、プレコート槽22及び固液分離装置3をループ状に接続させた点、及び循環配管21cから分岐した循環配管21dにより固液分離装置3と活性炭添加設備8を接続させた点が異なり、他の構成は実施例7と同様である。
Example 9
Please refer to FIG. However, the same members as those in FIGS. 1, 3, and 4 are denoted by the same reference numerals, and description thereof is omitted.
Compared with Example 7 (see FIG. 3), the ninth embodiment connects the solid-liquid separator 3 and the precoat agent addition equipment 23 with a circulation pipe 21c, and the precoat agent addition equipment 23, the precoat tank 22 and the solid-liquid separation. The point that the apparatus 3 is connected in a loop shape and the point that the solid-liquid separation device 3 and the activated carbon addition facility 8 are connected by the circulation pipe 21d branched from the circulation pipe 21c are different, and the other configuration is the same as that of the seventh embodiment. is there.

実施例9においては、実施例7と同様な効果が得られる他、プレコート剤添加設備23、プレコート槽22及び固液分離装置3を循環配管21cによりループ状に接続させるとともに、固液分離装置3と活性炭添加設備8を循環配管21c、21dにより接続した構成にすることにより、固液分離装置3で分離した活性炭を再利用でき、活性炭添加設備8での活性炭使用量を抑制できるという効果を有する。   In Example 9, the same effects as in Example 7 can be obtained, and the precoat agent addition equipment 23, the precoat tank 22 and the solid-liquid separator 3 are connected in a loop shape by the circulation pipe 21c, and the solid-liquid separator 3 And the activated carbon addition facility 8 are connected by the circulation pipes 21c and 21d, so that the activated carbon separated by the solid-liquid separator 3 can be reused, and the amount of activated carbon used in the activated carbon addition facility 8 can be suppressed. .

(実施例10)
図6を参照する。但し、図1、図4、図5と同部材は同符番を付して説明を省略する。
本実施例10は、実施例8(図4参照)と比べ、固液分離装置3とプレコート剤添加設備23とを循環配管21cで接続し、プレコート剤添加設備23、プレコート槽22及び固液分離装置3をループ状に接続させた点、及び循環配管21cから分岐した循環配管21dにより固液分離装置3と活性炭添加設備8を接続させた点が異なり、他の構成は実施例8と同様である。
(Example 10)
Please refer to FIG. However, the same members as those in FIGS. 1, 4 and 5 are denoted by the same reference numerals, and description thereof is omitted.
Compared with Example 8 (see FIG. 4), the present Example 10 connects the solid-liquid separator 3 and the precoat agent addition equipment 23 with the circulation pipe 21c, and the precoat agent addition equipment 23, the precoat tank 22 and the solid-liquid separation. The point that the apparatus 3 is connected in a loop shape and the point that the solid-liquid separation device 3 and the activated carbon addition facility 8 are connected by the circulation pipe 21d branched from the circulation pipe 21c are different, and the other configuration is the same as that of the eighth embodiment. is there.

実施例10においては、実施例8と同様な効果が得られる他、プレコート剤添加設備23、プレコート槽22及び固液分離装置3を循環配管21cによりループ状に接続させるとともに、固液分離装置3と活性炭添加設備8を循環配管21c、21dにより接続した構成にすることにより、固液分離装置3で分離した活性炭を再利用でき、活性炭添加設備8での活性炭使用量を抑制できるという効果を有する。   In Example 10, the same effects as in Example 8 can be obtained, and the precoat agent addition equipment 23, the precoat tank 22 and the solid-liquid separator 3 are connected in a loop shape by the circulation pipe 21c, and the solid-liquid separator 3 And the activated carbon addition facility 8 are connected by the circulation pipes 21c and 21d, so that the activated carbon separated by the solid-liquid separator 3 can be reused, and the amount of activated carbon used in the activated carbon addition facility 8 can be suppressed. .

(実施例11)
図7を参照する。但し、図1、図3、図5と同部材は同符番を付して説明を省略する。
本実施例11は、実施例9(図5参照)と比べ、固液分離装置3とプレコート剤添加設備23を接続する循環配管21cに活性炭を再生する機能を有する再生設備24を介装した点が異なり、他は実施例9と同様である。実施例11によれば、実施例9と同様な効果が得られる他、プレコート剤添加設備23、プレコート槽22、固液分離装置3及び再生装置24を循環配管21cによりループ状に接続させるとともに、固液分離装置3と再生装置24と活性炭添加設備8を循環配管21c、21dにより接続した構成にすることにより、再生装置24により活性炭を再生できるので、実施例9と比べて活性炭添加設備8での活性炭使用量をいっそう抑制できるという効果を有する。
(Example 11)
Please refer to FIG. However, the same members as those in FIGS. 1, 3, and 5 are denoted by the same reference numerals, and description thereof is omitted.
The present Example 11 compared with Example 9 (refer FIG. 5) that the reproduction | regeneration equipment 24 which has the function to reproduce | regenerate activated carbon was interposed in the circulation piping 21c which connects the solid-liquid separator 3 and the precoat agent addition equipment 23. Are the same as those in the ninth embodiment. According to Example 11, in addition to the same effects as in Example 9, the precoat agent addition equipment 23, the precoat tank 22, the solid-liquid separator 3 and the regenerator 24 are connected in a loop shape by the circulation pipe 21c, Since the solid-liquid separator 3, the regenerator 24, and the activated carbon addition facility 8 are connected by the circulation pipes 21 c and 21 d, the activated carbon can be regenerated by the regenerator 24. This has the effect of further reducing the amount of activated carbon used.

(実施例12)
図8を参照する。但し、図1、図2、図4、図6、図7と同部材は同符番を付して説明を省略する。
本実施例12は、実施例10(図6参照)と比べ、固液分離装置3とプレコート剤添加設備23を接続する循環配管21cに活性炭を再生する機能を有する再生設備24を介装した点を除き、他は実施例10と同様である。実施例12によれば、実施例10と同様な効果が得られる他、プレコート剤添加設備23、プレコート槽22及び固液分離装置3を循環配管21cによりループ状に接続させるとともに、固液分離装置3と活性炭添加設備8を循環配管21c、21dにより接続した構成にすることにより、再生装置24により活性炭を再生できるので、実施例10と比べて活性炭添加設備8での活性炭使用量をいっそう抑制できるという効果を有する。
(Example 12)
Please refer to FIG. 1, FIG. 2, FIG. 4, FIG. 6 and FIG.
Compared with Example 10 (see FIG. 6), this Example 12 is provided with a regeneration facility 24 having a function of regenerating activated carbon in a circulation pipe 21c that connects the solid-liquid separator 3 and the precoat agent addition facility 23. Except for, the others are the same as in Example 10. According to the twelfth embodiment, the same effects as in the tenth embodiment can be obtained, and the precoat agent addition equipment 23, the precoat tank 22 and the solid / liquid separation device 3 are connected in a loop shape by the circulation pipe 21c, and the solid / liquid separation device. Since the activated carbon can be regenerated by the regenerator 24 by connecting the 3 and the activated carbon addition facility 8 with the circulation pipes 21c and 21d, the amount of activated carbon used in the activated carbon addition facility 8 can be further suppressed as compared with the tenth embodiment. It has the effect.

(実施例13)
本実施例13では、上記実施例1〜12において、活性炭として平均粒径20μm未満の微粉炭を活性炭添加設備から着水井に供給する場合について実施した。実施例13によれば、微粉炭を用いることにより、比表面積が大きくなり、活性炭の投入量を抑制することができる。
(Example 13)
In this Example 13, in the said Examples 1-12, it implemented about the case where the pulverized coal with an average particle diameter of less than 20 micrometers is supplied to a receiving well from activated carbon addition equipment as activated carbon. According to Example 13, by using pulverized coal, the specific surface area is increased, and the input amount of activated carbon can be suppressed.

(実施例14)
図9を参照する。但し、図1、図3、図5、図7と同部材は同符番を付して説明を省略する。
本実施例14は、実施例11(図7参照)と比べ、沈砂池1と着水井2を接続する配管21eの途中と活性炭添加設備8間の配管、及び着水井2と固液分離装置3を接続する配管21aの途中と活性炭添加設備8間の配管に夫々水質を検知する計測計25,26を設けた点が異なり、他は実施例11と同様である。計測計は、オンライン測定できることが望ましく、例えば、濁度計、紫外吸光光度計、蛍光強度計などを用いることができる。
実施例14によれば、計測計25,26の配置により活性炭添加設備8からの活性炭の投入量を制御でき、過剰な活性炭注入を抑制して使用量を適正化することができる。なお、計測計の配置は、計測計25,26のいずれか一方でもよい。
(Example 14)
Please refer to FIG. However, the same members as those in FIGS. 1, 3, 5, and 7 are denoted by the same reference numerals, and description thereof is omitted.
Compared with Example 11 (see FIG. 7), the present Example 14 is a pipe between the sedimentation basin 1 and the landing well 2 and a pipe between the activated carbon addition facility 8 and the landing well 2 and the solid-liquid separator 3. The other points are the same as in Example 11 except that measuring meters 25 and 26 for detecting water quality are provided in the middle of the pipe 21a connecting the pipes and the pipe between the activated carbon addition facilities 8 respectively. The measuring instrument is desirably capable of online measurement, and for example, a turbidimeter, an ultraviolet absorptiometer, a fluorescence intensity meter, or the like can be used.
According to the fourteenth embodiment, the amount of activated carbon charged from the activated carbon addition facility 8 can be controlled by the arrangement of the measuring meters 25 and 26, and excessive use of activated carbon can be suppressed to optimize the amount used. The arrangement of the measuring instrument may be one of the measuring instruments 25 and 26.

(実施例15)
図10を参照する。但し、図2、図4、図6、図8、図9と同部材は同符番を付して説明を省略する。
本実施例15は、実施例12(図8参照)と比べ、沈砂池1と着水井2を接続する配管21eの途中と活性炭添加設備8間の配管、及び着水井2と混和池4を接続する配管21fの途中と活性炭添加設備8間の配管に夫々水質を検知する計測計25,26を設けた点を除き、他は実施例12と同様である。計測計は、実施例14の場合と同様であり、計測計25,26のいずれか一方を配置してもよい。実施例15によれば、実施例14と同様な効果が得られる。
(Example 15)
Please refer to FIG. 2, FIG. 4, FIG. 6, FIG. 8 and FIG.
Compared to Example 12 (see FIG. 8), the present Example 15 connects the pipe 21e connecting the sedimentation basin 1 and the landing well 2 and the pipe between the activated carbon addition facility 8 and the landing well 2 and the mixing basin 4. Except that the measuring meters 25 and 26 for detecting the water quality are provided in the middle of the piping 21f and the piping between the activated carbon addition facilities 8, respectively, the others are the same as in the twelfth embodiment. The measuring instrument is the same as in the case of the fourteenth embodiment, and either one of the measuring instruments 25 and 26 may be arranged. According to the fifteenth embodiment, the same effects as in the fourteenth embodiment can be obtained.

(実施例16)
図11を参照する。但し、図1、図3、図4、図5、図7、図9と同部材は同符番を付して説明を省略する。
本実施例16は、実施例14(図9参照)と比べ、固液分離装置3と混和池4を接続する配管21gの途中と凝集剤添加設備9間の配管、及び混和池4とフロック形成池5を接続する配管21hの途中と凝集剤添加設備9間の配管に夫々水質を検知する計測計27,28を設けた点が異なり、他は実施例14と同様である。ここで、計測計としては、オンライン測定できることが望ましく、例えば、濁度計、流動電流計などを用いることができる。
(Example 16)
Refer to FIG. 1, FIG. 3, FIG. 4, FIG. 5, FIG. 7, and FIG.
Compared to Example 14 (see FIG. 9), this Example 16 is in the middle of the pipe 21g connecting the solid-liquid separator 3 and the mixing basin 4 and between the flocculant addition equipment 9, and the mixing basin 4 and floc formation. The other points are the same as in Example 14 except that measuring meters 27 and 28 for detecting water quality are provided in the middle of the pipe 21h connecting the pond 5 and the pipe between the flocculant addition equipment 9 respectively. Here, as a measuring meter, it is desirable to be able to measure online, for example, a turbidity meter, a flow ammeter, etc. can be used.

実施例16によれば、計測計27,28の配置により凝集剤添加設備9からの凝集剤の投入量を制御でき、過剰な凝集剤注入を抑制して使用量を適正化することができる。なお、計測計の配置は、計測計27,28のいずれか一方でもよい。   According to the sixteenth embodiment, the amount of the flocculant fed from the flocculant addition facility 9 can be controlled by the arrangement of the measuring meters 27 and 28, and excessive use of the flocculant can be suppressed to optimize the amount used. The arrangement of the measuring instrument may be one of the measuring instruments 27 and 28.

(実施例17)
図12を参照する。但し、図2、図4、図6、図8、図10、図11と同部材は同符番を付して説明を省略する。
本実施例17は、実施例15(図10参照)と比べ、着水井24と混和池4を接続する配管21fの途中と凝集剤添加設備9間の配管、及び混和池4とフロック形成池5を接続する配管21iの途中と凝集剤添加設備9間の配管に夫々水質を検知する計測計27,28を設けた点が異なり、他は実施例15と同様である。計測計は、実施例16の場合と同様であり、計測計27,28のいずれか一方を配置してもよい。実施例17によれば、実施例16と同様な効果が得られる。
(Example 17)
Please refer to FIG. 2, FIG. 4, FIG. 6, FIG. 8, FIG. 10, and FIG.
Compared with Example 15 (see FIG. 10), Example 17 is a part of the pipe 21 f connecting the landing well 24 and the mixing basin 4 and the pipe between the flocculant addition equipment 9, and the mixing basin 4 and the flock formation pond 5. The other points are the same as those of the fifteenth embodiment except that the measuring meters 27 and 28 for detecting the water quality are provided in the middle of the pipe 21i connecting the pipes and the pipe between the flocculant addition equipment 9 respectively. The measuring instrument is the same as that of the sixteenth embodiment, and either one of the measuring instruments 27 and 28 may be arranged. According to the seventeenth embodiment, the same effect as the sixteenth embodiment can be obtained.

(実施例18)
図13を参照する。但し、図1、図3、図5、図7、図9、図11と同部材は同符番を付して説明を省略する。
本実施例18は、実施例16(図11参照)と比べ、膜ろ過装置6に給湯装置29を接続した点が異なり、他は実施例16と同様である。給湯装置29は、膜ろ過装置6を原水より高い温度で定期的に洗浄する機能を有する。ここで、給湯装置29としては、省エネ機器であるヒートポンプや太陽光を利用したものであることが望ましい。実施例18によれば、膜ろ過装置6は通常の膜の処理水による逆洗に加え、定期的に原水よりも高い温度で洗浄することにより、膜面に付着した汚れとともに、微細な粉末活性炭を効果的に除去することができる。
(Example 18)
Please refer to FIG. 1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, and FIG.
This Example 18 is the same as Example 16 except that a hot water supply device 29 is connected to the membrane filtration device 6 as compared to Example 16 (see FIG. 11). The hot water supply device 29 has a function of periodically cleaning the membrane filtration device 6 at a temperature higher than that of the raw water. Here, as the hot water supply device 29, it is desirable to use a heat pump that is an energy saving device or sunlight. According to Example 18, in addition to backwashing with normal membrane treated water, the membrane filtration device 6 is periodically washed at a temperature higher than that of the raw water, so that fine powdered activated carbon is obtained along with dirt adhering to the membrane surface. Can be effectively removed.

(実施例19)
図14を参照する。但し、図1、図2、図4、図6、図10〜図13と同部材は同符番を付して説明を省略する。
本実施例19は、実施例17(図11参照)と比べ、膜ろ過装置6に給湯装置29を接続した点が異なり、他は実施例17と同様である。実施例19によれば、実施例18と同様の効果を有する。
(Example 19)
Refer to FIG. 1, FIG. 2, FIG. 4, FIG. 6, and FIG. 10 to FIG.
This Example 19 is the same as Example 17 except that the hot water supply device 29 is connected to the membrane filtration device 6 as compared to Example 17 (see FIG. 11). According to the nineteenth embodiment, the same effects as in the eighteenth embodiment are obtained.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。具体的には、上記実施例9〜19においては、プレコート剤添加設備、プレコート槽及び固液分離装置への循環ラインを用いる場合について述べたが、これに限らず、固液分離装置として液体サイクロンを用いる場合には前記循環ラインを省略することができる。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1] 水源から取水した原水を貯留する着水井と、前記着水井に活性炭を供給する活性炭添加設備と、処理すべき原水に含まれる活性炭を水から分離する固液分離装置と、凝集剤を供給する凝集剤添加設備と、フロックを形成させるためのフロック形成池と、水と不溶解性成分を分離する膜ろ過装置とを備え、前記着水井の後段に前記固液分離装置が設置されていることを特徴とする膜ろ過処理システム。
[2] 水源から取水した原水を貯留する着水井と、前記着水井に活性炭を供給する活性炭添加設備と、処理すべき原水に含まれる活性炭を水から分離する固液分離装置と、凝集剤を供給する凝集剤添加設備と、フロックを形成させるためのフロック形成池と、水と溶質成分を分離する膜ろ過装置とを備え、前記フロック形成池の後段に前記固液分離装置が設置されていることを特徴とする膜ろ過処理システム。
[3] 前記固液分離装置は、活性炭と水との比重差と遠心力を利用して活性炭を水から分離する機能を有していることを特徴とする[1]または[2]記載のろ過膜処理システム。
[4] 前記活性炭は、平均粒径150μm未満の粉末活性炭であることを特徴とする[1]乃至[3]いずれか一記載のろ過膜処理システム。
[5] 前記固液分離装置は、金属またはセラミックを主材料とする膜フィルタを有することを特徴とする[1]乃至[3]いずれか一記載のろ過膜処理システム。
[6] プレコート助剤とプレコート液を混合するプレコート槽と、前記前記固体液分離装置の上流側に接続された,プレコート槽にプレコート助剤を供給するプレコート剤添加設備とを有することを特徴とする[5]記載の膜ろ過処理システム。
[7] 前記固液分離装置と前記活性炭添加設備またはプレコート剤添加設備とを接続する循環配管を設け、固液分離装置で分離された活性炭が再利用される構成であることを特徴とする[6]記載の膜ろ過処理システム。
[8] 前記固液分離装置と前記活性炭添加設備またはプレコート剤添加設備とを接続する循環配管に、活性炭を再生する機能を有する再生設備が介装されていることを特徴とする[7]記載の膜ろ過処理システム。
[9] 前記活性炭添加設備から着水池への活性炭の注入点の前段および後段の少なくとも一方に、水質を検知する計測手段を有し、活性炭添加設備からの活性炭の投入量を調整する構成であることを特徴とする前記[1]及至[8]いずれか一記載の膜ろ過処理システム。
[10] 凝集剤を添加して攪拌するための混和池を前記固液分離装置の上流側又は下流側に備え、凝集剤添加装置から混和池への凝集剤の注入点の前段および後段の少なくとも一方に、水質を検知する計測手段を有し、凝集剤添加装置からの凝集剤の投入量を調整する構成であることを特徴とする前記[1]及至[9]いずれか一記載の膜ろ過処理システム。
[11] 前記膜ろ過装置を原水よりも高い温度で定期的に洗浄するための給湯装置が膜ろ過装置に接続されていることを特徴とする前記[1]及至[10]いずれか一記載の膜ろ過処理システム。
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment. Specifically, in Examples 9 to 19 described above, the case of using a precoat agent addition facility, a precoat tank, and a circulation line to a solid-liquid separator is described, but the present invention is not limited to this, and a liquid cyclone is used as a solid-liquid separator. In the case of using, the circulation line can be omitted.
Hereinafter, the invention described in the scope of claims of the present application will be appended.
[1] A landing well that stores raw water taken from a water source, an activated carbon addition facility that supplies activated carbon to the landing well, a solid-liquid separation device that separates activated carbon contained in the raw water to be treated from water, and a flocculant A flocculant addition facility to be supplied, a floc formation pond for forming flocs, and a membrane filtration device for separating water and insoluble components, and the solid-liquid separation device is installed at the subsequent stage of the landing well A membrane filtration treatment system characterized by
[2] A landing well that stores raw water taken from a water source, an activated carbon addition facility that supplies activated carbon to the landing well, a solid-liquid separation device that separates activated carbon contained in the raw water to be treated from water, and a flocculant A flocculant addition facility to be supplied, a floc formation pond for forming flocs, and a membrane filtration device for separating water and solute components are provided, and the solid-liquid separation device is installed downstream of the floc formation ponds A membrane filtration processing system characterized by that.
[3] The solid-liquid separator has a function of separating activated carbon from water using a difference in specific gravity between activated carbon and water and centrifugal force, according to [1] or [2] Filtration membrane processing system.
[4] The filtration membrane treatment system according to any one of [1] to [3], wherein the activated carbon is powdered activated carbon having an average particle size of less than 150 μm.
[5] The filtration membrane treatment system according to any one of [1] to [3], wherein the solid-liquid separation device includes a membrane filter mainly made of metal or ceramic.
[6] A precoat tank for mixing a precoat auxiliary agent and a precoat liquid, and a precoat agent addition facility for supplying the precoat auxiliary agent to the precoat tank connected to the upstream side of the solid liquid separator. The membrane filtration processing system according to [5].
[7] A circulation pipe for connecting the solid-liquid separator and the activated carbon addition facility or the precoat agent addition facility is provided, and the activated carbon separated by the solid-liquid separator is reused. 6] The membrane filtration processing system according to the above.
[8] A regenerating facility having a function of regenerating activated carbon is interposed in a circulation pipe connecting the solid-liquid separator and the activated carbon addition facility or the precoat agent addition facility. Membrane filtration treatment system.
[9] At least one of the upstream and downstream of the injection point of activated carbon from the activated carbon addition facility to the landing pond has a measuring means for detecting water quality, and the amount of activated carbon input from the activated carbon addition facility is adjusted. The membrane filtration treatment system according to any one of [1] to [8], wherein
[10] A mixing pond for adding and stirring the flocculant is provided on the upstream side or the downstream side of the solid-liquid separator, and at least before and after the injection point of the flocculant from the flocculant adding apparatus to the mixing basin. On the other hand, the membrane filtration according to any one of [1] to [9], wherein the membrane filtration has a measuring means for detecting water quality and adjusts the amount of flocculant charged from the flocculant addition device. Processing system.
[11] The hot water supply device for periodically washing the membrane filtration device at a temperature higher than that of raw water is connected to the membrane filtration device, [1] to [10], Membrane filtration system.

1…沈砂池、2…着水井、3…固液分離装置、4…混和池、5…フロック形成池、6,16…膜ろ過装置、7…浄水池、8…活性炭添加設備、9…凝集剤添加設備、22…プレコート槽、23…プレコート剤添加設備、24…再生設備、25〜28…計測計、29…給湯装置。   DESCRIPTION OF SYMBOLS 1 ... Sand basin, 2 ... Landing well, 3 ... Solid-liquid separator, 4 ... Mixing pond, 5 ... Flock formation pond, 6, 16 ... Membrane filtration device, 7 ... Purification pond, 8 ... Activated carbon addition equipment, 9 ... Aggregation Agent addition equipment, 22 ... Precoat tank, 23 ... Precoat agent addition equipment, 24 ... Regeneration equipment, 25-28 ... Measuring instrument, 29 ... Hot water supply apparatus.

Claims (8)

水源から取水した原水を貯留する着水井と、
前記着水井に活性炭を供給する活性炭添加設備と、
前記着水井の下流側に配置されて処理すべき原水に含まれる活性炭を水から分離する液体サイクロンと、
この液体サイクロンの下流側に配置された混和池と、
この混和池に凝集剤を供給する凝集剤添加設備と、
前記混和池の下流側に配置され,活性炭と凝集剤により生成したフロックを成長させるためのフロック形成池と、
このフロック形成池の下流側に配置されて水と不溶解性成分を分離する、精密ろ過膜,限外ろ過膜,ナノろ過膜あるいは逆浸透膜のいずれかとを備えていることを特徴とする膜ろ過処理システム。
A landing well for storing raw water taken from a water source;
Activated carbon addition equipment for supplying activated carbon to the landing well;
A liquid cyclone for separating activated carbon contained in raw water to be treated by being disposed downstream of the landing well, from water;
A mixing pond arranged downstream of this hydrocyclone,
A flocculant addition facility for supplying the flocculant to the mixing pond ;
A floc-forming pond disposed on the downstream side of the mixing pond for growing flocs generated by activated carbon and a flocculant ;
Membrane characterized by comprising a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, or a reverse osmosis membrane, which is disposed downstream of this floc formation pond and separates water and insoluble components. Filtration processing system.
水源から取水した原水を貯留する着水井と、
前記着水井に活性炭を供給する活性炭添加設備と、
前記着水井の下流側に配置された混和池と、
この混和池に凝集剤を供給する凝集剤添加設備と、
前記混和池の下流側に配置され,活性炭と凝集剤により生成したフロックを成長させるためのフロック形成池と、
このフロック形成池の下流側に配置されて処理すべき原水に含まれる活性炭を水から分離する液体サイクロンと、
この液体サイクロンの下流側に配置されて水と溶質成分を分離する、精密ろ過膜,限外ろ過膜,ナノろ過膜あるいは逆浸透膜のいずれかとを備えていることを特徴とする膜ろ過処理システム。
A landing well for storing raw water taken from a water source;
Activated carbon addition equipment for supplying activated carbon to the landing well;
A mixing pond disposed downstream of the landing well;
A flocculant addition facility for supplying the flocculant to the mixing pond ;
A floc-forming pond disposed on the downstream side of the mixing pond for growing flocs generated by activated carbon and a flocculant ;
A liquid cyclone that separates the activated carbon contained in the raw water to be treated by being disposed downstream of this floc formation pond from the water;
A membrane filtration processing system comprising a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, or a reverse osmosis membrane, which is disposed downstream of the hydrocyclone and separates water and solute components. .
前記活性炭は、平均粒径150μm未満の粉末活性炭であることを特徴とする請求項1または2記載のろ過膜処理システム。 The filtration membrane treatment system according to claim 1 , wherein the activated carbon is powdered activated carbon having an average particle size of less than 150 μm. 前記液体サイクロンと前記活性炭添加設備とを接続する循環配管を設け、液体サイクロンで分離された活性炭が再利用される構成であることを特徴とする請求項3記載の膜ろ過処理システム。 The membrane filtration processing system according to claim 3 , wherein a circulation pipe for connecting the liquid cyclone and the activated carbon addition facility is provided, and the activated carbon separated by the liquid cyclone is reused. 前記液体サイクロンと前記活性炭添加設備とを接続する循環配管に、活性炭を再生する機能を有する再生設備が介装されていることを特徴とする請求項4記載の膜ろ過処理システム。 The membrane filtration processing system according to claim 4 , wherein a regeneration facility having a function of regenerating activated carbon is interposed in a circulation pipe connecting the hydrocyclone and the activated carbon addition facility . 前記活性炭添加設備から着水への活性炭の注入点の前段および後段の少なくとも一方に、水質を検知する計測手段を有し、活性炭添加設備からの活性炭の投入量を調整する構成であることを特徴とする請求項1及至5いずれか一記載の膜ろ過処理システム。 At least one of the upstream and downstream stages of the activated carbon injection point from the activated carbon addition facility to the landing well has a measuring means for detecting water quality, and is configured to adjust the input amount of activated carbon from the activated carbon addition facility. The membrane filtration treatment system according to any one of claims 1 to 5, characterized in that 凝集剤を添加して攪拌するための混和池を前記液体サイクロンの上流側又は下流側に備え、凝集剤添加装置から混和池への凝集剤の注入点の前段および後段の少なくとも一方に、水質を検知する計測手段を有し、凝集剤添加装置からの凝集剤の投入量を調整する構成であることを特徴とする請求項1及至6いずれか一記載の膜ろ過処理システム。 A mixing pond for adding and stirring the flocculant is provided on the upstream side or downstream side of the hydrocyclone , and water quality is added to at least one of the front and rear stages of the flocculant injection point from the flocculant addition device to the mixing pond. The membrane filtration processing system according to any one of claims 1 to 6 , wherein the membrane filtration processing system has a measuring means to detect and adjusts the amount of the flocculant charged from the flocculant addition device. 前記精密ろ過膜,限外ろ過膜,ナノろ過膜あるいは逆浸透膜のいずれかに、原水よりも高い温度で定期的に洗浄するための給湯装置が接続されていることを特徴とする請求項1及至7いずれか一記載の膜ろ過処理システム。 The microfiltration membrane, ultrafiltration membrane, to one of the nanofiltration membrane or the reverse osmosis membrane, claim, characterized in that the hot water supply device for periodically cleaning at temperatures higher than the raw water is connected 1 The membrane filtration treatment system according to any one of 7 to 7 .
JP2009295622A 2009-12-25 2009-12-25 Membrane filtration system Active JP5085634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295622A JP5085634B2 (en) 2009-12-25 2009-12-25 Membrane filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295622A JP5085634B2 (en) 2009-12-25 2009-12-25 Membrane filtration system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012194702A Division JP5524299B2 (en) 2012-09-05 2012-09-05 Membrane filtration system

Publications (2)

Publication Number Publication Date
JP2011131191A JP2011131191A (en) 2011-07-07
JP5085634B2 true JP5085634B2 (en) 2012-11-28

Family

ID=44344507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295622A Active JP5085634B2 (en) 2009-12-25 2009-12-25 Membrane filtration system

Country Status (1)

Country Link
JP (1) JP5085634B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490362B1 (en) * 2012-01-16 2015-02-11 지에스건설 주식회사 Apparatus for removing natural organic matters for water treatment using coagulant and cabon nano tube
JP5885551B2 (en) * 2012-03-19 2016-03-15 株式会社東芝 Seawater desalination equipment
JP7195809B2 (en) * 2018-08-14 2022-12-26 株式会社東芝 Controller and solid-liquid separation system
CN109133433B (en) * 2018-10-17 2020-10-30 清华大学 Organic pollution blockage control method for reverse osmosis membrane
CN111762921A (en) * 2020-07-21 2020-10-13 北京市高速公路交通工程有限公司 Movable sewage emergency treatment equipment and process
IT202000020536A1 (en) * 2020-08-27 2022-02-27 Ecospray Tech Srl SYSTEM AND METHOD FOR THE TREATMENT OF POLLUTED WATER, IN PARTICULAR FROM HEAVY METALS
CN115537274A (en) * 2022-10-14 2022-12-30 安徽富德环保设备有限公司 Special cleaning agent for slag-separation ceramic filter plate and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2596907B1 (en) * 1986-04-04 1988-07-01 Technicatome METHOD AND DEVICE FOR TREATING FLUIDS CONTAINING SUSPENDED PARTICLES
JP2691846B2 (en) * 1993-04-01 1997-12-17 東芝セラミックス株式会社 Solid-liquid separation method and apparatus
JP3442844B2 (en) * 1994-02-15 2003-09-02 三菱重工業株式会社 Method for treating wastewater containing surfactants and fats and oils
JPH08309109A (en) * 1995-05-15 1996-11-26 Hitachi Ltd Controlling device for pouring chemical in water purification plant
JP2000015062A (en) * 1998-07-01 2000-01-18 Toray Ind Inc Membrane filter
JP2000279947A (en) * 1999-03-29 2000-10-10 Kurita Water Ind Ltd Water treatment device by activated carbon
JP2002166265A (en) * 2000-11-30 2002-06-11 Toshiba Corp Water treatment control system using fluorometric analyzer
JP2006102620A (en) * 2004-10-05 2006-04-20 Japan Organo Co Ltd Apparatus and method for treating water
JP5089211B2 (en) * 2007-03-23 2012-12-05 メタウォーター株式会社 Water purification method

Also Published As

Publication number Publication date
JP2011131191A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5524299B2 (en) Membrane filtration system
JP5085634B2 (en) Membrane filtration system
Ince et al. Further treatment of landfill leachate by nanofiltration and microfiltration–PAC hybrid process
JP4653826B2 (en) Solid-liquid separator
Mikhak et al. Refinery and petrochemical wastewater treatment
BR112014031141B1 (en) DECONTAMINATION SYSTEM TO REMOVE A CONTAMINANT FROM AN INLET FLUID INCLUDING THE CONTAMINANT AND A METHOD FOR SEPARATING AN INLET FLUID
KR100611171B1 (en) Advanced water treatment using membrane Filtration
WO2013031689A1 (en) Method and apparatus for purifying water containing radioactive substance and/or heavy metal
Li et al. Effect of powdered activated carbon on immersed hollow fiber ultrafiltration membrane fouling caused by particles and natural organic matter
Loganathan et al. Submerged membrane/adsorption hybrid process in water reclamation and concentrate management—a mini review
JP2017518177A (en) A method for treating water by adsorption and filtration in a granular material bed.
Yu et al. Effect of powder-activated carbon pre-coating membrane on the performance of the UF system for wastewater reclamation: a pilot-scale study
KR101642087B1 (en) Improved method and apparatus for water treatment by using active carbon
JPH10192851A (en) Water purifying treatment apparatus
JPH09248572A (en) Membrane filter and method thereof
Li et al. Removal of different fractions of NOM foulants during demineralized water backwashing
JP7113454B2 (en) Water treatment method and equipment
CN205442889U (en) Coking wastewater treatment device
JP2002346548A (en) Method for utilizing used active carbon
JP5715992B2 (en) Radioactive cesium-containing water treatment method, fly ash treatment method, radioactive cesium-containing water treatment device, and fly ash treatment device
Jirankova et al. Combined membrane process at wastewater treatment
JP4020877B2 (en) Dye recovery method and dye recovery system
JP2003340247A (en) Device and method for treating water
CN203613073U (en) Recycled water reuse system applied in electroplating effluent treatment
CN109264931A (en) A kind of waste water reuse treatment method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R151 Written notification of patent or utility model registration

Ref document number: 5085634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3