JP5084369B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5084369B2
JP5084369B2 JP2007169704A JP2007169704A JP5084369B2 JP 5084369 B2 JP5084369 B2 JP 5084369B2 JP 2007169704 A JP2007169704 A JP 2007169704A JP 2007169704 A JP2007169704 A JP 2007169704A JP 5084369 B2 JP5084369 B2 JP 5084369B2
Authority
JP
Japan
Prior art keywords
coating layer
substrate
oxygen
interface
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007169704A
Other languages
Japanese (ja)
Other versions
JP2009006439A (en
Inventor
ヨウセン シュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007169704A priority Critical patent/JP5084369B2/en
Publication of JP2009006439A publication Critical patent/JP2009006439A/en
Application granted granted Critical
Publication of JP5084369B2 publication Critical patent/JP5084369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は基体の表面に被覆層を成膜してなる切削工具に関する。   The present invention relates to a cutting tool formed by forming a coating layer on the surface of a substrate.

現在、切削工具や耐摩部材、摺動部材といった摺動性や耐摩耗性、耐欠損性を必要とする部材では、WC基超硬合金、TiCN基サーメット等の硬質材料の表面に様々な被覆層を成膜して摺動性、耐摩耗性、耐欠損性を向上させる手法が使われている。   Currently, various coating layers on the surface of hard materials such as WC-based cemented carbide, TiCN-based cermet, etc. for members that require slidability, wear resistance, and fracture resistance, such as cutting tools, wear-resistant members, and sliding members A method of improving the sliding property, wear resistance, and fracture resistance by forming a film is used.

例えば、特許文献1では、超硬合金からなる刃先部分の表面に物理蒸着(PVD)法による被覆層を被覆した回転工具において、下地母材の表面における界面に母材または被覆層中の元素が他方へ拡散した拡散層を0.1〜0.5μmの厚さで形成することが開示されており、被覆層の付着力を高めることが記載されている。   For example, in Patent Document 1, in a rotary tool in which a surface of a cutting edge portion made of cemented carbide is coated with a coating layer by a physical vapor deposition (PVD) method, an element in the base material or the coating layer is present at the interface on the surface of the base material. It is disclosed that the diffusion layer diffused to the other side is formed with a thickness of 0.1 to 0.5 μm, and it is described that the adhesion of the coating layer is increased.

また、特許文献2では、超硬合金基体を高真空中で熱処理することによって、基体の表面に存在する結合相形成成分を揮散させて基体表面におけるタングステンの濃度を相対的に高めるとともに基体表面を粗化することができること、そして、この表面に硬質層を被覆すると、粗化した基体の空隙に硬質層の成分が入り込むとともに表面のタングステンが硬質層中に拡散侵入して、硬質層の密着性を高めることができることが記載されている。さらに、同号公報によれば、特許文献3および特許文献4についても言及され、超硬合金基体の表面を硝酸等の腐蝕液でエッチングして基体の表面を粗面とし、これに硬質層を被覆した場合、基体と硬質層との間に酸化膜が形成されて硬質膜が剥離しやすくなってしまうことが開示されている。   Further, in Patent Document 2, the cemented carbide substrate is heat-treated in a high vacuum to volatilize the binder phase forming component existing on the surface of the substrate to relatively increase the tungsten concentration on the substrate surface and When the hard layer can be roughened, and when the hard layer is coated on the surface, the hard layer components enter the voids of the roughened substrate and the surface tungsten diffuses and penetrates into the hard layer. It is described that can be increased. Further, according to the publication, Patent Document 3 and Patent Document 4 are also mentioned, and the surface of the cemented carbide substrate is etched with a corrosive solution such as nitric acid to make the surface of the substrate rough, and a hard layer is formed thereon. It is disclosed that when coated, an oxide film is formed between the substrate and the hard layer, and the hard film is easily peeled off.

また、特許文献5では、基体の表面に、物理蒸着によるTiAl(C)N組成の硬質被覆層を成膜し、かつその表面に最表面下地層のTiO(v=1.2〜1.7)と、最表面層のTiN膜を成膜した切削工具が開示され、TiN膜の密着性を高めることができて硬質被覆層のチッピングを防止できることが記載されている。
特開昭60−238214号公報 特開平4−87706号公報 特開昭62−174380号公報 特開昭63−60280号公報 特開2002−120104号公報
In Patent Document 5, a hard coating layer having a TiAl (C) N composition by physical vapor deposition is formed on the surface of a substrate, and TiO v (v = 1.2 to 1.. 7) and a cutting tool on which a TiN film of the outermost surface layer is formed is disclosed, and it is described that the adhesion of the TiN film can be improved and chipping of the hard coating layer can be prevented.
JP-A-60-238214 JP-A-4-87706 JP-A-62-174380 JP 63-60280 A JP 2002-120104 A

しかしながら、上記特許文献1のように超硬合金基体と被覆層との界面で互いの成分が相互に拡散した場合には、被覆層の密着性は向上するものの、この切削工具を高速切削条件や難削材の切削のように切刃周辺が高温となる加工に使用する場合には、摩耗の進行が早くて工具寿命が短いという問題があった。その理由は、切削工具の切刃周辺が高温となると、切削中に基体を構成する成分が被覆層側に拡散する現象が起きる。その結果、基体と被覆層との界面に結合相が欠乏した領域ができてしまい、界面における被覆層の密着性が損なわれるとともに、被覆層内へW(タングステン)等の硬質相成分やCoの拡散が進行して被覆層の硬度が低下し、被覆層の耐摩耗性が低下するという問題があった。   However, when the components mutually diffuse at the interface between the cemented carbide substrate and the coating layer as in Patent Document 1, the adhesion of the coating layer is improved. When used for processing where the periphery of the cutting edge becomes high, such as when cutting difficult-to-cut materials, there is a problem that wear progresses quickly and tool life is short. The reason for this is that when the temperature around the cutting edge of the cutting tool becomes high, a component that constitutes the substrate diffuses to the coating layer side during cutting. As a result, a region lacking a binder phase is formed at the interface between the substrate and the coating layer, and the adhesion of the coating layer at the interface is impaired, and a hard phase component such as W (tungsten) or Co There is a problem in that the diffusion progresses, the hardness of the coating layer decreases, and the wear resistance of the coating layer decreases.

また、特許文献2のように、基体表面の結合相を揮散させて結合相濃度を低めるとともに相対的に基体表面におけるタングステンの濃度を高めて基体から被覆層側に拡散させる構成とした場合でも、切刃周辺が高温となった場合には基体を構成する成分が被覆層側に拡散することを抑制する効果は小さく、やはり界面に結合相が欠乏した領域ができて界面における被覆層の密着性が損なわれるとともに、被覆層内にWやCoが多量に拡散して被覆層の耐摩耗性が悪化する場合があった。   Further, as in Patent Document 2, even when the binder phase on the substrate surface is volatilized to lower the binder phase concentration and the tungsten concentration on the substrate surface is relatively increased and diffused from the substrate to the coating layer side, When the temperature around the cutting edge becomes high, the effect of suppressing the diffusion of the components constituting the substrate toward the coating layer is small, and there is still a region where the binder phase is deficient at the interface, and the adhesion of the coating layer at the interface In some cases, W and Co diffused in the coating layer in a large amount and the wear resistance of the coating layer deteriorated.

さらに、特許文献5のように、超硬合金基体の表面にTiAlN層を被覆し、その表面にTiO層とTiN層とを順に被覆した場合、TiN層の密着性は向上するものの、基体とTiAlN層との界面においては切刃周辺が高温となった際に基体を構成する成分が被覆層に拡散することを防止できず、界面における被覆層の密着性および被覆層の耐摩耗性が低下するおそれがあった。 Furthermore, as in Patent Document 5, when a TiAlN layer is coated on the surface of a cemented carbide substrate and a TiO V layer and a TiN layer are sequentially coated on the surface, the adhesion of the TiN layer is improved, At the interface with the TiAlN layer, it is not possible to prevent the components constituting the substrate from diffusing into the coating layer when the temperature around the cutting edge becomes high, and the adhesion of the coating layer at the interface and the wear resistance of the coating layer are reduced. There was a risk.

そこで、本発明の切削工具は、上記問題を解決するためのものであり、その目的は、切刃が高温となるような切削条件においても、高い耐欠損性と耐摩耗性を有する切削工具を提供することである。   Therefore, the cutting tool of the present invention is for solving the above-mentioned problems, and its purpose is to provide a cutting tool having high fracture resistance and wear resistance even under cutting conditions in which the cutting edge becomes high temperature. Is to provide.

本発明の切削工具は、Coを含有する非酸化物からなる基体の表面に、Ti1−a−bAl(C1−x−y)(ただし、MはTiを除く周期表4、5、6族元素、Y、HfおよびSiから選ばれる1種以上、0.4≦a≦0.7、0≦b≦0.3、0≦x≦1、0≦y≦1)からなる被覆層を被覆してなり、前記基体と前記被覆層との界面近傍についてのX線光分光分析(XPS)を用いた組成分析データにおいて、酸素を0.5〜10原子%の含有量で前記界面近の他の領域よりも多く含有しているとともに、前記界面近傍の酸素を最も多く含む位置で前記基体中のCo含有量に対して20〜50%の含有量のCoを含有している領域が存在するとともに、該領域よりも基体寄りにさらに1箇所酸素を多く含有している領域が存在するものである。
Cutting tool of the present invention, the surface of the substrate made of a non-oxide containing Co, Ti 1-a-b Al a M b (C x B y N 1-x-y) ( however, M is a Ti Except for periodic table 4, 5, 6 elements, one or more selected from Y, Hf and Si, 0.4 ≦ a ≦ 0.7, 0 ≦ b ≦ 0.3, 0 ≦ x ≦ 1, 0 ≦ y In the composition analysis data using X-ray optical spectroscopy (XPS) for the vicinity of the interface between the substrate and the coating layer, the oxygen is 0.5 to 10 atomic%. together contain more than other regions of the world face the near neighbor in a content, content of 20-50% with respect to the Co content in said substrate with most including positions of oxygen of the vicinity of the interface together with the region containing the Co is present, it contains many further one place of oxygen to the substrate nearer region In which area there are present.

ここで、界面近傍の前記酸素を多く含有している領域の厚みが0.05〜0.4μmであることが望ましい。
Here, the thickness of the region containing a large amount of oxygen in the vicinity of the interface is desirably 0.05 to 0.4 μm.

本発明の切削工具は、非酸化物基体と前記被覆層との界面近傍についてのX線光分光分析(XPS)を用いた組成分析データにおいて、酸素を0.5〜10原子%の含有量で前記界面近の他の領域よりも多く含有しているとともに、前記界面近傍の酸素を最も多く含む位置で前記基体中のCo含有量に対して20〜50%の含有量のCoを含有している領域が存在するとともに、該領域よりも基体寄りにさらに1箇所酸素を多く含有している領域が存在することによって、切削工具を高速切削条件や難削材の切削に使用する場合に切刃周辺が高温となっても基体を構成する成分が際限なく被覆層側に拡散することを防止して基体と被覆層との界面に結合相が欠乏した層ができるのを抑制できる。これによって、被覆層が切削によって密着性が損なわれることが防止されるとともに、被覆層の硬度が低下することを防止して、優れた耐摩耗性を維持できる。
The cutting tool of the present invention is a composition analysis data using an X-ray optical spectroscopic analysis (XPS) about the interface between the non-oxide base and the coating layer. together contain more than other regions of the world face the near neighbor, containing 20-50% of the content of Co with respect to the Co content in said substrate with most including positions of oxygen of the vicinity of the interface When a cutting tool is used for high-speed cutting conditions or cutting difficult-to-cut materials due to the presence of a region that contains a large amount of oxygen closer to the substrate than the region. Even when the temperature around the cutting edge becomes high, it is possible to prevent the constituents of the substrate from diffusing indefinitely to the coating layer side and to suppress the formation of a layer lacking a binder phase at the interface between the substrate and the coating layer. Accordingly, the adhesion of the coating layer is prevented from being lost by cutting, and the hardness of the coating layer is prevented from being lowered, so that excellent wear resistance can be maintained.

ここで、界面に含有される酸素は通常被覆層との密着性を低下させるものであるが、本発明のように少量の酸素とともに所定量のCoを含有させることによって、被覆層の密着性を損なうことなく、かつ切刃が高温となる切削条件において、被覆層中に基体中の成分が拡散することを抑制して優れた密着性および耐摩耗性を発揮する。   Here, the oxygen contained in the interface usually lowers the adhesion with the coating layer. However, by adding a predetermined amount of Co together with a small amount of oxygen as in the present invention, the adhesion of the coating layer is improved. Under the cutting conditions in which the cutting edge is at a high temperature without damaging, the components in the substrate are prevented from diffusing into the coating layer, and excellent adhesion and wear resistance are exhibited.

なお、界面近傍の酸素を多く含有している領域の厚みが0.05〜0.4μmであることが、被覆層の密着性が高く、かつ被覆層の耐欠損性が損なわれることを防止できる点で重要である
Note that the thickness of the region containing a large amount of oxygen in the vicinity of the interface being 0.05 to 0.4 μm can prevent the coating layer from having high adhesion and impairing the chipping resistance of the coating layer. Important in terms.

本発明の切削工具の一例について(a)概略斜視図、(b)概略断面拡大図である図1を用いて説明する。   An example of the cutting tool of the present invention will be described with reference to FIG. 1 which is (a) a schematic perspective view and (b) a schematic cross-sectional enlarged view.

図1によれば、本発明の切削工具1は、主面にすくい面3、側面に逃げ面4、すくい面3と逃げ面4との交差稜線に切刃5を有し、Coを含有する非酸化物基体(以下、単に基体と略す。)2の表面にTi1−a−bAlab(Cx1−x−y)(ただし、MはTiを除く周期表4、5、6族元素、Y、HfおよびSiから選ばれる1種以上、0.4≦a≦0.7、0≦b≦0.3、0≦x≦1、0≦y≦1)からなる被覆層(以下、TiAl系被覆層と略す。)6を被覆した構成となっている。 According to FIG. 1, the cutting tool 1 of the present invention has a rake face 3 on a main surface, a flank face 4 on a side face, a cutting edge 5 on a cross ridge line between the rake face 3 and the flank face 4, and contains Co. non-oxide substrate (hereinafter, simply referred to as substrate.) on a second surface Ti 1-a-b Al a M b (C x B y N 1-x-y) ( where periodic table 4 M is, except for Ti One or more selected from group 5, 5 elements, Y, Hf and Si, 0.4 ≦ a ≦ 0.7, 0 ≦ b ≦ 0.3, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) The coating layer (hereinafter abbreviated as TiAl-based coating layer) 6 is coated.

そして、図2によれば、基体2と被覆層6との界面近傍についてのX線光分光分析(XPS)を用いた組成分析データにおいて(以下、単に界面においてと略する場合がある。)、酸素を0.5〜10原子%の含有量で前記界面近の他の領域よりも多く含有しているとともに、前記界面近傍の酸素を最も多く含む位置で前記基体中のCo含有量に対して20〜50%の含有量のCoを含有している。これによって、切削工具1の切刃5の周辺が高温となる切削条件によっても基体2を構成する成分が被覆層6側に拡散することを防止して、切削時に被覆層6の密着性が損なわれることを防止できるとともに、基体2中のCo等の成分が被覆層6中に際限なく拡散することがなく、被覆層6の耐摩耗性が低下することを抑制できる。
Then, according to FIG. 2, in the composition analysis data using the X-ray optical spectroscopic analysis (XPS) about the interface between the substrate 2 and the coating layer 6 (hereinafter sometimes simply referred to as the interface) . oxygen together contain more than other regions of the world face the near neighbor in a content of 0.5 to 10 atomic%, the Co content in said substrate with a most including positions of oxygen of the vicinity of the interface On the other hand, it contains 20 to 50% of Co. This prevents the components constituting the base body 2 from diffusing to the coating layer 6 side even under cutting conditions in which the periphery of the cutting blade 5 of the cutting tool 1 is hot, and the adhesion of the coating layer 6 is impaired during cutting. In addition, it is possible to prevent components such as Co in the base 2 from diffusing indefinitely in the coating layer 6 and to prevent the wear resistance of the coating layer 6 from being lowered.

つまり、基体2と被覆層6との界面における酸素含有量が0.5原子%より少ないと、切削によって切刃5が高温となった場合に基体6中に含まれる結合相や硬質相成分が被覆層6中に拡散して被覆層6の硬度が低下し耐摩耗性が低下するとともに、基体2の表面に拡散による空隙ができて被覆層6の密着性が低下する。逆に酸素含有量が10原子%を超えると基体2と被覆層6との界面に酸化膜が形成されて被覆層6の密着性が低下する。酸素含有量の望ましい範囲は1〜8原子%である。   That is, when the oxygen content at the interface between the base 2 and the coating layer 6 is less than 0.5 atomic%, the binder phase and the hard phase component contained in the base 6 when the cutting edge 5 becomes high temperature by cutting. Diffusion into the coating layer 6 reduces the hardness of the coating layer 6 and reduces the wear resistance, and also creates voids due to diffusion on the surface of the substrate 2, reducing the adhesion of the coating layer 6. On the other hand, if the oxygen content exceeds 10 atomic%, an oxide film is formed at the interface between the substrate 2 and the coating layer 6 and the adhesion of the coating layer 6 decreases. The desirable range of oxygen content is 1-8 atomic%.

また、上記界面の酸素を最も多く含む位置におけるCo含有量が、基体2中のCo含有量に対して20%より少ないと、切刃5が高温となるような切削条件において基体2中のCo成分が被覆層6側に拡散してしまう。その結果、基体2と被覆層6との間に空隙が生じて被覆層6の密着性が損なわれるとともに、被覆層6の耐欠損性が低下する。この理由は明らかではないが、基体2の表面に存在するCo成分が酸化することによって基体2側からW等の硬質相成分やCoが拡散することを抑制しているものと思われる。逆に、界面の酸素を最も多く含む位置におけるCo含有量が、基体2中のCo含有量に対して50%を超えると、被覆層の耐摩耗性が低下する。界面の酸素を最も多く含む位置におけるCo含有量の望ましい範囲は、基体2中のCo含有量に対して30〜40原子%である。   Further, when the Co content at the position containing the largest amount of oxygen at the interface is less than 20% of the Co content in the substrate 2, the Co in the substrate 2 under the cutting conditions in which the cutting edge 5 becomes high temperature. The component diffuses to the coating layer 6 side. As a result, a gap is generated between the substrate 2 and the coating layer 6, and the adhesion of the coating layer 6 is impaired, and the fracture resistance of the coating layer 6 is reduced. The reason for this is not clear, but it seems that the Co component existing on the surface of the substrate 2 is oxidized to suppress the diffusion of hard phase components such as W and Co from the substrate 2 side. On the contrary, if the Co content at the interface containing the largest amount of oxygen exceeds 50% with respect to the Co content in the substrate 2, the wear resistance of the coating layer decreases. A desirable range of the Co content at the position containing the largest amount of oxygen at the interface is 30 to 40 atomic% with respect to the Co content in the substrate 2.

ここで、前記界面近傍の酸素を多く含有している領域7の厚みtが0.05〜0.4μmであることが、切刃周辺が高温となる条件で切削加工しても、基体を構成する成分が被覆層6側に拡散することを防止して被覆層6が切削によって密着性が損なわれることを防止できるとともに、被覆層6の耐欠損性が向上する点で望ましい。なお、図2に示すように、基体2と被覆層6との界面の被覆層6寄りに酸素を多く含有している領域7が厚みtで存在するとともに、基体2寄りにもう1箇所酸素を多く含有している領域8が存在することが、基体2を構成する成分の拡散を効率よく抑制できるために重要である
Here, the thickness t of the region 7 containing a large amount of oxygen in the vicinity of the interface is 0.05 to 0.4 μm, so that the substrate can be formed even when the periphery of the cutting edge is cut at a high temperature. This is desirable in that the component to be diffused to the coating layer 6 side can be prevented to prevent the coating layer 6 from being damaged by cutting, and the fracture resistance of the coating layer 6 is improved. As shown in FIG. 2, a region 7 containing a large amount of oxygen is present near the coating layer 6 at the interface between the substrate 2 and the coating layer 6 with a thickness t, and another portion of oxygen is present near the substrate 2. The presence of a large amount of the region 8 is important in order to efficiently suppress the diffusion of the components constituting the substrate 2.

また、被覆層6の基体2側の界面における結晶構造が基体2とは反対側の表面における結晶構造よりも微細な結晶粒径を有することによって、切削時に基体2を構成する成分が被覆層6側に拡散するのを抑制できる。   Further, since the crystal structure at the interface on the base 2 side of the coating layer 6 has a finer crystal grain size than the crystal structure on the surface opposite to the base 2, components constituting the base 2 at the time of cutting are covered with the coating layer 6. It can suppress spreading to the side.

さらに、被覆層6の膜厚が0.2〜5.0μmであることが、被覆層6の膜剥離を防止するとともに、十分な耐摩耗性を有することができるため望ましい。   Further, it is desirable that the film thickness of the coating layer 6 is 0.2 to 5.0 μm because it can prevent the film peeling of the coating layer 6 and has sufficient wear resistance.

なお、基体2としては、炭化タングステンや、炭窒化チタン、立方晶窒化硼素、ダイヤモンドを主成分とする硬質相と、コバルトやニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金、サーメット、立方晶窒化硼素質焼結体、ダイヤモンド質焼結体等の硬質材料が好適に使用される。   The substrate 2 is a cemented carbide composed of a hard phase mainly composed of tungsten carbide, titanium carbonitride, cubic boron nitride, or diamond, and a binder phase mainly composed of an iron group metal such as cobalt or nickel. Hard materials such as alloys, cermets, cubic boron nitride sintered bodies and diamond sintered bodies are preferably used.

(製造方法)
次に、本発明の切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the cutting tool of this invention is demonstrated.

まず、工具形状の基体を従来公知の方法を用いて作製する。   First, a tool-shaped substrate is produced using a conventionally known method.

次に、前記基体に以下(1)〜(3)のいずれかの前処理を施すことよって、基体の表面の酸素付着量を制御する。具体的な前処理の方法は、(1)基体を酸素分圧0.05〜0.5Paの雰囲気中、300〜800℃で加熱する。(2)酸素分圧0.5〜3Paの酸素プラズマ処理を施す。(3)加速エネルギー5〜100keVの酸素イオン注入処理を施す。なお、これらの方法によって、基体の表面に存在するCoの一部が酸化Coに変化することが望ましい。   Next, the amount of oxygen attached to the surface of the substrate is controlled by subjecting the substrate to any one of the following pretreatments (1) to (3). A specific pretreatment method is as follows: (1) The substrate is heated at 300 to 800 ° C. in an atmosphere having an oxygen partial pressure of 0.05 to 0.5 Pa. (2) Oxygen plasma treatment with an oxygen partial pressure of 0.5 to 3 Pa is performed. (3) Oxygen ion implantation treatment with acceleration energy of 5 to 100 keV is performed. In addition, it is desirable that a part of Co existing on the surface of the substrate is changed to oxidized Co by these methods.

そして、酸化された基体の表面に、周期表第4、5および6族元素、AlおよびSiから選ばれる1種以上の金属元素と、窒素、炭素および酸素から選ばれる1種以上の非金属元素との化合物からなる被覆層を成膜する。   And on the surface of the oxidized substrate, one or more metal elements selected from Group 4, 5 and 6 elements of the periodic table, Al and Si, and one or more non-metal elements selected from nitrogen, carbon and oxygen A coating layer made of the compound is formed.

なお、成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の数例についての詳細について説明すると、まず、成膜開始に際してイオンボンバードメント処理を行う。本発明によれば、イオンボンバードメント処理の際に基体の温度を350〜450℃とすることによって、基体の表面における酸素含有量を多くすることができる。   As a film forming method, a physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied. The details of several examples of the film formation method will be described. First, ion bombardment processing is performed at the start of film formation. According to the present invention, the oxygen content on the surface of the substrate can be increased by setting the temperature of the substrate to 350 to 450 ° C. during the ion bombardment treatment.

次に、イオンミキシング処理を行う。具体的には、金属チタン、金属アルミの2種類の金属ターゲット源を独立として用いるか、またはチタンアルミ(TiAl)合金をターゲットに用い、アーク放電やグロー放電などにより金属源を蒸発させイオン化する。この処理によって、基体の表面に存在するCo、W、C(炭素)等の硬質相成分および酸素と、ターゲット成分が互いに拡散して、酸素を多く含む領域ができる。また、この条件をバイアス電圧500〜1000Vで3〜5分間行うことによって、基体と被覆層との界面の被覆層寄りに酸素を多く含有している領域を存在させるとともに、基体寄りにもう1箇所酸素を多く含有している領域を存在させることができる。   Next, an ion mixing process is performed. Specifically, two types of metal target sources of metal titanium and metal aluminum are used independently, or a titanium aluminum (TiAl) alloy is used as a target, and the metal source is evaporated and ionized by arc discharge or glow discharge. By this treatment, a hard phase component such as Co, W, C (carbon) and oxygen existing on the surface of the substrate and the target component diffuse to each other, and a region containing a large amount of oxygen is formed. Further, by performing this condition at a bias voltage of 500 to 1000 V for 3 to 5 minutes, there is a region containing a large amount of oxygen near the coating layer at the interface between the base and the coating layer, and another location near the base. A region containing a large amount of oxygen can be present.

その後、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させて成膜する。被覆層の緻密度や基体との密着力を高めるために、30〜200Vのバイアス電圧を印加しながら成膜することが望ましい。 Thereafter, a film is formed by reacting with nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) gas as a carbon source. In order to increase the density of the coating layer and the adhesion to the substrate, it is desirable to form a film while applying a bias voltage of 30 to 200V.

平均粒径0.8μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を10質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.5質量%、炭化クロム(Cr)粉末を1質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMG120404GP)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1400℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニングR)を施した。 10% by mass of metallic cobalt (Co) powder having an average particle diameter of 1.2 μm and 0% vanadium carbide (VC) powder having an average particle diameter of 1.0 μm with respect to tungsten carbide (WC) powder having an average particle diameter of 0.8 μm. 0.5 mass%, chromium carbide (Cr 3 C 2 ) powder was added and mixed at a ratio of 1 mass%, and after forming into a cutting tool shape (CNMG120404GP) by press molding, a binder removal treatment was performed, and 0.01 Pa Was fired at 1400 ° C. for 1 hour to prepare a cemented carbide. Further, the prepared cemented carbide was subjected to blade edge processing (Honing R) by brushing.

上記方法で作製した基体に対して表1に示す前処理を行った後、イオンプレーティング法により表1に示す被覆層を成膜した。具体的な成膜方法としては、上記基体をイオンプレーティング装置にセットし500℃に加熱した後、イオンボンバードメントをAr圧力2.5Pa、バイアス電圧500Vの条件で行い、その後、被覆層を構成する金属元素をアーク放電によりカソードから蒸発させながらバイアス電圧500Vの条件で3分間イオンミキシングを行った。そして、窒素ガスと所望によってメタンガスを導入して窒素イオンおよび炭素イオンを発生させて反応させることにより被覆層を被覆した。なお、成膜条件はアーク電流100A、圧力2.5Pa、加熱温度500℃として表1に示す種々の組成、膜厚にて成膜した。また、試料No.10では、Arボンバードに代えてCoボンバード処理を行った。

Figure 0005084369
After the pretreatment shown in Table 1 was performed on the substrate manufactured by the above method, a coating layer shown in Table 1 was formed by an ion plating method. Specifically, the substrate is set in an ion plating apparatus and heated to 500 ° C., and then ion bombardment is performed under conditions of Ar pressure of 2.5 Pa and bias voltage of 500 V, and then a coating layer is formed. Ion mixing was performed for 3 minutes under the condition of a bias voltage of 500 V while the metal element to be evaporated was evaporated from the cathode by arc discharge. Then, the coating layer was coated by introducing nitrogen gas and methane gas as required to generate nitrogen ions and carbon ions and react them. The film formation conditions were as follows: arc current 100 A, pressure 2.5 Pa, heating temperature 500 ° C., and various compositions and film thicknesses shown in Table 1. Sample No. 10, Co bombarding was performed instead of Ar bombardment.
Figure 0005084369

作製された切削工具について、X線光分光分析法(XPS)を用いて、基体と被覆層との界面付近における組成分析を行い、界面における酸素含有量とCo含有量を表2に記載した。なお、表1、2の試料No.2についての組成分布を図2に示した。なお、試料No.1〜3、5については、図2と同じく基体と被覆層との界面の被覆層寄りに酸素を多く含有している領域が存在するとともに、基体寄りにもう1箇所酸素を多く含有している領域が存在していた。また、酸素含有量は酸素分布において最大値となる点における酸素含有量を測定し、その酸素含有量を測定した点におけるCo含有量を測定した。   About the produced cutting tool, the composition analysis in the interface vicinity of a base | substrate and a coating layer was performed using X-ray-light-spectroscopy (XPS), and the oxygen content and Co content in an interface were described in Table 2. In Tables 1 and 2, Sample No. The composition distribution for 2 is shown in FIG. Sample No. For 1 to 3 and 5, as in FIG. 2, there is a region containing a large amount of oxygen near the coating layer at the interface between the base and the coating layer, and another portion containing a large amount of oxygen near the substrate. An area existed. Further, the oxygen content was measured at the point where the oxygen distribution had the maximum value, and the Co content at the point where the oxygen content was measured was measured.

さらに、透過型電子顕微鏡(TEM)にて組織観察を行い、試料No.1〜6については被覆層6の基体2側の界面における結晶構造が基体2と反対側における結晶構造よりも微細であることを確認した。   Further, the structure was observed with a transmission electron microscope (TEM). Regarding 1 to 6, it was confirmed that the crystal structure at the interface on the base 2 side of the coating layer 6 was finer than the crystal structure on the side opposite to the base 2.

次に、得られたスローアウェイチップ(切削工具)を用いて以下の切削条件にて切削試験を行った。結果は表2に合わせて併記した。   Next, a cutting test was performed under the following cutting conditions using the obtained throw-away tip (cutting tool). The results are shown together in Table 2.

切削方法:外径旋削
被削材 :SCM440
切削速度:250m/分
送り :0.1mm/rev
切り込み:0.5mm
切削状態:乾式
評価方法:20分間切削後の切刃の状態、フランク摩耗幅、先端摩耗幅

Figure 0005084369
Cutting method: Outer turning work material: SCM440
Cutting speed: 250 m / min Feed: 0.1 mm / rev
Cutting depth: 0.5mm
Cutting state: Dry evaluation method: State of cutting edge after 20 minutes of cutting, flank wear width, tip wear width
Figure 0005084369

表1、2より、界面における酸素含有量が0.5原子%よりも低くて界面近傍と同じ試料No.7では、加工が進んで切刃の温度が上昇すると摩耗の進行が早くなる傾向にあった。また、界面における酸素含有量が10原子%を超える試料No.8では、被覆層の剥離によってチッピングが発生した。さらに、界面の酸素を最も多く含む位置で基体中のCo含有量に対するCo含有量が20%より少ない試料No.9では、被覆層の剥離によってチッピングが発生した。また、界面の酸素を最も多く含む位置で基体中のCo含有量に対するCo含有量が50%より多い試料No.10では、被覆層の摩耗の進行が早かった。   Tables 1 and 2 show that the sample No. 5 was the same as the vicinity of the interface where the oxygen content at the interface was lower than 0.5 atomic%. In No. 7, there was a tendency for the progress of wear to be accelerated as the processing progressed and the temperature of the cutting edge increased. In addition, Sample No. in which the oxygen content at the interface exceeds 10 atomic%. In No. 8, chipping occurred due to peeling of the coating layer. Further, in the position where the oxygen content at the interface is the largest, the Co content with respect to the Co content in the substrate is less than 20%. In No. 9, chipping occurred due to peeling of the coating layer. In addition, in the position where the oxygen content at the interface is the largest, the Co content with respect to the Co content in the substrate is more than 50%. In No. 10, the wear of the coating layer progressed quickly.

これに対して、本発明の範囲内で作製した試料No.1〜6では、いずれも優れた耐摩耗性を発揮した。なお、表1、2の試料No.4、6は参考例の試料である。 On the other hand, sample Nos. Produced within the scope of the present invention. In Nos. 1 to 6, all exhibited excellent wear resistance. In Tables 1 and 2, Sample No. Reference numerals 4 and 6 are samples of reference examples.

本発明の切削工具の(a)概略斜視図、(b)概略断面図である。It is (a) schematic perspective view of the cutting tool of this invention, (b) schematic sectional drawing. 本発明の切削工具の基体と被覆層との界面付近における組成分布を示す図である。It is a figure which shows the composition distribution in the interface vicinity of the base | substrate of a cutting tool of this invention, and a coating layer.

符号の説明Explanation of symbols

1 切削工具
2 基体
3 すくい面
4 逃げ面
5 切刃
6 被覆層
7、8 酸素の含有量が多い領域
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Base | substrate 3 Rake face 4 Relief face 5 Cutting edge 6 Coating layer 7, 8 Area | region with much oxygen content

Claims (2)

Coを含有する非酸化物からなる基体の表面に、Ti1−a−bAl(C1−x−y)(ただし、MはTiを除く周期表4、5、6族元素、Y、HfおよびSiから選ばれる1種以上、0.4≦a≦0.7、0≦b≦0.3、0≦x≦1、0≦y≦1)からなる被覆層を被覆してなり、前記基体と前記被覆層との界面近傍についてのX線光分光分析(XPS)を用いた組成分析データにおいて、酸素を0.5〜10原子%の含有量で前記界面近の他の領域よりも多く含有しているとともに、前記界面近傍の酸素を最も多く含む位置で前記基体中のCo含有量に対して20〜50%の含有量のCoを含有している領域が存在するとともに、該領域よりも基体寄りにさらに1箇所酸素を多く含有している領域が存在することを特徴とする切削工具。 On the surface of the non-oxide substrate containing Co, Ti 1-ab Al a M b (C x B y N 1-xy ) (where M is the periodic table 4, 5, excluding Ti, 1 or more types selected from a group 6 element, Y, Hf, and Si, and a coating layer comprising 0.4 ≦ a ≦ 0.7, 0 ≦ b ≦ 0.3, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) the result was coated, the field plane in X-ray light in spectroscopic analysis (XPS) composition analysis data using the content of oxygen 0.5 to 10 atomic% of the vicinity of the interface between the coating layer and the base containing a near together contain more than other areas beside, 20-50% of the content of Co with respect to the Co content in said substrate at a location with the highest concentration of oxygen in the vicinity of the interface with area exists, there is a region containing many more one place of oxygen to the substrate nearer region Cutting tool, wherein the door. 前記界面近傍の酸素を多く含有している領域の厚みが0.05〜0.4μmであることを特徴とする請求項1記載の切削工具。 The cutting tool according to claim 1, wherein the thickness of the region containing a large amount of oxygen in the vicinity of the interface is 0.05 to 0.4 µm.
JP2007169704A 2007-06-27 2007-06-27 Cutting tools Active JP5084369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169704A JP5084369B2 (en) 2007-06-27 2007-06-27 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169704A JP5084369B2 (en) 2007-06-27 2007-06-27 Cutting tools

Publications (2)

Publication Number Publication Date
JP2009006439A JP2009006439A (en) 2009-01-15
JP5084369B2 true JP5084369B2 (en) 2012-11-28

Family

ID=40322068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169704A Active JP5084369B2 (en) 2007-06-27 2007-06-27 Cutting tools

Country Status (1)

Country Link
JP (1) JP5084369B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217216B2 (en) * 2013-01-31 2017-10-25 三菱マテリアル株式会社 Surface coated cutting tool and manufacturing method thereof
JP2018030205A (en) 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 Cutting tool and method for manufacturing the same
JP6690102B2 (en) * 2016-08-25 2020-04-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6728551B2 (en) 2016-08-25 2020-07-22 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP2018030206A (en) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool and method for manufacturing the same
JP7373854B2 (en) * 2018-06-25 2023-11-06 尾池工業株式会社 Vapor-deposited film and method for producing vapor-deposited film
JP7043715B1 (en) * 2020-06-02 2022-03-30 住友電工ハードメタル株式会社 Cutting tools
JP7043714B1 (en) * 2020-06-02 2022-03-30 住友電工ハードメタル株式会社 Cutting tools
WO2021245782A1 (en) * 2020-06-02 2021-12-09 住友電工ハードメタル株式会社 Cutting tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209262A (en) * 1992-01-28 1993-08-20 Nissin Electric Co Ltd Manufacture of film coating
DE4340952A1 (en) * 1992-12-24 1994-06-30 Balzers Hochvakuum Cleaning process for tools, etc. prior to coating deposition

Also Published As

Publication number Publication date
JP2009006439A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5084369B2 (en) Cutting tools
US7901796B2 (en) Coated cutting tool and manufacturing method thereof
EP3269479A1 (en) Surface-coated cutting tool and manufacturing method therefor
EP1842610A1 (en) Surface-coated cutting tool and process for producing the same
JP4967505B2 (en) Covering member
JP4268558B2 (en) Coated cutting tool
JP2003113463A (en) COATED MEMBER WITH TiAl ALLOY FILM AND MANUFACTURING METHOD THEREFOR
JP5065758B2 (en) Coated cutting tool
JP2005262389A (en) Surface-coated cutting tool for processing titanium alloy
JP5065757B2 (en) Coated cutting tool
EP3763465A1 (en) Surface-coated cutting tool and method for producing same
EP3763466A1 (en) Surface-coated cutting tool and method for producing same
JP4808972B2 (en) Surface coated cutting tool
JP2006037152A (en) Method for manufacturing member coated with hard film, and film formed by the method
JP4080481B2 (en) Surface-coated cutting tool and manufacturing method thereof
WO2020075356A1 (en) Cutting tool and manufacturing method therefor
EP3808477A1 (en) Surface-coated cutting tool and process for producing same
JP4456905B2 (en) Surface coated cutting tool
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP4908767B2 (en) Surface covering member and cutting tool
WO2023008130A1 (en) Coated tool and cutting tool
WO2023008188A1 (en) Coated tool and cutting tool
JP6743350B2 (en) Cutting tools
WO2020213263A1 (en) Cutting tool
EP3842169A1 (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Ref document number: 5084369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3