JP5084152B2 - Vacuum deposition method and vacuum deposition apparatus - Google Patents

Vacuum deposition method and vacuum deposition apparatus Download PDF

Info

Publication number
JP5084152B2
JP5084152B2 JP2006046070A JP2006046070A JP5084152B2 JP 5084152 B2 JP5084152 B2 JP 5084152B2 JP 2006046070 A JP2006046070 A JP 2006046070A JP 2006046070 A JP2006046070 A JP 2006046070A JP 5084152 B2 JP5084152 B2 JP 5084152B2
Authority
JP
Japan
Prior art keywords
evaporation source
evaporation
film thickness
deposition
density distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006046070A
Other languages
Japanese (ja)
Other versions
JP2007224354A (en
Inventor
浩之 生田
和人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2006046070A priority Critical patent/JP5084152B2/en
Publication of JP2007224354A publication Critical patent/JP2007224354A/en
Application granted granted Critical
Publication of JP5084152B2 publication Critical patent/JP5084152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、真空蒸着設備において、有機EL材料や、アルミニウムなどの金属材料を基板などの被蒸着材に蒸着させる真空蒸着方法および真空蒸着装置に関する。   The present invention relates to a vacuum deposition method and a vacuum deposition apparatus for depositing an organic EL material or a metal material such as aluminum on a deposition material such as a substrate in a vacuum deposition facility.

従来、真空蒸着容器内で、蒸発源で加熱気化された蒸発材料を基板などに蒸着する技術において、特に均一な膜を形成するために、たとえば蒸発源の蒸発容器(るつぼ,セル)の口部(リップ部)の形状を改善するものが特許文献1に提案され、また口部の加熱装置を改善するものが特許文献2に提案されている。また広い面積の基板に均一に成膜するために、蒸着作業中に基板を垂直軸心周りに回転させるものが特許文献3に提案されている。
特開2003−34591号公報 特開平9−142985号公報 特開平5−58777号公報
2. Description of the Related Art Conventionally, in a technique for evaporating an evaporation material heated and evaporated by an evaporation source on a substrate or the like in a vacuum evaporation container, in order to form a particularly uniform film, for example, the mouth of an evaporation container (crucible, cell) of the evaporation source The thing which improves the shape of a (lip | rip part) is proposed by patent document 1, and the thing which improves the heating apparatus of a mouth part is proposed by patent document 2. FIG. Further, Patent Document 3 proposes a technique in which a substrate is rotated around a vertical axis during a vapor deposition operation in order to uniformly form a film on a substrate having a large area.
JP 2003-34591 A JP-A-9-142985 JP-A-5-58777

ところで、蒸着作業中に蒸発源の材料が減少すると、膜厚を均一に形成できないことが知られている。これは蒸着作業時間の経過とともに蒸発源から放出される蒸発流の密度分布の勾配が増大するためであると考えられる。   By the way, it is known that if the material of the evaporation source decreases during the vapor deposition operation, the film thickness cannot be formed uniformly. This is presumably because the gradient of the density distribution of the evaporated flow discharged from the evaporation source increases with the elapse of the vapor deposition operation time.

しかし、上記特許文献1,2では、蒸着開始当初において、リップ部の形状やリップ部の加熱温度を均一な膜厚を形成できるように条件設定しているが、連続蒸着する作業時間の経過によって蒸発流の密度分布の勾配が増大し、これに対応して膜厚を均一に制御する技術は開示されていない。また特許文献3にも、連続蒸着する作業時間の経過に伴う蒸発流の密度分布の勾配の増大に対応する記載はない。
本発明は、連続蒸着作業中に蒸発源の材料の減少に伴って蒸発流の密度分布の勾配が増大しても、被蒸着面の範囲内の膜厚均一性の低下を抑制できる真空蒸着方法および真空蒸着装置を提供することを目的とする。
However, in the above Patent Documents 1 and 2, conditions are set so that a uniform film thickness can be formed in the shape of the lip portion and the heating temperature of the lip portion at the beginning of vapor deposition. A technique for uniformly controlling the film thickness in response to an increase in the gradient of the density distribution of the evaporation flow is not disclosed. Further, Patent Document 3 also has no description corresponding to an increase in the gradient of the density distribution of the evaporated flow with the lapse of the working time for continuous vapor deposition.
The present invention provides a vacuum deposition method capable of suppressing a decrease in film thickness uniformity within a range of a deposition surface even if the gradient of the density distribution of the evaporation flow increases with a decrease in the material of the evaporation source during continuous deposition work. And it aims at providing a vacuum evaporation system.

請求項1記載の真空蒸着方法は、真空環境下で、蒸発源の材料を加熱して気化し、蒸発源の上方に配置された被蒸着部材の被蒸着面に蒸着するに際し、前記蒸発源から蒸発される蒸発流の密度分布を検出し、検出された蒸発流の密度分布の勾配が大きくなった時に、当該蒸発流の密度分布の勾配に応じて、被蒸着面と蒸発源とを離間させて被蒸着面の範囲内の膜厚均一性の低下を抑制するものである。 In the vacuum deposition method according to claim 1, in the vacuum environment, when the material of the evaporation source is heated and vaporized, and vapor deposition is performed on the deposition surface of the deposition member disposed above the evaporation source, The density distribution of the evaporated vapor flow is detected, and when the gradient of the density distribution of the detected vapor flow increases, the deposition surface and the evaporation source are separated according to the gradient of the density distribution of the vapor flow. In this way, a decrease in film thickness uniformity within the range of the deposition surface is suppressed .

請求項2記載の真空蒸着方法は、真空環境下で、蒸発源の材料を加熱して気化し、蒸発源の上方で鉛直方向の回転軸心周りに回転自在に配置された被蒸着部材の被蒸着面に蒸着するに際し、蒸発源から蒸発される蒸発流の密度分布を検出し、検出された蒸発流の密度分布の勾配が大きくなった時に、当該蒸発流の密度分布の勾配に応じて、被蒸着面と蒸発源とを離間させ、被蒸着面の範囲内の膜厚均一性の低下を抑制するものである。 According to a second aspect of the present invention, the evaporation source material is heated and vaporized in a vacuum environment, and the deposition member is disposed so as to be rotatable around the vertical rotation axis above the evaporation source. When vapor deposition is performed on the vapor deposition surface, the density distribution of the evaporation flow evaporated from the evaporation source is detected, and when the gradient of the density distribution of the detected evaporation flow becomes large, according to the gradient of the density distribution of the evaporation flow, The vapor deposition surface and the evaporation source are separated from each other to suppress a decrease in film thickness uniformity within the range of the vapor deposition surface .

請求項3記載の真空蒸着装置は、真空蒸着室内に、材料を加熱して気化する蒸発源と、蒸発源の上方に配置された被蒸着部材とを有し、蒸発源で気化された蒸発材料を被蒸着部材の被蒸着面に蒸着する真空蒸着装置において、蒸発源の上方位置から異なる距離に配置された複数の蒸着レート検出器と、被蒸着面と蒸発源との距離を調整自在な蒸着距離調整装置と、前記蒸着レート検出器により検出された蒸発流の密度分布に基づいて求めた膜厚均一性にその低下が検出された時に、前記蒸発流の密度分布に基づいて、蒸発源と被蒸着面との間の適正鉛直距離を求め、この適正鉛直距離に基づいて前記蒸着距離調整装置により蒸発源と被蒸着面とを離間させて、被蒸着面の範囲内の膜厚均一性の低下を抑制する膜厚制御装置とを具備したものである。 The vacuum deposition apparatus according to claim 3, comprising: an evaporation source that heats and vaporizes the material in the vacuum deposition chamber; and a member to be deposited disposed above the evaporation source, the evaporation material vaporized by the evaporation source In a vacuum vapor deposition apparatus for vapor-depositing a vapor deposition member on a vapor deposition surface, a plurality of vapor deposition rate detectors arranged at different distances from an upper position of the evaporation source and vapor deposition with adjustable distance between the vapor deposition surface and the evaporation source A distance adjusting device and an evaporation source based on the density distribution of the evaporative flow when a decrease is detected in the film thickness uniformity determined based on the density distribution of the evaporative flow detected by the vapor deposition rate detector. A proper vertical distance between the deposition surface and the deposition surface is determined, and the evaporation source and the deposition surface are separated by the deposition distance adjusting device based on the proper vertical distance, and the film thickness uniformity within the range of the deposition surface is determined. With a film thickness control device that suppresses the decrease That.

請求項4記載の真空蒸着装置は、真空蒸着室内に、材料を加熱して気化する蒸発源と、蒸発源の上方で鉛直方向の回転軸心周りに回転自在に支持された被蒸着部材とを具備し、蒸発源で気化された蒸発材料を被蒸着部材の被蒸着面に蒸着する真空蒸着装置において、蒸発源の上方位置から異なる距離に配置された複数の蒸着レート検出器と、被蒸着面と蒸発源との距離を調整自在な蒸着距離調整装置と、蒸発源と回転軸心との距離を調整自在な半径距離調整装置と、前記蒸着レート検出器により検出された蒸発流の密度分布に基づいて求めた膜厚均一性にその低下が検出された時に、前記蒸発流の密度分布に基づいて、蒸発源と被蒸着面との間の適正鉛直距離を求め、この適正鉛直距離に基づいて、前記蒸着距離調整装置により蒸発源と被蒸着面とを離間させて、被蒸着面の範囲内の膜厚均一性の低下を抑制する膜厚制御装置とを具備したものである。 According to a fourth aspect of the present invention, there is provided a vacuum vapor deposition apparatus comprising: an evaporation source that heats and vaporizes a material in a vacuum vapor deposition chamber; and a vapor deposition member that is rotatably supported around a vertical rotation axis above the evaporation source. In a vacuum evaporation apparatus for evaporating evaporation material vaporized by an evaporation source on an evaporation surface of an evaporation member, a plurality of evaporation rate detectors arranged at different distances from an upper position of the evaporation source, and an evaporation surface The evaporation distance adjusting device that can adjust the distance between the evaporation source and the evaporation source, the radial distance adjusting device that can adjust the distance between the evaporation source and the rotation axis, and the density distribution of the evaporation flow detected by the evaporation rate detector. Based on the density distribution of the evaporative flow, an appropriate vertical distance between the evaporation source and the deposition surface is obtained based on the thickness uniformity determined based on the , evaporation source and Hi蒸by the deposition distance adjuster By separating the surface, it is obtained; and a suppressing film thickness control apparatus a reduction in film thickness uniformity in the range of the evaporation surface.

請求項1記載の発明によれば、連続蒸着作業中に、検出された蒸発流の密度分布の勾配が大きくなると、被蒸着面と蒸発源とを離間させて、被蒸着面の範囲内の蒸発流の密度分布の勾配を減少させることができる。これにより、連続蒸着作業中に、蒸発源の材料の減少に伴って蒸発流の密度分布の勾配が増大しても、被蒸着面に均一性の高い厚さの薄膜を形成することができる。   According to the first aspect of the present invention, if the gradient of the density distribution of the detected evaporation flow increases during the continuous vapor deposition operation, the vapor deposition surface and the evaporation source are separated from each other, and the evaporation within the range of the vapor deposition surface is achieved. The gradient of the flow density distribution can be reduced. Thereby, even if the gradient of the density distribution of the evaporation flow increases with the decrease in the material of the evaporation source during the continuous vapor deposition operation, a thin film having a highly uniform thickness can be formed on the vapor deposition surface.

請求項2記載の発明によれば、連続蒸着作業中に、検出された蒸発流の密度分布の勾配が大きくなると、鉛直方向の回転軸心周りに回転される被蒸着面と蒸発源とを離間させて、被蒸着面の範囲の蒸発流の密度分布の勾配を減少させる。これにより、連続蒸着作業中に、蒸発源の材料の減少に伴って蒸発流の密度分布の勾配が増大しても、被蒸着面に均一性の高い厚さの薄膜を形成することができる。 According to the second aspect of the present invention, if the gradient of the density distribution of the detected evaporation flow increases during the continuous vapor deposition operation, the vapor deposition surface rotated around the vertical rotation axis is separated from the evaporation source. Thus, the gradient of the density distribution of the evaporation flow in the range of the deposition surface is reduced. Thereby, even if the gradient of the density distribution of the evaporation flow increases with the decrease in the material of the evaporation source during the continuous vapor deposition operation, a thin film having a highly uniform thickness can be formed on the vapor deposition surface.

請求項3記載の発明によれば、連続蒸着作業中に、蒸着レート検出器により蒸発流の密度分布の勾配が増大すると、膜厚制御装置において、蒸着レート検出器の検出値に基づいて、蒸発源と被蒸着面との間の適正鉛直距離を求め、鉛直距離調整装置により被蒸着面と蒸発源との距離を増大させることにより、被蒸着面の範囲内の蒸発流の密度分布の勾配を減少させることができる。これにより、連続蒸着作業中に、蒸発源の材料の減少に伴って蒸発流の密度分布の勾配が増大しても、被蒸着面に均一性の高い厚さの薄膜を形成することができる。 According to the third aspect of the present invention, if the gradient of the density distribution of the evaporation flow is increased by the vapor deposition rate detector during the continuous vapor deposition operation, the film thickness control device evaporates based on the detection value of the vapor deposition rate detector. By determining the appropriate vertical distance between the source and the deposition surface and increasing the distance between the deposition surface and the evaporation source using the vertical distance adjustment device, the gradient of the density distribution of the evaporation flow within the range of the deposition surface is obtained. Can be reduced. Thereby, even if the gradient of the density distribution of the evaporation flow increases with the decrease in the material of the evaporation source during the continuous vapor deposition operation, a thin film having a highly uniform thickness can be formed on the vapor deposition surface .

請求項4記載の発明によれば、連続蒸着作業中に、蒸着レート検出器により検出された蒸発流の密度分布の勾配が増大すると、膜厚制御装置において、蒸着レート検出器の検出値に基づいて、被蒸着面と蒸発源との間の適正鉛直距離を求め、蒸着距離調整装置により適正鉛直距離に基づいて被蒸着面から蒸発源までの距離を増大させて被蒸着面の範囲の蒸発流の密度分布の勾配を減少させる。これにより、連続蒸着作業中に、蒸発源の材料の減少に伴って蒸発流の密度分布の勾配が増大しても、被蒸着面に均一性の高い厚さの薄膜を形成することができる。 According to the invention of claim 4 , when the gradient of the density distribution of the evaporation flow detected by the vapor deposition rate detector increases during the continuous vapor deposition operation, the film thickness control device is based on the detection value of the vapor deposition rate detector. Then, an appropriate vertical distance between the deposition surface and the evaporation source is obtained, and the evaporation flow within the range of the deposition surface is increased by increasing the distance from the deposition surface to the evaporation source based on the appropriate vertical distance by the deposition distance adjusting device. Reduce the gradient of density distribution. Thereby, even if the gradient of the density distribution of the evaporation flow increases with the decrease in the material of the evaporation source during the continuous vapor deposition operation, a thin film having a highly uniform thickness can be formed on the vapor deposition surface.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、図1(a)〜(c)に示すように、蒸発源1から上方に広がって放出される方向分布特性(蒸発源の分布特性)である蒸発流の密度は、Lambertのcosの法則によって表され、たとえば図1(a)に示すように、蒸発源1で蒸発材料を収容する蒸発容器1aの放出口1b部分や、遮蔽壁2による反射による煙突効果が認められるものでは、Φα=Φocosαで表される。ここで、Φαは鉛直軸に対して変位角αだけ位置ずれした図1(b)に示すPx位置の蒸発流の密度、Φoは鉛直線上の図1(b)に示すPo位置の最大密度部における蒸発流の密度である。 First, as shown in FIGS. 1A to 1C, the density of the evaporation flow, which is a directional distribution characteristic (evaporation source distribution characteristic) that is emitted upward from the evaporation source 1, is expressed by Lambert's cos law. For example, as shown in FIG. 1A, the discharge port 1b portion of the evaporation container 1a that stores the evaporation material in the evaporation source 1 or a chimney effect due to reflection by the shielding wall 2 is recognized. It is expressed by Φocos n α. Here, Φα is the density of the evaporative flow at the Px position shown in FIG. 1B displaced by the displacement angle α with respect to the vertical axis, and Φo is the maximum density portion at the Po position shown in FIG. 1B on the vertical line. Is the density of the evaporative flow at.

また上記蒸発流の密度分布により基板(被蒸着部材)3に形成される膜厚は、dx=do×cosαで表され、dxはPx位置の膜厚、doは蒸発源1直上のPo位置の最大密度部の膜厚である。図1(c)に示すように、蒸発源1の鉛直軸上(直上部)に最大膜厚部が形成され、この最大膜厚部から離れるほど密度が低下する山形状の密度適正分布が描かれる。図1(c)のグラフで横軸はX/H、XはPx−Po間の距離、Hは被蒸着面3aと蒸発源1との回転軸心Oに平行な(鉛直)距離であり、また縦軸は最大厚みを1としたときの厚み比である。 The film thickness formed on the substrate (vapor deposition member) 3 by the density distribution of the evaporation flow is expressed by dx = do × cos n α, where dx is the film thickness at the Px position, and do is Po immediately above the evaporation source 1. It is the film thickness of the maximum density portion at the position. As shown in FIG. 1 (c), a maximum film thickness portion is formed on the vertical axis (directly above) of the evaporation source 1, and an appropriate density distribution in a mountain shape is drawn in which the density decreases as the distance from the maximum film thickness portion increases. It is. In the graph of FIG. 1C, the horizontal axis is X / H, X is the distance between Px and Po, H is the (vertical) distance parallel to the rotation axis O between the deposition surface 3a and the evaporation source 1, The vertical axis represents the thickness ratio when the maximum thickness is 1.

さらに図2(a)は、基板3が垂直(鉛直)な回転軸心周りに回転された場合の基板3の対角線方向の膜厚分布曲線のグラフを示し、横軸はR/Hを示し、Rは回転軸心O(0位置)からの半径方向の水平距離、Hは蒸発源1と被蒸着面3aとの鉛直距離である。また縦軸は膜の最大厚みを1.0とした時の厚み比を示している。そして同グラフでは、膜厚:dx=do×cosα…(1)式のn値を2〜4で変化させた時の膜厚分布である。 Further, FIG. 2A shows a graph of the film thickness distribution curve in the diagonal direction of the substrate 3 when the substrate 3 is rotated around the vertical (vertical) rotation axis O , and the horizontal axis indicates R / H. , R is a horizontal distance in the radial direction from the rotation axis O (0 position) , and H is a vertical distance between the evaporation source 1 and the deposition surface 3a. The vertical axis indicates the thickness ratio when the maximum thickness of the film is 1.0. In the graph, film thickness: dx = do × cos n α... Is a film thickness distribution when the n value of the equation (1) is changed by 2 to 4.

図2(b)は基板3の回転時の膜厚を説明する図で、基板3が鉛直方向の回転軸心を中心に矢印方向に回転された場合、回転軸心Oから水平距離Rだけ離れて蒸発源1が配置され、回転中心Ocから半径rだけ離れた点:Pxの膜厚:d(r)の計算方法を説明する。 FIG. 2B is a diagram for explaining the film thickness when the substrate 3 is rotated. When the substrate 3 is rotated in the direction of the arrow about the rotation axis O in the vertical direction, only the horizontal distance R from the rotation axis O is shown. A method of calculating the point where the evaporation source 1 is arranged at a distance and separated from the rotation center Oc by the radius r: the film thickness of Px: d (r) will be described.

回転中心Ocから距離rの点Prの蒸着速度dxは、蒸発源1直上の基板3上の直上点Roの蒸着速度をdo、蒸発源1と基板3との鉛直距離をHとすると、1,Ro,Pxが直角三角形であることから、cosα=H/(H2+X21/2となり、このcosαを(1)式のdx=do×cosαに代入すると、
dx=do×H/(H2+X2n/2となる。
The vapor deposition rate dx at the point Pr at a distance r from the rotation center Oc is 1 when the vapor deposition rate at the point Ro immediately above the substrate 3 immediately above the evaporation source 1 is do and the vertical distance between the evaporation source 1 and the substrate 3 is H. Since Ro 1 and Px are right triangles, cos α = H / (H 2 + X 2 ) 1/2 , and when this cos α is substituted into dx = do × cos n α in the equation (1),
dx = do × H n / (H 2 + X 2 ) n / 2 .

また直上点Roと点Pxの距離:Xは、図1(b)と同様に、X=Ro−Pcで表される。そして基板3が回転していると、距離:Xは回転角θの関数X(θ)で表され、基板3上で回転中心Oc直上点:Roを通るX軸上で、点:Pxを通る垂線の交点:pとすると、p,Oc,Pxの直角三角形において、交点pと直上点:Roの距離は、rsinθであるので、直角三角形p,Ro,Pxにおいて、
X(θ)=[(rsinθ)2+(R−rcosθ)21/2となる。
したがって、基板3を回転した時の膜厚積算値d(r)は(2)式で表される。
Further, the distance X between the immediately above point Ro and the point Px is represented by X = Ro−Pc , as in FIG. When the substrate 3 is rotating, the distance: X is expressed by the function X (θ) of the rotation angle θ, and the point: Px is set on the X axis passing through the rotation center Oc and the point directly above Ro on the substrate 3. Assuming that the intersecting point of the perpendicular passes through: p, in the right triangle of p, Oc , Px, the distance between the intersection p and the immediately above point: Ro is rsinθ, so in the right triangle p, Ro , Px,
X (θ) = [(rsinθ) 2 + (R−rcosθ) 2 ] 1/2
Therefore, the integrated film thickness value d (r) when the substrate 3 is rotated is expressed by the equation (2).

Figure 0005084152
Figure 0005084152

図2(a)に示すグラフは、回転中心Oc(0位置)から所定の水平距離Rだけ離れた蒸発源1の直上点Roの内周側近傍が最大膜厚部となり、膜厚分布は回転中心Ocを中心とした半径(水平距離)Rの円周から内周側近傍に最大膜厚部が連続する外輪山状に形成され、この最大膜厚部から外周側および内周側にそれぞれ漸次膜厚が減少される例を示している。ここで、蒸発源1の直上の基板3の点Roが最大濃度分布の対応位置である。なお、基板3上で蒸発源1の直上点Roが最大膜厚部でないのは、蒸発源1に対して旋回方向に移動される場合、直上点Roより内側(内周側)の方が、外側(外周側)に比較して蒸着され続ける時間が長いため、直上点Roから少し内周側にずれた位置が最大膜厚部となるためである。 In the graph shown in FIG. 2A, the maximum film thickness portion is located in the vicinity of the inner peripheral side of the point Ro immediately above the evaporation source 1 that is a predetermined horizontal distance R from the rotation center Oc (0 position), and the film thickness distribution is rotated. A maximum film thickness portion is formed in the shape of an outer ring having a radius (horizontal distance) R centered on the center Oc in the vicinity of the inner periphery, and is gradually formed from the maximum film thickness portion to the outer periphery and the inner periphery. An example is shown in which the thickness is reduced. Here, the point Ro of the substrate 3 immediately above the evaporation source 1 is the corresponding position of the maximum concentration distribution . It should be noted that the point Ro immediately above the evaporation source 1 on the substrate 3 is not the maximum film thickness portion when moving in the swiveling direction with respect to the evaporation source 1 is located on the inner side (inner peripheral side) from the point directly above Ro. This is because the time during which deposition is continued is longer than that on the outer side (outer peripheral side), and the position slightly shifted from the directly above point Ro to the inner peripheral side becomes the maximum film thickness portion.

この蒸着装置により複数の基板3を順次連続して蒸着する作業中に蒸発容器1a内の材料が減ると、蒸発容器1a内で蒸発面が下降することから、放出口1b部分の煙突効果により、蒸発流密度分布のn値が増加して膜厚均一性が低下する[図1(c)のn=2〜4を参照]。このように材料が減少すると、一回の材料で行う連続蒸着作業の開始当初と終了前とでは、膜厚均一性が大きく変化する。
[実施の形態1]
本発明に係る実施の形態1を図3,図4を参照して説明する。
When the material in the evaporation container 1a is reduced during the operation of sequentially depositing the plurality of substrates 3 by this evaporation apparatus, the evaporation surface falls in the evaporation container 1a. The n value of the evaporation flow density distribution increases and the film thickness uniformity decreases [see n = 2 to 4 in FIG. 1 (c)]. When the material is reduced in this way, the film thickness uniformity greatly changes between the beginning and the end of the continuous vapor deposition operation performed with one material.
[Embodiment 1]
Embodiment 1 according to the present invention will be described with reference to FIGS.

図3に示すように、真空蒸着室11には、上部に基板3を保持する基板保持具12と、この基板保持具12を基板3の被蒸着面(下面)3aに垂直な方向(鉛直方向)の回転軸心O周りに所定速度で回転可能な基板回転装置13が設けられている。   As shown in FIG. 3, the vacuum deposition chamber 11 includes a substrate holder 12 that holds the substrate 3 on the top, and a direction perpendicular to the deposition surface (lower surface) 3 a of the substrate 3 (vertical direction). The substrate rotating device 13 that can rotate at a predetermined speed is provided around the rotation axis O.

前記真空蒸着室11内に回転軸心Oから所定の水平距離Rだけ離れて配置された蒸発源1は、蒸発容器(たとえば熱分解窒化ホウ素やアルミナ、石英などでつくられたつぼ)1a内に材料を入れ、加熱装置(図示せず)により加熱気化させるクヌーセンセル(Kセル)であり、この蒸発源1は、鉛直距離調整装置14により被蒸着面3aに接近離間する方向に昇降自在に支持されている。 The evaporation source 1 disposed in the vacuum deposition chamber 11 at a predetermined horizontal distance R from the rotation axis O is placed in an evaporation container (for example, a pot made of pyrolytic boron nitride, alumina, quartz, etc.) 1a. This is a Knudsen cell (K cell) in which material is put and heated and vaporized by a heating device (not shown). The evaporation source 1 is supported by a vertical distance adjusting device 14 so as to be movable up and down in a direction approaching and separating from the deposition surface 3a. Has been.

この鉛直距離調整装置14は、真空蒸着室11の下部外側に昇降モータ14bにより回転駆動される鉛直方向のねじ軸14aが配設され、このねじ軸14aに螺合された雌ねじ部材14dを介して昇降駆動される昇降ロッド14cが真空蒸着室11の底壁を貫設して設けられている。前記昇降ロッド14cの上端部に蒸発源1を保持する加熱装置(図示せず)付昇降台14eが支持され、昇降ロッド14cの貫通部にシール用蛇腹14fが設けられて、ねじ軸式昇降移動機構に構成されている。   In the vertical distance adjusting device 14, a vertical screw shaft 14a that is rotationally driven by an elevating motor 14b is disposed outside a lower portion of the vacuum vapor deposition chamber 11, and a female screw member 14d that is screwed to the screw shaft 14a is provided. An elevating rod 14 c that is driven up and down is provided through the bottom wall of the vacuum deposition chamber 11. A lifting base 14e with a heating device (not shown) that holds the evaporation source 1 is supported at the upper end of the lifting rod 14c, and a sealing bellows 14f is provided at the penetrating portion of the lifting rod 14c. The mechanism is configured.

前記真空蒸着室11の上部には、少なくとも3つの水晶振動子15A,15B,15Cが同一水平面上で所定位置に配設された膜厚センサ(蒸着レート検出器)15が設けられている。これら3つの水晶振動子15A,15B,15Cは、図4に示すように、基板3の回転外径より外側で被蒸着面3aと同一面上に、蒸発源1の上方(直上)位置Pから互いに異なる近距離a、中距離b、遠距離cだけ離れてそれぞれ配置され、3つの異なる位置における所定の蒸着時間毎の膜厚増加量(蒸着レート)を検出する。   A film thickness sensor (deposition rate detector) 15 in which at least three crystal resonators 15A, 15B, and 15C are arranged at predetermined positions on the same horizontal plane is provided at the upper part of the vacuum deposition chamber 11. As shown in FIG. 4, these three crystal resonators 15A, 15B, and 15C are located on the same surface as the deposition surface 3a outside the rotational outer diameter of the substrate 3 and from a position P above (directly above) the evaporation source 1. They are arranged at a distance of a short distance a, a medium distance b, and a long distance c different from each other, and detect an increase in film thickness (deposition rate) for each predetermined deposition time at three different positions.

蒸発流の密度分布の勾配の増大に対応して、均一な膜厚を基板3に形成するための膜厚制御装置21が設けられている。この膜厚制御装置21は、膜厚センサ15により検出された3箇所の蒸着レートの比から蒸発流の密度分布を求める蒸発流密度分布検出部16と、検出した蒸発流の密度分布から被蒸着面3aと蒸発源1との間の適正鉛直距離Hxを求める鉛直距離補正部25と、鉛直距離補正部25の信号に基づいて制御信号を鉛直距離調整装置14の昇降モータ14bに出力する補正出力部26とで構成されている。   A film thickness control device 21 for forming a uniform film thickness on the substrate 3 is provided corresponding to the increase in the gradient of the density distribution of the evaporation flow. The film thickness control device 21 includes an evaporative flow density distribution detection unit 16 that obtains an evaporative flow density distribution from the ratios of the three vapor deposition rates detected by the film thickness sensor 15, and a vapor deposition target from the detected evaporative flow density distribution. A vertical distance correction unit 25 for obtaining an appropriate vertical distance Hx between the surface 3a and the evaporation source 1, and a correction output for outputting a control signal to the lifting motor 14b of the vertical distance adjustment device 14 based on a signal from the vertical distance correction unit 25 Part 26.

前記鉛直距離補正部25は、前記蒸発流密度分布と前記cosの法則によるn値とを結びつけたn値判断テーブルおよびn値に対応する被蒸着面3aと蒸発源1との適正鉛直距離Hxとn値およびそれらの組合せにおける膜厚均一性が許容範囲か否かを示すもの(たとえば「1」か「0」)を表した鉛直距離データテーブルを有するデータ記憶部22と、前記蒸発流の密度分布とデータ記憶部22のn値判断テーブルとに基づいて、cosの法則における蒸発流の密度分布のn値を判断するn値判断部23と、n値判断部23のn値と現在の鉛直距離Hとデータ記憶部22の鉛直距離データテーブルから、被蒸着面3aにおける膜厚均一性が一定の許容範囲内に入る適正鉛直距離Hxを判断する鉛直距離判断部24とを具備している。   The vertical distance correction unit 25 includes an n value determination table in which the evaporation flow density distribution and the n value according to the cos law are combined, and an appropriate vertical distance Hx between the evaporation target surface 3a and the evaporation source 1 corresponding to the n value. a data storage unit 22 having a vertical distance data table indicating whether the film thickness uniformity in the n value and the combination thereof is within an allowable range (for example, “1” or “0”), and the density of the evaporating flow Based on the distribution and the n-value determination table of the data storage unit 22, the n-value determination unit 23 that determines the n-value of the density distribution of the evaporative flow in the law of cos, the n-value of the n-value determination unit 23, and the current vertical From the distance H and the vertical distance data table of the data storage unit 22, there is provided a vertical distance determination unit 24 for determining an appropriate vertical distance Hx within which the film thickness uniformity on the deposition surface 3a falls within a certain allowable range.

ここで、適正鉛直距離Hxとは、被蒸着面3aの有効範囲(製品として利用される部位)に蒸着された膜厚均一性が製品として許容範囲に入るように蒸着できる距離をいい、用途により異なるが、たとえば膜厚均一性が10%以下のものをいう。   Here, the appropriate vertical distance Hx means a distance that can be deposited so that the film thickness uniformity deposited on the effective range (parts used as products) of the deposition surface 3a falls within an allowable range as a product. Although different, for example, the film thickness uniformity is 10% or less.

前記鉛直距離判断部24では、現在の鉛直距離Hと蒸発流の密度分布のn値の関係で許容範囲「1」であれば、現在状態の維持とし、許容範囲外「0」であれば、テーブル内の1つ長い鉛直距離を適正鉛直距離Hxと判断し、鉛直距離Hが変わるときに補正出力部26への指示を行う。   In the vertical distance determination unit 24, if the current vertical distance H and the n value of the density distribution of the evaporative flow are in the allowable range “1”, the current state is maintained, and if outside the allowable range “0”, One vertical distance in the table is determined as the appropriate vertical distance Hx, and when the vertical distance H changes, an instruction is given to the correction output unit 26.

また図6に示すように、前記鉛直距離補正部25にデータ記憶部22を設けずに、n値演算部23’と鉛直距離演算部24’とを設け、n値演算部23’において蒸発流の密度分布を演算式に入力して直接n値を求め、鉛直距離演算部24’で前記n値を演算式に入力して被蒸着面3aと蒸発源1と適正鉛直距離Hxを求めるように構成してもよい。   In addition, as shown in FIG. 6, the vertical distance correction unit 25 is not provided with the data storage unit 22, but is provided with an n-value calculation unit 23 ′ and a vertical distance calculation unit 24 ′. The n distribution is directly input to the calculation formula to obtain the n value, and the vertical distance calculation unit 24 ′ inputs the n value to the calculation formula to obtain the deposition surface 3a, the evaporation source 1, and the appropriate vertical distance Hx. It may be configured.

図5は、解析により求められた蒸発源1の蒸発流の密度分布のn値と、蒸発源1と被蒸着面3aとの鉛直距離Hと膜厚均一性の関係を表す表である。この表で示された数値は、膜厚分布の膜厚均一性(%)で、ハッチング部分は膜厚均一性が10%以内を示す。これにより、蒸発流の密度分布が大きくなってn値が増大したとしても、鉛直距離Hを増大することにより、被蒸着面3aの範囲内における膜厚分布の膜厚均一性を高くできることがわかる。図5の許容範囲であるハッチング部分を「1」とし、他の部分を「0」としたものが、前述の鉛直距離データテーブルとして利用される。   FIG. 5 is a table showing the relationship between the n value of the density distribution of the evaporation flow of the evaporation source 1 obtained by analysis, the vertical distance H between the evaporation source 1 and the deposition surface 3a, and the film thickness uniformity. The numerical value shown in this table is the film thickness uniformity (%) of the film thickness distribution, and the hatched portion indicates the film thickness uniformity within 10%. As a result, even if the density distribution of the evaporation flow increases and the n value increases, it can be seen that by increasing the vertical distance H, the film thickness uniformity of the film thickness distribution within the range of the deposition surface 3a can be increased. . The hatched portion that is the allowable range in FIG. 5 is set to “1”, and the other portions are set to “0”, which is used as the above-described vertical distance data table.

上記構成において、基板3を回転しつつ基板3に蒸着し、複数枚の基板3を順次交換して連続的に蒸着作業を行い、作業時間が経過すると、蒸発源1の蒸発容器1a内の材料が減少し、放出口1bの煙突効果により蒸発流の密度分布の勾配が増大し、これが3つの水晶振動子15A,15B,15Cの出力値に反映される。そして、膜厚制御装置21の蒸発流密度分布検出部16では、膜厚センサ15の3箇所の蒸着レートから蒸発流の密度分布を検出し、n値判断部23では、データ記憶部22のn値判断テーブルから蒸発流の密度分布のn値を求める。さらにこのn値の全部(または閾値を越えると、越えた分だけ)を鉛直距離判断部24に出力し、鉛直距離判断部24では、このn値と現在の鉛直距離Hが鉛直距離データテーブルの適正範囲にあるか否かを判断する。適正範囲に無い場合には、次に長い鉛直距離を適正鉛直距離Hxと判断し、補正出力部26に指示を行い、補正出力部26から鉛直距離調整装置14の昇降モータ14bに制御信号が出力され、蒸発源1が目的とする補正距離だけ下降される。ここで、被蒸着面3aから蒸発源1が離間されることにより、被蒸着面3aにおける蒸発流の密度が減少するため、必要な膜厚を形成するのに時間を多く要することになるが、被蒸着面3aの範囲内における蒸発流の密度分布の勾配は減少されて被蒸着面3aに均一性の高い膜厚を形成することができる。   In the above configuration, vapor deposition is performed on the substrate 3 while rotating the substrate 3, and a plurality of substrates 3 are sequentially replaced to continuously perform the vapor deposition operation. After the operation time has elapsed, the material in the evaporation container 1 a of the evaporation source 1 And the gradient of the density distribution of the evaporating flow increases due to the chimney effect of the discharge port 1b, and this is reflected in the output values of the three crystal resonators 15A, 15B and 15C. Then, the evaporation flow density distribution detection unit 16 of the film thickness control device 21 detects the density distribution of the evaporation flow from the three deposition rates of the film thickness sensor 15, and the n value determination unit 23 selects n of the data storage unit 22. The n value of the density distribution of the evaporating flow is obtained from the value judgment table. Further, all of the n values (or as much as they exceed when the threshold value is exceeded) are output to the vertical distance determination unit 24, and the vertical distance determination unit 24 calculates the n value and the current vertical distance H in the vertical distance data table. Judge whether it is in the proper range. If it is not within the proper range, the next long vertical distance is determined to be the proper vertical distance Hx, an instruction is given to the correction output unit 26, and a control signal is output from the correction output unit 26 to the lifting motor 14b of the vertical distance adjustment device 14. Then, the evaporation source 1 is lowered by a target correction distance. Here, since the evaporation source 1 is separated from the vapor deposition surface 3a, the density of the evaporation flow on the vapor deposition surface 3a is reduced, so that it takes a lot of time to form a necessary film thickness. The gradient of the density distribution of the evaporation flow within the deposition surface 3a is reduced, and a highly uniform film thickness can be formed on the deposition surface 3a.

上記実施の形態1によれば、連続蒸着作業中に、膜厚センサ15で異なる3箇所の蒸着レートを検出し、次いで膜厚制御装置21により、蒸発流密度分布検出部16で蒸発流の密度分布を検出し、n値判断部23で蒸発流の密度分布のn値を求め、鉛直距離判断部24で適正鉛直距離Hxを求め、さらに補正出力部26により鉛直距離調整装置14を駆動して蒸発源1を被蒸着面3aから適正鉛直距離Hxとなるように離間(下降)移動させて被蒸着面3aにおける蒸発流の密度分布の勾配を減少させる。これにより、蒸発源1の材料の減少に伴って蒸発流の密度分布の勾配が増大することがあっても、被蒸着面3aに均一性の高い膜厚を形成することができる。   According to the first embodiment, during the continuous vapor deposition operation, three different vapor deposition rates are detected by the film thickness sensor 15, and then the vapor flow density distribution detector 16 detects the vapor flow density by the film thickness controller 21. The distribution is detected, the n value determination unit 23 calculates the n value of the density distribution of the evaporative flow, the vertical distance determination unit 24 calculates the appropriate vertical distance Hx, and the correction output unit 26 drives the vertical distance adjustment device 14. The evaporation source 1 is moved away (down) from the deposition surface 3a so as to have an appropriate vertical distance Hx, thereby reducing the gradient of the density distribution of the evaporation flow on the deposition surface 3a. Thereby, even if the gradient of the density distribution of the evaporation flow increases with the decrease in the material of the evaporation source 1, a highly uniform film thickness can be formed on the deposition surface 3a.

なお、蒸発源1を固定しておき、基板3を昇降移動可能な鉛直距離調整装置を設けても、同様の作用効果を奏することができる。   Even if the evaporation source 1 is fixed and a vertical distance adjusting device capable of moving the substrate 3 up and down is provided, the same effect can be obtained.

また、基板回転装置13により基板3を回転軸心O周りに回転させたが、基板3の大きさが小さい場合には、基板3を固定状態で保持してもよい。この場合は基板3の回転中心Ocの真下に蒸発源1を設置するとともに蒸発流を真上に向けて形成し、基板3全体として厚さの均一性の高い薄膜を形成する。 Further, although the substrate 3 is rotated around the rotation axis O by the substrate rotating device 13, when the size of the substrate 3 is small, the substrate 3 may be held in a fixed state. In this case, the evaporation source 1 is installed immediately below the rotation center Oc of the substrate 3 and the evaporation flow is formed directly above, so that a thin film having a high thickness uniformity is formed as the entire substrate 3.

[実施の形態2]
実施の形態1では、被蒸着面3aと蒸発源1との距離を調整したのに対して、実施の形態2では、蒸発源1と回転軸心Oとの半径方向の位置(距離)を調整するもので、図7および図8を参照して説明する。なお、実施の形態1と同一部材には同一符号を付して説明を省略する。
[Embodiment 2]
In the first embodiment, the distance between the deposition surface 3a and the evaporation source 1 is adjusted. In the second embodiment, the radial position (distance) between the evaporation source 1 and the rotation axis O is adjusted. This will be described with reference to FIGS. The same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図7に示すように、真空蒸着室11に回転軸心Oから所定の水平距離Rだけ離れて配置された蒸発源1の蒸発容器1aは、水平距離調整装置30により回転軸心Oに接近離間する方向に位置調整自在に配置されている。 As shown in FIG. 7, the evaporation container 1 a of the evaporation source 1 disposed in the vacuum vapor deposition chamber 11 at a predetermined horizontal distance R from the rotation axis O is approached and separated from the rotation axis O by the horizontal distance adjusting device 30. It is arranged so that its position can be adjusted freely.

この水平距離調整装置30は、真空蒸着室11の外側部に配置されたねじ軸式横行移動機構を具備し、たとえば横行モータ30bにより水平方向のねじ軸30aを回転駆動し、このねじ軸30aに螺合された雌ねじ部材30cを介して、真空蒸着室11の側壁を貫通する横行ロッド30dを出退させる。前記横行ロッド30dはガイドロッド30eに案内されて出退され、先端部に連結された横行台30fをガイドレール30gに沿って移動することができる。横行台30fには加熱装置(図示せず)が設けられて蒸発源1が保持されている。また横行ロッド30dの側壁の貫通部から外側にシール用蛇腹30hが介装されている。   The horizontal distance adjusting device 30 includes a screw shaft type traverse moving mechanism disposed on the outer side of the vacuum vapor deposition chamber 11. For example, a horizontal screw shaft 30 a is rotationally driven by a traverse motor 30 b, and the screw shaft 30 a The traversing rod 30d penetrating the side wall of the vacuum deposition chamber 11 is withdrawn and retracted through the threaded female screw member 30c. The traversing rod 30d is guided and retracted by the guide rod 30e, and can move along the guide rail 30g on the traversing base 30f connected to the tip. The traverse base 30f is provided with a heating device (not shown) to hold the evaporation source 1. Further, a bellows 30h for sealing is interposed on the outer side from the through portion of the side wall of the traversing rod 30d.

蒸発流の密度分布の勾配の増大に対応して均一な膜厚を形成するための膜厚制御装置31が設けられている。この膜厚制御装置31は、膜厚センサ15により検出された3個所の蒸着レートの比から蒸発流分布を検出する蒸発流密度分布検出部16と、検出した蒸発流の密度分布に基づいて回転軸心Oに対する蒸発源1の適正水平距離Rxを求める水平距離補正部35と、この水平距離補正部35の信号に基づいて水平距離調整装置30の横行モータ30bに制御信号を出力する補正出力部36とで構成されている。   A film thickness control device 31 is provided for forming a uniform film thickness in response to an increase in the gradient of the density distribution of the evaporation flow. This film thickness control device 31 rotates based on the vapor flow density distribution detector 16 that detects the vapor flow distribution from the ratio of the three deposition rates detected by the film thickness sensor 15 and the detected vapor flow density distribution. A horizontal distance correction unit 35 for obtaining an appropriate horizontal distance Rx of the evaporation source 1 with respect to the axis O, and a correction output unit for outputting a control signal to the transverse motor 30b of the horizontal distance adjustment device 30 based on a signal from the horizontal distance correction unit 35 36.

前記水平距離補正部35は、前記蒸発流の密度分布と前記cosの法則によるn値とを結びつけたn値判断テーブル、および回転軸心Oと蒸発源1との半径方向の水平距離Rとn値およびそれらの組合せにおける膜厚均一性が許容範囲か否かを示すもの(たとえば「1」か「0」)を表した水平距離データテーブルをそれぞれ有するデータ記憶部32と、蒸発流の密度分布と現在の水平距離Rを使用してデータ記録部32のn値判断テーブルを参照し、蒸発流の密度分布におけるn値を求めるn値判断部33と、このn値と現在の水平距離Rによりデータ記録部32の水平距離データテーブルを参照し、被蒸着面3aにおける膜厚均一性が一定の許容範囲内に形成可能な回転軸心Oに対する蒸発源1の適正水平距離Rxを求める水平距離判断部34とを具備している。 The horizontal distance correction unit 35 includes an n value determination table in which the density distribution of the evaporation flow and the n value according to the cos law are combined, and the horizontal distance R and n in the radial direction between the rotation axis O and the evaporation source 1. Data storage units 32 each having a horizontal distance data table indicating whether the film thickness uniformity in the values and combinations thereof is within an allowable range (for example, “1” or “0”), and the density distribution of the evaporation flow The current horizontal distance R is used to refer to the n-value determination table of the data recording unit 32, and the n-value determination unit 33 for obtaining the n-value in the density distribution of the evaporative flow, and the n-value and the current horizontal distance R Referring to the horizontal distance data table of the data recording unit 32, the horizontal distance determination for obtaining the appropriate horizontal distance Rx of the evaporation source 1 with respect to the rotation axis O that can form the film thickness uniformity on the deposition surface 3a within a certain allowable range. Part 3 It is provided with a door.

ここで、適正水平距離Rxとは、被蒸着面3aの有効範囲(製品として利用される部位)に蒸着された膜厚の膜厚均一性が製品として許容範囲に入るように蒸着できる距離をいい、用途により異なるが、たとえば膜厚均一性が10%以下のものをいう。そして水平距離判断部34では、現在の水平距離Rとn値の関係で許容範囲(例示した「1」)であれば、現在状態の維持、許容範囲外(例示した「0」)であれば、テーブル内の1つ長い距離を適正水平距離Rxと判断し、適正水平距離Rxが変わるときに補正出力部36への指示を行う。 Here, the appropriate horizontal distance Rx means a distance that can be deposited so that the film thickness uniformity of the film deposited on the effective range of the deposition surface 3a (site used as a product) falls within an allowable range as a product. Depending on the application, for example, the film thickness uniformity is 10% or less. The horizontal distance determination unit 34 maintains the current state if it is within the allowable range (exemplified “1”) in relation to the current horizontal distance R and the n value, and if it is out of the allowable range (exemplified “0”). The one long distance in the table is determined as the appropriate horizontal distance Rx, and an instruction is given to the correction output unit 36 when the appropriate horizontal distance Rx changes.

なお、図10に示すように、水平距離補正部35にデータ記憶部22を設けずに、n値演算部33’と水平距離演算部34’とを設け、n値演算部33’で蒸発流の密度分布を現在の水平距離Rにおける演算式に入力して直接n値を求め、水平距離演算部34’で前記n値を演算式に入力して適正水平距離Rxを求めるように構成してもよい。 As shown in FIG. 10, the horizontal distance correction unit 35 is not provided with the data storage unit 22, but is provided with an n-value calculation unit 33 ′ and a horizontal distance calculation unit 34 ′. Is input directly into an arithmetic expression at the current horizontal distance R to directly obtain an n value, and the horizontal distance calculating unit 34 'inputs the n value into the arithmetic expression to obtain an appropriate horizontal distance Rx. Also good.

図9は、回転される基板3に形成される膜厚分布の一例を表したグラフであり、cosの法則のn値が14で、蒸発源1と回転軸心Oとの間の水平距離をR1〜R3(R1>R2>R3)と変化させたものである。ここで横軸はR/Hを示し、Rは回転軸心Oと蒸発源1との間の水平距離、Hは蒸発源1と被蒸着面3aとの間の鉛直距離である。また縦軸は、最大膜厚部を1.0とした時の膜厚の厚み比である。 FIG. 9 is a graph showing an example of the film thickness distribution formed on the substrate 3 to be rotated . The n value of cos's law is 14, and the horizontal distance between the evaporation source 1 and the rotation axis O is shown. R1 to R3 (R1>R2> R3) are changed. Here, the horizontal axis represents R / H, R is the horizontal distance between the rotation axis O and the evaporation source 1, and H is the vertical distance between the evaporation source 1 and the deposition surface 3a. The vertical axis represents the thickness ratio of the film thickness when the maximum film thickness portion is 1.0.

図9によれば、R1→R2→R3と変化して蒸発源1と回転軸心Oとが接近すると、最大膜厚部が回転軸心Oに接近して、回転軸心Oを含む最大膜厚部内側の膜厚分布の勾配が減少するのを確認することができる。 According to FIG. 9 , when the evaporation source 1 and the rotation axis O approach each other by changing from R 1 → R 2 → R 3, the maximum film thickness portion approaches the rotation axis O and the maximum film including the rotation axis O is obtained. It can be confirmed that the gradient of the film thickness distribution inside the thick part decreases.

図8は、解析により求められた蒸発流の密度分布のcosの法則におけるn値と、回転軸心Oに対する蒸発源1の半径方向の水平距離Rとの膜厚均一性の関係を示す表である。この表に示された数値は、膜厚分布の膜厚均一性(%)であり、ハッチング部分は膜厚均一性が10%以内である。図8によれば、蒸発流の密度分布の勾配が大きくなってn値が増大した場合、回転軸心Oに対する蒸発源1の半径方向の距離Rを短くすることにより膜厚分布の膜厚均一性を減少できることがわかる。許容範囲であるハッチング部分を「1」とし、許容範囲外の他の部分を「0」としたものが前述した水平距離データテーブルとして利用される。 FIG. 8 is a table showing the relationship between the film thickness uniformity between the n value in the cos law of the density distribution of the evaporation flow obtained by analysis and the horizontal distance R in the radial direction of the evaporation source 1 with respect to the rotation axis O. is there. The numerical values shown in this table are the film thickness uniformity (%) of the film thickness distribution, and the hatched portions have a film thickness uniformity within 10%. According to FIG. 8, when the gradient of the density distribution of the evaporation flow increases and the n value increases, the distance R in the radial direction of the evaporation source 1 with respect to the rotation axis O is shortened to make the film thickness uniform. It can be seen that the sex can be reduced. The hatched portion that is the allowable range is set to “1”, and the other portion outside the allowable range is set to “0”, and is used as the horizontal distance data table described above.

上記構成において、基板3を回転しつつ基板3に蒸着し、複数枚の基板3を順次交換して連続的に蒸着作業を行い、作業時間が経過すると、蒸発源1の蒸発容器1a内の材料が減少し、放出口1bの煙突効果により蒸発流の密度分布の勾配が増大すると、この蒸発流の密度分布が3つの水晶振動子15A,15B,15Cの出力値に反映される。そして膜厚制御装置31のn値判断部33では、蒸発流密度分布検出部16による蒸発流の密度分布と現在の水平距離Rとデータ記録部32のn値判断テーブルから蒸発流の密度分布のn値を求める。そしてこのn値を全部(または閾値を越えると、越えた分だけ)水平距離判断部34に出力し、水平距離判断部34では、このn値と現在の水平距離Rでデータ記録部32の水平距離データテーブルを参照し、適正水平距離Rxの範囲にあるか否かを判断する。適正範囲に無い場合は、テーブル内の次に短い水平距離を適正水平距離Rxとし、これを補正出力部36に指示する。そして補正出力部36から水平距離調整装置30の横行モータ30bに制御信号が出力され、蒸発源1を適正水平距離Rxとなるように目的の距離だけ回転軸心Oに接近させる。これにより被蒸着面3aにおける膜厚分布の外輪山状の最大膜厚部が、回転軸心Oに接近されて最大膜厚部内側の膜厚分布の勾配が減少され、被蒸着面3aに膜厚均一性の高い膜厚が形成される。 In the above configuration, vapor deposition is performed on the substrate 3 while rotating the substrate 3, and a plurality of substrates 3 are sequentially replaced to continuously perform the vapor deposition operation. After the operation time has elapsed, the material in the evaporation container 1 a of the evaporation source 1 Decreases, and the density distribution gradient of the evaporative flow increases due to the chimney effect of the discharge port 1b, and the density distribution of the evaporative flow is reflected in the output values of the three crystal resonators 15A, 15B, and 15C. Then, the n value determination unit 33 of the film thickness control device 31 calculates the density distribution of the evaporation flow from the density distribution of the evaporation flow by the evaporation flow density distribution detection unit 16, the current horizontal distance R, and the n value determination table of the data recording unit 32. Find the n value. Then, all the n values are output to the horizontal distance determination unit 34 (or as much as it exceeds the threshold value), and the horizontal distance determination unit 34 uses the n value and the current horizontal distance R in the horizontal direction of the data recording unit 32. With reference to the distance data table, it is determined whether or not it is within the range of the appropriate horizontal distance Rx. If it is not within the appropriate range, the next horizontal distance in the table is set as the appropriate horizontal distance Rx, and this is instructed to the correction output unit 36. Then, a control signal is output from the correction output unit 36 to the transverse motor 30b of the horizontal distance adjusting device 30, and the evaporation source 1 is brought closer to the rotation axis O by a target distance so as to be the appropriate horizontal distance Rx. As a result, the outermost ring-shaped maximum film thickness portion of the film thickness distribution on the deposition surface 3a is brought closer to the rotation axis O, the gradient of the film thickness distribution inside the maximum film thickness portion is reduced, and the film thickness distribution on the deposition surface 3a. A highly uniform film thickness is formed.

上記実施の形態2によれば、連続蒸着作業中に、膜厚センサ15により異なる3個所の蒸着レートを検出して、膜厚制御装置31では、蒸発流密度分布検出部16により蒸発材料の密度分布を検出し、n値判断部33により蒸発流の密度分布のn値を求め、水平距離判断部34で適正水平距離Rxを求める。そして、補正出力部36により水平距離調整装置30を駆動して蒸発源1を回転軸心Oに接近させる。これにより、被蒸着面3aにおける膜厚分布の最大膜厚部を回転軸心Oに接近させて、最大膜厚部内側の膜厚分布の勾配を減少させることができる。したがって、蒸発源1の材料の減少に伴って蒸発流の密度分布の勾配が増加しても、被蒸着面3aに均一な膜厚を形成することができる。 According to the second embodiment, during the continuous vapor deposition operation, three different vapor deposition rates are detected by the film thickness sensor 15, and in the film thickness controller 31, the density of the evaporation material is detected by the evaporation flow density distribution detection unit 16. The distribution is detected, the n value determining unit 33 determines the n value of the density distribution of the evaporative flow, and the horizontal distance determining unit 34 determines the appropriate horizontal distance Rx. Then, the horizontal distance adjusting device 30 is driven by the correction output unit 36 to bring the evaporation source 1 closer to the rotation axis O. Thereby, the maximum film thickness portion of the film thickness distribution on the deposition surface 3a can be brought close to the rotation axis O, and the gradient of the film thickness distribution inside the maximum film thickness portion can be reduced. Therefore, even if the gradient of the density distribution of the evaporation flow increases as the material of the evaporation source 1 decreases, a uniform film thickness can be formed on the deposition surface 3a.

なお、蒸発源1を固定しておき、基板保持具12および基板回転装置13を蒸発源1に接近離間移動可能な水平距離調整装置を設けても、同様の作用効果を奏することができる。
[実施の形態3]
この実施の形態3は、上記実施の形態1および実施の形態2を組み合わせたもので、図11を参照して説明する。なお、実施の形態1,2と同一部材には同一符号を付して説明を省略する。
Even if the evaporation source 1 is fixed and a horizontal distance adjusting device capable of moving the substrate holder 12 and the substrate rotating device 13 closer to and away from the evaporation source 1 is provided, the same effect can be obtained.
[Embodiment 3]
The third embodiment is a combination of the first and second embodiments and will be described with reference to FIG. The same members as those in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.

蒸発源1を位置調整する鉛直・水平距離調整装置51は、ねじ軸式昇降移動機構51Aと回動式横行移動機構51Bとで構成されている。すなわち、ねじ軸式昇降移動機構51Aは、真空蒸着室11の下部外側に昇降モータ51bにより回転駆動される鉛直方向のねじ軸51aが配設され、このねじ軸51aに螺合された雌ねじ部材51dを介して昇降駆動される昇降ロッド51cが真空蒸着室11の底壁を貫設して設けられ、この昇降ロッド51cの貫通部にシール用蛇腹51eが設けられている。回動式横行移動機構51Bは、真空蒸着室11内で昇降ロッド51cの上端部に取り付けられた回動用の真空モータ51fにより回動アーム51gが回動される。そして、回動アーム51gの先端部に加熱装置(図示せず)付可動台51hを介して保持された蒸発源1を水平面内で昇降ロッド51cを中心に回動させることにより、回転軸心Oと蒸発源1との間の水平距離を調整することができる。 The vertical / horizontal distance adjusting device 51 that adjusts the position of the evaporation source 1 includes a screw shaft type lifting / lowering moving mechanism 51A and a rotating traverse moving mechanism 51B. That is, in the screw shaft type lifting / lowering moving mechanism 51A, a vertical screw shaft 51a that is rotationally driven by a lifting motor 51b is disposed outside the lower part of the vacuum deposition chamber 11, and a female screw member 51d that is screwed to the screw shaft 51a. An elevating rod 51c that is driven up and down via is provided so as to penetrate the bottom wall of the vacuum deposition chamber 11, and a sealing bellows 51e is provided in a through portion of the elevating rod 51c. In the rotary traverse moving mechanism 51B, the rotary arm 51g is rotated by a rotary vacuum motor 51f attached to the upper end of the lifting rod 51c in the vacuum deposition chamber 11. Then, by rotating the evaporation source 1 held at the tip of the rotating arm 51g via a movable base 51h with a heating device (not shown) around the lifting rod 51c in the horizontal plane, the rotation axis O is obtained. And the horizontal distance R between the evaporation source 1 can be adjusted.

膜厚制御装置41は、膜厚センサ15により検出された3箇所の蒸着レートの比から蒸発流の密度分布を求める蒸発流密度分布検出部16と、検出された蒸発流の密度分布から被蒸着面3aと蒸発源1との適正鉛直距離Hxおよび回転軸心Oに対する蒸発源1の適正水平距離Rxをそれぞれ求める変位補正部45と、鉛直距離調整装置14および水平距離調整装置30を駆動する補正出力部46とで構成されている。 The film thickness control device 41 includes an evaporative flow density distribution detection unit 16 that obtains an evaporative flow density distribution from the ratios of the three vapor deposition rates detected by the film thickness sensor 15, and a vapor deposition target from the detected evaporative flow density distribution. A displacement correction unit 45 for obtaining an appropriate vertical distance Hx between the surface 3a and the evaporation source 1 and an appropriate horizontal distance Rx of the evaporation source 1 with respect to the rotation axis O, and a correction for driving the vertical distance adjustment device 14 and the horizontal distance adjustment device 30, respectively. And an output unit 46.

前記変位補正部45は、前記蒸発流の密度分布ならびに現在の水平距離Rと前記cosの法則によるn値とを結びつけたn値判断テーブル、および鉛直距離H毎に用意され回転軸心Oに対する蒸発源1との半径方向の水平距離Rとn値およびそれらの組合せにおける膜厚均一性が許容範囲内か否かを示すもの(たとえば「1」か「0」)を表した鉛直水平距離データテーブルをそれぞれ有するデータ記録部と、3つの水晶振動子15A,15B,15Cにより検出された膜厚(蒸着レート)から蒸発流の密度分布を求め、この密度分布を現在の水平距離Rを使用してデータ記録部42のn値判断テーブルを参照し、この蒸発流の密度分布におけるn値を求めるn値判断部43と、このn値と現在の距離H,Rによりデータ記録部42の鉛直水平距離データテーブルを参照し、被蒸着面3aにおける膜厚均一性が一定の許容範囲内に形成可能な、適正鉛直距離Hxと適正水平距離Rxとの組合せを求める変位判断部44とを有している。 The displacement correction unit 45 is prepared for each n-value determination table in which the density distribution of the evaporative flow, the current horizontal distance R and the n-value according to the cos law, and the vertical distance H are prepared. radial horizontal distance R and n values of the source 1 and the vertical horizontal distance data table showing the film thickness uniformity indicates whether within the allowable range (for example, "1" or "0") in a combination thereof The density distribution of the evaporation flow is obtained from the film thickness (deposition rate) detected by each of the data recording units having three and the three quartz crystal resonators 15A, 15B, and 15C, and this density distribution is obtained using the current horizontal distance R. With reference to the n value determination table of the data recording unit 42, an n value determining unit 43 for obtaining the n value in the density distribution of the evaporative flow, and the vertical horizontal distance of the data recording unit 42 based on the n value and the current distances H and R. With reference to the data table, it has a displacement determination unit 44 for obtaining a combination of an appropriate vertical distance Hx and an appropriate horizontal distance Rx that can be formed within a certain allowable range in film thickness uniformity on the deposition surface 3a. .

ここで、変位判断部44において、データ記録部42の鉛直距離データテーブルと水平距離データから適正鉛直距離Hxおよび適正水平距離Rxを選択するために、適正鉛直距離Hxおよび適正水平距離Rxの複数の適正値が存在することになるが、たとえば被蒸着面3aと蒸発源1との距離が長くなると、蒸着流の密度が低下して蒸着に要する時間が長くなるため、複数の適正値のうちで被蒸着面3aと蒸発源1との距離が短いものから順に選択するなどのように、被蒸着面3aと蒸発源1との距離が短いことを要件として一意的に選択すればよい。   Here, in the displacement determination unit 44, in order to select the appropriate vertical distance Hx and the appropriate horizontal distance Rx from the vertical distance data table and the horizontal distance data of the data recording unit 42, a plurality of appropriate vertical distances Hx and appropriate horizontal distances Rx are selected. Although an appropriate value exists, for example, when the distance between the deposition surface 3a and the evaporation source 1 is increased, the density of the evaporation flow is reduced and the time required for evaporation is increased. The distance between the deposition surface 3a and the evaporation source 1 may be uniquely selected as a requirement, such as selecting in order from the shortest distance between the deposition surface 3a and the evaporation source 1.

たとえば同一の適正鉛直距離Hxの鉛直距離データテーブル上で許容範囲「1」を満たす状態では、水平距離Rの値が大きいところから小さくなる方へ順次適正水平距離Rxを変化させるルールとし、同適正鉛直距離Hxの鉛直距離データテーブルにおける水平距離Rの変更で対応できなくなった時に、次に長い鉛直距離鉛直距離データテーブル上の許容範囲「1」における最も長い水平距離Rに移動し、このテーブル上でも、適正水平距離Rxを前述と同様に変更するルールを採用すればよい。 For example, in a state where the allowable range “1” is satisfied on the vertical distance data table of the same appropriate vertical distance Hx, the rule is to change the appropriate horizontal distance Rx sequentially from the larger horizontal distance R to the smaller value. When it becomes impossible to cope with the change of the horizontal distance R in the vertical distance data table of the vertical distance Hx, it moves to the longest horizontal distance R in the allowable range “1” on the vertical distance data table of the next longest vertical distance H. Even on the table, a rule for changing the appropriate horizontal distance Rx in the same manner as described above may be adopted.

さらに、補正出力部46は、変位補正部45の信号に基づいて、制御信号を鉛直距離調整装置14と水平距離調整装置30とに出力するように構成されている。   Further, the correction output unit 46 is configured to output a control signal to the vertical distance adjustment device 14 and the horizontal distance adjustment device 30 based on the signal of the displacement correction unit 45.

なお、図12に示すように、変位補正部45にデータ記録部42を設けずに、n値演算部43’と変位演算部44’とを設け、n値演算部43’で、膜厚センサ15による蒸発流分布を現在の適正水平距離Rxにおける演算式に入力して直接n値を求め、このn値を変位演算部44’の演算式に入力して被蒸着面3aと蒸発源1との適正鉛直距離Hxと、回転軸心Oに対する蒸発源1の適正水平距離Rxを求めるように構成してもよい。 As shown in FIG. 12, the displacement correction unit 45 is not provided with the data recording unit 42, but is provided with an n-value calculation unit 43 ′ and a displacement calculation unit 44 ′, and the n-value calculation unit 43 ′ 15 is input to an arithmetic expression at the current appropriate horizontal distance Rx to directly obtain an n value, and this n value is input to the arithmetic expression of the displacement calculator 44 ′ to form the deposition surface 3a, the evaporation source 1, and the like. The appropriate vertical distance Hx and the appropriate horizontal distance Rx of the evaporation source 1 with respect to the rotation axis O may be obtained.

この場合の適正鉛直距離Hxと適正水平距離Rxの最適値を選択する方法を図13を参照して説明する。ここで(STEP1〜7)は、適正水平距離Rxの最適値を求めており、また(STEP11〜16)は適正鉛直距離Hxの最適値を求めている。   A method for selecting the optimum values of the appropriate vertical distance Hx and the appropriate horizontal distance Rx in this case will be described with reference to FIG. Here, (STEP 1 to 7) obtains the optimum value of the appropriate horizontal distance Rx, and (STEP 11 to 16) obtains the optimum value of the appropriate vertical distance Hx.

(STEP2)では、現在のn値、水平距離:R、鉛直距離:Hにより、(2)式を用いて、現在の膜厚均一性u0を計算する。   In (STEP 2), the current film thickness uniformity u0 is calculated using the equation (2) based on the current n value, horizontal distance: R, and vertical distance: H.

ここで「膜厚均一性」を説明する。図2(b)に示すように、蒸発源1を通る円直線を中心として対称となるように蒸発流密度分布[(1)式]に基づいて蒸発しているものとして、基板3を回転軸心Oを中心としてその蒸発流密度分布内で回転させ、基板3に堆積された任意位置における蒸発流密度の積算値が(2)式で求められる。そしてたとえば図2(a)に示す膜厚(比)の最大値と最小値の中間の平均値を基準値とし、この基準値から最大値(または最小値)までの幅の比を「膜厚均一性」として求める。   Here, “film thickness uniformity” will be described. As shown in FIG. 2 (b), it is assumed that the substrate 3 is rotated based on the evaporation flow density distribution [Equation (1)] so as to be symmetric about a circular line passing through the evaporation source 1 as a rotational axis. By rotating within the evaporation flow density distribution around the center O, the integrated value of the evaporation flow density at an arbitrary position deposited on the substrate 3 is obtained by equation (2). Then, for example, an average value between the maximum value and the minimum value of the film thickness (ratio) shown in FIG. 2A is used as a reference value, and the ratio of the width from this reference value to the maximum value (or minimum value) is expressed as “film thickness”. Calculated as "uniformity".

(STEP3)で水平距離:Rに任意に選択される値(図では「5」)を加算して、膜厚均一性u1を演算する。さらに(STEP4)で、現在の膜厚均一性u0から演算された膜厚均一性u1を減算する。減算値が0未満であれば、(STEP5)に移り、演算された膜厚均一性u1が最小になるまで水平距離Rを大きくする。反対に減算値が0を越えれば、(STEP6)に移り、演算された膜厚均一性u1が最小になるまで水平距離Rを小さくすることにより、適正水平距離Rxを求める。そして(STEP7)で最小となったu1を新たなu0とする。   In step 3, the horizontal distance: R is arbitrarily added to a value (“5” in the figure), and the film thickness uniformity u 1 is calculated. Further, in (STEP 4), the calculated film thickness uniformity u1 is subtracted from the current film thickness uniformity u0. If the subtraction value is less than 0, the process proceeds to (STEP 5), and the horizontal distance R is increased until the calculated film thickness uniformity u1 is minimized. On the contrary, if the subtraction value exceeds 0, the process proceeds to (STEP 6), and the appropriate horizontal distance Rx is obtained by reducing the horizontal distance R until the calculated film thickness uniformity u1 is minimized. Then, u1 that is minimized in (STEP 7) is set as a new u0.

(STEP11)で現在の鉛直距離:Hに任意に選択される値(図では「5」)を加算して、膜厚均一性u1を演算する。さらに(STEP12)で、現在の膜厚均一性u0から演算された膜厚均一性u1を減算する。減算値が0未満であれば、(STEP13)に移り、演算された膜厚均一性u1が最小になるまで鉛直距離Hを大きくする。反対に減算値が0を越えれば、(STEP14)に移り、演算された膜厚均一性u1が最小になるまで鉛直距離Hを小さくすることにより、適正鉛直距離Hxを求める。そして(STEP15)で最小となったu1を新たなu0とし、(STEP16)で目標の適正水平距離:Rxと目標の適正鉛直距離:Hxをそれぞれ決定する。   In step 11, the film thickness uniformity u <b> 1 is calculated by adding a value (“5” in the figure) arbitrarily selected to the current vertical distance: H. Further, in (STEP 12), the calculated film thickness uniformity u1 is subtracted from the current film thickness uniformity u0. If the subtraction value is less than 0, the process proceeds to (STEP 13), and the vertical distance H is increased until the calculated film thickness uniformity u1 is minimized. On the contrary, if the subtraction value exceeds 0, the process proceeds to (STEP 14), and the appropriate vertical distance Hx is obtained by decreasing the vertical distance H until the calculated film thickness uniformity u1 is minimized. Then, u1 that is minimized in (STEP 15) is set as a new u0, and in (STEP 16), a target appropriate horizontal distance: Rx and a target appropriate vertical distance: Hx are determined.

なお、図6に示す実施の形態1の他の形態で、n値演算部23’と鉛直距離演算部24’により、(STEP11〜16)を用いて適正鉛直距離Hxの最適値の求めることができる。また、図10に示す実施の形態2の他の形態で、n値演算部33’と水平距離演算部34’とにより、(STEP1〜7)を用いて適正水平距離Rxを求めることができる。   In another form of the first embodiment shown in FIG. 6, the optimum value of the appropriate vertical distance Hx can be obtained by using (STEP 11 to 16) by the n-value calculating unit 23 ′ and the vertical distance calculating unit 24 ′. it can. Further, in another form of the second embodiment shown in FIG. 10, the appropriate horizontal distance Rx can be obtained using (STEP 1 to 7) by the n-value calculating section 33 'and the horizontal distance calculating section 34'.

上記構成において、基板3を回転しつつ基板3に蒸着し、複数枚の基板3を順次交換して連続的に蒸着作業を行い、作業時間が経過すると、蒸発源1の蒸発容器1a内の材料が減少して、放出口1bの煙突効果により蒸発流の密度分布の勾配が増大し、この蒸発流の密度分布が3つの水晶振動子15A,15B,15Cの出力値の大きさの関係に反映される。   In the above configuration, vapor deposition is performed on the substrate 3 while rotating the substrate 3, and a plurality of substrates 3 are sequentially replaced to continuously perform the vapor deposition operation. After the operation time has elapsed, the material in the evaporation container 1 a of the evaporation source 1 And the gradient of the density distribution of the evaporative flow increases due to the chimney effect of the discharge port 1b, and the density distribution of the evaporative flow is reflected in the relationship between the output values of the three crystal resonators 15A, 15B, and 15C. Is done.

そして、膜厚制御装置41において、n値判断部43で水晶振動子15A,15B,15Cに基づいて求めた蒸発流の密度分布と、現在の水平距離Rと、データ記録部42のn値判断テーブルから蒸発流の密度分布のn値を求める。さらにこのn値全部(またはn値が閾値を越えると、越えた分だけ)変位判断部44に出力し、変位判断部44では、このn値と、現在の距離H,Rでデータ記録部42の鉛直距離データテーブルおよび水平距離データテーブルを参照し、現在の鉛直距離Hと水平距離Rが適正なn値の範囲にあるか否かを判断する。   Then, in the film thickness control device 41, the density distribution of the evaporative flow obtained by the n-value determining unit 43 based on the crystal resonators 15A, 15B, and 15C, the current horizontal distance R, and the n-value determination of the data recording unit 42. The n value of the density distribution of the evaporation flow is obtained from the table. Further, all the n values (or the amount exceeding the threshold when the n value exceeds the threshold) are output to the displacement determination unit 44. The displacement determination unit 44 uses the n value and the current distances H and R to record the data recording unit 42. Referring to the vertical distance data table and the horizontal distance data table, it is determined whether or not the current vertical distance H and horizontal distance R are within a proper n value range.

適正でない場合には、まず現在の鉛直距離Hと同一の鉛直距離データテーブルにおける次に距離の短い鉛直距離Hが適正なn値にあるか否かを判断する。同一の鉛直距離データテーブルに適正なn値となる最適鉛直距離Hxが無ければ、次に距離の長い鉛直距離データテーブルを参照し、この鉛直距離データテーブルのうちの適正なn値となる鉛直距離Hの範囲のうち、最も距離の長いものを適正鉛直距離Hxとして、補正出力部46に出力の指示を行う。   If it is not appropriate, it is first determined whether or not the vertical distance H having the next shortest distance in the same vertical distance data table as the current vertical distance H has an appropriate n value. If there is no optimum vertical distance Hx that is an appropriate n value in the same vertical distance data table, the vertical distance data table having the next longest distance is referred to, and the vertical distance that is an appropriate n value in this vertical distance data table In the range of H, the longest distance is set as the appropriate vertical distance Hx, and an output instruction is given to the correction output unit 46.

補正出力部46から鉛直距離調整装置14および水平距離調整装置30の一方または両方に制御信号が出力され、鉛直距離調整装置14により蒸発源1を、適正鉛直距離Hxとなるように目的の距離だけ被蒸着面3aに離間移動する動作か、水平距離調整装置30により蒸発源1を適正水平距離Rxとなるように目的の距離だけ回転軸心Oに接近移動する動作の少なくとも一方が行われる。これにより、被蒸着面3aにおける蒸発流の密度分布の勾配が減少され、最大膜厚部内の膜厚分布の勾配が減少される。なお、適正水平距離Rxについては、適正鉛直距離Hxが変更された時に離間する方向へ移動される。   A control signal is output from the correction output unit 46 to one or both of the vertical distance adjustment device 14 and the horizontal distance adjustment device 30, and the vertical distance adjustment device 14 moves the evaporation source 1 to a proper vertical distance Hx by a target distance. At least one of the operation of moving away from the deposition surface 3a or the operation of moving the evaporation source 1 closer to the rotation axis O by the target distance so as to be the appropriate horizontal distance Rx is performed by the horizontal distance adjusting device 30. Thereby, the gradient of the density distribution of the evaporation flow on the deposition surface 3a is reduced, and the gradient of the film thickness distribution in the maximum film thickness portion is reduced. Note that the appropriate horizontal distance Rx is moved in the direction of separation when the appropriate vertical distance Hx is changed.

上記実施の形態3によれば、連続蒸着作業中に、膜厚センサ15により異なる3個所の蒸着レートを検出して、膜厚制御装置41では、蒸発流密度検出部16により蒸発流の密度分布を検出し、n値判断部43により蒸発流の密度分布と現在の水平距離Rにより蒸発流の密度分布のn値を求める。そしてこのn値が変位判断部44に出力され、変位判断部44では現在の距離R,Hを使ってn値とデータ記録部42の鉛直水平距離データテーブルを参照し、適正鉛直距離Hxと適正水平距離Rxが求められる。さらに適正鉛直距離Hxと適正水平距離Rxに基づいて、補正出力部46により鉛直距離調整装置14により蒸発源1を被蒸着面3aから離間させる動作、および補正出力部46により水平距離調整装置30により蒸発源1を回転軸心Oに接近させる動作の少なくとも一方を行うことにより、被蒸着面3aにおける蒸発流の密度分布の勾配を減少させ、また膜厚分布の勾配を減少させることができる。これにより、蒸発源1の材料の減少に伴って蒸発流の密度分布の勾配が大きくなっても、被蒸着面3aに均一な膜厚を形成することができる。 According to the third embodiment, during the continuous vapor deposition operation, three different vapor deposition rates are detected by the film thickness sensor 15, and in the film thickness control device 41, the density distribution of the vapor flow is detected by the vapor flow density detector 16. , And the n value determination unit 43 obtains the n value of the density distribution of the evaporative flow from the density distribution of the evaporative flow and the current horizontal distance R. The n value is output to the displacement determination unit 44. The displacement determination unit 44 uses the current distances R and H to refer to the n value and the vertical horizontal distance data table of the data recording unit 42 to determine the appropriate vertical distance Hx and the appropriate value. A horizontal distance Rx is obtained. Further, based on the appropriate vertical distance Hx and the appropriate horizontal distance Rx, the correction output unit 46 causes the vertical distance adjustment device 14 to separate the evaporation source 1 from the deposition surface 3a, and the correction output unit 46 uses the horizontal distance adjustment device 30. By performing at least one of the operations of bringing the evaporation source 1 closer to the rotation axis O, the gradient of the density distribution of the evaporation flow on the deposition surface 3a can be reduced, and the gradient of the film thickness distribution can be reduced. Thereby, even if the gradient of the density distribution of the evaporation flow increases with the decrease in the material of the evaporation source 1, a uniform film thickness can be formed on the deposition surface 3a.

なお、上記実施の形態1〜3では、U字形断面の蒸発容器1aを使用したが、図14に示すように、V字形断面の蒸発容器1cを使用しても同様である。   In the first to third embodiments, the evaporation container 1a having a U-shaped cross section is used. However, as shown in FIG. 14, the same applies to the case where an evaporation container 1c having a V-shaped cross section is used.

また、蒸発源1を固定しておき、蒸発源1に対して基板3を接近離間移動可能な鉛直距離調整装置と、蒸発源1に対して回転軸心Oを接近離間移動可能な水平距離調整装置を設けても、同様の作用効果を奏することができる。 Further, the evaporation source 1 is fixed, the vertical distance adjusting device capable of moving the substrate 3 toward and away from the evaporation source 1, and the horizontal distance adjustment capable of moving the rotation axis O toward and away from the evaporation source 1. Even if an apparatus is provided, the same effect can be obtained.

さらに、上記実施の形態1〜3では、水晶振動子15A〜15Cを同一水平面上に配置したが、水晶振動子15A〜15Cが同一水平面上に配置できない場合には、検出値を補正することで対応すればよい。   Further, in the first to third embodiments, the crystal resonators 15A to 15C are arranged on the same horizontal plane. However, when the crystal resonators 15A to 15C cannot be arranged on the same horizontal plane, the detection value is corrected. You only have to respond.

本発明に係る真空蒸着装置の蒸発流の密度分布の説明図で、(a)は、蒸着装置の概略構成図、(b)は蒸発流のcosの法則の説明図、(c)はcosの法則による蒸発流の密度分布を示すグラフである。It is explanatory drawing of the density distribution of the evaporation flow of the vacuum evaporation system which concerns on this invention, (a) is a schematic block diagram of an evaporation apparatus, (b) is explanatory drawing of the law of cos of an evaporation flow, (c) is cos It is a graph which shows the density distribution of the evaporation flow by a law. 同真空蒸着装置において回転された被蒸着面の膜厚分布を説明するための図で、(a)は膜厚分布を示すグラフ、(b)膜厚を計算で求めるための模式図である。It is a figure for demonstrating the film thickness distribution of the to-be-deposited surface rotated in the same vacuum evaporation apparatus, (a) is a graph which shows film thickness distribution, (b) is a schematic diagram for calculating | requiring a film thickness by calculation. . 本発明に係る真空蒸着装置の実施の形態1を示す構成図である。It is a block diagram which shows Embodiment 1 of the vacuum evaporation system which concerns on this invention. 同真空蒸着装置の膜厚センサの配置を示す平面図である。It is a top view which shows arrangement | positioning of the film thickness sensor of the vacuum evaporation system. 同真空蒸着装置における被蒸着面と蒸発源との距離と、cosの法則のn値における膜厚分布の平坦度を示すである。It is a figure which shows the flatness of the film thickness distribution in the n value of the distance of the to-be-deposited surface and evaporation source in the same vacuum evaporation apparatus, and the law of cos. 同真空蒸着装置の膜厚制御装置の変形例を示す構成図である。It is a block diagram which shows the modification of the film thickness control apparatus of the vacuum evaporation system. 本発明に係る真空蒸着装置の実施の形態2を示す構成図である。It is a block diagram which shows Embodiment 2 of the vacuum evaporation system which concerns on this invention. 同真空蒸着装置における蒸発源と回転軸心との距離と、cosの法則のn値との関係における膜厚分布の平坦度を示すである。It is a figure which shows the flatness of the film thickness distribution in the relationship between the distance of the evaporation source in the same vacuum evaporation apparatus, and the rotating shaft center, and the n value of the law of cos. 同真空蒸着装置において回転された被蒸着面の膜厚分布を示すグラフである。It is a graph which shows the film thickness distribution of the to-be-deposited surface rotated in the same vacuum evaporation system. 同真空蒸着装置の膜厚制御装置の変形例を示す構成図である。It is a block diagram which shows the modification of the film thickness control apparatus of the vacuum evaporation system. 本発明に係る真空蒸着装置の実施の形態3を示す構成図である。It is a block diagram which shows Embodiment 3 of the vacuum evaporation system which concerns on this invention. 同真空蒸着装置の膜厚制御装置の変形例を示す構成図である。It is a block diagram which shows the modification of the film thickness control apparatus of the vacuum evaporation system. 同変形例において、適正水平距離と適正鉛直距離の最適値を求める方法を示すフロー図である。In the modification, it is a flowchart which shows the method of calculating | requiring the optimal value of appropriate horizontal distance and appropriate vertical distance. 同真空蒸着装置に使用される蒸発容器の他の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other Example of the evaporation container used for the same vacuum evaporation system.

O 回転中心
Os 回転軸心
1 蒸発源
2 遮蔽壁
3 基板
3a 蒸着面
11 真空蒸着室
12 基板保持具
13 基板回転装置
14 鉛直距離調整装置
15 膜厚センサ
15A〜15C 水晶振動子
21 膜厚制御装置
22 データ記憶部
23 n値判断部
24 鉛直距離判断部
25 鉛直距離補正部
26 補正出力部
30 半径水平距離調整装置
31 膜厚制御装置
32 データ記憶部
33 n値判断部
34 水平距離判断部
35 水平距離補正部
36 補正出力部
41 膜厚制御装置
42 データ記録部
43 n値判断部
44 変位判断部
45 変位補正部
46 補正出力部
O Rotation center Os Rotational axis 1 Evaporation source 2 Shielding wall 3 Substrate 3a Deposition surface 11 Vacuum deposition chamber 12 Substrate holder 13 Substrate rotation device 14 Vertical distance adjustment device 15 Film thickness sensors 15A to 15C Crystal oscillator 21 Film thickness control device 22 data storage unit 23 n value determination unit 24 vertical distance determination unit 25 vertical distance correction unit 26 correction output unit 30 radius horizontal distance adjustment device 31 film thickness control device 32 data storage unit 33 n value determination unit 34 horizontal distance determination unit 35 horizontal Distance correction unit 36 Correction output unit 41 Film thickness control device 42 Data recording unit 43 n value determination unit 44 Displacement determination unit 45 Displacement correction unit 46 Correction output unit

Claims (4)

真空環境下で、蒸発源の材料を加熱して気化し、蒸発源の上方に配置された被蒸着部材の被蒸着面に蒸着するに際し、
前記蒸発源から蒸発される蒸発流の密度分布を検出し、
検出された蒸発流の密度分布の勾配が大きくなった時に、当該蒸発流の密度分布の勾配に応じて、被蒸着面と蒸発源とを離間させて被蒸着面の範囲内の膜厚均一性の低下を抑制する
真空蒸着方法。
In a vacuum environment, when the material of the evaporation source is heated and vaporized, and deposited on the deposition surface of the deposition member disposed above the evaporation source,
Detecting the density distribution of the evaporating stream evaporated from the evaporation source;
When the gradient of the density distribution of the detected evaporation flow increases, the deposition surface and the evaporation source are separated from each other according to the density distribution gradient of the evaporation flow, and the film thickness uniformity within the range of the deposition surface Vacuum deposition method that suppresses the decrease of
真空環境下で、蒸発源の材料を加熱して気化し、蒸発源の上方で鉛直方向の回転軸心周りに回転される被蒸着部材の被蒸着面に蒸着するに際し、
前記蒸発源から蒸発される蒸発流の密度分布を検出し、
検出された蒸発流の密度分布の勾配が大きくなった時に、当該蒸発流の密度分布の勾配に応じて、被蒸着面と蒸発源とを離間させ被蒸着面の範囲内の膜厚均一性の低下を抑制する
真空蒸着方法。
In a vacuum environment, the material of the evaporation source is heated and vaporized, and is deposited on the deposition surface of the deposition member that is rotated around the vertical rotation axis above the evaporation source.
Detecting the density distribution of the evaporating stream evaporated from the evaporation source;
When the gradient of the density distribution of the detected evaporation flow becomes large, the deposition surface is separated from the evaporation source according to the gradient of the density distribution of the evaporation flow, and the film thickness uniformity within the range of the deposition surface is reduced . Vacuum deposition method that suppresses the decrease.
真空蒸着室内に、材料を加熱して気化する蒸発源と、蒸発源の上方に配置された被蒸着部材とを有し、蒸発源で気化された蒸発材料を被蒸着部材の被蒸着面に蒸着する真空蒸着装置において、
蒸発源の上方位置から異なる距離に配置された複数の蒸着レート検出器と、
被蒸着面と蒸発源との距離を調整自在な蒸着距離調整装置と、
前記蒸着レート検出器により検出された蒸発流の密度分布に基づいて求めた膜厚の均一性にその低下が検出された時に、前記蒸発流の密度分布に基づいて、蒸発源と被蒸着面との間の適正鉛直距離を求め、この適正鉛直距離に基づいて前記蒸着距離調整装置により蒸発源と被蒸着面とを離間させて、被蒸着面の範囲内の膜厚均一性の低下を抑制する膜厚制御装置とを具備した
真空蒸着装置。
An evaporation source that heats and vaporizes the material and a vapor deposition member disposed above the evaporation source in the vacuum vapor deposition chamber, and vaporizes the vaporized material vaporized by the evaporation source on the vapor deposition surface of the vapor deposition member In a vacuum evaporation system
A plurality of deposition rate detectors arranged at different distances from the upper position of the evaporation source;
A deposition distance adjusting device capable of adjusting the distance between the deposition surface and the evaporation source;
When a decrease in the film thickness uniformity obtained based on the density distribution of the evaporation flow detected by the vapor deposition rate detector is detected, the evaporation source and the surface to be evaporated are determined based on the density distribution of the evaporation flow. An appropriate vertical distance is obtained, and the evaporation source and the deposition surface are separated from each other by the vapor deposition distance adjusting device based on the proper vertical distance, thereby suppressing a decrease in film thickness uniformity within the range of the deposition surface. A vacuum deposition apparatus comprising a film thickness control device.
真空蒸着室内に、材料を加熱して気化する蒸発源と、蒸発源の上方で鉛直方向の回転軸心周りに回転自在に支持された被蒸着部材とを具備し、蒸発源で気化された蒸発材料を被蒸着部材の被蒸着面に蒸着する真空蒸着装置において、
蒸発源の上方位置から異なる距離に配置された複数の蒸着レート検出器と、
被蒸着面と蒸発源との距離を調整自在な蒸着距離調整装置と、
前記蒸着レート検出器により検出された蒸発流の密度分布に基づいて求めた膜厚の均一性にその低下が検出された時に、前記蒸発流の密度分布に基づいて、蒸発源と被蒸着面との間の適正鉛直距離を求め、この適正鉛直距離に基づいて、前記蒸着距離調整装置により蒸発源と被蒸着面とを離間させて、被蒸着面の範囲内の膜厚均一性の低下を抑制する膜厚制御装置とを具備した
真空蒸着装置。
In the vacuum deposition chamber, an evaporation source that heats and vaporizes the material, and an evaporation target that is rotatably supported around the vertical rotation axis above the evaporation source, are evaporated by the evaporation source. In a vacuum deposition apparatus for depositing a material on a deposition surface of a deposition member,
A plurality of deposition rate detectors arranged at different distances from the upper position of the evaporation source;
A deposition distance adjusting device capable of adjusting the distance between the deposition surface and the evaporation source;
When a decrease in the film thickness uniformity obtained based on the density distribution of the evaporation flow detected by the vapor deposition rate detector is detected, the evaporation source and the surface to be evaporated are determined based on the density distribution of the evaporation flow. An appropriate vertical distance is obtained, and the evaporation source is separated from the vapor deposition surface by the vapor deposition distance adjusting device based on the proper vertical distance, thereby suppressing a decrease in film thickness uniformity within the range of the vapor deposition surface. A vacuum deposition apparatus comprising a film thickness control device.
JP2006046070A 2006-02-23 2006-02-23 Vacuum deposition method and vacuum deposition apparatus Expired - Fee Related JP5084152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046070A JP5084152B2 (en) 2006-02-23 2006-02-23 Vacuum deposition method and vacuum deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046070A JP5084152B2 (en) 2006-02-23 2006-02-23 Vacuum deposition method and vacuum deposition apparatus

Publications (2)

Publication Number Publication Date
JP2007224354A JP2007224354A (en) 2007-09-06
JP5084152B2 true JP5084152B2 (en) 2012-11-28

Family

ID=38546429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046070A Expired - Fee Related JP5084152B2 (en) 2006-02-23 2006-02-23 Vacuum deposition method and vacuum deposition apparatus

Country Status (1)

Country Link
JP (1) JP5084152B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169168A (en) * 2011-02-15 2012-09-06 Hitachi High-Technologies Corp Crystal oscillation-type film thickness monitoring device and evaporation source device and thin film deposition system of el material using the same
KR101394393B1 (en) * 2012-06-29 2014-05-13 세메스 주식회사 Apparatus and method of depositing organic thin film
JP6139423B2 (en) * 2014-01-29 2017-05-31 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, and organic electroluminescence element manufacturing method
SG10201510101XA (en) * 2015-12-09 2017-07-28 Au Optronics Corp Evaporation apparatus and evaporation method
CN109536893A (en) * 2017-09-22 2019-03-29 杭州纤纳光电科技有限公司 A kind of Preparation equipment of solar battery thin film and preparation method thereof
JP7301578B2 (en) 2019-03-29 2023-07-03 キヤノントッキ株式会社 Film forming apparatus and film forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528374A (en) * 1978-08-23 1980-02-28 Yasuji Kumagai Forming method for compound film and manufacturing apparatus therefor
JPS6170931U (en) * 1984-10-15 1986-05-15
JP2001152336A (en) * 1999-11-22 2001-06-05 Minolta Co Ltd Optical thin film manufacturing apparatus, and optical thin film manufacturing method
JP2004253504A (en) * 2003-02-19 2004-09-09 Toshiba Corp Apparatus and method for vacuum vapor deposition

Also Published As

Publication number Publication date
JP2007224354A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5084152B2 (en) Vacuum deposition method and vacuum deposition apparatus
US9959611B2 (en) Method and apparatus for manufacturing single crystal
US10519002B2 (en) Stairlift speed control
CN105358728A (en) Device for the continuous hot-dip galvanizing of metal strip
US20120318197A1 (en) Spiral coating apparatus and spiral coating method
BR112018071575B1 (en) APPLIANCE FOR THE CONTINUOUS HOT BATH COATING OF A METAL STRIP AND METHOD FOR THE CONTINUOUS HOT BATH COATING OF A METAL STRIP USING A COATING APPLIANCE
JP6844560B2 (en) Silicon melt convection pattern control method, silicon single crystal manufacturing method, and silicon single crystal pulling device
ES2877660T3 (en) Installation of continuous hot temper coating of a metal strip and associated procedure
JP2014515789A (en) Measuring apparatus and method for vapor deposition applications
KR20080004816A (en) Adaptive height evaporator
JP4383313B2 (en) Method and apparatus for measuring surface shape of blast furnace interior
JP2019214486A (en) Method of measuring interval between melt level and seed crystal, method of preheating seed crystal, and method of manufacturing single crystal
WO2004042110A1 (en) Method of forming film on substrate
CN105200387B (en) Heating control apparatus and Pvd equipment
EP1197579B1 (en) Method for uniform optical coating
KR102193817B1 (en) Thin film manufacturing device, thin film manufacturing method
JPS5941405A (en) Method and device for controlling movement of swaying spout
KR101499228B1 (en) Vapor deposition apparatus and vapor deposition method
JP6265575B2 (en) Silicon single crystal pulling method
Sun et al. Effects of substrate rotation on the microstructure of metal sheet fabricated by electron beam physical vapor deposition
JP4916472B2 (en) Crucible and vacuum deposition equipment
KR101891107B1 (en) Method and app1r1tus for PVD coating
JP2001079747A (en) Wire saw
US20220154365A1 (en) Non-contact systems and methods for determining distance between silicon melt and reflector in a crystal puller
JP4162085B2 (en) Powder material supply device for moving hearth furnace

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees