JP5082678B2 - Hot metal production method using vertical scrap melting furnace - Google Patents

Hot metal production method using vertical scrap melting furnace Download PDF

Info

Publication number
JP5082678B2
JP5082678B2 JP2007218893A JP2007218893A JP5082678B2 JP 5082678 B2 JP5082678 B2 JP 5082678B2 JP 2007218893 A JP2007218893 A JP 2007218893A JP 2007218893 A JP2007218893 A JP 2007218893A JP 5082678 B2 JP5082678 B2 JP 5082678B2
Authority
JP
Japan
Prior art keywords
coke
furnace
iron
hot metal
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007218893A
Other languages
Japanese (ja)
Other versions
JP2009052074A (en
Inventor
幸雄 高橋
英寿 松野
義孝 澤
亮太 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007218893A priority Critical patent/JP5082678B2/en
Publication of JP2009052074A publication Critical patent/JP2009052074A/en
Application granted granted Critical
Publication of JP5082678B2 publication Critical patent/JP5082678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

本発明は、竪型スクラップ溶解炉を用い、コークスの燃焼熱により鉄系スクラップを溶解して溶銑を製造する方法であって、特に、溶銑を高いエネルギー利用効率で製造するための方法に関するものである。   The present invention relates to a method for producing hot metal by melting iron scrap by the combustion heat of coke using a vertical scrap melting furnace, and particularly relates to a method for producing hot metal with high energy utilization efficiency. is there.

近年、鉄系スクラップのリサイクルが環境保全や製鋼コストの低減などの観点から注目されている。従来、竪型溶解炉を用いて鉄系スクラップを溶解するプロセスが知られており(例えば、特許文献1)、このプロセスでは、竪型溶解炉の炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口(送風羽口)から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑が得られる。
特開昭56−156709号公報
In recent years, recycling of iron-based scrap has attracted attention from the viewpoints of environmental protection and reduction of steelmaking costs. Conventionally, a process for melting iron-based scrap using a vertical melting furnace is known (for example, Patent Document 1). In this process, iron-based scrap and coke are charged from the top of the vertical melting furnace. Hot metal is blown from a plurality of tuyere (blower tuyere) provided at the lower part of the furnace, and iron scrap is melted by the combustion heat of coke to obtain hot metal.
JP-A-56-156709

溶銑製造に用いられるコークスには、キュポラなどで使用される鋳物用コークスと、主に高炉で使用される製鉄用コークスがある。一般に、鋳物用コークスは高品質(例えば、固定炭素:92質量%程度、灰分:8質量%程度、揮発分:2質量%以下、硫黄:0.7質量%以下)で且つ粒径が150mm以上と大きく、このため高価である。これに対して、製鉄用コークスは鋳物用コークスほど高品質ではなく(例えば、固定炭素:87質量%程度、灰分:12質量%程度)且つ粒径も100mm以下と小さい。このため鋳物用コークスと比較して安価ではあるが、酸素との反応性が良く、燃焼速度が速いという特徴を有する。   The coke used for hot metal production includes coke for casting used in cupolas and the like, and iron coke used mainly in blast furnaces. Generally, coke for casting is of high quality (for example, fixed carbon: about 92% by mass, ash: about 8% by mass, volatile content: 2% by mass or less, sulfur: 0.7% by mass or less) and a particle size of 150 mm or more. And this is expensive. In contrast, iron coke is not as high quality as cast coke (for example, fixed carbon: about 87% by mass, ash content: about 12% by mass) and the particle size is as small as 100 mm or less. For this reason, although it is cheap compared with coke for casting, it has the characteristics that it has good reactivity with oxygen and a high combustion rate.

上記のような竪型溶解炉を用いるプロセスで鉄系スクラップを溶解し、溶銑を製造する場合、製鉄用コークスを用いると、コークスが早く燃焼してしまうため、燃焼により生じたCOが炉内を上昇する過程でコークスと反応する、所謂ソリューションロス反応(吸熱反応)が生じやすくなり、このため発熱量が下がり、出銑量が低下するという問題がある。これを防止するためには、鋳物用コークスのような粒径が大きく高品質のコークスの使用比率を高める必要があり、製造コストの上昇を招いてしまう。 When iron-based scrap is melted in the process using the vertical melting furnace as described above to produce hot metal, if iron-making coke is used, the coke burns quickly, so that CO 2 generated by the combustion is generated in the furnace. The so-called solution loss reaction (endothermic reaction), which reacts with coke in the process of increasing the temperature, tends to occur, and there is a problem that the amount of heat generation decreases and the amount of output decreases. In order to prevent this, it is necessary to increase the use ratio of high-quality coke having a large particle size such as casting coke, resulting in an increase in manufacturing cost.

したがって本発明の目的は、以上のような課題を解決し、竪型スクラップ溶解炉を用いて鉄系スクラップを溶解し、溶銑を製造する際に、コークスとして製鉄用コークスを使用し或いは製鉄用コークスの使用比率を高めた場合でも、溶銑を高い生産性で効率的に製造することができる方法を提供することにある。   Accordingly, the object of the present invention is to solve the above-mentioned problems, use iron-making coke as coke or use iron-making coke when melting iron scrap using a vertical scrap melting furnace and producing hot metal. An object of the present invention is to provide a method capable of efficiently producing hot metal with high productivity even when the use ratio of the steel is increased.

本発明者らは、炭材として製鉄用コークスを用いる場合に、炉内でのコークスの反応性を抑制するために、特に炉下部領域での炭材の充填構造について検討を行い、そのなかで、炉下部領域でのコークスの存在割合をコークス以外の物質で調節することにより、コークスの反応性を抑制するという着想を得た。そのような物質は、コークスに較べて反応性が低く、ある速度で溶融、スラグ化して炉外に容易に排出されるものであることが望ましく、勿論十分な粒径を有することで、炉内の通気性を阻害しないことが必要である。検討の結果、そのような物質として耐火レンガ塊が好適であることが判った。すなわち、耐火レンガ塊を炉内装入することにより、コークスの反応性が抑制されてコークスの燃焼エネルギーを鉄系スクラップの溶解に有効に利用することができ、その結果、製鉄用コークスを使用し或いは製鉄用コークスの使用比率を高めた場合でも、溶銑を高い生産性で効率的に製造できることが判った。   In order to suppress the reactivity of coke in the furnace when using iron-making coke as the carbon material, the present inventors have examined the carbon material filling structure in the lower furnace region, among which The idea of suppressing the reactivity of coke was obtained by adjusting the coke ratio in the lower furnace area with substances other than coke. Such a material is preferably less reactive than coke, and is preferably melted and slagged at a certain rate and easily discharged outside the furnace. It is necessary not to impede the air permeability. As a result of the examination, it was found that a refractory brick block is suitable as such a substance. That is, by incorporating the refractory brick block into the furnace, the reactivity of the coke can be suppressed, and the combustion energy of the coke can be effectively used for melting the iron-based scrap. It was found that hot metal can be produced efficiently with high productivity even when the ratio of iron coke used is increased.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]竪型スクラップ溶解炉において、炉頂の原料装入部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造する方法であって、
炉頂の前記原料装入部から耐火レンガ塊を装入することを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
[2]上記[1]の溶銑製造方法において、算術平均粒径が100mm以下のコークスを用いることを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] In a vertical scrap melting furnace, iron scrap and coke are charged from the raw material charging section at the top of the furnace, hot air is blown from a plurality of tuyere provided at the bottom of the furnace, and the iron-based heat is generated by the combustion heat of the coke. A method for producing hot metal by melting scrap,
A hot metal production method using a vertical scrap melting furnace, wherein a refractory brick block is charged from the raw material charging portion at the top of the furnace .
[2] A hot metal manufacturing method using a vertical scrap melting furnace, wherein coke having an arithmetic average particle size of 100 mm or less is used in the hot metal manufacturing method of [1].

本発明の溶銑製造方法によれば、炉頂部から装入された耐火レンガ塊が炉下部領域に存在することにより、同領域でのコークスの存在割合が減少し、コークスの反応(燃焼)が抑制される。この結果、所謂ソリューションロス反応(吸熱反応)による炉内での発熱量の低下が抑えられ、コークスの燃焼エネルギーを鉄系スクラップの溶解に有効に利用することができる。このため、コークスとして製鉄用コークスを使用し或いは製鉄用コークスの使用比率を高めた場合でも、鉄系スクラップを高効率に溶解して溶銑を高い生産性で効率的に製造することができる。また、耐火レンガ塊として、精錬炉や溶銑保持容器などの使用済み耐火レンガ(廃レンガ)を利用できることから、使用済み耐火レンガの有効利用を図ることもできる。   According to the hot metal production method of the present invention, the presence of the refractory brick block charged from the top of the furnace is present in the lower part of the furnace, thereby reducing the coke existing ratio in the same area and suppressing the reaction (combustion) of the coke. Is done. As a result, a decrease in the amount of heat generated in the furnace due to a so-called solution loss reaction (endothermic reaction) can be suppressed, and the combustion energy of coke can be effectively used for melting iron-based scrap. For this reason, even when the iron-making coke is used as the coke or the use ratio of the iron-making coke is increased, the iron-based scrap can be dissolved with high efficiency and the hot metal can be efficiently produced with high productivity. Moreover, since the used refractory bricks (waste bricks), such as a refining furnace and a hot metal holding container, can be utilized as a refractory brick lump, the used refractory bricks can also be used effectively.

本発明は、竪型スクラップ溶解炉において、炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造するに際し、炉頂部から耐火レンガ塊を装入するものである。一般に、耐火レンガ塊は不定形耐火物に較べて強度があり、炉頂部から装入された耐火レンガ塊は、適当な粒径を保ったまま炉下部領域に達することができる。   The present invention is a vertical scrap melting furnace in which iron scrap and coke are charged from the top of the furnace, hot air is blown from a plurality of tuyere provided in the lower part of the furnace, and iron scrap is melted by the combustion heat of the coke. When manufacturing hot metal by this, a refractory brick lump is inserted from a furnace top part. In general, the refractory brick mass is stronger than the amorphous refractory, and the refractory brick mass charged from the top of the furnace can reach the lower furnace region while maintaining an appropriate particle size.

耐火レンガとしては、特に、炭素を含有するマグネシアレンガやドロマイトレンガなどが好適である。高アルミナレンガやマグクロレンガは、スラグ中に溶解した際にスラグの粘性を増加させ、排滓性の低下を招くおそれがあり、この点を考慮して使用量などを制限することが好ましい。言うまでもなく、耐火レンガ塊としては、精錬炉(転炉など)や溶銑保持容器などの使用済みレンガ(廃レンガ)を用いてもよく、これにより使用済み耐火レンガの有効利用を図ることができる。
なお、使用する耐火レンガ塊の算術平均粒径は、同時に使用するコークスの算術平均粒径と同等以上が好ましい。
As the refractory brick, magnesia brick or dolomite brick containing carbon is particularly suitable. High alumina bricks and magcro bricks may increase the viscosity of the slag when dissolved in the slag, leading to a decrease in the evacuation property, and it is preferable to limit the amount used in consideration of this point. Needless to say, used bricks (waste bricks) such as a smelting furnace (converter or the like) or a hot metal holding container may be used as the refractory brick mass, and thus the used refractory bricks can be effectively used.
In addition, it is preferable that the arithmetic average particle diameter of the refractory brick block to be used is equal to or greater than the arithmetic average particle diameter of coke used at the same time.

図1は、竪型スクラップ溶解炉とこれによる本発明の実施状況の一例を模式的に示すもので、1は炉頂に設けられる原料装入部、2は炉下部の周方向において適当な間隔で設けられる複数の羽口(送風羽口)、3はこの羽口2に熱風を供給する熱風管、4は排ガス出口、5は出銑口である。この溶解炉の大きさ等に本質的な制限はないが、実質的に操業可能若しくは操業上有利なサイズとして、通常は、羽口位置での炉内径が2〜4m程度、炉高が6〜10m程度である。   FIG. 1 schematically shows an example of a vertical scrap melting furnace and the implementation status of the present invention. 1 is a raw material charging section provided at the top of the furnace, and 2 is an appropriate interval in the circumferential direction of the lower part of the furnace. A plurality of tuyere (blower tuyere) provided at 3 is a hot air pipe for supplying hot air to the tuyere 2, 4 is an exhaust gas outlet, and 5 is an outlet. Although there is no essential limitation on the size of the melting furnace or the like, the furnace inner diameter at the tuyere position is usually about 2 to 4 m and the furnace height is 6 to 6 as a size that is substantially operable or advantageous in operation. It is about 10m.

このような竪型スクラップ溶解炉では、鉄系スクラップおよびコークスなどの原料が炉頂の原料装入部1から炉内に装入されるが、本発明ではこれらとともに耐火レンガ塊も炉内に装入される。鉄系スクラップ、コークス、耐火レンガ塊などの原料は、炉内に同時に装入してもよいし、交互に装入してもよい。
複数の羽口2からは熱風が吹き込まれ、コークスの燃焼ガスの熱で鉄系スクラップなどが溶解する。生成した溶銑は炉底部の出銑口5から炉外に取り出される。また、ダストを随伴した排ガスは、炉体上部の排ガス出口4から排気される。
なお、鉄源としては、鉄系スクラップに加えて、例えば、銑鉄、還元鉄、鉄鉱石など装入してもよい。また、鉄源、コークス、耐火レンガ塊以外に、例えば、石灰石、ダストやスラッジ類の塊成物、木炭や無煙炭等の炭材などを適宜装入してもよい。
In such a vertical scrap melting furnace, raw materials such as iron scrap and coke are charged into the furnace from the raw material charging section 1 at the top of the furnace. Entered. Raw materials such as iron-based scrap, coke, and refractory bricks may be charged simultaneously into the furnace or alternately.
Hot air is blown from the plurality of tuyere 2, and iron-based scrap or the like is melted by the heat of the combustion gas of coke. The produced hot metal is taken out of the furnace through the outlet 5 at the bottom of the furnace. Further, the exhaust gas accompanied by dust is exhausted from the exhaust gas outlet 4 at the top of the furnace body.
In addition to iron-based scrap, for example, pig iron, reduced iron, iron ore, etc. may be used as the iron source. In addition to the iron source, coke, and refractory brick lump, for example, limestone, dust and sludge agglomerates, charcoal materials such as charcoal and anthracite, and the like may be appropriately charged.

耐火レンガ塊を炉内装入することにより、コークスの反応性が抑制されてエネルギー利用効率が向上する効果を確認するため、耐火レンガ塊の炉内装入量を変えた試験を行い、炉内の燃焼挙動を調査した結果を図2に示す。この試験では、コークスとして算術平均粒径が65mmの製鉄用コークスを、耐火レンガ塊として算術平均粒径が220mmの廃レンガをそれぞれ用い、同一送風条件においてコークスに対する耐火レンガ塊の配合比(=[耐火レンガ塊/コークス]×100)を変え、排ガスの酸化度(=[CO/(CO+CO)]×100)を調べた。図2によれば、耐火レンガ塊を装入することにより、排ガスの酸化度は上昇しており、より高位のエネルギーを取り出すことが可能であることが判る。
ここで、耐火レンガ塊の装入量は、炉下部でのスラグ中への耐火レンガ塊溶解速度以下とすることが望ましく、その量は耐火物レンガ塊の種類やスラグ組成、温度などの条件で異なる。
In order to confirm the effect of reducing the coke reactivity and improving the energy utilization efficiency by entering the refractory brick block into the furnace, a test was conducted with varying the amount of refractory brick block inside the furnace, and the combustion in the furnace The result of investigating the behavior is shown in FIG. In this test, iron coke having an arithmetic average particle size of 65 mm was used as coke, and waste brick having an arithmetic average particle size of 220 mm was used as the refractory brick block, and the blending ratio of the refractory brick block to coke under the same blowing conditions (= [ The refractory brick mass / coke] × 100) was changed, and the oxidation degree of the exhaust gas (= [CO 2 / (CO 2 + CO)] × 100) was examined. According to FIG. 2, it can be seen that by introducing the refractory brick block, the oxidation degree of the exhaust gas is increased, and higher energy can be extracted.
Here, it is desirable that the amount of refractory brick mass charged is equal to or less than the rate of dissolution of the refractory brick mass into the slag at the bottom of the furnace, and the amount depends on the type of refractory brick mass, slag composition, temperature, etc. Different.

鉄系スクラップの溶解を低コストに行うためには、製鉄用コークスのような粒径の小さい安価なコークスの使用比率を高める必要があるが、本発明ではそれが可能になる。具体的には、算術平均粒径が100mm以下のコークスを用いることができる。但し、コークスの粒径があまりに小さいと出銑量の低下が避けられないため、使用するコークスの算術平均粒径は50mm以上であることが好ましい。なお、算術平均粒径とは、平均粒径=(Σai×Xi)/(Σai)(但し、Xi:代表粒径、ai:割合)で求められる粒径である。   In order to melt iron-based scrap at a low cost, it is necessary to increase the use ratio of inexpensive coke having a small particle diameter such as iron-making coke, but this is possible in the present invention. Specifically, coke having an arithmetic average particle size of 100 mm or less can be used. However, if the particle size of the coke is too small, a decrease in the amount of brewing is inevitable, so the arithmetic average particle size of the coke used is preferably 50 mm or more. The arithmetic average particle size is a particle size obtained by the average particle size = (Σai × Xi) / (Σai) (where Xi: representative particle size, ai: ratio).

図1に示すような竪型スクラップ溶解炉において鉄系スクラップを溶解し、溶銑を製造した。炉頂部から鉄系スクラップ、コークス、石灰石および耐火レンガ塊(耐火レンガ塊の装入は本発明例のみ)を装入するとともに、炉体下部に設置した羽口から加熱空気を送風して、連続的に溶銑を製造した。
竪型スクラップ溶解炉は、内径φ2.2m、溶解能力20t/hであり、鉄系スクラップは、サイズが700mm以下へのヘビー屑と25〜150mmのシュレッダー屑を用い、配合比はヘビー屑:80質量%、シュレッダー屑:20質量%とした。また、コークスとしては、粒径25〜95mmの主に製鉄用コークスを使用した。
Iron-based scrap was melted in a vertical scrap melting furnace as shown in FIG. 1 to produce hot metal. From the top of the furnace, iron scrap, coke, limestone and refractory brick lump (incorporation of the refractory brick lump is only the example of the present invention) and heated air is blown from the tuyere installed at the bottom of the furnace body. A hot metal was produced.
The vertical scrap melting furnace has an inner diameter of 2.2 m and a melting capacity of 20 t / h. The iron-based scrap uses heavy scraps having a size of 700 mm or less and shredder scraps of 25 to 150 mm in a mixing ratio of heavy scraps: 80 % By mass, shredder waste: 20% by mass. Moreover, as coke, the coke for iron manufacture with a particle size of 25-95 mm was mainly used.

[本発明例]
炉頂部から装入した耐火レンガ塊としては、製鉄所内の転炉で使用したマグネシアカーボンレンガの廃レンガ(粒径150〜300mm)を用い、コークス量に対する配合比(=[耐火レンガ塊/コークス]×100)として3.3質量%の耐火レンガ塊を装入した。その成分組成を表1に示す。送風条件は、送風温度:550℃、送風量:13000Nm/hとした。操業条件および操業成績を、出銑温度および出銑炭素濃度が安定した送風開始後1時間以降の平均値で以下に示す。
溶解速度:20t/h
出銑温度:1530℃
出銑炭素濃度:4.0質量%
製鉄用コークス原単位:183kg/t-pig
耐火レンガ塊原単位:6kg/t-pig
石灰石原単位:18kg/t-pig
ガス(排ガス)酸化度(=[CO/(CO+CO)]×100):29%
[Example of the present invention]
As the refractory brick mass charged from the top of the furnace, the waste brick (particle size 150 to 300 mm) of magnesia carbon brick used in the converter in the steelworks was used, and the blending ratio with respect to the amount of coke (= [refractory brick lumps / coke]). × 100) was loaded with 3.3% by mass of refractory brick blocks. The component composition is shown in Table 1. The blowing conditions were a blowing temperature: 550 ° C. and a blowing amount: 13000 Nm 3 / h. The operating conditions and operating results are shown below in terms of average values after 1 hour after the start of ventilation where the temperature and the carbon output concentration are stable.
Dissolution rate: 20 t / h
Spiral temperature: 1530 ° C
Carbon dioxide concentration: 4.0% by mass
Coke basic unit for iron making: 183 kg / t-pig
Fireproof brick block unit: 6kg / t-pig
Limestone basic unit: 18kg / t-pig
Gas (exhaust gas) oxidation degree (= [CO 2 / (CO 2 + CO)] × 100): 29%

Figure 0005082678
Figure 0005082678

[比較例]
耐火レンガ塊を装入しない点を除き、本発明例と同じ条件で操業を行った。操業条件および操業成績を、出銑温度および出銑炭素濃度が安定した送風開始後1時間以降の平均値で以下に示す。
溶解速度:20t/h
出銑温度:1528℃
出銑炭素濃度:3.9質量%
製鉄用コークス原単位:188kg/t-pig
石灰石原単位:18kg/t-pig
ガス(排ガス)酸化度(=[CO/(CO+CO)]×100):28%
[Comparative example]
The operation was performed under the same conditions as in the present invention except that the refractory brick mass was not charged. The operating conditions and operating results are shown below in terms of average values after 1 hour after the start of ventilation where the temperature and the carbon output concentration are stable.
Dissolution rate: 20 t / h
Spiral temperature: 1528 ° C
Carbon dioxide concentration: 3.9% by mass
Coke basic unit for iron making: 188kg / t-pig
Limestone basic unit: 18kg / t-pig
Gas (exhaust gas) oxidation degree (= [CO 2 / (CO 2 + CO)] × 100): 28%

竪型スクラップ溶解炉とこれによる本発明の実施状況の一例を模式的に示す説明図Explanatory drawing which shows typically an example of the implementation situation of a vertical scrap melting furnace and this by this 竪型スクラップ溶解炉において、炉頂部から耐火レンガ塊を装入して操業を行った場合の耐火レンガ塊の装入量と排ガスの酸化度(=[CO/(CO+CO)]×100)との関係を示すグラフIn a vertical scrap melting furnace, when a refractory brick block is charged from the top of the furnace and operated, the amount of the refractory brick block and the oxidation degree of exhaust gas (= [CO 2 / (CO 2 + CO)] × 100 ) Graph showing the relationship

符号の説明Explanation of symbols

1 原料装入部
2 羽口
3 熱風管
4 排ガス出口
5 出銑口
DESCRIPTION OF SYMBOLS 1 Raw material charging part 2 Tuyere 3 Hot air pipe 4 Exhaust gas outlet 5 Outlet

Claims (2)

竪型スクラップ溶解炉において、炉頂の原料装入部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造する方法であって、
炉頂の前記原料装入部から耐火レンガ塊を装入することを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
In a vertical scrap melting furnace, iron-based scrap and coke are charged from the raw material charging section at the top of the furnace, hot air is blown from a plurality of tuyere at the bottom of the furnace, and iron-based scrap is melted by the combustion heat of the coke. A method for producing hot metal by
A hot metal production method using a vertical scrap melting furnace, wherein a refractory brick block is charged from the raw material charging portion at the top of the furnace .
算術平均粒径が100mm以下のコークスを用いることを特徴とする請求項1に記載の竪型スクラップ溶解炉を用いた溶銑製造方法。   Coke having an arithmetic average particle size of 100 mm or less is used, The hot metal production method using the vertical scrap melting furnace according to claim 1.
JP2007218893A 2007-08-24 2007-08-24 Hot metal production method using vertical scrap melting furnace Active JP5082678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218893A JP5082678B2 (en) 2007-08-24 2007-08-24 Hot metal production method using vertical scrap melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218893A JP5082678B2 (en) 2007-08-24 2007-08-24 Hot metal production method using vertical scrap melting furnace

Publications (2)

Publication Number Publication Date
JP2009052074A JP2009052074A (en) 2009-03-12
JP5082678B2 true JP5082678B2 (en) 2012-11-28

Family

ID=40503405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218893A Active JP5082678B2 (en) 2007-08-24 2007-08-24 Hot metal production method using vertical scrap melting furnace

Country Status (1)

Country Link
JP (1) JP5082678B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581900B2 (en) * 2009-08-31 2014-09-03 Jfeスチール株式会社 Hot metal production method using vertical scrap melting furnace
JP5581901B2 (en) * 2009-08-31 2014-09-03 Jfeスチール株式会社 Hot metal production method using vertical scrap melting furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661478B2 (en) * 1992-09-29 1997-10-08 住友金属工業株式会社 Cylindrical furnace and method for producing hot metal using the same
JPH09263812A (en) * 1996-03-28 1997-10-07 Kawasaki Steel Corp Operation of vertical type scrap melting furnace
JP2000328079A (en) * 1999-05-20 2000-11-28 Akiya Ozeki Reaction controlling technique of fuel and reducing material
JP4779585B2 (en) * 2005-11-11 2011-09-28 Jfeスチール株式会社 Solid fuel for vertical scrap melting furnace and operating method of vertical scrap melting furnace

Also Published As

Publication number Publication date
JP2009052074A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
EP1659190B1 (en) A slag conditioner composition and process for manufacture
JP5297077B2 (en) Method for producing ferromolybdenum
AU6016801A (en) Process for manufacturing molten metal iron
Holtzer et al. The recycling of materials containing iron and zinc in the OxyCup process
WO2009123115A1 (en) Process for production of reduced iron
KR101188518B1 (en) Process for producing molten iron
JP4540488B2 (en) Desulfurization method of ferronickel
JP4781813B2 (en) Manufacturing method of molten iron
JP5082678B2 (en) Hot metal production method using vertical scrap melting furnace
JP2011246760A (en) Method of manufacturing ferromolybdenum, and ferromolybdenum
JP4779585B2 (en) Solid fuel for vertical scrap melting furnace and operating method of vertical scrap melting furnace
CA2659559C (en) A method for the commercial production of iron
JP5439756B2 (en) Hot metal production method using vertical melting furnace
JP5910182B2 (en) Hot metal manufacturing method using vertical melting furnace
RU2805114C1 (en) Steel melting method in electric arc furnace
WO2023054345A1 (en) Molten iron production method
JP2010138428A (en) MATERIAL FOR ADJUSTING CONCENTRATION OF MgO IN CONVERTER SLAG, AND STEEL MANUFACTURING PROCESS IN CONVERTER
JP5251296B2 (en) Hot metal production method using vertical melting furnace
JP2011074438A (en) Method for producing reduced iron with moving type hearth furnace
RU2352645C1 (en) Method of steel smelting in arc electric steel-making furnace
JP4781812B2 (en) Converter steelmaking method
WO1997012066A1 (en) Chromium ore smelting reduction process
JP5251297B2 (en) Hot metal production method using vertical melting furnace
JP7058472B2 (en) Slag modification method and roadbed material manufacturing method
JP4844228B2 (en) Steel making method using reduced iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5082678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250