JP5082001B2 - Object direction detection method, position detection method, direction detection device, position detection device, movement dynamic recognition method, and movement dynamic recognition device - Google Patents

Object direction detection method, position detection method, direction detection device, position detection device, movement dynamic recognition method, and movement dynamic recognition device Download PDF

Info

Publication number
JP5082001B2
JP5082001B2 JP2011177390A JP2011177390A JP5082001B2 JP 5082001 B2 JP5082001 B2 JP 5082001B2 JP 2011177390 A JP2011177390 A JP 2011177390A JP 2011177390 A JP2011177390 A JP 2011177390A JP 5082001 B2 JP5082001 B2 JP 5082001B2
Authority
JP
Japan
Prior art keywords
traveling direction
detecting
coordinate system
absolute
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011177390A
Other languages
Japanese (ja)
Other versions
JP2011237452A (en
Inventor
宗利 鵜沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011177390A priority Critical patent/JP5082001B2/en
Publication of JP2011237452A publication Critical patent/JP2011237452A/en
Application granted granted Critical
Publication of JP5082001B2 publication Critical patent/JP5082001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は物体、特に人や動物・歩行ロボットなど脚歩行により移動する物体の位置検知方法及びその装置に関する。   The present invention relates to a method and apparatus for detecting the position of an object, particularly an object that moves by walking with a leg, such as a person, an animal, or a walking robot.

カーナビゲーションに代表されるようにGPS衛星を利用した測位方式が広く利用されており高精度の位置検知が実現している。ところが、屋内や物陰では、GPS衛星の信号を受信できないためGPS衛星を利用した位置検知を行う事が出来ない。車の場合ほとんどの経路が屋外のため物陰等の同行時間は少なく一時的に位置検知不能に陥るだけである。処が歩行者は、屋内での行動が多くGPS単独で連続して位置検出を行うことは困難である。   As represented by car navigation, positioning methods using GPS satellites are widely used, and highly accurate position detection is realized. However, since the GPS satellite signal cannot be received indoors or in the shade, position detection using the GPS satellite cannot be performed. In the case of a car, most of the routes are outdoors, so there is little time to travel in the shade, etc., and the location detection is temporarily disabled. However, it is difficult for pedestrians to perform position detection continuously with GPS alone because there are many indoor activities.

そこで、屋内では(特許文献1)に示すようにGPS衛星を利用しない位置検知手法が用いられている。(特許文献1)の手法は、腰の位置に歩行の振動を検知する加速度センサと人の向いている方向(腰のセンサの向いている方向)を検知する方向センサを取り付ける。加速度センサで検知した振動波形より、歩行動作認識手法を応用した歩幅推定手法を用いて人の移動距離(単位時間の移動距離)を求める。次に腰につけた方向センサを用い人の向いている方向を検知する。移動距離と人の向いている方向より移動軌跡を求め位置を検知する。   Therefore, as shown in (Patent Document 1), a position detection method that does not use a GPS satellite is used. In the technique of (Patent Document 1), an acceleration sensor that detects vibration of walking and a direction sensor that detects a direction in which a person faces (direction in which a waist sensor faces) are attached to the position of the waist. From the vibration waveform detected by the acceleration sensor, a person's moving distance (moving distance per unit time) is obtained by using a stride estimation technique applying a walking motion recognition technique. Next, the direction of the person is detected using a direction sensor on the waist. A movement trajectory is obtained from the movement distance and the direction in which the person is facing, and the position is detected.

本方式は、人の進行方向と体の向いている方向(方向センサで検知する方向)が一致していれば正確な移動軌跡を求める事ができる。しかし、横を向いて歩いた場合など体の向いている方向と進行方向が一致しない場合、体の向いている方向を検知する方向センサと人の進行方向が一致しなくなり移動軌跡に誤差が生じる問題があった。   In this method, an accurate movement trajectory can be obtained if a person's traveling direction matches the direction in which the body is facing (the direction detected by the direction sensor). However, if the direction in which the body is facing does not match the direction of travel, such as when walking sideways, the direction sensor that detects the direction in which the body is facing does not match the direction in which the person travels, resulting in an error in the movement trajectory. There was a problem.

別の公知例として(特許文献2)に示すようにセンサの取り付け位置のずれにより体の向いている方向と進行方向のずれを検知する手法について述べられている。本手法では移動中に生じるセンサの移動による誤差を取り除く事は可能であるが、センサ取り付け位置に起因しない横を向いての歩行による誤差に関しては述べられていない。   As another known example, as shown in (Patent Document 2), a method of detecting a deviation between the direction in which the body is facing and the traveling direction due to a deviation in the sensor mounting position is described. In this method, it is possible to remove the error caused by the movement of the sensor that occurs during the movement, but there is no mention of the error caused by walking sideways that does not depend on the sensor mounting position.

特開2004−485251号公報JP 2004-485251 A 特開2005−172625号公報JP 2005-172625 A

前記従来技術の問題点に鑑み、本発明は、人の体の向いている方向と進行方向との差を検知して正確な物体の位置検知を行う位置検知方法及びその装置を提供することにある。   In view of the problems of the prior art, the present invention provides a position detection method and apparatus for detecting the difference between the direction in which a human body is facing and the direction of travel to accurately detect the position of an object. is there.

上記課題を達成するために、本発明の物体の位置検知方法は、方向センサを用いて物体の物体座標系の向いている絶対方位を検知すること、前記物体に加わる加速度変化を加速度センサより検知すること、演算装置を用いて、前記加速度変化を水平面に投射し、前記投射した加速度の点群の分布の方向より前記物体座標系を基準とした物体の進行方向を検知すること、及び、前記物体座標系の絶対方位と前記物体座標系を基準とした物体の進行方向より物体の進行方向の絶対方位を検知することを特徴とするものである。   In order to achieve the above object, the object position detection method of the present invention uses an orientation sensor to detect the absolute orientation of the object in the object coordinate system, and detects an acceleration change applied to the object from the acceleration sensor. Projecting the acceleration change onto a horizontal plane using an arithmetic device, detecting the traveling direction of the object based on the object coordinate system from the direction of the distribution of the projected acceleration point group, and The absolute azimuth in the traveling direction of the object is detected from the absolute azimuth of the object coordinate system and the traveling direction of the object based on the object coordinate system.

本発明の物体の位置検知方法及びその装置によれば、進行方向と異なる方向を向いて歩行しても正確な進行方向を検知する事が可能になる。   According to the object position detection method and apparatus of the present invention, an accurate traveling direction can be detected even when walking in a direction different from the traveling direction.

装置構成図。FIG. 本発明の装置を人体に装着した例。The example which mounted | wore the human body with the apparatus of this invention. 方向センサで検知する正面歩行と斜め歩行の違いを表す図。The figure showing the difference between frontal walking detected by a direction sensor, and diagonal walking. 装置座標系での進行方向推定手段の処理ブロック。Processing block of the traveling direction estimation means in the apparatus coordinate system. 正面歩行時の加速度変化の実測値。Measured value of acceleration change when walking in front. 斜め歩行時の加速度変化の実測値。Measured value of acceleration change when walking diagonally. 第一主軸から進行方向を推定する変換関数の例。An example of a conversion function for estimating a traveling direction from a first main axis. 第2の実施例の装置構成図。The apparatus block diagram of a 2nd Example. 第3の実施例の処理ブロック。Processing block of the third embodiment. 移動動態を分類するための図。The figure for classifying movement dynamics.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に本発明の装置構成図を示す。図2には本発明の装置装着の様子を示す。   FIG. 1 shows an apparatus configuration diagram of the present invention. FIG. 2 shows how the apparatus of the present invention is mounted.

方向センサ1としてジャイロセンサや磁気センサ(磁気コンパス)などを用いている。
A/Dコンバータ2は方向センサ1のアナログ値をマイクロコンピュータなどで処理できるように量子化(デジタル化)する。A/Dコンバータ2からのデジタル化された信号は装置座標系の向いている絶対方位を演算する装置3に入力される。装置座標系の向いている絶対方位を演算する装置3では、方向センサ1の方位センサの出力値を用いて本発明の装置の向いている方向を地球の磁北或いは真北を基準とした絶対方位として出力する。
As the direction sensor 1, a gyro sensor, a magnetic sensor (magnetic compass), or the like is used.
The A / D converter 2 quantizes (digitizes) the analog value of the direction sensor 1 so that it can be processed by a microcomputer or the like. The digitized signal from the A / D converter 2 is input to the device 3 that calculates the absolute azimuth of the device coordinate system. In the device 3 for calculating the absolute azimuth in which the device coordinate system is directed, the absolute azimuth with reference to the magnetic north or true north of the earth as the direction in which the device of the present invention is directed using the output value of the directional sensor of the direction sensor 1 Output as.

加速度センサ4は本装置に加わる加速度変化を検出する。A/Dコンバータ5は加速度センサ4の値を量子化(デジタル化)する。装置座標系での進行方向を推定する装置6は本装置を取り付けた物体の進行方向を本装置の座標系を基準に推定する。なお、処理の詳細については後述する。   The acceleration sensor 4 detects a change in acceleration applied to the apparatus. The A / D converter 5 quantizes (digitizes) the value of the acceleration sensor 4. The apparatus 6 for estimating the traveling direction in the apparatus coordinate system estimates the traveling direction of the object to which the apparatus is attached based on the coordinate system of the apparatus. Details of the process will be described later.

装置座標系の向いている絶対方位を演算する装置3の結果は装置の向いている方向は検知できるが装置を取り付けた物体の進行方向は検知する事が出来ない。装置座標系での進行方向を推定する装置6は装置座標系を基準とした物体の進行方向を検知することは出来るが絶対方位に対する進行方向を求める事は出来ない。そこで、取り付け物体の絶対方位に対する進行方向を演算する装置7を用いて装置座標系の向いている絶対方位を演算する装置3と装置座標系での進行方向を推定する装置6を融合して取り付け物体の進行方向を絶対方位を基準として求める。求められた進行方向は表示装置8を用いて進行方向検知結果として表示する。また、検知した進行方向を通信回線を用いて外部へ伝送する通信装置9も備える。この装置9は端末を持つ人が自分の進んでいる方向を検知する場合には不要であるが外部の監視センタなどで遠隔から装着者の進行方向を検知したい場合に利用する。従って、表示装置8及び通信装置9は両方とも必須の装置ではなくどちらか存在すればよい。   As a result of the apparatus 3 that calculates the absolute azimuth in which the apparatus coordinate system is facing, the direction in which the apparatus is facing can be detected, but the traveling direction of the object to which the apparatus is attached cannot be detected. The apparatus 6 for estimating the traveling direction in the apparatus coordinate system can detect the traveling direction of the object with reference to the apparatus coordinate system, but cannot determine the traveling direction with respect to the absolute direction. Therefore, the apparatus 3 for calculating the absolute azimuth in which the apparatus coordinate system is directed and the apparatus 6 for estimating the direction of movement in the apparatus coordinate system are combined and mounted using the apparatus 7 for calculating the advancing direction with respect to the absolute direction of the attached object. The traveling direction of the object is obtained based on the absolute direction. The obtained traveling direction is displayed as a traveling direction detection result using the display device 8. Also provided is a communication device 9 for transmitting the detected traveling direction to the outside using a communication line. This device 9 is not necessary when a person with a terminal detects the direction in which he / she is traveling, but is used when it is desired to detect the traveling direction of the wearer remotely from an external monitoring center or the like. Accordingly, both the display device 8 and the communication device 9 are not indispensable devices, and only one of them may be present.

なお、各ブロックを装置として説明したが、点線で囲んだ領域10をマイクロコンピュータなどで処理を行ってもかまわない。   In addition, although each block was demonstrated as an apparatus, you may process the area | region 10 enclosed with the dotted line with a microcomputer.

図2は、本発明を採用した装置を人21に取り付けた例である。人の腰22及び頭23に本発明の装置を取り付ける事を想定している。勿論、人のその他の位置に装着する事も可能性である。   FIG. 2 shows an example in which a device adopting the present invention is attached to a person 21. It is assumed that the device of the present invention is attached to a human waist 22 and head 23. Of course, it is possible to attach it to other positions of the person.

図3は人の腰22の位置に取り付けた場合における図1の装置座標系の向いている絶対方位を演算する装置3で検知される進行方向の検知の様子を示している。   FIG. 3 shows how the traveling direction is detected by the device 3 that calculates the absolute azimuth of the device coordinate system of FIG. 1 when attached to the position of the human waist 22.

この図3においては装着者31,32を真上から見た状態を示している。また、人に取り付けた本発明の装置33の位置も示している。図3(a)は経路の方向と同じ方向を向いて歩行した場合、図3(b)は進行方向とは異なる方向を向いて歩行した場合の例である。図3(b)の例は、例えば二人で会話しながら歩く場合に良く見られる状態である。図3(a)では、移動軌跡の方向35と、過去の足跡302と、及び今後進む足跡39を示している。同様に、図3(b)における移動軌跡の進行方向36と、過去の足跡303、及びこれから進む足跡301を示している。   In this FIG. 3, the state which looked at the wearers 31 and 32 from right above is shown. Also shown is the position of the device 33 of the present invention attached to a person. 3A shows an example when walking in the same direction as the direction of the route, and FIG. 3B shows an example when walking in a direction different from the traveling direction. The example of FIG. 3B is a state often seen when, for example, two people walk while talking. FIG. 3A shows the direction 35 of the movement trajectory, the past footprint 302, and the footprint 39 going forward. Similarly, the traveling direction 36 of the movement locus in FIG. 3B, the past footprint 303, and the footprint 301 going forward are shown.

図3(a)の場合、装着者の進行方向と装着者31の向いている方向(装置33の向いている方向)は一致しているので図1の3で検知される進行方向34は装着者31の方向35と一致する。従って、図1の装置座標系の向いている絶対方位を演算する装置3で検知される進行方向との誤差は発生しない。ところが図3(b)の場合、人の進行方向36と体の向いている方向が異なっている。従って、図1の装置座標系の向いている絶対方位を演算する装置3で検知される進行方向は方向38となってしまい実際の人の進行方向37と異なった進行方向を出力する事になる。つまり、装置座標系の向いている絶対方位を演算する装置3の演算結果だけでは人の向いている方向は検知できるが人の進んでいる方向を検知する事は出来ない。そこで、装置座標系の向いている絶対方位を演算する装置3の出力38と進行方向36との差を検知する手段が必要になる。それが図1の装置座標系での進行方向を推定する装置6である。   In the case of FIG. 3A, the traveling direction of the wearer and the direction in which the wearer 31 faces (the direction in which the device 33 faces) coincide with each other, so the traveling direction 34 detected in 3 of FIG. This coincides with the direction 35 of the person 31. Therefore, an error from the traveling direction detected by the device 3 that calculates the absolute azimuth of the device coordinate system of FIG. 1 does not occur. However, in the case of FIG. 3B, the person's traveling direction 36 is different from the direction in which the body is facing. Accordingly, the traveling direction detected by the apparatus 3 for calculating the absolute azimuth of the apparatus coordinate system of FIG. 1 is the direction 38, and a traveling direction different from the actual traveling direction 37 of the person is output. . That is, only the calculation result of the device 3 that calculates the absolute azimuth of the device coordinate system can detect the direction in which the person is facing, but cannot detect the direction in which the person is moving. Therefore, a means for detecting the difference between the output 38 of the apparatus 3 for calculating the absolute azimuth of the apparatus coordinate system and the traveling direction 36 is required. This is the device 6 for estimating the traveling direction in the device coordinate system of FIG.

図4に装置座標系での進行方向推定手段の処理ステップの一例を示す。先ず、3軸加速度センサの出力値を読み込む(40)。次に水平面の加速度値に変換する(41)。これは、体に取り付けたセンサが水平面と水平に置かれているとは限らないので、静止状態などにおいて加速度センサの傾き具合を検知し、移動中にこの傾き情報をもとに加速度値を水平面(以後XY平面)へ投影する事により実現できる。水平面へ投影した加速度値を(AXn,AYn)とする。AXはX方向の加速度成分、AYはY方向の加速度成分である。また添え字のnはデータ数である。次に検知したn個の点群を用いて主成分分析の手法を用いて第一主軸を算出する(42)。図5及び図6に実際の実験結果を示す。図5は進行方向と同じ正面を向いて歩いた場合のXY平面での加速度変化50と第一主軸51の様子。図6は約30度程度体の向きを変えて歩行した時のXY平面での加速度変化60及びその第一主軸61である。図5の進行方向と体の向きが同じ場合にはXY平面での加速度変化はほぼ左右対称になり第一主軸も進行方向にほぼ平行な直線になっている。図6では加速度変化は左右非対称になっているが全体的に右側に傾いたような分布になっている。分布の傾きを表す第一主軸61は進行方向に近い直線の傾きを持っている事がわかる。次に、求められた第一主軸の直線の方程式より第一主軸の直線の方向を求める(43)。第一主軸の傾きと進行方向が対応しているのであれば第一主軸の直線の方向を求める43の結果が装置座標系における進行方向を表す角度になるが、実験結果から正確には対応していない。そこで、次に、進行方向と第一主軸の傾きを対応づける変換関数を用いて角度の補正を行う(44)。図7はその変換関数の一例である。横軸が第一主軸の方向、縦軸が装着した人の進行方向であり、変換関数71を示している。このような関数を用いる事により第一主軸単独で求めた進行方向の推定値よりも更に精度の高い進行方向を推定する事ができる。変換後の進行方向として、体の向き基準とした進行方向を出力する(45)。   FIG. 4 shows an example of processing steps of the traveling direction estimation means in the apparatus coordinate system. First, the output value of the triaxial acceleration sensor is read (40). Next, it converts into the acceleration value of a horizontal surface (41). This is because the sensor attached to the body is not always placed horizontally with the horizontal plane, so the degree of inclination of the acceleration sensor is detected in a stationary state, and the acceleration value is calculated based on this inclination information during movement. This can be realized by projecting onto the (XY plane). The acceleration value projected on the horizontal plane is defined as (AXn, AYn). AX is an acceleration component in the X direction, and AY is an acceleration component in the Y direction. The subscript n is the number of data. Next, the first principal axis is calculated by using the principal component analysis method using the detected n point groups (42). 5 and 6 show actual experimental results. FIG. 5 shows the acceleration change 50 and the first main shaft 51 on the XY plane when walking in the same front direction as the traveling direction. FIG. 6 shows an acceleration change 60 and its first main axis 61 on the XY plane when walking with the body direction changed by about 30 degrees. When the traveling direction and the body direction in FIG. 5 are the same, the acceleration change on the XY plane is substantially bilaterally symmetrical, and the first main axis is also a straight line substantially parallel to the traveling direction. In FIG. 6, the change in acceleration is asymmetrical, but the distribution is inclined to the right as a whole. It can be seen that the first principal axis 61 representing the slope of the distribution has a straight slope close to the traveling direction. Next, the direction of the straight line of the first spindle is obtained from the obtained linear equation of the first spindle (43). If the inclination of the first spindle corresponds to the traveling direction, the result of 43 for obtaining the direction of the straight line of the first spindle is an angle representing the traveling direction in the apparatus coordinate system. Not. Then, next, the angle is corrected by using a conversion function that associates the traveling direction with the inclination of the first principal axis (44). FIG. 7 shows an example of the conversion function. The horizontal axis is the direction of the first main axis, and the vertical axis is the direction of movement of the person wearing the wearer, indicating the conversion function 71. By using such a function, it is possible to estimate the traveling direction with higher accuracy than the estimated value of the traveling direction obtained by the first spindle alone. The traveling direction based on the body orientation is output as the traveling direction after conversion (45).

上述した実施例で示しているように、図1の装置座標系の向いている絶対方位を演算する装置3により本発明の装置が向いている方向、図1の装置座標系での進行方向を推定する装置6により装置座標系を基準とした進行方向を推定できる事を示した。そこで、最後に取り付け物体の絶対方位に対する進行方向を演算する装置7により装置座標系での進行方向を推定する装置3の向いている絶対方位より装置座標系での進行方向を推定する装置6の進行方向の補正量を用いて補正する事により取り付け物体(人)の絶対方位に対する進行方向を求める事ができるようになる。   As shown in the above-described embodiment, the direction in which the apparatus of the present invention is directed by the apparatus 3 for calculating the absolute direction in which the apparatus coordinate system of FIG. 1 is directed, and the traveling direction in the apparatus coordinate system of FIG. It was shown that the advancing direction based on the apparatus coordinate system can be estimated by the estimating apparatus 6. Therefore, the apparatus 6 for estimating the traveling direction in the apparatus coordinate system from the absolute azimuth directed by the apparatus 3 for estimating the traveling direction in the apparatus coordinate system by the apparatus 7 for calculating the traveling direction with respect to the absolute direction of the attached object. By correcting using the correction amount of the traveling direction, the traveling direction with respect to the absolute direction of the attached object (person) can be obtained.

なお、前述した説明では装着位置を腰を例にとり説明を行ってきたが腰以外の場所、例えば頭部や肩などに取り付けた場合においても同様の補正手段を用いる事ができる。   In the above description, the mounting position has been described by taking the waist as an example, but the same correction means can be used when the mounting position is attached to a place other than the waist, such as the head or shoulder.

本実施例の方法及び装置によれば、装着した人の進行方向と装着した場所の向きが同じ方向を向いていない場合においても正確な進行方向を求める事が可能になる。   According to the method and apparatus of the present embodiment, it is possible to obtain an accurate traveling direction even when the traveling direction of the wearing person and the orientation of the wearing place do not face the same direction.

進行方向と体の向きが違う場合でも正確な移動軌跡を求めるための実施例を示す。   An embodiment for obtaining an accurate movement locus even when the traveling direction and the body direction are different will be described.

図8に本発明を用いて正確な移動軌跡を検知する場合の構成図を示す。図1で説明した装置構成図に移動距離検知装置81と距離と方位の積分演算部82を付加した構成となっている。移動距離検知装置81は、装置を取り付けた人の移動距離を検知する装置である。例えば、歩数計を用いて検知した歩数と歩幅より距離を求めるような装置である。距離と方位の積分演算部82は、移動距離検知装置81で求めた単位時間あたりの移動距離と取り付け物体の絶対方位に対する進行方向演算装置7で求めた進行方向補正後の絶対方位の値を用いて距離と方位の積分演算処理を行い移動軌跡を算出する。算出した移動軌跡は表示装置8を用いて表示したり通信装置9を用いて遠隔地に移動軌跡の検知結果を伝送する。   FIG. 8 shows a configuration diagram in the case of detecting an accurate movement locus using the present invention. This is a configuration in which a moving distance detecting device 81 and a distance and azimuth integral calculation unit 82 are added to the device configuration diagram described in FIG. The movement distance detection device 81 is a device that detects the movement distance of the person who attached the device. For example, it is an apparatus that obtains the distance from the number of steps detected using a pedometer and the step length. The distance and azimuth integral calculation unit 82 uses the movement direction per unit time obtained by the movement distance detection device 81 and the absolute azimuth value after traveling direction correction obtained by the traveling direction computation device 7 with respect to the absolute azimuth of the attached object. The distance and azimuth integral calculation process is performed to calculate the movement trajectory. The calculated movement trajectory is displayed using the display device 8 or the detection result of the movement trajectory is transmitted to a remote place using the communication device 9.

従来技術では進行方向と体の向いている方向に違いがあると方向センサ1だけでは進行方向の補正が出来ないために距離と方向の積分演算部82で求めた移動には誤差が生じてしまう問題があった。しかし、本実施例の方法及び装置によれば、進行方向の補正を行う事ができるため、正確な移動軌跡を求める事ができるようになる。   In the prior art, if there is a difference between the direction of travel and the direction in which the body is facing, the direction sensor 1 alone cannot correct the direction of travel, so an error occurs in the movement obtained by the integral calculation unit 82 of the distance and direction. There was a problem. However, according to the method and apparatus of the present embodiment, the traveling direction can be corrected, so that an accurate movement trajectory can be obtained.

進行方向の補正角度を用いて、取り付けた人がどのような歩行状態で歩行しているか(移動動態)を推定するための実施例を示す。図9は本実施例の処理のブロック図を示す。   An embodiment for estimating in what walking state the attached person is walking (movement dynamics) using the correction angle in the traveling direction will be described. FIG. 9 shows a block diagram of processing of this embodiment.

図10は移動動態を分類するための図である。図9は図4の装置座標系での進行方向推定手段の一例を示した図の処理44までの処理手順は同じである。処理44の出力は、進行方向と体の向きの差分を出力している。従って、この差分値を用いて移動動態の分類を行う。図10は、分類の説明図である。正面に対する進行のずれ角度106は処理ブロック44の出力を示している。角度101〜105は移動動態の分類を表している。例えば、角度101までのずれ角度は“正面歩行”、角度102は“正面斜め歩行”、角度103は“横歩き”、確度104は“斜め後ろ歩行”、角度105は“後ろ歩き”である。処理ブロック91は処理ブロック44の出力結果と図10の分類図を用いて移動動態の推定を行う。処理ブロック92では処理ブロック91で推定した結果を出力し表示や遠隔地へ伝送したりする。   FIG. 10 is a diagram for classifying the movement dynamics. FIG. 9 shows the same processing procedure up to processing 44 in the figure showing an example of the traveling direction estimation means in the apparatus coordinate system of FIG. The output of the process 44 is a difference between the traveling direction and the body direction. Therefore, the movement dynamics are classified using this difference value. FIG. 10 is an explanatory diagram of classification. The deviation angle 106 of the advance with respect to the front indicates the output of the processing block 44. Angles 101-105 represent the classification of movement dynamics. For example, the deviation angle up to the angle 101 is “front walking”, the angle 102 is “front diagonal walking”, the angle 103 is “side walking”, the accuracy 104 is “oblique walking backward”, and the angle 105 is “back walking”. The processing block 91 estimates the movement dynamics using the output result of the processing block 44 and the classification diagram of FIG. In the processing block 92, the result estimated in the processing block 91 is output and displayed or transmitted to a remote place.

本実施例の方法及び装置によれば、移動動態を推定する事が出来るので、装着者がどのような移動動態で歩行を行っているかを検知する事が可能になる。   According to the method and apparatus of the present embodiment, the movement dynamics can be estimated, so that it is possible to detect the movement dynamics of the wearer with which the wearer is walking.

1 方向センサ
2 A/Dコンバータ
1 direction sensor 2 A / D converter

Claims (10)

方向センサを用いて物体の物体座標系の向いている絶対方位を検知すること、
前記物体に加わる加速度変化を加速度センサより検知すること、
演算装置を用いて、前記加速度変化を水平面に投射し、前記投射した加速度点群の分布の方向より前記物体座標系を基準とした物体の進行方向を検知すること、及び、前記物体座標系の絶対方位と前記物体座標系を基準とした物体の進行方向より物体の進行方向の絶対方位を検知することを特徴とする物体の進行方向検知方法。
Detecting the absolute orientation of the object's object coordinate system using a direction sensor;
Detecting an acceleration change applied to the object by an acceleration sensor;
Using an arithmetic device, projecting the acceleration change onto a horizontal plane, detecting the traveling direction of the object with reference to the object coordinate system from the direction of the distribution of the projected acceleration point group, and the object coordinate system An object traveling direction detection method, comprising: detecting an absolute direction in an object traveling direction from an absolute direction and an object traveling direction based on the object coordinate system.
請求項1に記載の物体の進行方向検知方法において、
前記物体の進行方向の検知は、前記投射した加速度の点群の分布から主成分分析を用いて物体の進行方向の絶対方位を検知することを特徴とする物体の進行方向検知方法。
The method for detecting the direction of travel of an object according to claim 1,
The object traveling direction is detected by detecting the absolute azimuth of the object traveling direction using principal component analysis from the distribution of the projected acceleration point cloud.
請求項2に記載の物体の進行方向検知方法において、
前記演算装置は、進行方向と実際の物体の進行方向を対応づける変換関数を参照して、前記主成分分析を用いて検知した進行方向へ補正を行い、物体の進行方向の絶対方位を検知することを特徴とする物体の進行方向検知方法。
The method of detecting a traveling direction of an object according to claim 2.
The arithmetic unit refers to a conversion function that associates the traveling direction with the actual traveling direction of the object, corrects the traveling direction detected using the principal component analysis, and detects the absolute direction of the traveling direction of the object. A method for detecting the direction of travel of an object.
請求項1乃至3のいずれか一項に記載の物体の進行方向検知方法の進行方向検知結果と、
移動距離検知装置からの移動距離を検知することで、
前記演算装置において移動軌跡を求めることを特徴とする物体の位置検知方法。
The traveling direction detection result of the traveling direction detection method for an object according to any one of claims 1 to 3,
By detecting the moving distance from the moving distance detector,
A method for detecting a position of an object, characterized in that a movement trajectory is obtained in the arithmetic device.
請求項1乃至3のいずれか一項に記載の物体の進行方向検知方法の進行方向検知結果及び物体の物体座標系の向いている絶対方位結果を用いて、
前記演算装置において、取り付けた物体の移動動態を認識することを特徴とする物体の移動動態認識方法。
Using the traveling direction detection result of the traveling direction detection method of the object according to any one of claims 1 to 3 and the absolute orientation result of the object's object coordinate system facing,
An object movement dynamic recognition method, characterized in that the movement dynamics of an attached object is recognized in the arithmetic device.
物体の物体座標系の向いている絶対方位を検知する手段と、
前記物体に加わる加速度変化を検知する手段と、
前記加速度変化を水平面に投射し、前記投射した加速度の点群の分布の方向より前記物体座標系を基準として物体の進行方向を検知する手段と、
前記物体座標系の絶対方位と前記物体座標系を基準とした物体の進行方向より物体の進行方向の絶対方位を検知する手段とを備えたことを特徴とする物体の進行方向検知装置。
Means for detecting the absolute orientation of the object coordinate system facing the object;
Means for detecting a change in acceleration applied to the object;
Means for projecting the acceleration change onto a horizontal plane, and detecting a traveling direction of the object based on the object coordinate system from a direction of distribution of the projected acceleration point cloud;
An object traveling direction detection apparatus comprising: an absolute direction of the object coordinate system; and a means for detecting an absolute direction of the object traveling direction based on the object traveling direction based on the object coordinate system.
請求項6に記載の物体の進行方向検知装置において、
物体の進行方向を検知する手段は、前記投射した加速度の点群の分布から主成分分析を用いて物体の進行方向の絶対方位を検知することを特徴とする物体の進行方向検知装置。
In the advancing direction detection apparatus of the object according to claim 6,
An object traveling direction detection apparatus, wherein the means for detecting the traveling direction of the object detects an absolute azimuth of the traveling direction of the object using principal component analysis from the distribution of the projected point cloud.
請求項7に記載の物体の進行方向検知装置において、
前記物体の進行方向の絶対方位を検知する手段は、進行方向と実際の物体の進行方向を対応づける変換関数を参照して、前記主成分分析を用いて検知した進行方向へ補正を行い、物体の進行方向の絶対方位を検知することを特徴とする物体の進行方向検知装置。
In the advancing direction detection apparatus of the object according to claim 7,
The means for detecting the absolute direction of the traveling direction of the object refers to a conversion function that associates the traveling direction with the traveling direction of the actual object, corrects the traveling direction detected using the principal component analysis, and An apparatus for detecting the direction of travel of an object, characterized in that the absolute direction of the travel direction of the object is detected.
請求項乃至のいずれか一項に記載の物体の進行方向検知装置の進行方向検知結果を用いて
さらに移動距離検知装置を備えて、
前記物体の進行方向検知装置の進行方向検知結果及び前記移動距離検知装置の移動距離より移動軌跡を求める手段を備えたことを特徴とする物体の位置検知装置。
Using the traveling direction detection result of the traveling direction detection device for an object according to any one of claims 6 to 8 ,
In addition , equipped with a movement distance detection device,
An object position detection apparatus comprising means for obtaining a movement locus from a result of movement direction detection of the object movement direction detection apparatus and a movement distance of the movement distance detection apparatus.
請求項乃至のいずれか一項に記載の物体の進行方向検知装置の進行方向検知結果及び物体の物体座標系の向いている絶対方位結果を用いて、取り付けた物体の移動動態を認識する手段を備えたことを特徴とする物体の移動動態認識装置。 The movement dynamics of the attached object are recognized using the traveling direction detection result of the object traveling direction detection device according to any one of claims 6 to 8 and the absolute orientation result of the object's object coordinate system. An apparatus for recognizing movement dynamics of an object characterized by comprising means.
JP2011177390A 2011-08-15 2011-08-15 Object direction detection method, position detection method, direction detection device, position detection device, movement dynamic recognition method, and movement dynamic recognition device Active JP5082001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177390A JP5082001B2 (en) 2011-08-15 2011-08-15 Object direction detection method, position detection method, direction detection device, position detection device, movement dynamic recognition method, and movement dynamic recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177390A JP5082001B2 (en) 2011-08-15 2011-08-15 Object direction detection method, position detection method, direction detection device, position detection device, movement dynamic recognition method, and movement dynamic recognition device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007335511A Division JP2009156721A (en) 2007-12-27 2007-12-27 Method and device for detecting position of object

Publications (2)

Publication Number Publication Date
JP2011237452A JP2011237452A (en) 2011-11-24
JP5082001B2 true JP5082001B2 (en) 2012-11-28

Family

ID=45325536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177390A Active JP5082001B2 (en) 2011-08-15 2011-08-15 Object direction detection method, position detection method, direction detection device, position detection device, movement dynamic recognition method, and movement dynamic recognition device

Country Status (1)

Country Link
JP (1) JP5082001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187506A (en) * 2017-07-05 2017-10-12 ヤフー株式会社 Estimation device, movement direction estimation method, and movement direction estimation program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892785B2 (en) 2011-12-22 2016-03-23 株式会社日立製作所 Information processing apparatus and information processing method
WO2014010727A1 (en) 2012-07-13 2014-01-16 独立行政法人産業技術総合研究所 Device for estimating moving object travel direction and method for estimating travel direction
JP6322960B2 (en) 2013-02-01 2018-05-16 株式会社リコー Inertial device, method and program
JP6268945B2 (en) 2013-02-04 2018-01-31 株式会社リコー Inertial device, method and program
WO2015105146A1 (en) 2014-01-08 2015-07-16 独立行政法人産業技術総合研究所 Travel direction estimation device and travel direction estimation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126388B2 (en) * 2002-04-08 2008-07-30 カシオ計算機株式会社 Walking direction detecting device and program
JP2005172625A (en) * 2003-12-11 2005-06-30 Matsushita Electric Ind Co Ltd Action sensing device
JP2006084312A (en) * 2004-09-16 2006-03-30 Nec Tokin Corp Walking support device and walking support method
WO2006123691A1 (en) * 2005-05-18 2006-11-23 Matsushita Electric Works, Ltd. Sleep diagnostic system
JP4926424B2 (en) * 2005-08-01 2012-05-09 旭化成エレクトロニクス株式会社 Mobile device and drawing processing control method thereof
JP4967368B2 (en) * 2006-02-22 2012-07-04 ソニー株式会社 Body motion detection device, body motion detection method, and body motion detection program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187506A (en) * 2017-07-05 2017-10-12 ヤフー株式会社 Estimation device, movement direction estimation method, and movement direction estimation program

Also Published As

Publication number Publication date
JP2011237452A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US10679360B2 (en) Mixed motion capture system and method
JP5082001B2 (en) Object direction detection method, position detection method, direction detection device, position detection device, movement dynamic recognition method, and movement dynamic recognition device
US8676498B2 (en) Camera and inertial measurement unit integration with navigation data feedback for feature tracking
EP1867951B1 (en) Traveling direction measuring apparatus and traveling direction measuring method
US20210247189A1 (en) Positioning apparatus, positioning method, and program
Meng et al. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module
US9677888B2 (en) Determining sensor orientation in indoor navigation
US20160238395A1 (en) Method for indoor and outdoor positioning and portable device implementing such a method
US11743687B2 (en) Method and system for determining and tracking an indoor position of an object
JP4845068B2 (en) Dead reckoning equipment
JP5294983B2 (en) Portable terminal, program and method for determining direction of travel of pedestrian using acceleration sensor and geomagnetic sensor
US10466054B2 (en) Method and system for estimating relative angle between headings
JP2015190850A (en) Error estimation method, kinematic analysis method, error estimation device, and program
JP4714853B2 (en) Dead reckoning equipment
KR101301462B1 (en) Pedestiran dead-reckoning apparatus using low cost inertial measurement unit and method thereof
WO2018116476A1 (en) Information processing device, information processing method, and information processing program
Kim et al. Performance improvement and height estimation of pedestrian dead-reckoning system using a low cost MEMS sensor
US10697776B2 (en) Method and system for tracking and determining a position of an object
JP2009156721A (en) Method and device for detecting position of object
Hnatiuc et al. Path recognition using mobile phone
Cui et al. Pedestrian navigation with INS measurements and gait models
Uradzinski et al. Pedestrian navigation system based on the inertial measurement unit sensor for outdoor and indoor environments
Hölzke et al. Evaluating the synergy of relative and absolute indoor localization in industrial spaces
Matsumoto et al. A study on estimation of traveling direction for pedestrian dead reckoning by using inertial sensors
GB2567889A (en) Method and system for determining a direction of movement of an object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5082001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3