JP5081387B2 - Positive electrode mixture and alkaline battery - Google Patents

Positive electrode mixture and alkaline battery Download PDF

Info

Publication number
JP5081387B2
JP5081387B2 JP2006004825A JP2006004825A JP5081387B2 JP 5081387 B2 JP5081387 B2 JP 5081387B2 JP 2006004825 A JP2006004825 A JP 2006004825A JP 2006004825 A JP2006004825 A JP 2006004825A JP 5081387 B2 JP5081387 B2 JP 5081387B2
Authority
JP
Japan
Prior art keywords
positive electrode
graphite
emd
electrode mixture
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006004825A
Other languages
Japanese (ja)
Other versions
JP2007188714A (en
Inventor
雄治 土田
武男 野上
秀典 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2006004825A priority Critical patent/JP5081387B2/en
Publication of JP2007188714A publication Critical patent/JP2007188714A/en
Application granted granted Critical
Publication of JP5081387B2 publication Critical patent/JP5081387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極作用物質に電解二酸化マンガン(EMD)のみを用いたアルカリ電池用正極合剤およびアルカリ電池に関する。 The present invention relates to a positive electrode mixture for an alkaline battery and an alkaline battery using only electrolytic manganese dioxide (EMD) as a positive electrode active substance.

一般的なアルカリ電池は正極作用物質としてEMDまたはEMDにNiOOHを混合したものを用いている(たとえば、非特許文献1参照)。   A general alkaline battery uses EMD or EMD mixed with NiOOH as a positive electrode active substance (see, for example, Non-Patent Document 1).

アルカリ乾電池は、正極端子を兼ねる正極缶内に環状または管状の正極合剤を圧入状態で挿入し、その内側にセパレータを介してゲル状負極を充填した構造を有する。近年、これらの電池が使用される機器の負荷は大きくなり、そのため強負荷放電性能に優れる電池が要望されている。   An alkaline battery has a structure in which a positive or negative electrode mixture is inserted into a positive electrode can also serving as a positive electrode terminal in a press-fitted state, and a gelled negative electrode is filled inside through a separator. In recent years, the load of equipment in which these batteries are used has increased, and therefore, batteries having excellent high-load discharge performance have been demanded.

そこで、アルカリ乾電池の放電性能を向上させるため、アルカリベース電位のより高いEMDを使用することにより開路電圧を高く設定し、放電カーブも高く維持させて、放電時間および放電容量を向上させる技術が用いられていた。具体的には、アルカリベース電位が270mV以上の高電位EMDを用いるのが良いとされていた(たとえば、特許文献1参照)。
特開2003−234107 「最新 電池ハンドブック」133ページ、アルカリ乾電池の一般的な正極組成
Therefore, in order to improve the discharge performance of alkaline batteries, a technology is used to improve the discharge time and discharge capacity by setting the open circuit voltage high and maintaining the discharge curve high by using EMD with higher alkali base potential. It was done. Specifically, it has been considered to use a high potential EMD having an alkali base potential of 270 mV or more (see, for example, Patent Document 1).
JP2003-234107A 133 pages of “Latest Battery Handbook”, General cathode composition of alkaline batteries

しかしながら、上述した従来の技術では、次のような問題を生じることが本発明者らによって明らかにされた。すなわち、高電位EMDを用いると、長期貯蔵において電位の低下が生じ、とくに高温貯蔵(温度加速試験)においては、初度性能優位性がなくなって、アルカリベース電位のより低いものを用いた場合よりも性能が低下してしまうという逆転現象が生じる。   However, it has been clarified by the present inventors that the conventional technique described above causes the following problems. That is, when the high potential EMD is used, the potential decreases during long-term storage, and particularly in high temperature storage (temperature acceleration test), the initial performance superiority is lost, compared with the case where a lower alkali base potential is used. A reverse phenomenon occurs in which the performance deteriorates.

つまり、高温で貯蔵した場合、高温貯蔵中にEMDの活性度が低下して、逆に放電性能が低下してしまうという特性を示す。この傾向はとくに、正極作用物質としてEMDとNiOOHの混合物を使用する系において顕著となる。   That is, when stored at a high temperature, the EMD activity decreases during high temperature storage, and conversely the discharge performance decreases. This tendency is particularly remarkable in a system using a mixture of EMD and NiOOH as a positive electrode active substance.

アルカリベース電位が270mV以上の高電位EMDを正極作用物質として用いたアルカリ乾電池を高温保存すると、EMD自体の変質が発現する。これは、EMDを電解にて製造する工程で、強制的にエネルギーを充填して電位を高くするために、二酸化マンガン結晶が歪んで弱くなるためである。さらに酸化力が強いNiOOHを混合した正極作用物質を使用する系おいては、その酸化作用により正極内で局部電池が形成されて、酸化および還元反応が進行してしまう。   When an alkaline dry battery using a high potential EMD having an alkali base potential of 270 mV or higher as a positive electrode active substance is stored at a high temperature, the EMD itself is altered. This is because the manganese dioxide crystal is distorted and weakened in order to forcibly fill energy and increase the potential in the process of producing EMD by electrolysis. Further, in a system using a positive electrode active material mixed with NiOOH having a strong oxidizing power, a local battery is formed in the positive electrode due to the oxidizing action, and oxidation and reduction reactions proceed.

この結果、従来のアルカリ電池では、高電位EMDを用いることによって初度性能は高まるが、この初度放電性能は高温貯蔵(保存)で大きく劣化してしまうという問題があった。しかし、アルカリベース電位が低いEMDを正極作用物質に用いると、今度は、高温貯蔵前の初度放電性能さえも得られないという背反が生じる。   As a result, in the conventional alkaline battery, the initial performance is enhanced by using the high potential EMD, but the initial discharge performance is greatly deteriorated by high-temperature storage (storage). However, when an EMD having a low alkali base potential is used as the positive electrode active material, a contradiction arises that it is not possible to obtain even the initial discharge performance before high-temperature storage.

本発明は以上のような問題を鑑みてなされたもので、その目的は、初度放電性能を維持しつつ、高温貯蔵によるアルカリ電池の性能劣化を抑制できる正極合剤およびアルカリ電池を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a positive electrode mixture and an alkaline battery that can suppress performance deterioration of the alkaline battery due to high-temperature storage while maintaining initial discharge performance. is there.

本発明の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。   Other objects and configurations of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本発明は次のような解決手段を提供する。
(1)電解二酸化マンガンのみを正極作用物質として含むとともに、当該正極作用物質に導電助剤として黒鉛が添加されたアルカリ電池用の正極合剤であって、
前記電解二酸化マンガンは、アルカリベース電位が270mV未満であり、
前記黒鉛は、前記正極作用物質に対して5〜7wt%の比率で添加されている、
ことを特徴とするアルカリ電池用正極合剤。
(2)上記手段(1)において、上記黒鉛が膨張化黒鉛を含有することを特徴とするアルカリ電池用正極合剤。
(3)上記手段(1)または(2)のいずれかに記載のアルカリ電池用正極合剤を用いたことを特徴とするアルカリ電池。
The present invention provides the following solutions.
(1) A positive electrode mixture for an alkaline battery in which only electrolytic manganese dioxide is contained as a positive electrode active substance, and graphite is added to the positive electrode active substance as a conductive additive,
The electrolytic manganese dioxide has an alkali base potential of less than 270 mV,
The graphite is added at a ratio of 5 to 7 wt% with respect to the positive electrode active substance,
A positive electrode mixture for alkaline batteries .
(2) The positive electrode mixture for alkaline batteries according to the above means (1), wherein the graphite contains expanded graphite.
(3) An alkaline battery using the alkaline battery positive electrode mixture according to any one of the above means (1) or (2) .

初度放電性能を維持しつつ、高温貯蔵によるアルカリ電池の性能劣化を抑制できる正極合剤およびアルカリ電池を提供することができる。   It is possible to provide a positive electrode mixture and an alkaline battery that can suppress performance deterioration of the alkaline battery due to high-temperature storage while maintaining initial discharge performance.

上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。   Operations / effects other than those described above will be apparent from the description of the present specification and the accompanying drawings.

図1は、本発明の技術が適用されたアルカリ電池の一実施形態を示す。同図に示す電池はLRタイプのアルカリ乾電池であって、有底筒状の金属製正極缶11内に、正極合剤21、セパレータ22、負極合剤23からなる発電要素20がアルカリ電解液と共に収容されている。   FIG. 1 shows an embodiment of an alkaline battery to which the technology of the present invention is applied. The battery shown in the figure is an LR type alkaline dry battery, and a power generation element 20 comprising a positive electrode mixture 21, a separator 22, and a negative electrode mixture 23 is placed in a bottomed cylindrical metal positive electrode can 11 together with an alkaline electrolyte. Contained.

正極缶11は正極集電体おおよび正極端子を兼ねていて、その底部には凸状の正極端子部12が一体形成されている。この正極缶11の開口部は負極端子板32と樹脂製ガスケット35を用いて封止されている。負極端子板32の内側には棒状の負極集電子31が固設され、この集電子31がゲル状の負極合剤23中に挿入されている。   The positive electrode can 11 also serves as a positive electrode current collector and a positive electrode terminal, and a convex positive electrode terminal portion 12 is integrally formed at the bottom thereof. The opening of the positive electrode can 11 is sealed using a negative electrode terminal plate 32 and a resin gasket 35. A rod-shaped negative electrode current collector 31 is fixed inside the negative electrode terminal plate 32, and the current collector 31 is inserted into the gel-like negative electrode mixture 23.

正極合剤21は、正極作用物質に導電助剤である黒鉛を添加したものを所定の合剤形状に成形したものであって、その正極作用物質には、二酸化マンガン(EMD)、またはEMDとオキシ水酸化ニッケル(NiOOH)の混合体が使用されている。   The positive electrode mixture 21 is formed by adding graphite as a conductive auxiliary agent to a positive electrode active material into a predetermined mixture shape. The positive electrode active material includes manganese dioxide (EMD) or EMD and A mixture of nickel oxyhydroxide (NiOOH) is used.

ここで、正極作用物質に含まれるEMDには、アルカリベース電位が270mV未満のEMDが使用されている。これとともに、導電助剤である黒鉛が正極作用物質に対して5〜7wt%の比率で添加されている。正極作用物質がEMDとオキシ水酸化ニッケル(NiOOH)の混合体である場合には、EMDとNiOOHの総量に対して黒鉛の比率が5〜7wt%に調整されている。この場合、黒鉛は膨張化黒鉛を含有することが望ましい。   Here, an EMD having an alkali base potential of less than 270 mV is used as the EMD contained in the positive electrode active material. Along with this, graphite as a conductive additive is added at a ratio of 5 to 7 wt% with respect to the positive electrode active substance. When the positive electrode active material is a mixture of EMD and nickel oxyhydroxide (NiOOH), the ratio of graphite is adjusted to 5 to 7 wt% with respect to the total amount of EMD and NiOOH. In this case, it is desirable that the graphite contains expanded graphite.

上述したアルカリ乾電池の正極合剤21にはアルカリベース電位が270mV未満のEMDが用いられているが、この低電位EMDは結晶構造が安定しており、高温保存においても、二酸化マンガン自体の変質が抑制される。このEMDを用いることにより、高温貯蔵によるアルカリ電池の性能劣化を抑制できる。   Although the EMD having an alkali base potential of less than 270 mV is used for the positive electrode mixture 21 of the alkaline dry battery described above, this low potential EMD has a stable crystal structure, and even when stored at high temperatures, the manganese dioxide itself is not altered. It is suppressed. By using this EMD, it is possible to suppress deterioration of the performance of the alkaline battery due to high-temperature storage.

上記構成において、正極作用物質に対する黒鉛の比率を5〜7wt%としたことにより、初度放電性能を向上させることにも成功した。この場合、黒鉛の比率が5wt%未満では初度放電性能が低下し、7wt%を超えると電池容量が低下することが確認された。黒鉛は、天然黒鉛、人造黒鉛、カーボーブラック等が使用可能であるが、とくに膨張化黒鉛の使用が放電性能維持に有効であることが判明した。   In the above configuration, the initial discharge performance was successfully improved by setting the ratio of graphite to the positive electrode active material to 5 to 7 wt%. In this case, it was confirmed that the initial discharge performance deteriorates when the graphite ratio is less than 5 wt%, and the battery capacity decreases when it exceeds 7 wt%. As graphite, natural graphite, artificial graphite, carbow black and the like can be used, but it has been found that the use of expanded graphite is particularly effective for maintaining the discharge performance.

上記のように、本発明では、アルカリベース電位が270mV未満のEMDを用いたことと、正極作用物質に対する黒鉛の比率を5〜7wt%としたこととにより、初度放電性能を維持しつつ、高温貯蔵によるアルカリ電池の性能劣化を抑制することを可能にした。   As described above, in the present invention, the use of EMD with an alkali base potential of less than 270 mV and the ratio of graphite to the positive electrode active material is 5 to 7 wt%, while maintaining the initial discharge performance, It was possible to suppress the performance deterioration of alkaline batteries due to storage.

<<実施例1>>
EMD、黒鉛、KOH電解液、バインダーを混合・圧縮・粉砕・分級することにより得られる二次粉体を用いて、中空円筒状の正極合剤を成形した。この正極合剤を用いて、単3型アルカリ乾電池(LR6)を作製した。
<< Example 1 >>
A hollow cylindrical positive electrode mixture was formed using a secondary powder obtained by mixing, compressing, crushing, and classifying EMD, graphite, KOH electrolyte, and binder. Using this positive electrode mixture, an AA alkaline battery (LR6) was produced.

この作製において、EMD、黒鉛、バインダーは次のものを使用した。
1.黒鉛:
膨張化黒鉛を正極作用物質に対する比率は約5wt%。
平均粒径d=50(30〜50μm)、
見掛密度0.02〜0.0045g/cm(Scott法)。
2.バインダー:日本純薬製PW−150、約0.2wt%。
3.EMD:次の4種類(1)〜(4)を使用した。
(1)アルカリベース電位300mV、平均粒径d=50(35μm)。
(2)アルカリベース電位280mV、平均粒径d=50(35μm)。
(3)アルカリベース電位270mV、平均粒径d=50(35μm)。
(4)アルカリベース電位260mV、平均粒径d=50(35μm)。
In this production, the following were used for EMD, graphite, and binder.
1. graphite:
The ratio of expanded graphite to the positive electrode active material is about 5 wt%.
Average particle diameter d = 50 (30-50 μm),
Apparent density 0.02 to 0.0045 g / cm 3 (Scott method).
2. Binder: Nippon Pure Chemical's PW-150, about 0.2 wt%.
3. EMD: The following four types (1) to (4) were used.
(1) Alkali base potential 300 mV, average particle size d = 50 (35 μm).
(2) Alkali base potential 280 mV, average particle size d = 50 (35 μm).
(3) Alkali base potential 270 mV, average particle size d = 50 (35 μm).
(4) Alkali base potential 260 mV, average particle size d = 50 (35 μm).

上記EMD、黒鉛、バインダーを用いて、EMDのアルカリベース電位が異なる複数種類の正極合剤(1)〜(4)を作製した。正極合剤の種類ごとにアルカリ乾電池を作製した。そして、各アルカリ乾電池について、初度放電性能、60℃で10日保存後の放電性能と、60℃で20日保存後の放電性能をそれぞれ調べる放電試験を行った。   Using the EMD, graphite, and binder, multiple types of positive electrode mixtures (1) to (4) having different EMD alkali base potentials were produced. Alkaline batteries were prepared for each type of positive electrode mixture. Each alkaline battery was subjected to a discharge test for examining initial discharge performance, discharge performance after storage at 60 ° C. for 10 days, and discharge performance after storage at 60 ° C. for 20 days.

放電試験は、300mA/59.5sと2000mA/0.5sの繰り返し放電において、終止電圧1.0Vに至るまでの持続時間(=繰り返し回数)を測定した。この放電試験の結果を表1に示す。   In the discharge test, the duration (= number of repetitions) until the end voltage reached 1.0 V was measured in repeated discharges of 300 mA / 59.5 s and 2000 mA / 0.5 s. The results of this discharge test are shown in Table 1.

Figure 0005081387
Figure 0005081387

表1の結果からは、EMDのアルカリベース電位が270mVを境に、高温貯蔵後の性能劣化に著しい差が生じることが理解される。また、表1の結果は、高電位側のEMDは初度の放電性能において若干優位であるが、高温保存においてはその優位性を維持できないことを示している。   From the results in Table 1, it is understood that there is a significant difference in performance degradation after high temperature storage when the alkaline base potential of EMD is 270 mV. Further, the results in Table 1 indicate that the EMD on the high potential side is slightly superior in the initial discharge performance, but cannot be maintained in high temperature storage.

<<実施例2>>
EMD、黒鉛、KOH電解液、バインダーを混合・圧縮・粉砕・分級することにより得られる二次粉体を用いて、中空円筒状の正極合剤を成形した。この正極合剤を用いて、単3型アルカリ乾電池(LR6)を作製した。
<< Example 2 >>
A hollow cylindrical positive electrode mixture was formed using a secondary powder obtained by mixing, compressing, crushing, and classifying EMD, graphite, KOH electrolyte, and binder. Using this positive electrode mixture, an AA alkaline battery (LR6) was produced.

この作製において、EMD、黒鉛、バインダーは次のものを使用した。
1.黒鉛:
膨張化黒鉛を使用し、平均粒径d=50(30〜50μm)、
見掛け密度0.02〜0.0045g/cm3(Scott法)。
正極作用物質に対する比率を次の(1)〜(5)のように異ならせて、それぞれに正極合剤およびアルカリ乾電池を作製した。
(1)4wt%、(2)5wt%、(3)6wt%、(4)7wt%、(5)8wt%。
2.バインダー:日本純薬製PW−150、約0.2wt%。
3.EMD: アルカリベース電位260mV、平均粒径d=50(35μm)。
In this production, the following were used for EMD, graphite, and binder.
1. graphite:
Using expanded graphite, average particle size d = 50 (30-50 μm),
Apparent density 0.02 to 0.0045 g / cm3 (Scott method).
The ratio with respect to the positive electrode active substance was varied as shown in the following (1) to (5) to prepare a positive electrode mixture and an alkaline dry battery, respectively.
(1) 4 wt%, (2) 5 wt%, (3) 6 wt%, (4) 7 wt%, (5) 8 wt%.
2. Binder: Nippon Pure Chemical's PW-150, about 0.2 wt%.
3. EMD: Alkali base potential 260 mV, average particle size d = 50 (35 μm).

上記EMD、黒鉛、バインダーを用い、黒鉛の比率が異なる複数種類の正極合剤(1)〜(5)を作製した。その正極合剤の種類ごとにアルカリ乾電池を作製した。そして、各アルカリ乾電池について、初度放電性能、60℃で10日保存後の放電性能と、60℃で20日保存後の放電性能をそれぞれ調べる放電試験を行った。   Using the EMD, graphite, and binder, multiple types of positive electrode mixtures (1) to (5) having different graphite ratios were produced. Alkaline batteries were prepared for each type of positive electrode mixture. Each alkaline battery was subjected to a discharge test for examining initial discharge performance, discharge performance after storage at 60 ° C. for 10 days, and discharge performance after storage at 60 ° C. for 20 days.

放電試験は、300mA/59.5sと2000mA/0.5sの繰り返し放電において、終止電圧1.0Vに至るまでの持続時間(=繰り返し回数)を測定した。この放電試験の結果を表2に示す。   In the discharge test, the duration (= number of repetitions) until the end voltage reached 1.0 V was measured in repeated discharges of 300 mA / 59.5 s and 2000 mA / 0.5 s. The results of this discharge test are shown in Table 2.

Figure 0005081387
Figure 0005081387

表2の結果からは、黒鉛比率が5〜7wt%の範囲が良好な放電性能を得られることが確認される。   From the results shown in Table 2, it is confirmed that good discharge performance can be obtained when the graphite ratio is in the range of 5 to 7 wt%.

上記実施例1,2における試験結果は、本発明者等が行った多くの試験結果の典型的なものであるが、この実施例1,2からも、アルカリベース電位が270mV未満のEMDを用いたことと、正極作用物質に対する黒鉛の比率を5〜7wt%としたこととにより、初度放電性能を維持しつつ、高温貯蔵によるアルカリ電池の性能劣化を抑制することが確認される。   The test results in Examples 1 and 2 above are typical of many test results conducted by the present inventors. However, from Examples 1 and 2, EMD having an alkali base potential of less than 270 mV is used. It was confirmed that the deterioration of the performance of the alkaline battery due to high-temperature storage was suppressed while maintaining the initial discharge performance by having the ratio of graphite to the positive electrode active substance of 5 to 7 wt%.

以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、アルカリ乾電池はLR型以外のものであってもよい。   As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above. For example, the alkaline battery may be other than the LR type.

初度放電性能を維持しつつ、高温貯蔵によるアルカリ電池の性能劣化を抑制できる正極合剤およびアルカリ電池を提供することができる。   It is possible to provide a positive electrode mixture and an alkaline battery that can suppress performance deterioration of the alkaline battery due to high-temperature storage while maintaining initial discharge performance.

本発明による技術が適用されたアルカリ乾電池の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the alkaline dry battery to which the technique by this invention was applied.

符号の説明Explanation of symbols

11 正極缶
12 正極端子部
20 発電要素
21 正極合剤
22 セパレータ
23 負極合剤(亜鉛合金粉末を使用)
31 負極集電子
32 負極端子板
35 ガスケット
DESCRIPTION OF SYMBOLS 11 Positive electrode can 12 Positive electrode terminal part 20 Electric power generation element 21 Positive electrode mixture 22 Separator 23 Negative electrode mixture (Use zinc alloy powder)
31 Negative current collector 32 Negative electrode terminal plate 35 Gasket

Claims (3)

電解二酸化マンガンのみを正極作用物質として含むとともに、当該正極作用物質に導電助剤として黒鉛が添加されたアルカリ電池用の正極合剤であって、
前記電解二酸化マンガンは、アルカリベース電位が270mV未満
であり、前記黒鉛は、前記正極作用物質に対して5〜7wt%の比率で添加されている、
ことを特徴とするアルカリ電池用正極合剤。
A positive electrode mixture for an alkaline battery in which only electrolytic manganese dioxide is contained as a positive electrode active substance, and graphite is added to the positive electrode active substance as a conductive additive,
The electrolytic manganese dioxide has an alkali base potential of less than 270 mV, and the graphite is added at a ratio of 5 to 7 wt% with respect to the positive electrode active material.
A positive electrode mixture for alkaline batteries .
請求項1において、上記黒鉛が膨張化黒鉛を含有することを特徴とするアルカリ電池用正極合剤。 2. The positive electrode mixture for an alkaline battery according to claim 1, wherein the graphite contains expanded graphite. 請求項1または2に記載のアルカリ電池用正極合剤を用いたことを特徴とするアルカリ電池。 An alkaline battery using the positive electrode mixture for alkaline batteries according to claim 1 or 2.
JP2006004825A 2006-01-12 2006-01-12 Positive electrode mixture and alkaline battery Active JP5081387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004825A JP5081387B2 (en) 2006-01-12 2006-01-12 Positive electrode mixture and alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004825A JP5081387B2 (en) 2006-01-12 2006-01-12 Positive electrode mixture and alkaline battery

Publications (2)

Publication Number Publication Date
JP2007188714A JP2007188714A (en) 2007-07-26
JP5081387B2 true JP5081387B2 (en) 2012-11-28

Family

ID=38343740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004825A Active JP5081387B2 (en) 2006-01-12 2006-01-12 Positive electrode mixture and alkaline battery

Country Status (1)

Country Link
JP (1) JP5081387B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191253B2 (en) * 2008-03-13 2013-05-08 Fdkエナジー株式会社 Positive electrode mixture for alkaline battery and alkaline battery
JP5352173B2 (en) * 2008-10-01 2013-11-27 パナソニック株式会社 Alkaline battery
US7820326B2 (en) 2008-10-17 2010-10-26 Panasonic Corporation Alkaline battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0121407A2 (en) * 1983-03-29 1984-10-10 E.I. Du Pont De Nemours And Company Blow moulding of polyoxymethylene/polyurethane compositions
JPS59194356A (en) * 1983-03-30 1984-11-05 Toshiba Battery Co Ltd Manufacture of manganese dry battery
JPS59194355A (en) * 1983-03-30 1984-11-05 Toshiba Battery Co Ltd Manufacture of manganese dry battery
JP3873760B2 (en) * 2002-02-07 2007-01-24 松下電器産業株式会社 Alkaline battery

Also Published As

Publication number Publication date
JP2007188714A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
AU2015333767B2 (en) Mixed material cathode for secondary alkaline batteries
US11482701B2 (en) Cycling protocol for alkaline batteries
KR100194186B1 (en) Manganese dioxide cathode for rechargeable battery and battery containing same
JP3462877B2 (en) Electrochemical battery using zinc anode
JP3873760B2 (en) Alkaline battery
US20140147757A1 (en) Zinc electrodes for batteries
US10763500B2 (en) Zinc electrodes for batteries
US9802254B2 (en) Zinc electrodes for batteries
JP5172181B2 (en) Zinc alkaline battery
JP4222488B2 (en) Alkaline battery
JPS61500242A (en) battery
JP2005525678A (en) Cylindrical alkaline battery with improved discharge performance
JP5081387B2 (en) Positive electrode mixture and alkaline battery
JP3866903B2 (en) Alkaline battery
JP3552194B2 (en) Alkaline battery
JP2008041490A (en) Alkaline battery
JP3866902B2 (en) Alkaline battery
JP2009043547A (en) Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JP2009224077A (en) Cathode mixture for alkaline battery and alkaline battery
JP2004172020A (en) Alkaline primary cell
JP2005142036A (en) Alkaline electrolytic solution, negative electrode for alkaline primary battery and the alkaline primary battery
JPH05504226A (en) Rechargeable battery manganese dioxide cathode and batteries containing the same cathode
JPS59186261A (en) Method for manufacture of cadmium electrode
JP2006344415A (en) Alkaline battery

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250