JP5080667B2 - Natural energy-driven ventilation and air conditioning automatic adjustment method. - Google Patents

Natural energy-driven ventilation and air conditioning automatic adjustment method. Download PDF

Info

Publication number
JP5080667B2
JP5080667B2 JP2011093491A JP2011093491A JP5080667B2 JP 5080667 B2 JP5080667 B2 JP 5080667B2 JP 2011093491 A JP2011093491 A JP 2011093491A JP 2011093491 A JP2011093491 A JP 2011093491A JP 5080667 B2 JP5080667 B2 JP 5080667B2
Authority
JP
Japan
Prior art keywords
ventilation
air
exhaust
wind
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011093491A
Other languages
Japanese (ja)
Other versions
JP2012220177A (en
Inventor
眞一 藤田
Original Assignee
眞一 藤田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眞一 藤田 filed Critical 眞一 藤田
Priority to JP2011093491A priority Critical patent/JP5080667B2/en
Publication of JP2012220177A publication Critical patent/JP2012220177A/en
Application granted granted Critical
Publication of JP5080667B2 publication Critical patent/JP5080667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)

Description

気密断熱化された室内の換気と空調とを風力と地中熱との併用による自然エネルギー主導で一体調整する方法に関する。  The present invention relates to a method for integrally adjusting ventilation and air conditioning in an airtight and heat-insulated room, led by natural energy using a combination of wind power and underground heat.

異常気象の一因とされるCOの削減が緊急課題として提唱される今日では、住居の空調環境においても、居住空間の空調に係る消費エネルギー低減の達成条件として、先ずは、建築住居全体の高気密高断熱化仕様があり、それに続く整備能力として設備機器の運転効率が省エネルギー要素として求められている。Today, when CO 2 reduction, which is one of the causes of abnormal weather, is advocated as an urgent issue, even in the air conditioning environment of residences, first of all, as an achievement condition of energy consumption reduction related to air conditioning of living spaces, There is a specification for high airtightness and high thermal insulation, and the operation efficiency of the equipment is required as an energy saving factor as the maintenance capability that follows.

過去の住宅空調に関する省エネ施策には、空調効率を重点先行させた高気密空間とした条件下での強制空調方法が主流を占め、密閉化された空間の換気不足を懸念する意見が軽視されたまま、省エネ効率の推進と体感温度で得られる快適性に偏重した結果、ハウスダストに起因するアトピー性皮膚炎や気管支炎及びアレルギー疾患等の健康被害が続発し、また、換気不良に因る一酸化炭素中毒で事故死に至るケースが多発し社会問題化した経緯がある。  In the past, energy-saving measures related to residential air conditioning mainly consisted of forced air-conditioning methods under highly air-tight spaces with an emphasis on air-conditioning efficiency. Opinions were concerned about the lack of ventilation in sealed spaces. As a result of the emphasis on the promotion of energy saving efficiency and the comfort that can be obtained with the sensible temperature, health hazards such as atopic dermatitis, bronchitis and allergic diseases due to house dust have occurred, and there is a risk of poor ventilation. There are many reasons why carbon dioxide poisoning has resulted in accidental deaths that have become social problems.

これは、高温多湿の気候風土に根ざした日本特有の開放型家屋に価値を求める居住観を温存したままで欧米型住宅の空調効果と利便性を先行させ、密閉空間に付随する初歩的情報が後追いとなったことが要因の一つとして上げられている。  This is because the air-conditioning effect and convenience of Western-style houses are preceded while preserving the view of living in an open-type house unique to Japan rooted in a hot and humid climate. One of the factors is that it was followed up.

よって、現行の建築基準法では新築住宅における生活空間の空調環境基準として、空調効果を求める気密断熱化と同時に換気不足による弊害を改善するために、室内の適正換気回数を1時間当たり0.5回以上と定義し、その条件下で24時間換気とする内容の換気方法が制定され指導対象となっている。  Therefore, according to the current Building Standards Act, as the air conditioning environment standard for living spaces in newly built houses, in order to improve the harmful effects caused by insufficient ventilation at the same time as air-tight insulation that requires air-conditioning effect, the appropriate number of indoor ventilation is 0.5 per hour It is defined as more than once, and a ventilation method with the content of 24-hour ventilation under that condition has been established and is the subject of guidance.

ただ、これら24時間換気方法に伴う屋内空間の適正環境維持にかかるエネルギー源としては、空調設備と換気設備の双方に電気エネルギーを必要とし、また、設備の維持管理に係る経済負担はもとより、当然ながら季節ごとの条件対応となる設備運転の設定操作が新たな個人負荷として強要されることになる。  However, as an energy source for maintaining an appropriate environment in indoor spaces associated with these 24-hour ventilation methods, both air conditioning equipment and ventilation equipment require electrical energy. However, the setting operation of the equipment operation corresponding to the condition of each season is forced as a new personal load.

しかし、機械効力により快適性を追求する生活風習は生活文化の進化功績でもあり、省エネ偏重の価値観に従って忍耐節約を強いられる生活は逆流条件として容認出来難く、既に定着した利便生活からの脱却は困難で不満を伴うため、快適環境の維持に費やすエネルギーは今後も増大の一途を辿ると懸念されている。  However, life customs that pursue comfort through mechanical effects are also an achievement of the evolution of life culture, and life that is forced to save patience according to the values of energy-saving emphasis is unacceptable as a backflow condition, and it is not possible to break away from the already established convenient life Due to the difficulty and dissatisfaction, there is concern that the energy spent in maintaining a comfortable environment will continue to increase.

そこで、今後地球上で進行するエネルギー枯渇と自然環境悪化の予測が現実化するのは必至とされ、その対応策として化石エネルギーから自然エネルギーへの転換が提唱され、国を問わずに共通課題として認識されると共に、生活価値観の見直しを含めた社会変革の具体策が模索されている。  Therefore, it is inevitable that the prediction of energy depletion and the deterioration of the natural environment that will progress on the earth will be realized in the future, and the transition from fossil energy to natural energy is advocated as a countermeasure, and it is a common issue regardless of country. As well as being recognized, concrete measures for social change including the review of life values are being sought.

このような環境悪化とエネルギー枯渇の不安定要素を解消する一例として、換気と室内空調の調整方法に関する次のような技術事案が提示されている。  As an example of resolving such unstable factors of environmental deterioration and energy depletion, the following technical cases regarding adjustment methods for ventilation and indoor air conditioning have been proposed.

先行文献1Prior literature 1

特願2005−024140Japanese Patent Application No. 2005-024140

先行文献2Prior literature 2

特願2005−241041Japanese Patent Application No. 2005-241041

先行文献3Prior literature 3

特願2007−183022Japanese Patent Application No. 2007-183022

しかし、これらの先行文献にみられる床下の基礎コンクリート蓄熱や地熱利用等における技術事案は、熱交換効率向上に関するある程度の効果は認められるとしても、先行文献の1〜3にいたる方法の全てに共通する課題として、排気から吸気に係る空気循環を司る換気設備の運行促進を電気エネルギーによる機械運転を主軸に置く構造概念であり、脱炭素を掲げる今後の抜本的なエネルギー解決法とはなり難く、これらは省エネ補助範囲に留まる技術方法といえる。  However, the technical cases related to underfloor basic concrete heat storage and geothermal heat seen in these prior documents are common to all the methods from 1 to 3 in the prior documents, even though some effects on improving heat exchange efficiency are recognized. As a challenge, it is a structural concept centering on mechanical operation by electric energy to promote the operation of ventilation equipment that controls the air circulation from exhaust to intake, and it is difficult to become a fundamental energy solution in the future that advocates decarbonization, These are technical methods that remain within the energy-saving assistance range.

また、地中熱との熱交換に媒体液を使用する文献3を例にした場合、一次熱交換が地熱利用であっても媒体液から空気への必然的二次熱交換設備の運転に新たな電気エネルギーを必要とし、このような二次設備の電力運転を前提とした空調方式にあっては、追加使用するエネルギーと複雑化する設備に係る保守管理業務を新たに発生させ、設備総体の適正運行維持に関わる経済負荷の増加が懸念される。  In addition, in the case of Document 3, which uses a medium liquid for heat exchange with geothermal heat, it is newly added to the operation of the inevitable secondary heat exchange equipment from the medium liquid to air even if the primary heat exchange is geothermal use. In such an air conditioning system that requires electric energy for secondary equipment, additional maintenance and management work related to additional energy and complicated equipment is generated, and There is concern over the increase in economic burden associated with maintaining proper operation.

さらに、上記の各先行文献における技術内容は換気と空調とに係る独立した機能双方を強制連動させる電力管理のシステムであり、これらのシステムを一般住宅に適用した場合の運転諸操作は、当然ながら付帯センサーの指示値をもとに生活者の個人責任となり、居室環境の保全と省エネ効率等への設定が個々の価値観と操作意識に委ねられると同時に、気密断熱化された生活空間に起因する健康障害とその安全性も感性に基づく自由裁量とされ、不具合の都度に自己責任としてその管理操作を批評される恐れがある。  Furthermore, the technical content in each of the above-mentioned prior art documents is a power management system that forcibly links both independent functions related to ventilation and air conditioning. Responsible for the consumer based on the indicated value of the incidental sensor, the settings of the living room environment and the setting of energy saving efficiency are left to individual values and operational consciousness, and at the same time due to the air-tight and insulated living space Health hazards and their safety are also discretionary based on sensitivity, and there is a risk that their management operations will be critiqued at their own risk in the event of a malfunction.

このような機械効力による住居空間の換気空調方法は、捉え方によっては一定したリズムの生活姿勢を続けることに違和感を覚える人もあり、上述するように操作設定が個々の価値観に左右される意識の程度と格差によって、前提とする設備本来の機能効果が不確実となる問題が指摘される。  Some people feel uncomfortable with maintaining a constant rhythm of life, depending on how they perceive the ventilation and air conditioning methods in the residential space, and the operation settings depend on individual values as described above. Depending on the degree of consciousness and disparity, it is pointed out that the original functional effects of the facilities are uncertain.

尚、日常生活における居室環境として、無意識の自然換気に相当する吸気が適温適湿に自動調整されることが最良であることは言うまでも無く、また、例え機械設備における空調環境であっても可能な限り自然対処の無意識操作に近いことに加え、その機能が個々の感性による生活リズムと臨機応変の人為所作を補佐する範囲のものであることが、自然エネルギーを人為的に有効活用する条件のひとつといえる。  Needless to say, it is best to automatically adjust the intake air equivalent to unconscious natural ventilation to the appropriate temperature and humidity as the living room environment in daily life. In addition to being as close as possible to unconscious operation of natural coping as much as possible, the condition that the function should be within the range to support life rhythm by individual sensibility and man-made work of ad hoc adaptation is a condition for effectively utilizing natural energy One of them.

また、居住空間における快適状況の具体条件として、上述のように室内汚染空気の常時自然排出を優先しつつ、必要換気量に基づく排気相当の新鮮吸気が自然供給され、その供給外気の温湿諸条件として室温が概ね約22度前後に対し、相対湿度が約55%前後の範囲であることに加え、自然供給される吸気の流動に適度な揺らぎを覚える状況下が最も快適な居室環境と云われており、換気空間が求める適正排気に相当する吸気の温湿が同時進行で適正範囲内に自然調整されることが望ましい。  In addition, as a specific condition of the comfortable situation in the living space, fresh air intake equivalent to the exhaust based on the necessary ventilation is naturally supplied while giving priority to natural exhaust of indoor polluted air as described above, and the temperature and humidity of the supplied outside air As a condition, the room temperature is about 22 degrees and the relative humidity is about 55%. In addition, the situation where moderate fluctuations in the flow of the naturally supplied intake air is the most comfortable room environment. It is desirable that the temperature and humidity of the intake air corresponding to the appropriate exhaust required by the ventilation space be naturally adjusted within the appropriate range simultaneously.

そこで、気密断熱化された換気対象の屋内空間(以下『換気空間』という)の換気と空調との環境整備において、屋外設置の風力排気装置による排気を優先とし、排気優先に伴い低圧条件下となる換気空間の差圧緩和作用による吸引力を応用して外気を地中の地中熱交換装置へ自然誘導し、熱交換によって温湿度が同時調整された外気を換気空間への新鮮吸気となし、換気空間の空調環境が四季を通して一定範囲内に自動調整される方法の、風力と地中熱併用による自然エネルギー主導の換気と空調の自動調整方法を提案する。  Therefore, in the environmental maintenance of the ventilation and air conditioning of the indoor space to be ventilated (hereinafter referred to as “ventilation space”) that is hermetically insulated, priority is given to exhaust by wind turbines installed outdoors, Applying the suction force due to the differential pressure relaxation action of the ventilation space, the outside air is naturally guided to the underground heat exchange device, and the outside air whose temperature and humidity are simultaneously adjusted by heat exchange is not used as fresh intake air to the ventilation space This paper proposes a natural energy-driven ventilation and air conditioning automatic adjustment method that uses wind power and geothermal heat to automatically adjust the air conditioning environment in the ventilation space within a certain range throughout the season.

気密断熱化された換気空間Cの換気と空調の調整方法を排気優先となし、その優先装置となる屋外の風力排気装置Aと換気空間Cと屋外吸気塔Eとを連通させ、風力排気装置Aと換気空間Cとの間に気圧調整装置Bを介在させ、換気空間Cと屋外吸気塔Eとの間に地中熱交換装置Dを介在させ、風力排気装置Aによる自然排気に伴って生じる差圧緩和の空気流動作用を動力源とし、換気空間Cが求める適正排気相当の外気を地中へ誘導し、地中熱交換作用を経て外気の温湿を同時調整となし、四季を通して温湿調整済みの新鮮吸気として換気空間へ自然供給する方法の、風力と地中熱併用により換気と排気相当の吸気温湿が一体として自然同調を成す自然システムとする。図1参照  The ventilation and air conditioning adjustment method of the ventilation space C that is hermetically insulated is given priority to exhaust, and the outdoor wind exhaust device A, the ventilation space C, and the outdoor intake tower E, which are the priority devices, communicate with each other, and the wind exhaust device A The air pressure adjustment device B is interposed between the ventilation space C and the ground heat exchange device D is interposed between the ventilation space C and the outdoor intake tower E. The air flow action of pressure relaxation is used as a power source, the outside air equivalent to the proper exhaust required by the ventilation space C is guided into the ground, and the temperature and humidity of the outside air are adjusted at the same time through the underground heat exchange action. This is a natural system in which ventilation and exhaust equivalent air temperature and humidity are integrated as a natural system by combining wind power and underground heat in a method that naturally supplies fresh ventilation to the ventilation space. See Figure 1

上述する自然システムの優先機能となる風力排気装置Aが風下側後方域に生じる減圧の増幅機能を有することで、風下側に出口を配した排気管内の空気が強制吸引される安定した排気能力となって排気優先を実現させ、伴う換気空間Cの低圧条件下による差圧緩和作用により排気相当の外気が連通する屋外吸気塔Eから取り込まれ、地下通風路を経て地中へ螺旋状に直埋設された熱交換通風路へ誘導され、所定の最下深度位置に備えた結露タンク(d1)内の上部空間を折返し熱交換通風路として地中往復の螺旋状地中熱交換装置Dを経由し、外気の温度と相対湿度(以下『湿度』という)が同時に自動調整されて換気空間Cへ自然供給されることになり、換気に連動する空調環境が風力と地中熱併用により四季を通して一定の適正範囲内に維持される、自然エネルギー主導の換気と空調の自動調整方法(以下『本発明』という)となる。  Since the wind exhaust device A, which is a priority function of the natural system described above, has a function of amplifying the decompression generated in the rearward region on the leeward side, the stable exhaust capability for forcibly sucking the air in the exhaust pipe having the outlet disposed on the leeward side; The exhaust priority is realized, and the air pressure corresponding to the exhaust is taken in from the outdoor intake tower E by the differential pressure mitigating action under the low pressure condition of the ventilation space C, and directly buried in the ground spirally through the underground ventilation channel The upper space in the dew condensation tank (d1) provided at a predetermined lowest depth position is turned back through the spiral underground heat exchange device D that reciprocates into the ground as a heat exchange ventilation path. The temperature and relative humidity of the outside air (hereinafter referred to as “humidity”) are automatically adjusted at the same time and are naturally supplied to the ventilation space C. The air-conditioning environment linked to ventilation is constant throughout the seasons through the combined use of wind power and underground heat. Within the appropriate range Is lifting, the ventilation and air-conditioning method for automatically adjusting a natural energy-driven (hereinafter referred to as "the present invention").

本発明の先導役を担う屋外設置の風力排気装置Aの機能構造は、通風性を有した風洞状からなり水平回転による風向性を有し、風洞外壁の風下側端部を外側へ拡大し空気抵抗形状とすることで装置後方の減圧によるディフューザ効果を生じさせ、その風洞内に気圧調整装置Bを経て換気空間Cと連通する排気菅を立ち上げてその出口を風下側へ曲折誘導し、排気孔外壁の風下側端部を風洞外壁同様に外側へ拡大させて空気抵抗体の二重構造とするにより、ディフューザ効果の相乗作用を招き装置風下後方域の減圧が増幅され、後方差圧の緩和作用強化によって排気菅内の排気吸引力が高まり排気能力の向上と安定機能を有することになる。  The functional structure of the outdoor wind exhaust device A that plays a leading role in the present invention has a wind tunnel shape with air permeability, has a wind direction by horizontal rotation, and expands the leeward side end of the wind tunnel outer wall to the outside. By creating a resistance shape, a diffuser effect is generated by reducing the pressure behind the device, and an exhaust pipe communicating with the ventilation space C via the pressure adjustment device B is set up in the wind tunnel, and the outlet is bent to the leeward side. The leeward edge of the outer wall of the hole is expanded to the outside in the same way as the outer wall of the wind tunnel to create a double structure of air resistance, which creates a synergistic effect of the diffuser effect, amplifies the pressure reduction in the leeward rearward area of the device, and mitigates the differential pressure behind By enhancing the action, the exhaust suction force in the exhaust tank is increased, and the exhaust capacity is improved and has a stable function.

尚、風力排気装置Aによる排気能力は、その装置規模と風洞内外の通風空間の形状に伴う通風量を基準とした相互ディフューザ構造の拡大比関係に左右され、その重複構造による相乗作用で風洞内通風速度が高まり後方減圧が増強される結果となり、その増幅された差圧緩和作用による吸引排気能力が本発明の優先動力であり、予め算出される換気対象空間の必要換気量によって、その装置規模と風洞形状に伴い関連する諸機能設定による対応能力が決定される。  The exhaust capacity of the wind exhaust device A depends on the expansion ratio of the mutual diffuser structure based on the scale of the device and the amount of ventilation accompanying the shape of the ventilation space inside and outside the wind tunnel. As a result, the ventilation speed is increased and the backward pressure reduction is enhanced, and the suction / exhaust capacity due to the amplified differential pressure mitigating action is the priority power of the present invention, and the scale of the apparatus depends on the required ventilation volume of the ventilation target space calculated in advance. Correspondence capability is determined by setting related functions according to the wind tunnel shape.

しかし、屋外の自然風力に動力源を頼り風下後方域の差圧緩和作用を排気能力とし、風力排気に連動する気密換気空間の低圧環境条件を吸気能力の構成要素として応用する換気方法にあっては、文字通りの風任せとなり強風時の過剰排気と無風時の排気停滞を招く等、屋外風力の強弱に排気能力が左右される不安定状況となるため、屋外の気象条件に影響を受けない排気環境の調整機能が不可欠であり、換気空間Cの絶対換気量を確保すべく一定排気能力の常時確保を前提として、風力排気装置Aと換気空間Cとの間に排気吸引力を制御する気圧調整の諸装置を介在させる。  However, there is a ventilation method that relies on the power source of outdoor natural wind power as the exhaust capacity with the differential pressure mitigating action in the rearward leeward area, and applies the low-pressure environmental conditions of the airtight ventilation space linked to the wind exhaust as a component of the intake capacity. Is an unstable situation where the exhaust capacity is affected by the strength of the outdoor wind, such as excessive exhaust in strong winds and exhaust stagnation in no winds, and the exhaust is not affected by outdoor weather conditions. Air pressure adjustment that controls the exhaust suction force between the wind exhaust system A and the ventilation space C on the premise that constant exhaust capacity is always secured to ensure the absolute ventilation volume of the ventilation space C is essential. The various devices are interposed.

そこで、風力排気装置Aと換気空間Cとの中継制御機能として、低圧条件を一定範囲内に調節維持する調圧機能を内有した気圧調整装置Bを介在させ、その気圧調整装置Bの調圧タンク(B1)の内圧を所定の低圧範囲内に保つ制御諸機能として、調圧吸気弁(b1)と静圧センサー(b2)と連動する排気補助ファン(b3)とを備え、調圧タンク(B1)内の圧力が設定圧以下の異常低圧となった場合は、調圧吸気弁(b1)の自作動により調圧タンク(B1)内へ外気混入を促し、また、屋外風力の低下で排気量が不足し調圧タンク(B1)の内圧が静圧方向となった場合、静圧センサー(b2)により排気補助ファン(b3)を可動させ、調圧タンク(B1)の内圧を予め設定した低圧範囲内に維持することで、換気空間Cに連通する排気ダクト内の排気を吸引しその通風量が安定制御され換気空間Cにおける適正換気の環境が保持される。図2参照  Therefore, as a relay control function between the wind exhaust device A and the ventilation space C, an air pressure adjusting device B having a pressure adjusting function for adjusting and maintaining the low pressure condition within a certain range is interposed, and the pressure adjusting of the air pressure adjusting device B is performed. As various control functions for keeping the internal pressure of the tank (B1) within a predetermined low pressure range, the pressure control intake valve (b1) and the exhaust auxiliary fan (b3) interlocked with the static pressure sensor (b2) are provided. If the pressure in B1) becomes an abnormally low pressure below the set pressure, the self-regulation of the pressure regulating intake valve (b1) encourages outside air to enter the pressure regulating tank (B1), and exhausts due to a drop in outdoor wind power. When the amount is insufficient and the internal pressure of the pressure adjusting tank (B1) is in the static pressure direction, the exhaust auxiliary fan (b3) is moved by the static pressure sensor (b2), and the internal pressure of the pressure adjusting tank (B1) is preset. By maintaining within the low pressure range, it communicates with the ventilation space C. Its ventilation amount aspirated exhaust in the exhaust duct proper ventilation environment in stably controlled ventilation space C is maintained. See Figure 2

さらに、使用目的と空間条件によって異なる各換気空間Cの必要換気量に応じ適正量の排気を促す自動調節機能として、各換気空間Cと連通する排気ダクトと気圧調整装置Bとの接続部に通風調整弁Fを備え、各換気空間Cが求める排気量を通風調整弁Fによって個別設定することにより、各排気ダクトにおける排気吸引能力の範囲が定まり換気空間C毎の適正換気量を調整することが可能となる。図2参照  Further, as an automatic adjustment function for urging an appropriate amount of exhaust according to the required ventilation amount of each ventilation space C, which differs depending on the purpose of use and the space conditions, ventilation is provided at the connection between the exhaust duct communicating with each ventilation space C and the pressure adjustment device B. By providing the adjustment valve F and individually setting the exhaust amount required by each ventilation space C by the ventilation adjustment valve F, the range of the exhaust suction capacity in each exhaust duct is determined, and the appropriate ventilation amount for each ventilation space C can be adjusted. It becomes possible. See Figure 2

尚、本発明における地中熱交換能力に係る関連機能説明を、便宜上、戸建て住宅に適用した場合の関連条件に係る算出事例として次にその詳細を記載する。
先ず平均的一般戸建て住宅の換気空調条件に対応可能な地中熱交換装置Dの地下埋設深度の範囲を、地表温度の影響を受け難い地下3mから地下6mを地中熱交換有効域の範囲とし、その地下6m付近域への地表温度の熱伝達は地中平均温度へと推移しつつも約6ヶ月遅れで到達することになり、よって、西日本における地下6m深度範囲の地中温度は夏季最低が約14度前後、冬季最高が約18度前後となり、年間平均の地中温度は概ね16度となると予想される。
For the sake of convenience, the description of the related functions relating to the underground heat exchange capacity in the present invention will be described in detail as a calculation example related to related conditions when applied to a detached house.
First, the range of underground burial depth of underground heat exchange device D that can accommodate the ventilation and air conditioning conditions of an average ordinary detached house is defined as the range of effective underground heat exchange from 3m underground to 6m underground, which is not easily affected by surface temperature. Therefore, the heat transfer of the surface temperature to the area near the 6m underground will reach the average underground temperature with a delay of about 6 months, so the underground temperature in the 6m depth range in western Japan is the lowest in summer. Is around 14 degrees, the winter maximum is around 18 degrees, and the average annual underground temperature is expected to be around 16 degrees.

上述する地中条件下の熱交換概算事例においては、地中熱交換往路時の過程で外気温が夏季と冬季共に最大で概ね12度前後の範囲で増減調整が可能となり、復路過程による約25%前後の熱損失を考慮して熱交換の最終結果を算出した場合、後述する平均的な戸建て住居が必要とする絶対換気量とその温度調整能力は、その概算値として夏季は外気温が30度の場合一旦18度前後に下がり再び23度前後までに戻され、冬季は外気温が5度の場合一旦17度前後に上がり再び13度前後までに戻され、共に最大概算値で約7度〜8度前後の温度調整が可能となるが春秋季節においてはその比ではない、また、後述する地中熱交換装置D最下位置からの復路過程による熱交換結果で外気温が再調整されるに伴い、当然ながら相対湿度も同時に再調整されて換気空間Cへ供給される。  In the heat exchange estimation example under the above-described underground conditions, the outside air temperature can be adjusted up or down in the range of about 12 degrees at the maximum in both the summer and winter during the process of the underground heat exchange. When the final heat exchange result is calculated in consideration of the heat loss of around%, the absolute ventilation volume and its temperature adjustment capacity required for an average detached house, which will be described later, are estimated as an outside temperature of 30 in summer. In the case of degrees, it once falls back to around 18 degrees and returned again to around 23 degrees. In the winter, when the outside air temperature is 5 degrees, it once rose to around 17 degrees and returned again to around 13 degrees. The temperature can be adjusted to around -8 degrees, but this is not the ratio in the spring / autumn season, and the outside air temperature is readjusted as a result of the heat exchange from the lowest position of the underground heat exchanger D, which will be described later. As a matter of course, the relative humidity is also simultaneous. Supplied is readjusted to the ventilation space C.

本発明の外気地中誘導エネルギーとなる排気優先による吸引力は、上述する風力換気装置Aの排気能力とその安定制御機能を有する気圧調整装置Bと連通する各換気空間Cの差圧緩和作用であり、その吸引能力に相当する流入外気量の温度と湿度の同時調整を担う地中熱交換装置Dの能力設定に関しては、通風ダクトを構成する素材を含めた付帯諸条件として、現場の立地条件や地中埋設深度に加え、熱交換有効距離の基準となる埋設時の螺旋状円径とその螺旋回数、また、通風ダクト直径等や蛇腹状ダクトの形状といった諸条件が熱交換能力を左右するため、上述する排気能力に連動する熱交換能力に係る諸設備の構成は、物件毎の異なる立地緒条件下で各パーツの機能範囲が整備され必要とされる総合能力が設定される。  The suction force due to exhaust priority, which becomes the induction energy in the outside atmosphere of the present invention, is due to the differential pressure mitigating action of each ventilation space C communicating with the air pressure adjustment device B having the exhaust capability of the wind ventilation device A and its stability control function. Yes, with regard to the capacity setting of the underground heat exchange device D, which is responsible for the simultaneous adjustment of the temperature and humidity of the inflow outside air volume corresponding to the suction capacity, as the incidental conditions including the material constituting the ventilation duct, the site location conditions In addition to the underground burial depth, various conditions such as the spiral circle diameter and the number of spirals, the diameter of the ventilation duct, and the shape of the bellows duct, which are the basis for the effective heat exchange distance, influence the heat exchange capacity. For this reason, the configuration of various facilities related to the heat exchange capability linked to the exhaust capability described above sets the functional capability of each part under the different location conditions for each property and sets the required total capability.

上述する立地緒条件毎に異なる熱交換必要量への対応可能となる何れの設備構造においても、蛇腹状の通風ダクトが螺旋状となって直埋設され、最下部に備えた結露タンク(d1)内の上部空間を折り返し通風路として地中往復によって熱交換有効距離を確保する方法であり、熱交換過程による通風路内壁との接触副作用として、高温多湿条件下の夏場は気温低下に伴い外気中の自動除湿を促し、低温過乾燥条件下の冬場は気温上昇に伴い外気中への自動加湿となり四季を通して温度と湿度が同時に調整されることになる。  The dew tank (d1) provided in the lowermost part has a bellows-like ventilation duct spirally embedded in any facility structure that can cope with different heat exchange requirements for each location condition described above. As a side effect of contact with the inner wall of the ventilation path due to the heat exchange process, the summer space under high temperature and humidity conditions is in the open air as the temperature decreases. Automatic dehumidification is promoted, and in winter under low-temperature and over-dry conditions, the temperature and humidity are adjusted simultaneously throughout the four seasons due to the automatic humidification of the outside air as the temperature rises.

しかし、上記の結露タンク(d1)上部空間の通過過程で同時調整された温湿の値は、上述するように復路ダクトを通過する際の再度の熱交換過程による戻り現象として、温度が再調整されるに従って相対湿度の増減調整も同時進行し、よって、最終浄化フィルターを介して新鮮吸気として換気空間Cへ自動供給される際の温湿の値は、復路通風ダクトの断熱性能や形状等に因んだ熱損失及び通過速度等の諸条件に左右される。  However, the temperature / humidity value simultaneously adjusted in the process of passing through the upper space of the dew tank (d1) is readjusted as a return phenomenon due to the heat exchange process again when passing through the return duct as described above. Accordingly, the relative humidity increase / decrease adjustment proceeds simultaneously. Therefore, the value of the temperature and humidity when the fresh air is automatically supplied to the ventilation space C through the final purification filter depends on the heat insulation performance and shape of the return duct. It depends on various conditions such as heat loss and passing speed.

尚、屋外設置される吸気塔Eの機能と基本構造については、外気吸入機能部となる上部が回転自在の概ね円盤状となって風向性を備え、降雪及び降雨と外気中の粉塵等を考慮して円盤形状を庇となす傘下位置に吸気孔を設けて風向性により常に風下に向う状態となし、風上流入口に備えた防塵フィルターを経て取り込んだ外気を、円盤状内部の左右湾曲通風路へ分流誘導し、吸気孔周辺方向へ双方から所定角度で再放出合流させて吸気孔周辺部の差圧条件を緩和し、また、強風対策として外気流入の左右通風路の外接壁それぞれに外部に連絡する風圧作動の弾性弁を備えて過剰風圧時の開放バイパスとなし、また、無風時の予備機能として左右湾曲通風路内に気圧調整装置Bの静圧センサー(b2)と連動させた送風ファンを備え、分流外気を再合流させることで生じる吸気孔周辺部の差圧平準化機能を維持する構造とする。  As for the function and basic structure of the air intake tower E installed outdoors, the upper part of the outside air intake function part is a generally disk-like shape that can rotate freely and has wind direction, taking into account snow, rain and dust in the outside air, etc. As a result, an air intake hole is provided at the position under the umbrella that makes the disk shape a trap, so that it always faces the leeward due to the direction of the wind, and the outside air taken in through the dust-proof filter provided at the wind upstream inlet, the left and right curved ventilation path inside the disk shape In order to relieve the differential pressure condition around the intake hole and reduce the pressure differential condition at the periphery of the intake hole, and to prevent the strong wind, A blower fan equipped with an elastic valve that communicates with the wind pressure and has no open bypass at the time of excessive wind pressure, and linked with the static pressure sensor (b2) of the air pressure adjustment device B in the left and right curved ventilation path as a preliminary function when there is no wind With shunt outside air A structure that maintains the difference applanation standardization function of the intake hole periphery that is caused by re-merge.

また、吸気塔Eにおける外気の空気浄化に係る諸機能については、吸気孔周辺部への外気放出口左右それぞれに風圧応用の霧吹き構造からなるミスト噴射装置を備えてミスト外気流として合流噴射させることで、夏季においては気化熱による吸気の気温冷却効果を発揮し冬季においては温水噴射によって暖気効果をもたらすと共に、特に初春のスギ花粉及び黄砂の飛来期や冬季の異常乾燥条件下における空気中へのミスト混合によって、大気中の汚染微粒子除去機能を果たし、吸気塔E内部に備える湿式濾過フィルターと連係する有効な外気清浄機能となる。  Further, regarding various functions relating to the air purification of the outside air in the intake tower E, the mist injection device having a mist blowing structure using wind pressure is provided on the left and right sides of the outside air discharge port to the periphery of the intake hole, and the combined air is injected as a mist outside air flow. In summer, the air-cooling effect of the intake air due to heat of vaporization is exerted, and in the winter, the warm-air effect is brought about by hot water injection, and in particular, the cedar pollen and yellow sand in the early spring come into the air under the abnormal drying conditions in winter. By the mist mixing, the function of removing pollutant particulates in the atmosphere is achieved, and an effective outside air cleaning function linked to the wet filtration filter provided in the intake tower E is provided.

本発明の風力排気装置Aと気圧調整装置Bとの連動システムによれば、強風時は気圧調整装置Bに備わる調圧吸気弁(b1)によって調圧タンク(B1)内の気圧が設定基準内に安定調整され、また、無風時は静圧センサー(b2)による補助排気ファン(b3)の稼動により、調圧タンク(B1)内の設定気圧を所定範囲内に自動制御するハイブリット方式となり、風力エネルギーを主体に電気エネルギーを補助とした風力排気優先の自然空調システムが維持される。図2参照  According to the interlocking system of the wind exhaust apparatus A and the atmospheric pressure adjusting apparatus B of the present invention, the atmospheric pressure in the pressure adjusting tank (B1) is within the set reference by the pressure adjusting intake valve (b1) provided in the atmospheric pressure adjusting apparatus B when the wind is strong. The hybrid system automatically controls the set atmospheric pressure in the pressure regulating tank (B1) within a predetermined range by operating the auxiliary exhaust fan (b3) by the static pressure sensor (b2) when there is no wind. A natural air-conditioning system that prioritizes wind exhaust with energy as the main component and electric energy as an auxiliary will be maintained. See Figure 2

本発明によれば、四季を通して換気空間毎に適正排気量に見合う必要吸気量が、無意識のうちに調温調湿済みの安定した新鮮吸気として自然供給され、適正換気回数の確保を自然無操作で成し得ることになり、よって、従来の空調設備機器に見られる季節ごとの操作への強要意識を無用とし、快適とされる空調環境が適度な揺らぎ感覚の無操作範囲内で維持されることになる。  According to the present invention, the necessary intake air amount corresponding to the appropriate exhaust amount for each ventilation space through the four seasons is naturally supplied as a stable fresh intake air that has been conditioned and humidity-controlled, and it is not necessary to ensure the proper number of ventilations. Therefore, the compulsory awareness of seasonal operation found in conventional air-conditioning equipment is unnecessary, and the comfortable air-conditioning environment is maintained within the no-operation range of a moderate fluctuation sensation. It will be.

尚、本発明の外気を直に地中誘導して地中熱との直接熱交換を図るシステムにおいては、ヒートポンプ方式のように既に熱交換した熱媒体液を別の熱交換装置によって再度気体への熱交換を行う二次設備が不要となり、初期投資はもとより設備総体の保全管理を含めた経済負担を軽減出来ると共に、それらの運転維持に係る電気エネルギーが排除される。  In the system for directly guiding the outside air according to the present invention to directly exchange heat with the underground heat, the heat medium liquid that has already exchanged heat as in the heat pump system is converted to gas again by another heat exchange device. The secondary equipment for performing heat exchange is not necessary, and the economic burden including the maintenance management of the whole equipment as well as the initial investment can be reduced, and the electric energy related to the operation and maintenance is eliminated.

また、一般住宅を対象として対応能力を算出する場合は、対象となる換気空間Cが要求する換気量に応じた所定の吸気ダクト径及び現場毎の埋設螺旋径と共に、浅井戸単設による有効深度設定等の個別設定が現場規模との条件対応となり、融通性に優れるため初期投資における無駄が排除され経済負担が軽減される。  In addition, when calculating the corresponding capacity for a general house, the effective depth of the shallow well alone is set together with the predetermined intake duct diameter and the buried helical diameter for each site according to the ventilation volume required by the target ventilation space C. Individual settings such as settings correspond to the conditions of the site scale, and because of excellent flexibility, waste in initial investment is eliminated and the economic burden is reduced.

本発明による排気優先の主装置となる風力排気装置Aの構造特性として、プロペラ等のスクリュー回転による駆動構造を避け耐強風性重視の風洞状とし、風洞外壁と内有排気孔外壁の風下側を外側へ拡大させた空気抵抗体の二重構造は、弱風条件下であっても吸引排出力を増幅させるディフューザ効果の相乗作用を生むことで安定した排気機能を有し、その排気能力は装置形状に伴う洞内通風量と空気抵抗体相互の拡大比に関連し、本発明の主旨を遵守しつつ耐候性が図れる条件下における風洞形状は円筒及び楕円筒状の概して流線形状であることが望ましい。  As a structural characteristic of the wind exhaust apparatus A, which is a main apparatus for exhaust priority according to the present invention, a wind tunnel shape with emphasis on strong wind resistance is avoided, avoiding a drive structure by screw rotation such as a propeller, and the leeward side of the wind tunnel outer wall and the outer wall of the internal exhaust hole The double structure of the air resistor expanded to the outside has a stable exhaust function by creating a synergistic effect of the diffuser effect that amplifies the suction and exhaust force even under low wind conditions, and the exhaust capacity is the device The wind tunnel shape is generally a streamline shape in the shape of a cylinder and an elliptic cylinder, in relation to the amount of air flow in the cave accompanying the shape and the expansion ratio between the air resistors, and in keeping with the gist of the present invention and weather resistance. Is desirable.

尚、本発明の風力排気装置Aと排気ダクトによって連通される気圧調整装置Bの設置場所は、一般住宅を例とした場合、風雨を避けて風力排気装置Aとの連絡距離や設置空間等の条件から小屋裏の空間スペースが設置場所として望ましく、強風条件下での調圧吸気弁(b1)作動により小屋裏の滞留空気を調圧タンク(B1)内へ取り込み、排気ダクトを介して屋外排出することによって夏場の小屋裏暖気の排出を促し、結果として建物全体の空調性能を向上させる補助効果が期待される。  In addition, the installation location of the air pressure adjusting device B communicated with the wind exhaust device A of the present invention by the exhaust duct is, for example, a contact distance to the wind exhaust device A and an installation space, etc., avoiding wind and rain when an ordinary house is taken as an example. Based on the conditions, the space in the back of the hut is desirable as the installation location. By operating the pressure-regulating intake valve (b1) under strong wind conditions, the stagnation air in the shed is taken into the pressure-regulating tank (B1) and discharged outside through the exhaust duct. By doing so, it is expected to assist the discharge of warm air in the cabin in the summer, and as a result, an auxiliary effect that improves the air conditioning performance of the entire building.

また、夏場に小屋裏の多湿暖気を調圧タンク(B1)内へ取り入れた場合と、冬場に小屋裏の冷気流入等の室内排気と自然外気との混合条件によっては、調圧タンク(B1)内の温度低下によって一時的に結露が発生する場合が想定され、その対策として結露排水ドレン(b4)を調圧タンク(B1)底部からの屋外延長とし、縦菅による貯水パイプとして底部に水圧開閉弁を備えた構造とすることが望ましい。図1、2参照  In addition, depending on the mixing conditions of the indoor exhaust such as cold air flow in the cabin and natural outdoor air in the summer when the humid warm air in the cabin is taken into the pressure regulating tank (B1) in the summer, the pressure regulating tank (B1) Condensation may occur temporarily due to a decrease in the temperature of the inside, and as a countermeasure, the condensation drainage drain (b4) is extended from the bottom of the pressure-regulating tank (B1), and the water pressure is opened and closed at the bottom as a water storage pipe by a vertical gutter. A structure with a valve is desirable. See Figures 1 and 2.

本発明の地中熱交換装置Dを構成する素材を、耐腐食性及び熱伝導性の併有素材とすることに加え、ダクト形状を蛇腹状とし直接埋設の形態を螺旋状地中往復回路とすることで、回路全体の柔軟弾力性により地中変化に対しての柔軟対応が可能となり、さらに、各機能部位との接続に弾性パッキン等を用いた弾性連結とすることで、地中熱交換装置D自体が柔軟対応性を有した耐震構造となり本発明の諸機能が安定確保される。  In addition to making the material constituting the underground heat exchange device D of the present invention a material having both corrosion resistance and heat conductivity, the duct shape is a bellows shape, and the directly embedded form is a spiral underground reciprocating circuit. By doing so, it becomes possible to respond flexibly to changes in the ground due to the flexible elasticity of the entire circuit, and furthermore, by making elastic connection using elastic packing etc. for connection with each functional part, underground heat exchange The device D itself becomes an earthquake-resistant structure having flexibility, and the various functions of the present invention are secured stably.

本発明の熱交換装置の最下位置に備える結露タンク(d1)に係る設置と諸機能との連結条件においては、後述する水位センサー等の機能確保と上部空間通風路保持の条件として、垂直水平状態を固定維持する安定設置が必要であり、上述する往復ダクト及び水位センサーその他の関連機能部品との接続部においても、弾性と柔軟構造による位置安定性を重視した連結構造が求められる。  In the connection conditions between the installation and various functions related to the dew condensation tank (d1) provided at the lowest position of the heat exchange device of the present invention, vertical horizontal horizontal is used as a condition for ensuring the functions of a water level sensor and the like and maintaining the upper space ventilation path. A stable installation that maintains a fixed state is required, and a connecting structure that places importance on positional stability due to elasticity and a flexible structure is also required in the connection portion between the above-described reciprocating duct, water level sensor, and other related functional components.

また、結露タンク(d1)上部空間を経由する復路ダクトを地上熱影響下の地中層以上の地上までの通風復路においては、螺旋回路と蛇腹形状を解除し復路距離を短縮すると共に断熱被覆された直線小径化の通風孔となしてダクト内通風速度を速め、再熱交換に伴う熱損失の軽減を図ることが望ましい。  In addition, the return duct that passes through the upper space of the dew condensation tank (d1) is ventilated to the ground above the ground layer under the influence of ground heat, and the spiral circuit and bellows shape are released to reduce the return path distance and to cover the heat. It is desirable to reduce the heat loss associated with reheat exchange by increasing the ventilation speed in the duct by using a straight hole with a reduced diameter.

尚、本発明を平均的戸建て住宅の住居容積量(250m)に適用した場合の地中熱交換能力として、全換気空間Cが求める室内適正換気回数を最少0.5/hとする絶対換気量(130m)に対し、外気温調整能力を確保するのに必要な地中熱交換装置Dの対応例として、本発明の熱交換能力諸条件となる地中埋設時の各基準値を吸気ダクト内径15cm、螺旋内径約1.2m、地中の螺旋深度を地下約3m以下から6mを折り返す範囲の熱交換有効域とし、螺旋回数を往復12回と設定して延べ埋設距離を約45mとした場合、熱交換装置を通過する外気のダクト内通風速は約2m/sであり、熱交換回路の回転周期を1回/22Sの条件下で平均的戸建住宅の屋内換気空間Cが要求する絶対換気量(130m)/hを賄う熱交換能力となり、浅井戸の単設からなる熱交換装置の諸整備によって可能となる。In addition, as an underground heat exchange capacity when the present invention is applied to a housing volume (250 m 3 ) of an average single-family house, absolute ventilation with an appropriate indoor ventilation frequency required by the entire ventilation space C is set to a minimum of 0.5 / h. As a corresponding example of the underground heat exchange device D required to secure the outside air temperature adjustment capability with respect to the amount (130 m 3 ), each reference value at the time of underground burial that becomes various conditions of the heat exchange capability of the present invention The inner diameter of the duct is 15 cm, the inner diameter of the helix is about 1.2 m, and the underground helix depth is set to an effective heat exchange area that turns back from about 3 m below the ground to 6 m. In this case, the ventilation speed of the outside air passing through the heat exchange device is about 2 m / s, and the indoor ventilation space C of the average detached house is required under the condition that the rotation cycle of the heat exchange circuit is 1 / 22S. the absolute amount of ventilation to (130m 3) / cover the h heat exchange It becomes capability, made possible by the various maintenance of the heat exchange device comprising a single set of shallow wells.

前述する熱交換概算事例においては、地中熱交換装置に係る設定諸条件によって効果の数値が異なるため、期待感を排除した確定範囲内の予測値とし、また、主にダクト内径による通風能力と熱交換有効距離とに関連する熱交換回路内のダクト通風速設定に関しては、予め算出される適正換気量に適応した気圧調整装置Bの調圧タンク(B1)内圧設定と共に、熱交換回転周期と通風ダクト内風速を含むその他の諸能力が設定される。  In the heat exchange estimation example mentioned above, the numerical value of the effect differs depending on the various conditions related to the underground heat exchange device, so it is assumed to be a predicted value within the definite range that excludes the feeling of expectation. Regarding the duct ventilation speed setting in the heat exchange circuit related to the heat exchange effective distance, together with the pressure adjustment tank (B1) internal pressure setting of the pressure adjusting device B adapted to the appropriate ventilation amount calculated in advance, the heat exchange rotation cycle and Other capabilities including the wind speed in the ventilation duct are set.

また、地中熱交換装置Dの最下位置に備える結露タンク(d1)上部の折り返し通風路と空間維持のため、所定の水位制御を目的とした水位センサー付き給排水ホースを結露タンク(d1)より立ち上げ地上へ連通させ、屋外気象情報及び地中温湿情報等の目視データーと共に屋内管理とすることが望ましい。図2参照  In addition, a water supply / drain hose with a water level sensor for the purpose of predetermined water level control is provided from the condensation tank (d1) in order to maintain a folded ventilation path and space above the condensation tank (d1) provided at the lowest position of the underground heat exchange device D. It is desirable to communicate with the ground and establish indoor management together with visual data such as outdoor weather information and underground temperature and humidity information. See Figure 2

本発明における吸気塔Eの屋外設置条件については、地中熱交換装置Dの埋設位置や立地条件等の周囲環境への配慮が必要であり、また、吸気連絡ダクトの地下連絡誘導路の埋設深度を地表熱の直接影響を受け難い地下1.5m以下とすることに加え、地熱保全を考慮し吸気連絡ダクト埋設の上層地表部を緑化植栽することが望ましく、尚、吸気塔Eの外気吸入に係る地上有効位置においても、地表反射熱に左右され難い高さ確保と共に機能部品の交換保守整備及び小動物の影響を排除する等の諸条件を考慮し、吸気塔Eの吸気口は地上1.5m程度であることが良好位置といえる。  Regarding the outdoor installation conditions of the intake tower E in the present invention, it is necessary to consider the surrounding environment such as the underground position and location conditions of the underground heat exchange device D, and the depth of the underground communication guideway of the intake communication duct It is desirable to plant the upper surface part of the intake communication duct buried in consideration of geothermal conservation, and to take into the outside air intake of the intake tower E. In consideration of various conditions such as ensuring the height that is not easily affected by the reflected heat on the ground surface and removing the influence of replacement and maintenance of functional parts and the influence of small animals, the intake port of the intake tower E is 1. It can be said that a good position is about 5 m.

尚、屋外設置条件となる吸気塔Eの外気吸入に係る構造として、ミスト噴射装置による外気中の汚染微粒子除去効果による清浄機能と共に、夏場のミスト気化に伴う冷却効果と冬場の温水ミストによる暖気効果は、温暖地方においてのみ有効であって積雪や凍結等の厳寒条件が伴う地方においては機能不全に陥る場合が予測される。
しかし、厳寒地方においては地域毎の生活形態や家屋構造等の立地諸条件が大きく異なるため、屋外設備に係る厳寒地対策はその地域特有の厳寒対応が必要となり、それらの厳寒対応機能は地域専用オプションとすることが望ましい。
In addition, as a structure related to the outside air intake of the intake tower E, which is an outdoor installation condition, along with a cleaning function due to the effect of removing contaminant particles in the outside air by the mist injection device, a cooling effect due to the vaporization of mist in summer and a warm air effect due to hot water mist in winter Is effective only in temperate regions, and it is predicted that it will malfunction in regions with severe cold conditions such as snow and freezing.
However, in extreme cold regions, the location conditions such as lifestyle and house structure vary greatly from region to region, so extreme cold region countermeasures related to outdoor facilities require local specific extreme cold measures, and those extreme cold countermeasure functions are dedicated to the region. Optional.

尚、外気誘導回路を建築物の床下に埋設した場合は、地表熱遮断により熱交換に必要な地中温度域までの掘削深度が浅くて済む利点が生ずる。
しかし、熱交換に有要な埋設ダクト内の外気滞留時間と熱交換有効距離を考慮する場合において、地中埋設深度減少と引き換えに埋設する誘導ダクトの螺旋円径を広げて通風距離の延長を図る必要が生じることに加え、地中熱交換装置D内の結露処理に関する給排水チューブの床下配管やメンテナンス対応策等の諸事情が新たな課題となる。
In addition, when the outside air induction circuit is buried under the floor of the building, there is an advantage that the excavation depth to the underground temperature range necessary for heat exchange can be reduced by blocking the surface heat.
However, when considering the outside air residence time and the effective heat exchange distance in the buried duct, which are necessary for heat exchange, increase the ventilation distance by widening the spiral circle diameter of the buried induction duct in exchange for decreasing the underground depth. In addition to the necessity to plan, various circumstances such as the underfloor piping of the water supply / drainage tube and the maintenance countermeasures related to the dew condensation treatment in the underground heat exchange device D become new issues.

よって、上述する本発明の地中熱交換装置Dを建築物床下へ埋設するに及んでは、むしろ、物件床下全面の基礎工事として地中熱交換装置Dの地下全面埋設をなし換気と空調との自動調整システム導入に関する付加価値施工とすることが望ましい。  Therefore, when the underground heat exchange device D of the present invention described above is buried under the building floor, the underground heat exchange device D is buried underground as a foundation work for the entire surface under the building floor, and ventilation and air conditioning. It is desirable to add value-added construction for the automatic adjustment system.

本発明は、風力と地中熱との自然エネルギーを併用することで換気空間Cの差圧流動を生み、その差圧緩和作用を応用することで室内の換気と空調を同時進行させての自然エネルギー主導による空間環境の省エネルギー自動調整システムとなるが、本発明を構成する各機能部品の中で静圧センサー(b2)に連動する補助排気ファン(b3)及び吸気塔の送風ファンや水位センサー付き給排水ポンプ等の装備類は、必要に応じて電力エネルギーを断続的に使用する性質の補助部品であり、その支援補助機能へのエネルギー手当てを太陽光発電による蓄電機能整備とした場合、本発明の運行維持に要するエネルギーを概ね自然エネルギーのみで賄うことが可能となる。  The present invention creates a differential pressure flow in the ventilation space C by using both natural energy of wind power and underground heat, and applies a differential pressure mitigating action to naturally promote indoor ventilation and air conditioning. It becomes an energy-saving automatic adjustment system for space environment driven by energy, but with an auxiliary exhaust fan (b3) linked to the static pressure sensor (b2) and a blower fan for the intake tower and a water level sensor among the functional parts constituting the present invention Equipment such as a water supply / drainage pump is an auxiliary part having the property of intermittently using electric energy as necessary, and when the energy treatment for the support auxiliary function is maintenance of a power storage function by solar power generation, It will be possible to cover almost all the energy required for operation and maintenance with only natural energy.

本発明の戸建て住宅使用概念図Concept of use of detached house according to the present invention 気圧調整装置の安定機能概念図Conceptual diagram of stable function of atmospheric pressure regulator

A 風力排気装置
B 気圧調整装置
B1調圧タンク
b1調圧吸気弁
b2静圧センサー
b3排気補助ファン
b4結露排水ドレン
C 換気空間
D 地中熱交換装置
d1結露タンク
E 吸気塔
F 通風調整弁
A Wind exhaust device B Air pressure adjusting device B1 Pressure adjusting tank b1 Pressure adjusting intake valve b2 Static pressure sensor b3 Exhaust auxiliary fan b4 Condensation drainage drain C Ventilation space D Ground heat exchange device d1 Condensation tank E Intake tower F Ventilation adjustment valve

Claims (1)

気密断熱化された屋内空間の換気空調の環境整備を排気優先となし、屋外の風力排気装置(A)と屋内の換気空間(C)と屋外の吸気塔(E)とが連通し、換気空間(C)と吸気塔(E)との間に地中熱交換装置(D)を介在させ、排気優先に伴って低圧条件下となる換気空間(C)と風力排気装置(A)との間に気圧調整装置(B)を介在させた換気空調システムにおいて外気吸気塔(E)の構造が概ね円盤状となり水平回転による風向性を備え、円盤形状を庇とする吸気孔が常に風下方向を指し、風上流入の外気を内部左右湾曲路で振り分けて吸気孔周辺方向へ再噴出合流させる後方差圧の緩和機能に加え、風圧応用の霧吹き構造からなるミスト噴射装置による外気の汚染微粒子除去と温度調節の機能を併有していることを特徴とする自然エネルギー主導の換気と空調の自動調整方法。Priority is given to exhaust ventilation and air conditioning in indoor spaces with airtight insulation, and the outdoor wind exhaust system (A), indoor ventilation space (C), and outdoor intake tower (E) communicate with each other. Between (C) and the intake tower (E), a ground heat exchange device (D) is interposed, and between the ventilation space (C) and the wind exhaust device (A), which is under a low pressure condition with priority on exhaust. In the ventilation air conditioning system with the air pressure adjusting device (B) interposed in the outside, the structure of the outside air intake tower (E) is generally disk-shaped and has a wind direction by horizontal rotation, and the intake hole with the disk shape as a trap always keeps the leeward direction. In addition to the function of relieving the back differential pressure that distributes the outside air that has flowed into the windward along the internal left and right curved roads and respouts and merges in the peripheral direction of the air intake hole, it also removes contaminants from the outside air using a mist spraying device that has a spray structure that uses wind pressure. and characterized in that it has both the functions of temperature control Renewable energy-driven ventilation and automatic method of adjusting the air conditioning.
JP2011093491A 2011-04-03 2011-04-03 Natural energy-driven ventilation and air conditioning automatic adjustment method. Expired - Fee Related JP5080667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011093491A JP5080667B2 (en) 2011-04-03 2011-04-03 Natural energy-driven ventilation and air conditioning automatic adjustment method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011093491A JP5080667B2 (en) 2011-04-03 2011-04-03 Natural energy-driven ventilation and air conditioning automatic adjustment method.

Publications (2)

Publication Number Publication Date
JP2012220177A JP2012220177A (en) 2012-11-12
JP5080667B2 true JP5080667B2 (en) 2012-11-21

Family

ID=47271885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011093491A Expired - Fee Related JP5080667B2 (en) 2011-04-03 2011-04-03 Natural energy-driven ventilation and air conditioning automatic adjustment method.

Country Status (1)

Country Link
JP (1) JP5080667B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538520C1 (en) * 2013-07-15 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования"Северо-Восточный федеральный университет имени М.К. Аммосова" Natural conditioner
CN111609574A (en) * 2019-02-25 2020-09-01 国家电投集团科学技术研究院有限公司 Sustainable-utilization cross-season geothermal energy development system
CN115606506B (en) * 2022-12-16 2023-03-14 山东四方新域农牧科技股份有限公司 Livestock and poultry house air interchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289236U (en) * 1988-12-28 1990-07-16
JP2711511B2 (en) * 1994-01-17 1998-02-10 玉川建設株式会社 Hot and wetlands adapted housing
JP2001241714A (en) * 2000-02-28 2001-09-07 Tai-Her Yang Natural force exhaust fan
JP2001289518A (en) * 2000-04-05 2001-10-19 S X L Corp Outside-air inlet device for building
JP2005024140A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Air conditioning system of building, and air conditioning/hot-water supply system of building
JP3562527B1 (en) * 2004-02-24 2004-09-08 三上 征宏 Geothermal air conditioning system
JP2008076015A (en) * 2006-09-25 2008-04-03 Sugiyama Shoji Kk Building air-conditioning system by geothermal use
JP4151851B1 (en) * 2007-04-20 2008-09-17 眞一 藤田 Wind exhaust system
JP5356731B2 (en) * 2008-06-06 2013-12-04 株式会社タカショー A building air circulation system and a building having an air circulation structure.

Also Published As

Publication number Publication date
JP2012220177A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
CN100565026C (en) Natural air conditioning system
JP2006266575A (en) House using geothermal heat
CN203980561U (en) A kind of machine room natural cooling source energy conserving system
CN104456774A (en) Heat humidity independently controlled air conditioning system applied to IDC machine room and refrigeration method
JP5080667B2 (en) Natural energy-driven ventilation and air conditioning automatic adjustment method.
JP4944265B1 (en) Air conditioner and air circulation system of building using the same
CN203964232U (en) Duct type Evaporative Cooling Air-conditioning System
CN206430303U (en) A kind of humidifier of automatic level-controlling
JP5051558B1 (en) Smart eco air conditioning system
CN208269316U (en) A kind of split type family geothermal heat pump air-conditioning system
CN2901123Y (en) Cool and warm two-purpose geothermal air conditioner
CN204787008U (en) Window formula natural draft air humidifier
CN202361560U (en) Temperature change ventilation device
CN108458423A (en) A kind of combined heat-pump all fresh air air-conditioning system based on shallow-layer seepage flow
CN204648563U (en) The energy-conservation unit of a kind of wet film heat pipe air conditioner
CN210921664U (en) Horizontal spiral soil-air self-temperature-adjusting air conditioning system
CN104990186A (en) Window type natural ventilation air humidifier
CN207335078U (en) Without the full room central purge fresh air system of pipeline
CN207335063U (en) Condensation heat stepless adjustable directly swollen machine
CN206637772U (en) A kind of underground water well pump house air convection system
CN1151499A (en) Indoor natural air constant temp. regulating system
CN206572679U (en) Water Sproading humidification system and air conditioner
CN220206097U (en) Indoor environment-friendly air circulation system
CN204373083U (en) A kind of split type fresh air conditioner for computer room
CN108592261A (en) A kind of all fresh air air-conditioning system based on energy complementation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees