JP5077709B2 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
JP5077709B2
JP5077709B2 JP2009185969A JP2009185969A JP5077709B2 JP 5077709 B2 JP5077709 B2 JP 5077709B2 JP 2009185969 A JP2009185969 A JP 2009185969A JP 2009185969 A JP2009185969 A JP 2009185969A JP 5077709 B2 JP5077709 B2 JP 5077709B2
Authority
JP
Japan
Prior art keywords
rotating
torque
electrical machine
output member
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009185969A
Other languages
English (en)
Other versions
JP2011038585A (ja
Inventor
昭彦 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2009185969A priority Critical patent/JP5077709B2/ja
Publication of JP2011038585A publication Critical patent/JP2011038585A/ja
Application granted granted Critical
Publication of JP5077709B2 publication Critical patent/JP5077709B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Structure Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、回転電機を駆動力源として備える車両用駆動装置に関する。
一般的に、電動車両やハイブリッド車両等において車輪の駆動力源として用いられる回転電機は、内燃機関に比べて広い回転速度域で駆動することが可能である。そのため、回転電機から車輪までの変速比を切り替えるための変速装置を備えることは必ずしも必要ではない。しかし、2段階程度で変速比を切り替える簡易的な変速装置を回転電機と車輪との間に備えることで、大きいトルクを車輪に伝達可能にすると共に広い車速域で回転電機を駆動することが可能となる。このような変速装置として、例えば、下記の特許文献1には、駆動力源としての回転電機に駆動連結される入力軸と、駆動輪に駆動連結される出力軸と、遊星歯車機構と、変速状態を切り替えるための変速クラッチ、摩擦要素、及び二方向クラッチと、を備えた構成が記載されている。
この特許文献1に記載された装置では、遊星歯車機構のサンギヤに入力軸が駆動連結され、キャリヤに出力軸が駆動連結され、入力軸とリングギヤとの間に変速クラッチが設けられると共に、入力軸と一体回転する摩擦要素が設けられている。更に、リングギヤとケースとの間に、前記摩擦要素の回転と同一方向へのリングギヤの回転を許容し、逆方向へのリングギヤの回転を制限する二方向クラッチが設けられている。そして、この装置は、前記変速クラッチを係合状態とすることにより回転電機の回転が減速されて出力軸に伝達される第一速段を実現し、前記変速クラッチを解放状態とすることにより回転電機の回転が同速のまま出力軸に伝達される第二速段を実現することで、前進二段変速を行う構成となっている。
特開2005−030430号公報
上記の特許文献1に記載の装置では、油圧クラッチにより構成される変速クラッチの係合状態を切り替えることにより前進二段変速を行う構成となっている。しかしながら、このように油圧クラッチにより変速段を切り替える構成とすると、油圧クラッチを動作させるための油圧源としてのポンプやその油圧を制御するための弁等を備えた油圧制御装置等が必要となる。そのため、装置が複雑化すると共に大型化し、更には油圧ポンプ等による動力損失もあるため効率が悪いものとなるという課題があった。
そこで、回転電機を駆動力源とする車両用駆動装置において、より簡易な構成によって前進二段変速を実現することが望まれる。
本発明に係る車両用駆動装置の特徴構成は、回転電機と、当該回転電機のロータに駆動連結される入力部材と、駆動輪に駆動連結される出力部材と、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素の3つの回転要素を有する差動歯車装置と、第一ワンウェイクラッチと、第二ワンウェイクラッチと、を備え、前記入力部材は、前記第一ワンウェイクラッチを介して前記第一回転要素に選択的に駆動連結されると共に、前記第二ワンウェイクラッチを介して前記第三回転要素に選択的に駆動連結され、前記第二回転要素は非回転部材に選択的に固定され、前記出力部材は、前記第三回転要素、又は前記差動歯車装置の他の回転要素であって回転速度の順で前記第二回転要素と前記第三回転要素との間に位置する中間回転要素に駆動連結され、前記差動歯車装置は、前記第一回転要素の回転が前記出力部材に伝達される際の変速比と前記第三回転要素の回転が前記出力部材に伝達される際の変速比とが異なるように設定され、前記第一ワンウェイクラッチは、前記入力部材が前記第一回転要素に対して負方向に相対回転することを制限すると共に正方向に相対回転することを許容し、前記第二ワンウェイクラッチは、前記入力部材が前記第三回転要素に対して正方向に相対回転することを制限すると共に負方向に相対回転することを許容するように設けられており、前記第二ワンウェイクラッチとは別に、前記入力部材と前記第三回転要素とを選択的に係合又は分離する第一係合装置と、前記第二回転要素を非回転部材に対して選択的に固定又は分離する第二係合装置と、を更に備える点にある。
なお、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。但し、差動歯車装置の各回転要素について「駆動連結」という場合には、当該差動歯車装置が備える複数の回転要素に関して互いに他の回転要素を介することなく駆動連結されている状態を指すものとする。本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
また、本願において「回転速度の順」は、高速側から低速側に向かう順、又は低速側から高速側に向かう順のいずれかであり、各差動歯車機構の回転状態によりいずれともなり得るが、いずれの場合にも回転要素の順は変わらない。本願において「変速比」とは、一の部材から他の部材に伝達される回転が減速される比率であり、変速比の値が大きくなるに従って一の部材の回転が大きく減速されて他の部材へ伝達される。なお、変速比が1の場合には一の部材の回転は同速のまま他の部材に伝達され、変速比が1より小さければ、変速比の値が小さくなるに従って一の部材の回転は大きく増速されて他の部材へ伝達される。本願において、各部材の回転及びトルクの方向に関して「正方向」とは車両が前進している状態での当該部材の回転方向と同じ方向であり、「負方向」とはその逆方向である。
この特徴構成によれば、回転電機が負方向に回転しつつ負方向のトルクを出力することにより第一ワンウェイクラッチが係合して入力部材と第一回転要素とが駆動連結される。これにより、回転電機のトルクが第一回転要素及び第一ワンウェイクラッチを介して出力部材に伝達される第一前進駆動モードが実現される。一方、回転電機が正方向に回転しつつ正方向のトルクを出力することにより第二ワンウェイクラッチが係合して入力部材と第三回転要素とが駆動連結される。これにより、回転電機のトルクが第三回転要素及び第二ワンウェイクラッチを介して出力部材に伝達される第二前進駆動モードが実現される。この際、第一回転要素の回転が出力部材に伝達される際の変速比と第三回転要素の回転が出力部材に伝達される際の変速比とが異なるように設定されているので、第一前進駆動モード及び第二前進駆動モードのいずれか変速比が大きい方が低車速域で高い駆動力が要求される状況での使用に適した低速用モード、変速比が小さい方が高車速域で高い駆動力が要求されない状況での使用に適した高速用モードとなる。従って、車速及び要求される駆動力に応じて第一前進駆動モードと第二前進駆動モードとを切り替えることにより、必要に応じて大きいトルクを駆動輪に伝達可能であると共に広い車速域で回転電機のトルクを駆動輪に伝達して車両を走行させることができる。
また、この特徴構成によれば、第一前進駆動モードと第二前進駆動モードとの切り替えを、回転電機の回転及びトルクの方向を反転させるだけで行うことができる。従って、油圧クラッチ等のように係合状態を切り替えるために別個の動力を必要とせず、車両の駆動力源としての回転電機と2つのワンウェイクラッチを用いた簡易な構成によって前進二段変速を実現することができる。従って、車両用駆動装置を簡略化及び小型化し、効率を向上させることが容易となる。
また、上記の車両用駆動装置の構成では、第二ワンウェイクラッチが係合状態となって実現される第二前進駆動モードで走行している状態で、回転電機のトルクの方向を反転させても第一前進駆動モードに切り替わるだけであり、回転電機に回転方向と反対方向のトルクを出力させて発電を行わせる回生制動を実行することができない。しかし、この構成によれば、第一係合装置を係合状態とすることにより、入力部材と第三回転要素とを係合させることができる。これにより、回転電機に回転方向と反対方向のトルクを出力させた場合にも、当該回転電機のトルクを駆動輪に伝達することが可能となる。従って、回転電機に発電を行わせて駆動輪に減速方向(負方向)のトルクを伝達する回生制動を実行することが可能となる。
ところで、差動歯車装置の第二回転要素が非回転部材に固定されたままでは、第一ワンウェイクラッチ及び第二ワンウェイクラッチの作用により出力部材及び駆動輪が負方向に回転することが規制され、車両が後進することができない。しかし、この構成によれば、差動歯車装置の第二回転要素を非回転部材から選択的に分離することができるので、出力部材及び駆動輪が負方向に回転することが許容される。そして、第一係合装置により入力部材と第三回転要素とを係合させ、回転電機に負方向のトルクを出力させることにより、第一ワンウェイクラッチを係合させて差動歯車装置の全ての回転要素が一体回転する状態とし、回転電機のトルクを出力部材に負方向のトルクとして伝達して車両を後進させることができる。また、この車両用駆動装置によれば、差動歯車装置の第二回転要素が非回転部材に固定されたままでは車両が後進できないことを利用し、坂道発進時に車両が後退することを防止する、いわゆるヒルホールド機能を容易に実現することができる。
ここで、前記第一ワンウェイクラッチとは別に、前記入力部材と前記第一回転要素とを選択的に係合又は分離する第係合装置を更に備えると好適である。
上記の車両用駆動装置の構成では、第一ワンウェイクラッチが係合状態となって実現される第一前進駆動モードで走行している状態で、回転電機のトルクの方向を反転させても第二前進駆動モードに切り替わるだけであり、回転電機に回転方向と反対方向のトルクを出力させて発電を行わせる回生制動を実行することができない。しかし、この構成によれば、第係合装置を係合状態とすることにより、入力部材と第一回転要素とを係合させることができる。これにより、回転電機に回転方向と反対方向のトルクを出力させた場合にも、当該回転電機のトルクを駆動輪に伝達することが可能となる。従って、回転電機に発電を行わせて駆動輪に減速方向(負方向)のトルクを伝達する回生制動を実行することが可能となる。
また、前記回転電機が負方向に回転しつつ負方向のトルクを出力することにより前記第一ワンウェイクラッチが係合して前記入力部材と前記第一回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第一前進駆動モードと、前記回転電機が正方向に回転しつつ正方向のトルクを出力することにより前記第二ワンウェイクラッチが係合して前記入力部材と前記第三回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第二前進駆動モードと、を切り替え可能に備えると好適である。
この構成によれば、回転電機の回転が出力部材に伝達される際の変速比が互いに異なる第一前進駆動モードと第二前進駆動モードとを、回転電機の回転及びトルクの方向を切り替えるだけで適宜切り替えることができる。従って、車速に応じて第一前進駆動モードと第二前進駆動モードとを切り替えることにより、大きいトルクを駆動輪に伝達可能であると共に広い車速域で回転電機のトルクを駆動輪に伝達して車両を走行させることができる。また、このような第一前進駆動モードと第二前進駆動モードとの切り替えが、簡易な構成及び制御によって実現される。
また、前記第一係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第一係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備えると好適である。
この構成によれば、第一係合装置を用いて回生モードを適切に実行することができる。従って、回転電機に発電を行わせて駆動輪に減速方向(負方向)のトルクを伝達する回生制動を適切に行うことができる。
また、前記第三係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第三係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備えると好適である。
また、前記第二係合装置を解放状態として前記第一係合装置を係合状態とすると共に、前記回転電機が負方向のトルクを出力することにより、前記第一ワンウェイクラッチが係合して前記差動歯車装置の全ての回転要素が一体回転する状態となり、前記回転電機のトルクが負方向に回転する前記出力部材に負方向のトルクとして伝達される後進モードを実行可能に備えると好適である。
この構成によれば、第二係合装置及び第一係合装置を用いて後進モードを適切に実行することができる。従って、回転電機により駆動輪を後進方向(負方向)に駆動して車両を適切に後進させることができる。
また、前記出力部材は前記差動歯車装置の前記第三回転要素に駆動連結され、前記第一回転要素の回転が減速されて前記出力部材に伝達されると共に、前記第三回転要素の回転が同速のまま前記出力部材に伝達される構成とすると好適である。
この構成によれば、差動歯車装置が少なくとも3つの回転要素を有する場合において、上記のような車両用駆動装置の構成を適切に実現することができる。またこの構成によれば、入力部材から第一ワンウェイクラッチ及び第一回転要素を介して出力部材に伝達される回転の伝達経路の変速比が、入力部材から第二ワンウェイクラッチ及び第三回転要素を介して出力部材に伝達される回転の伝達経路の変速比に比べて大きくなる。この場合、第一前進駆動モードが低速用モード、第二前進駆動モードが高速用モードとなる。
また、前記差動歯車装置は、前記第一回転要素、前記第二回転要素、及び前記第三回転要素に加えてもう一つの他の回転要素として前記中間回転要素を有し、前記出力部材は前記中間回転要素に駆動連結され、前記第一回転要素の回転が第一の変速比で変速されて前記出力部材に伝達されると共に、前記第三回転要素の回転が前記第一の変速比よりも小さい第二の変速比で変速されて前記出力部材に伝達される構成とすると好適である。
この構成によれば、差動歯車装置が少なくとも4つの回転要素を有する場合において、上記のような車両用駆動装置の構成を適切に実現することができる。またこの構成によれば、入力部材から第一ワンウェイクラッチ及び第一回転要素を介して出力部材に伝達される回転の伝達経路の変速比が、入力部材から第二ワンウェイクラッチ及び第三回転要素を介して出力部材に伝達される回転の伝達経路の変速比に比べて大きくなる。この場合、第一前進駆動モードが低速用モード、第二前進駆動モードが高速用モードとなる。
本発明に係る車両用駆動装置のもう一つの特徴構成は、回転電機と、当該回転電機のロータに駆動連結される入力部材と、駆動輪に駆動連結される出力部材と、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素の3つの回転要素を有する差動歯車装置と、第一ワンウェイクラッチと、第二ワンウェイクラッチと、を備え、前記入力部材は、前記第一ワンウェイクラッチを介して前記第一回転要素に選択的に駆動連結されると共に、前記第二ワンウェイクラッチを介して前記第三回転要素に選択的に駆動連結され、前記第二回転要素は非回転部材に選択的に固定され、前記回転電機が負方向に回転しつつ負方向のトルクを出力することにより前記第一ワンウェイクラッチが係合して前記入力部材と前記第一回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第一前進駆動モードと、前記回転電機が正方向に回転しつつ正方向のトルクを出力することにより前記第二ワンウェイクラッチが係合して前記入力部材と前記第三回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第二前進駆動モードと、を切り替え可能に備え、前記第一前進駆動モードにおいて前記回転電機の回転が前記出力部材に伝達される際の変速比と、前記第二前進駆動モードにおいて前記回転電機の回転が前記出力部材に伝達される際の変速比とが異なるように設定されており、前記第二ワンウェイクラッチとは別に前記入力部材と前記第三回転要素とを選択的に係合又は分離する第一係合装置と、前記第二回転要素を非回転部材に対して選択的に固定又は分離する第二係合装置と、を更に備え、前記第二係合装置を解放状態として前記第一係合装置を係合状態とすると共に、前記回転電機が負方向のトルクを出力することにより、前記第一ワンウェイクラッチが係合して前記差動歯車装置の全ての回転要素が一体回転する状態となり、前記回転電機のトルクが負方向に回転する前記出力部材に負方向のトルクとして伝達される後進モードを実行可能に備える点にある。
この特徴構成によれば、回転電機の回転が出力部材に伝達される際の変速比が互いに異なる第一前進駆動モードと第二前進駆動モードとを、回転電機の回転及びトルクの方向を切り替えるだけで適宜切り替えることができる。ここで、第一前進駆動モード及び第二前進駆動モードのいずれか変速比が大きい方が低車速域で高い駆動力が要求される状況での使用に適した低速用モード、変速比が小さい方が高車速域で高い駆動力が要求されない状況での使用に適した高速用モードとなる。従って、車速及び要求される駆動力に応じて第一前進駆動モードと第二前進駆動モードとを切り替えることにより、必要に応じて大きいトルクを駆動輪に伝達可能であると共に広い車速域で回転電機のトルクを駆動輪に伝達して車両を走行させることができる。また、この特徴構成によれば、第一前進駆動モードと第二前進駆動モードとの切り替えを、回転電機の回転及びトルクの方向を反転させるだけで行うことができる。従って、油圧クラッチ等のように係合状態を切り替えるために別個の動力を必要とせず、車両の駆動力源としての回転電機と2つのワンウェイクラッチを用いた簡易な構成によって前進二段変速を実現することができる。従って、車両用駆動装置を簡略化及び小型化し、効率を向上させることが容易となる。
また、この構成によれば、差動歯車装置の第二回転要素を非回転部材から選択的に分離することができるので、出力部材及び駆動輪が負方向に回転することが許容される。そして、第一係合装置により入力部材と第三回転要素とを係合させ、回転電機に負方向のトルクを出力させることにより、第一ワンウェイクラッチを係合させて差動歯車装置の全ての回転要素が一体回転する状態とし、回転電機のトルクを出力部材に負方向のトルクとして伝達して車両を後進させる後進モードを適切に実現することができる。従って、回転電機により駆動輪を後進方向(負方向)に駆動して車両を適切に後進させることができる。
ここで、前記第一係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第一係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備えると好適である。
この構成によれば、第一係合装置を係合状態とすることにより、入力部材と第三回転要素とを係合させることができる。そして、回転電機に回転方向と反対方向のトルクを出力させることにより、第一係合装置を介して、回転電機のトルクを正方向に回転する出力部材に負方向のトルクとして伝達することができる。従って、回転電機に発電を行わせて駆動輪に減速方向(負方向)のトルクを伝達する回生モードを適切に実行することができる。
また、前記第一ワンウェイクラッチとは別に、前記入力部材と前記第一回転要素とを選択的に係合又は分離する第三係合装置を更に備え、前記第三係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第三係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備えると好適である。
この構成によれば、第三係合装置を係合状態とすることにより、入力部材と第一回転要素とを係合させることができる。そして、回転電機に回転方向と反対方向のトルクを出力させることにより、第三係合装置を介して、回転電機のトルクを正方向に回転する出力部材に負方向のトルクとして伝達することができる。従って、回転電機に発電を行わせて駆動輪に減速方向(負方向)のトルクを伝達する回生モードを適切に実行することができる。
本発明の第一の実施形態に係る車両用駆動装置の構成を示すスケルトン図である。 第一の実施形態に係る車両に搭載される駆動装置の概略構成を示す模式図である。 第一の実施形態に係る車両用駆動装置の制御システムの構成を示すブロック図である。 第一の実施形態に係る車両用駆動装置の各部の各モードでの状態を表す動作表である。 第一の実施形態に係る車両用駆動装置が備える差動歯車装置の速度線図である。 第一の実施形態に係る車両用駆動装置が備える差動歯車装置の速度線図である。 第一の実施形態に係る各モードの実行可能領域を示す図である。 本発明の第二の実施形態に係る車両用駆動装置の構成を示すスケルトン図である。 第二の実施形態に係る車両用駆動装置が備える差動歯車装置の速度線図である。 第二の実施形態に係る車両用駆動装置が備える差動歯車装置の速度線図である。 本発明のその他の実施形態に係る車両に搭載される車両用駆動装置の概略構成を示す模式図である。 本発明のその他の実施形態に係る車両に搭載される駆動装置の概略構成を示す模式図である。
1.第一の実施形態
まず、本発明の第一の実施形態について図面に基づいて説明する。本発明に係る車両用駆動装置1は、図1に示すように、回転電機MGを駆動力源として備え、当該回転電機MGの駆動力を駆動輪W1に伝達することにより車両3を駆動する装置である。この車両用駆動装置1は、2つのワンウェイクラッチF1、F2を用いた簡易な構成によって、回転電機MGの回転及びトルクの方向を反転させるだけで前進二段変速を実現することができる点に特徴を有している。本実施形態では、図2に示すように、車両用駆動装置1は、1台の車両3に2個搭載され、2つの駆動輪W1のそれぞれを駆動するように構成されている。より詳しくは、この車両3には、車両用駆動装置1して、右駆動輪W1Rを駆動する右側駆動装置1Rと、左駆動輪W1Lを駆動する左側駆動装置1Lとが搭載されている。ここで、2つの駆動輪W1は、右後輪及び左後輪とし、或いは右前輪及び左前輪とすると好適である。本実施形態では、車両3は、この車両用駆動装置1以外の駆動装置を備えておらず、よって回転電機MGを駆動力源として走行する電動車両として構成されている。
図1は、本実施形態に係る車両用駆動装置1の構成を示すスケルトン図であるが、第一出力部材O1及び第二出力部材O2のそれぞれの軸に対称な下半分の構成を省略して示している。以下、この車両用駆動装置1の各部の構成について詳細に説明する。なお、右側駆動装置1Rと左側駆動装置1Lとは、各部の構成が車両3の幅方向中心に対して鏡対称となることを除いて全く同一であるので、以下では、特に区別する必要がない限り、単に車両用駆動装置1として説明する。
1−1.車両用駆動装置の機械的構成
まず、車両用駆動装置1の各部の機械的構成について説明する。図1に示すように、この車両用駆動装置1は、回転電機MGと、当該回転電機MGのロータRoに駆動連結される入力部材Iと、駆動輪W1に駆動連結される出力部材Oと、差動歯車装置DGと、第一ワンウェイクラッチF1と、第二ワンウェイクラッチF2と、クラッチ装置Cと、ブレーキ装置Bと、を備えている。これらの車両用駆動装置1の各構成は、車両3に固定される非回転部材としてのケースCS内に収納されている。なお、本実施形態では、入力部材IはロータRoと一体回転するように駆動連結されており、出力部材Oは駆動輪W1と一体回転するように駆動連結されている。
回転電機MGは、ケースCSに固定されたステータStと、このステータStの径方向内側に回転可能に支持されたロータRoと、を有している。回転電機MGのロータRoは、入力部材Iと一体回転するように駆動連結されている。図示は省略するが、入力部材Iは、軸受を介してケースCSに回転可能に支持されており、ロータRoをケースCSに対して回転可能に支持する支持部材として構成されている。入力部材Iは、第一ワンウェイクラッチF1を介して差動歯車装置DGのサンギヤSに選択的に駆動連結されると共に、第二ワンウェイクラッチF2を介して第一出力部材O1及び差動歯車装置DGのリングギヤRIに選択的に駆動連結される。ここでは、第一ワンウェイクラッチF1と第二ワンウェイクラッチF2とは軸方向に隣接するように並列配置されており、入力部材Iは、径方向内側端部近傍において第一ワンウェイクラッチF1及び第二ワンウェイクラッチF2のそれぞれの外輪に一体回転するように駆動連結されている。
本実施形態においては、差動歯車装置DGは3つの回転要素を備えている。ここでは、差動歯車装置DGは、1組のシングルピニオン型の遊星歯車機構により構成されている。具体的には、この差動歯車装置DGは、サンギヤSと、リングギヤRIと、サンギヤS及びリングギヤRIの双方に噛み合う複数のピニオンギヤPと、当該複数のピニオンギヤPを支持するキャリヤCAとを備えている。この差動歯車装置DGの3つの回転要素の回転速度の順は、サンギヤS、キャリヤCA、リングギヤRIの順となっている。
そして、サンギヤSは、第一ワンウェイクラッチF1を介して入力部材Iに選択的に駆動連結される。キャリヤCAは、ブレーキ装置Bを介してケースCSに選択的に固定される。リングギヤRIは、第二ワンウェイクラッチF2を介して入力部材Iに選択的に駆動連結される。また、リングギヤRIは、第二ワンウェイクラッチF2とは独立して動作するクラッチ装置Cによっても入力部材Iに選択的に駆動連結される。更に、リングギヤRIには、第一出力部材O1が一体回転するように駆動連結されている。この第一出力部材O1には、カウンタ減速機構CGを介して第二出力部材O2が駆動連結される。よって、リングギヤRIは、第一出力部材O1に駆動連結されると共にカウンタ減速機構CGを介して第二出力部材O2に駆動連結される。そして、第二出力部材O2が駆動輪W1に駆動連結される。本実施形態では、第一出力部材O1及び第二出力部材O2の双方が本発明における出力部材Oに相当する。従って、本実施形態では、サンギヤSが本発明における第一回転要素E1に相当し、キャリヤCAが本発明における第二回転要素E2に相当し、リングギヤRIが本発明における第三回転要素E3に相当する。すなわち、本実施形態では、出力部材Oは差動歯車装置DGの第三回転要素E3に駆動連結されている。そして、回転電機MGのロータRoに駆動連結される入力部材Iは、第一ワンウェイクラッチF1を介して差動歯車装置DGのサンギヤSに選択的に駆動連結されると共に、第二ワンウェイクラッチF2又はクラッチ装置Cを介して差動歯車装置DGのリングギヤRIに選択的に駆動連結される。
この差動歯車装置DGは、後述する2つの前進駆動モード(前進低速モード及び前進高速モード)の変速比を異なるものとすべく、第一回転要素E1としてのサンギヤSの回転が第一出力部材O1に伝達される際の変速比と第三回転要素E3としてのリングギヤRIの回転が第一出力部材O1に伝達される際の変速比とが異なるように設定されている。ここでは、サンギヤSの回転が第一出力部材O1に伝達される際の変速比が、リングギヤRIの回転が第一出力部材O1に伝達される際の変速比よりも大きくなるように設定されている。より具体的には、この差動歯車装置DGでは、上記のとおり、リングギヤRIは第一出力部材O1と一体回転するように駆動連結されている。従って、リングギヤRIの回転が同速のまま出力部材Oに伝達される。一方、第二回転要素E2としてのキャリヤCAがブレーキ装置BによりケースCSに固定されている状態では、サンギヤSの回転は減速されて出力部材Oに伝達される。図5に示すように、遊星歯車機構を構成するサンギヤの歯数とリングギヤの歯数との比を当該遊星歯車機構の歯数比(=〔サンギヤの歯数〕/〔リングギヤの歯数〕)とすると、サンギヤSの回転が出力部材Oに伝達される際の変速比は、差動歯車装置DGを構成する遊星歯車機構の歯数比λの逆数「1/λ」に等しくなる。当然ながら、この歯数比λは「1」未満(λ<1)に設定されている。
クラッチ装置Cは、第二ワンウェイクラッチF2とは別に、入力部材Iと差動歯車装置DGのリングギヤRIとを選択的に係合又は分離する装置である。本実施形態では、リングギヤRIは第一出力部材O1と一体回転するように駆動連結されているので、クラッチ装置Cの係合状態では、第二ワンウェイクラッチF2の係合状態に関わらず入力部材IはリングギヤRI及び第一出力部材O1と一体回転するように駆動連結される。一方、クラッチ装置Cの解放状態では、第二ワンウェイクラッチF2の係合状態によって入力部材IとリングギヤRI及び第一出力部材O1とが駆動連結されるか否かが定まる状態となる。このクラッチ装置Cが本発明における第一係合装置に相当する。本実施形態では、このクラッチ装置Cとして電磁クラッチ装置を用いる。ここで、電磁クラッチ装置とは、クラッチの係合又は解放を電磁石が発生させる電磁力により行う装置である。
ブレーキ装置Bは、差動歯車装置DGのキャリヤCAを非回転部材としてのケースCSに選択的に固定又は分離する装置である。すなわち、このブレーキ装置Bが係合状態ではキャリヤCAはケースCSに固定され、解放状態ではキャリヤCAはケースCSから分離される。このブレーキ装置Bが本発明における第二係合装置に相当する。本実施形態では、このブレーキ装置Bとして噛み合い式係合装置を用いる。ここで、噛み合い式係合装置とは、ケースCS側の噛合部とキャリヤCA側の噛合部とが噛み合うことによりキャリヤCAをケースCSに固定する装置であり、係合状態を維持するために油圧や電磁力等の係合力を別途に必要としない装置である。このような噛み合い式係合装置としては、例えば、自動変速装置のパーキングロック機構に類似の機構やドグクラッチ等が好適に用いられる。後述するように、ブレーキ装置Bは、車両3が前進する際に係合状態とされ、後進する際に解放状態とされるため、係合状態の切り替えは基本的に車速がゼロとなる車両3の前進/後進の切り替え時のみとなり、車両3の走行中に係合状態を切り替える必要がない。そのため、ブレーキ装置Bとして噛み合い式係合装置を用いても特段の不都合はない。
第一ワンウェイクラッチF1は、入力部材IがサンギヤSに対して負方向に相対回転することを制限すると共に正方向に相対回転することを許容するように、入力部材IとサンギヤSとの間に設けられている。第二ワンウェイクラッチF2は、入力部材IがリングギヤRIに対して正方向に相対回転することを制限すると共に負方向に相対回転することを許容するように、入力部材IとリングギヤRIとの間に設けられている。これにより、図5に実線の「○」及び矢印で示すように、回転電機MGが負方向に回転しつつ負方向のトルクTMを出力した場合には、入力部材IがサンギヤSに対して負方向に相対回転しようとして第一ワンウェイクラッチF1が係合状態となり、回転電機MG及び入力部材IはサンギヤSと一体回転するように駆動連結される。このとき、回転電機MG及び入力部材Iの回転速度はリングギヤRIの回転速度よりも低くなる(負側となる)ため、第二ワンウェイクラッチF2は解放状態となる。一方、図5に破線の「○」及び矢印で示すように、回転電機MGが正方向に回転しつつ正方向のトルクTMを出力した場合には、入力部材IがリングギヤRIに対して正方向に相対回転しようとして第二ワンウェイクラッチF2が係合状態となり、回転電機MG及び入力部材IはリングギヤRIと一体回転するように駆動連結される。このとき、回転電機MG及び入力部材Iの回転速度はサンギヤSの回転速度よりも高くなる(正側となる)ため、第一ワンウェイクラッチF1は解放状態となる。これらのワンウェイクラッチとしては、例えば、ローラ型やスプラグ型等の公知の各種形式のものを用いることができる。
また、本実施形態では、リングギヤRIと一体回転する第一出力部材O1が、カウンタ減速機構CGを介して第二出力部材O2及び駆動輪W1に駆動連結されている。ここで、カウンタ減速機構CGは、第一出力部材O1と一体回転するように駆動連結された第一ギヤG1と、第二出力部材O2と一体回転するように駆動連結された第二ギヤG2とを備えている。そして、第一ギヤG1は、第二ギヤG2よりも小径で歯数も少ない設定とされている。これにより、カウンタ減速機構CGは、リングギヤRI及び第一出力部材O1の回転を減速して第二出力部材O2に伝達する。本実施形態では、第二出力部材O2が駆動輪W1と一体回転するように駆動連結されている。このような本実施形態に係る車両用駆動装置1の構成によれば、駆動輪W1の回転軸と同軸となる第二出力部材O2に対して径方向に偏心して第一出力部材O1が平行に配置されることになる。これにより、回転電機MG及び差動歯車装置DGも、駆動輪W1の回転軸に対して偏心した位置に配置される。このような配置構成は、実際の車両3において駆動輪W1に近接する位置に車両用駆動装置1を搭載する際に、駆動輪W1を支持するサスペンションアームやナックル等の部材を避けて車両用駆動装置1を配置することが容易となる利点がある。なお、カウンタ減速機構CGを備えない構成とすることも、本発明の好適な実施形態の一つである。この場合、第一出力部材O1が出力部材Oとして駆動輪W1と一体回転するように駆動連結された構成とすることができる。
後で詳しく説明するように、車両3の前進時にはブレーキ装置Bが係合状態とされる。この状態で回転電機MGが負方向のトルクを出力して負方向に回転すると、第一ワンウェイクラッチF1が係合状態となり、回転電機MGの負方向のトルクが差動歯車装置DGにより反転されて正方向のトルクとして出力部材Oに伝達され、駆動輪W1が正方向(前進方向)に駆動される第一前進駆動モードとなる。また、この状態から回転電機MGが正方向のトルクを出力して正方向に回転すると、第二ワンウェイクラッチF2が係合状態となり、回転電機MGの正方向のトルクがそのまま正方向のトルクとして出力部材Oに伝達され、駆動輪W1が正方向(前進方向)に駆動される第二前進駆動モードとなる。ここで、第一前進駆動モードでは、回転電機MGの回転は差動歯車装置DGにより減速されて第一出力部材O1に伝達されるが、第二前進駆動モードでは回転電機MGの回転は同速のまま第一出力部材O1に伝達される。従って、本実施形態では、第一ワンウェイクラッチF1の係合状態で実現される第一前進駆動モードを低車速域で高い駆動力が要求される状況での使用に適した低速用の前進低速モードとし、第二ワンウェイクラッチF2の係合状態で実現される第二前進駆動モードを高車速域で高い駆動力が要求されない状況での使用に適した高速用の前進高速モードとする。この車両用駆動装置1によれば、出力部材Oが正方向に回転している状態、すなわち車両3の前進状態において、回転電機MGの回転及びトルクの方向を反転させるだけで前進低速モードと前進高速モードの2つの前進駆動モードを切り替えることができる。
ところで、上記のような第一ワンウェイクラッチF1及び第二ワンウェイクラッチF2の構成では、第一ワンウェイクラッチF1が係合状態となって実現される前進低速モード及び第二ワンウェイクラッチF2が係合状態となって実現される前進高速モードのいずれか一方のモードで走行している状態で、回転電機MGのトルクの方向を反転させても他方のモードに切り替わるだけであり、回転電機MGに回転方向と反対方向のトルクを出力させて発電を行わせる回生制動を実行することができない。そこで、この車両用駆動装置1では、クラッチ装置Cを係合状態とすることにより、第二ワンウェイクラッチF2の係合方向とは反対方向にも入力部材IとリングギヤRI及び第一出力部材O1とを係合させる。これにより、回転電機MGが正方向に回転している状態でそれとは反対の負方向のトルクを出力させ、当該回転電機MGのトルクを駆動輪W1に伝達することが可能となる。従って、回転電機MGに発電を行わせて駆動輪W1に減速方向(負方向)のトルクを伝達する回生制動を行う回生モードが実現される。
また、上記のような第一ワンウェイクラッチF1及び第二ワンウェイクラッチF2の構成では、入力部材Iは、サンギヤSよりも負側であってリングギヤRIよりも正側の回転速度となることはできない。そのため、ブレーキ装置Bが係合状態とされたままでは、入力部材Iは負方向に回転することができず、出力部材Oとしての第一出力部材O1及び第二出力部材O2、並びに駆動輪W1も負方向に回転することが規制され、車両3が後進することができない。これを利用すれば、坂道発進等を行う際に車両3が後退することを防止する、いわゆるヒルホールド機能を、回転電機MGの出力を用いることなく容易に実現することができる。一方、車両3が後進する際には、ブレーキ装置Bを解放状態として差動歯車装置DGのキャリヤCAをケースCSから分離する。これにより、出力部材O及び駆動輪W1が負方向に回転することが許容され、車両3を後進させることが可能となる。このとき、クラッチ装置Cを係合状態とすると共に、回転電機MGに負方向のトルクを出力させることにより、駆動輪W1に後進方向(負方向)のトルクを伝達して車両3を後進させる後進モードが実現される。
1−2.車両用駆動装置の制御システムの構成
次に、車両用駆動装置1の制御システムの構成について説明する。この制御システムは、右側駆動装置1R及び左側駆動装置1Lの双方を統合制御するように構成されている。そのため、図3に示すように、この制御システムは、右側駆動装置1Rが備える右側回転電機MGR及び左側駆動装置1Lが備える左側回転電機MGLの双方を制御すると共に、右側駆動装置1Rが備える右側クラッチ装置CR及び右側ブレーキ装置BR、並びに左側駆動装置1Lが備える左側クラッチ装置CL及び左側ブレーキ装置BLを制御するように構成されている。ここでは、制御システムは、車両用駆動装置1を制御するための主制御ユニット31を備えている。主制御ユニット31は、右側回転電機制御ユニット33、左側回転電機制御ユニット34、及び係合制御ユニット35との間で、相互に情報伝達が可能な状態で接続されている。
右側回転電機制御ユニット33は、右側用インバータ36を制御することにより、右側回転電機MGRが所望の回転速度やトルクを出力するように制御する。左側回転電機制御ユニット34は、左側用インバータ37を制御することにより、左側回転電機MGLが所望の回転速度やトルクを出力するように制御する。係合制御ユニット35は、右側駆動装置1Rが備える右側クラッチ装置CR及び左側駆動装置1Lが備える左側クラッチ装置CLの係合状態を切り替えるためのクラッチ切替機構を備えており、主制御ユニット31からの制御指令に基づいて右側クラッチ装置CR及び左側クラッチ装置CLの係合又は解放を制御する。ここでは、右側クラッチ装置CR及び左側クラッチ装置CLは、電磁クラッチ装置で構成されているので、クラッチ切替機構は、電磁石を電磁力を制御する機構となっている。また、係合制御ユニット35は、右側駆動装置1Rが備える右側ブレーキ装置BR及び左側駆動装置1Lが備える左側ブレーキ装置BLの係合状態を切り替えるためのブレーキ切替機構を備えており、主制御ユニット31からの制御指令に基づいて右側ブレーキ装置BR及び左側ブレーキ装置BLの係合又は解放を制御する。
右側回転電機MGRは右側用インバータ36を介して、左側回転電機MGLは左側用インバータ37を介して、それぞれバッテリ38に電気的に接続されている。そして、右側回転電機MGR及び左側回転電機MGLは、それぞれ電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを果すことが可能とされている。後述するように、右側回転電機MGR及び左側回転電機MGLは、それぞれ回転方向とトルクの向きとの関係に応じてモータ又はジェネレータとして機能する。そして、右側回転電機MGR及び左側回転電機MGLは、ジェネレータとして機能する場合には、発電した電力をバッテリ38に供給して充電する。また、右側回転電機MGR及び左側回転電機MGLは、モータとして機能する場合には、バッテリ38に充電された電力の供給を受けて力行する。そして、右側回転電機MGRの動作制御は、主制御ユニット31からの制御指令に従って右側回転電機制御ユニット33及び右側用インバータ36を介して行われ、左側回転電機MGLの動作制御は、主制御ユニット31からの制御指令に従って左側回転電機制御ユニット34及び左側用インバータ37を介して行われる。なお、バッテリ38は、蓄電装置の一例であり、キャパシタなどの他の蓄電装置を用い、或いは複数種類の蓄電装置を組み合わせて利用することも可能である。
また、主制御ユニット31は、車両用駆動装置1が搭載される車両3の各部の情報を取得するために、車両3の各部に設けられたセンサ等からの情報を取得可能に構成されている。図示の例では、主制御ユニット31は、右側回転電機回転センサSe1、左側回転電機回転センサSe2、車速センサSe3、バッテリ状態検出センサSe4、アクセル操作検出センサSe5、ブレーキ操作検出センサSe6、及びシフト位置検出センサSe7からの情報を取得可能に構成されている。右側回転電機回転センサSe1及び左側回転電機回転センサSe2は、それぞれ右側回転電機MGR及び左側回転電機MGLの回転速度を検出するセンサである。車速センサSe3は、駆動輪W1等の車輪や当該車輪と比例する速度で回転する部材の回転速度を検出することにより車速を検出するセンサである。バッテリ状態検出センサSe4は、バッテリ38の充電量等の状態を検出するためのセンサであり、例えば電圧センサや電流センサ等により構成される。アクセル操作検出センサSe5は、アクセルペダル46の操作量を検出するためのセンサである。ブレーキ操作検出センサSe6は、図示しないホイールブレーキに連動するブレーキペダル47の操作量を検出するためのセンサである。シフト位置検出センサSe7は、車両3のシフトレバー48の選択位置を検出するためのセンサである。
主制御ユニット31は、各センサSe1〜Se7で取得される情報を用いて適切な動作モードの選択を行う。そして、主制御ユニット31は、右側回転電機制御ユニット33及び左側回転電機制御ユニット34を介して右側回転電機MGR及び左側回転電機MGLの駆動状態を制御し、或いは係合制御ユニット35を介して右側クラッチ装置CR及び左側クラッチ装置CL、並びに右側ブレーキ装置BR及び左側ブレーキ装置BLの係合状態を制御することにより、選択された動作モードで動作するように右側駆動装置1R及び左側駆動装置1Lを制御する。また、主制御ユニット31は、右側駆動装置1Rの動作状態と左側駆動装置1Lの動作状態とを協調制御することにより、選択された動作モードに応じて適切な走行が行われるように車両3の走行状態を制御する。
本実施形態では、主制御ユニット31は、車両用駆動装置1に関する各種制御を実行するための機能部として、バッテリ状態検出部41、モード選択部42、動作制御部43を備えている。主制御ユニット31が備えるこれらの各機能部は、MPU(Micro Processing Unit)等の演算処理装置を中核部材として、入力されたデータに対して種々の処理を行うための機能部がハードウエア又はソフトウエア(プログラム)或いはその両方により構成されている。また、主制御ユニット31は、記憶部44を備えており、この記憶部44内には、車両の各部の状態に応じて動作モードを決定するために用いられる制御マップ45が格納されている。
バッテリ状態検出部41は、バッテリ状態検出センサSe4から出力される電圧値や電流値等の情報に基づいて、バッテリ38の充電量等のバッテリ状態を推定して検出する。ここで、バッテリ充電量は、一般にSOC(state of charge:充電状態)と呼ばれるものであり、例えば、バッテリ38の充電容量に対する充電残量の比率として求められる。
モード選択部42は、車両の各部の状態に応じて制御マップ45に従い適切な動作モードを選択する。本実施形態においては、モード選択部42は、要求駆動力、車速、回転電機MG(右側回転電機MGR及び左側回転電機MGL)の回転速度、バッテリ充電状態、シフトレバー48の選択位置等の車両3の走行条件に応じて、後述する4つの動作モードの中から適切な動作モードを選択する。各動作モードの内容については、後で詳細に説明する。ここで、要求駆動力は、運転者が車両3に対して要求する駆動力(トルク)を表す値であり、アクセル操作検出センサSe5及びブレーキ操作検出センサSe6からの出力に基づいて、モード選択部42が演算して取得する。車速は、車速センサSe3により検出する。なお、モード選択の際に参照される走行条件としては、上記の他にも、回転電機MGの温度、油温、冷却水温度等の各種条件を用いても好適である。
動作制御部43は、モード選択部42により選択された動作モードに応じて、右側回転電機MGR及び左側回転電機MGLの駆動状態を制御し、或いは右側クラッチ装置CR及び左側クラッチ装置CL、並びに右側ブレーキ装置BR及び左側ブレーキ装置BLの係合状態を制御する。ここでは、右側回転電機MGR及び左側回転電機MGLの駆動状態として、各回転電機MGR、MGLの回転速度及びトルクが制御される。これにより、右側駆動装置1R及び左側駆動装置1Lが、選択された動作モードで適切に動作するように制御する。
1−3.車両用駆動装置の動作モード
次に、本実施形態に係る車両用駆動装置1により実現可能な動作モードについて説明する。図4は、各モードでの各係合要素F1、F2、C、Bの係合状態、及び回転電機MGの動作状態としてのトルクTM及び回転速度RMの向きを示す動作表である。図4において、「○」は各係合要素が係合状態にあることを示し、「×」は各係合要素が解放(係合解除)状態にあることを示している。また、図4において、「+」は回転電機MGのトルクTM又は回転速度RMが正方向であることを示し、「−」は回転電機MGのトルクTM又は回転速度RMが負方向であることを示している。図4に示すように、本実施形態では、車両用駆動装置1は、「前進低速」、「前進高速」、「回生」、及び「後進」の4つのモードを切り替え可能に備えている。
図5及び図6は、車両用駆動装置1が備える差動歯車装置DGの速度線図を示しており、図5は前進低速モード及び前進高速モードでの速度線図、図6は回生モード及び後進モードでの速度線図をそれぞれ示している。これらの速度線図において、縦軸は、各回転要素の回転速度に対応している。すなわち、縦軸に対応して記載している「0」は回転速度がゼロであることを示しており、上側が正、下側が負である。そして、並列配置された複数本の縦線のそれぞれが、差動歯車装置DGの各回転要素、すなわち、サンギヤS、キャリヤCA、及びリングギヤRIに対応している。また、各回転要素に対応する縦線の間隔は、差動歯車装置DGを構成する遊星歯車機構の歯数比λ(=〔サンギヤの歯数〕/〔リングギヤの歯数〕)に対応している。図5の下部にはこの歯数比λを示している。なお、この歯数比λは、回転電機MGや車両3等の特性に応じて適宜設定される。
図5において、直線L1は前進低速モード及び前進高速モードでの差動歯車装置DGの動作状態を示している。また、図6において、実線の直線L2は回生モードでの差動歯車装置DGの動作状態を示し、破線の直線L3は後進モードでの差動歯車装置DGの動作状態を示している。これらの速度線図上において、「○」は回転電機MGの回転速度(MG回転速度RM)、「☆」は出力部材Oの回転速度、「×」はブレーキ装置BによりキャリヤCAがケースCSに固定された状態をそれぞれ示している。また、これらの速度線図における各回転要素の回転速度を示す点に隣接配置された矢印は、各動作モードでの走行時に各回転要素に作用するトルクの向きを示しており、上向き矢印が正方向のトルクを表し、下向き矢印が負方向のトルクを表している。そして、「TM」が付された矢印は回転電機MGからサンギヤS又はリングギヤRIに伝達されるMGトルクTM、「TO」が付された矢印は出力部材OからリングギヤRIに伝達される走行トルクTOを示している。なお、図5においては、前進低速モードと前進高速モードとを区別するため、前進高速モードでのMG回転速度RM及びMGトルクTMを破線の「○」又は矢印で示している。
ここで、前進低速モード及び前進高速モードは、いずれも車両3が前進している状態で選択されるモードであるが、前進低速モードでは、回転電機MGが負方向のMGトルクTMを出力することにより、正方向に回転する出力部材Oに正方向のトルクを伝達するのに対して、前進高速モードでは、回転電機MGが正方向のMGトルクTMを出力することにより、正方向に回転する出力部材Oに正方向のトルクを伝達する。また、前進低速モードと前進高速モードとは、回転電機MGの回転が出力部材Oに伝達される際の変速比が異なるように設定されており、前進低速モードの変速比の方が前進高速モードの変速比より大きく設定されている。回生モードは、車両3が前進している状態で選択されるモードであり、回転電機MGが回転方向と反対方向のトルクを出力することにより、正方向に回転する出力部材Oに負方向のトルクを伝達する。後進モードは、車両3が後進している状態で選択されるモードであり、回転電機MGが負方向のMGトルクTMを出力することにより、負方向に回転する出力部材Oに負方向のトルクを伝達する。
これらの各動作モードは、主制御ユニット31のモード選択部42により選択され、選択されたモードへの切り替えは、主制御ユニット31の動作制御部43からの制御指令に基づいて回転電機MGの動作状態(MGトルクTM及びMG回転速度RM)が制御され、或いはクラッチ装置C及びブレーキ装置Bの係合状態が制御されることにより行われる。以下、各動作モードでの車両用駆動装置1の動作状態について詳細に説明する。なお本実施形態では、上記のとおり、入力部材Iは回転電機MGのロータRoと一体回転するため、入力部材Iの回転速度はMG回転速度RMと一致する。そこで、以下では入力部材I及び回転電機MGの回転速度を、単に「MG回転速度RM」として説明する。
1−4.前進低速モード
前進低速モードは、回転電機MGが負方向に回転(MG回転速度RM<0)しつつ負方向のトルクを出力(MGトルクTM<0)することにより第一ワンウェイクラッチF1が係合して入力部材IとサンギヤSとが駆動連結され、回転電機MGのトルクが正方向に回転する出力部材Oに正方向のトルクとして伝達されるモードである。この前進低速モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比は、前進高速モードにおける変速比よりも大きく設定されており、ここでは、回転電機MGの回転が減速されて出力部材Oに伝達される。よって、この前進低速モードでは、差動歯車装置DGは、回転電機MGの回転速度(MG回転速度RM)を減速して出力部材Oに伝達すると共に回転電機MGの出力トルク(MGトルクTM)を増幅して出力部材Oに伝達するための減速装置として機能する。更に、差動歯車装置DGは、回転電機MGの回転及びトルクの方向を反転させて出力部材Oに伝達する回転方向反転装置としても機能する。また、この前進低速モードでは、回転電機MGは、モータとして機能する。
図4及び図5に示すように、前進低速モードでは、ブレーキ装置Bは係合状態とされ、MG回転速度RMは負(RM<0)、MGトルクTMは負(TM<0)とされる。MGトルクTMが負となることにより、MG回転速度RMは下降し、サンギヤSの回転速度と一致してからも更に負方向に下降しようとする。これにより、入力部材IがサンギヤSに対して負方向に相対回転しようとし、第一ワンウェイクラッチF1が係合状態となる。図5には、この前進低速モードでのMG回転速度RMを「RMA」として示している。このとき、リングギヤRIの回転速度はMG回転速度RM(RMA)よりも高い(正側にある)。すなわち、入力部材IはリングギヤRIに対して負方向に相対回転する状態となっており、第二ワンウェイクラッチF2は解放状態となる。従って、前進低速モードでは、回転電機MG及び入力部材Iは、第一ワンウェイクラッチF1を介してサンギヤSと一体回転するように駆動連結された状態となる。
上記のとおり、差動歯車装置DGの3つの回転要素の回転速度の順は、サンギヤS、キャリヤCA、リングギヤRIの順となっている。そして、この前進低速モードでは、回転速度の順で中間となるキャリヤCAがブレーキ装置Bを介してケースCSに固定され、回転速度の順で一方側となるサンギヤSが第一ワンウェイクラッチF1を介して入力部材Iと一体回転するように駆動連結され、回転速度の順で他方側となるリングギヤRIが第一出力部材O1と一体回転するように駆動連結される。従って、回転電機MGの回転及びトルクの向きが反転されて第一出力部材O1に伝達される。また、差動歯車装置DGの歯数比λは1未満(λ<1)であるので、前進低速モードでは、回転電機MGの回転速度RM(RMA)が差動歯車装置DGにより減速されると共にトルクTAが増幅されて第一出力部材O1に伝達される。具体的には、前進低速モードでは、MG回転速度RMは、λ倍に減速されて第一出力部材O1に伝達される。従って、MGトルクTMは、1/λ倍に増幅されて第一出力部材O1に伝達される。この前進低速モードでの回転電機MGから第一出力部材O1までの変速比は「1/λ」である。
以上に説明したように、前進低速モードでは、MG回転速度RM(RMA)を減速することによりMGトルクTMを増幅して第一出力部材O1に伝達することができる。そして、第一出力部材O1に伝達されたMG回転速度RM及びMGトルクTMは、カウンタ減速機構CGにより更に減速及び増幅されて第二出力部材O2及び駆動輪W1に伝達される。従って、この前進低速モードは、低車速域で高い駆動力が要求される状況での使用に適したモードとなっている。また、このような前進低速モードを備えることにより、車両用駆動装置1は、駆動輪W1に伝達可能なトルクの大きさに対して回転電機MGを小型化することが可能となっている。
ところで、この前進低速モードでは、MG回転速度RM(RMA)は減速して第一出力部材O1に伝達されるので、駆動輪W1の回転速度に対してMG回転速度RM(RMA)は相対的に高くなる。従って、図7に示すように、車両用駆動装置1が前進低速モードを実行する車速域は比較的低車速側、図示の例では車速が「0」以上であって第一上限車速VL1以下の範囲に設定されている。第一上限車速VL1より高い車速域では、後述する前進高速モードが実行可能となっている。
1−5.前進高速モード
前進高速モードは、回転電機MGが正方向に回転(MG回転速度RM>0)しつつ正方向のトルクを出力(MGトルクTM>0)することにより第二ワンウェイクラッチF2が係合して入力部材IとリングギヤRIとが駆動連結され、回転電機MGのトルクが正方向に回転する出力部材Oに正方向のトルクとして伝達されるモードである。この前進高速モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比は、前進低速モードにおける変速比よりも小さく設定されており、ここでは、回転電機MGの回転が同速(変速比=1)のまま第一出力部材O1に伝達される。すなわち、上記のとおり、差動歯車装置DGのリングギヤRIは、出力部材Oを構成する第一出力部材O1と一体回転するように駆動連結されているため、第二ワンウェイクラッチF2の係合状態では、入力部材Iは、第一出力部材O1と一体回転するように駆動連結された状態となる。よって、本実施形態では、前進高速モードでは、入力部材Iは差動歯車装置DGを介さずに出力部材Oに駆動連結され、差動歯車装置DGは実質的に機能しない状態となる。また、この前進高速モードでは、回転電機MGは、モータとして機能する。
図4及び図5に示すように、前進高速モードでは、ブレーキ装置Bは係合状態とされ、MG回転速度RMは正(RM>0)、MGトルクTMは正(TM>0)とされる。MGトルクTMが正となることにより、MG回転速度RMは上昇し、リングギヤRIの回転速度と一致してからも更に正方向に上昇しようとする。これにより、入力部材IがリングギヤRIに対して正方向に相対回転しようとし、第二ワンウェイクラッチF2が係合状態となる。図5には、この前進高速モードでのMG回転速度RMを「RMB」として示している。このとき、サンギヤSの回転速度はMG回転速度RM(RMB)よりも低い(負側にある)。すなわち、入力部材IはサンギヤSに対して正方向に相対回転する状態となっており、第一ワンウェイクラッチF1は解放状態となる。従って、前進高速モードでは、図5に破線「○」で示すように、回転電機MG及び入力部材Iは、第二ワンウェイクラッチF2を介してリングギヤRIと一体回転するように駆動連結された状態となる。このように、前進高速モードでは、入力部材Iと第一出力部材O1とが一体回転する状態となる。従って、前進高速モードでの回転電機MGから第一出力部材O1までの変速比は「1」である。
以上に説明したように、前進高速モードでは、MG回転速度RM(RMB)は同速のまま第一出力部材O1に伝達され、よってMGトルクTMもそのまま第一出力部材O1に伝達される。そして、第一出力部材O1に伝達されたMG回転速度RM及びMGトルクTMは、カウンタ減速機構CGにより減速及び増幅されて第二出力部材O2及び駆動輪W1に伝達される。すなわち、回転電機MGから駆動輪W1までの駆動伝達経路においてMG回転速度RM(RMB)は減速されるが、その変速比は上述した前進低速モードよりも小さくなっている。従って、この前進高速モードは、高車速域で高い駆動力が要求されない状況での使用に適したモードとなっている。そして、この車両用駆動装置1は、上述したように、MG回転速度RM(RMA)を減速して第一出力部材O1に伝達する前進低速モードと、MG回転速度RM(RMB)を同速のまま第一出力部材O1に伝達する前進高速モードとを切り替え可能に備えることにより、車速及び要求される駆動力に応じてモードを切り替え、必要に応じて大きいトルクを駆動輪W1に伝達可能であると共に広い車速域でMGトルクTMを駆動輪W1に伝達して車両3を適切に走行させることが可能となっている。
ところで、この前進高速モードでは、MG回転速度RM(RMB)は同速のまま第一出力部材O1に伝達されるので、駆動輪W1の回転速度に対してMG回転速度RM(RMB)を相対的に低く抑えることができる。従って、図7に示すように、車両用駆動装置1が前進高速モードを実行する車速域は上述した前進低速モードよりも広く、図示の例では車速が「0」以上であって第一上限車速VL1より高く設定された第二上限車速VL2以下の範囲に設定されている。なお、第一上限車速VL1及び第二駆動上限車速VL2は、いずれも回転電機MGの駆動上限回転速度と、回転電機MGから駆動輪W1までの駆動伝達経路の変速比に応じて定まる車速である。
図4及び図5に示すように、前進低速モードから前進高速モードへの切り替えは、ブレーキ装置Bを係合状態としたまま、MGトルクTMの方向を負方向から正方向に反転させ、MG回転速度RMを負から正に反転させることにより行うことができる。すなわち、前進低速モードで走行中に、MGトルクTMの方向を反転させると、図5に示すように、差動歯車装置DGの各回転要素の回転速度はほぼ一定のまま、MG回転速度RMがサンギヤSと同じ回転速度RMAから上昇し、一旦回転速度が「0」となってから回転方向が反転してリングギヤRIと同じ回転速度RMBとなる。これにより、第一ワンウェイクラッチF1の係合が解除されて第二ワンウェイクラッチF2が係合状態となり、回転電機MGのロータRoがリングギヤRIと一体回転するように駆動連結される。同様に、前進高速モードから前進低速モードへの切り替えは、ブレーキ装置Bを係合状態としたまま、MGトルクTMの方向を正方向から負方向に反転させることにより行うことができる。従って、この車両用駆動装置1によれば、回転電機MGが出力するMGトルクTMを制御するだけで、前進低速モードと前進高速モードとの切り替えを自在に行うことができる。また、この際には、回転電機MGのトルク及び回転速度(回転方向)の変化以外には、第一ワンウェイクラッチF1又は第二ワンウェイクラッチF2の係合又は解放が行われるだけであるので、摩擦係合式のクラッチやブレーキ等を用いて差回転を吸収しつつモード切り替えを行う構成に比べて、モード切り替えに際して出力部材O及び駆動輪W1に伝達されるショックを低減することが可能となっている。
また、本実施形態では、上記のような走行中のモード切替に際して、第一ワンウェイクラッチF1又は第二ワンウェイクラッチF2が係合する瞬間に、MGトルクTMを小さくする制御、及び第一ワンウェイクラッチF1又は第二ワンウェイクラッチF2を介して係合される回転要素とMG回転速度RMとの差を小さくする制御の一方又は双方を行う。これにより、モード切り替えに際して出力部材O及び駆動輪W1に伝達されるショックを更に低減することができる。
1−6.回生モード
回生モードは、クラッチ装置Cを係合状態とすると共に、回転電機MGが回転方向と反対方向のトルクを出力することにより、クラッチ装置Cを介して、回転電機MGのトルクが正方向に回転する出力部材Oに負方向のトルクとして伝達されるモードである。本実施形態では、クラッチ装置Cは入力部材IとリングギヤRIとを選択的に係合するように設けられている。従って、この回生モードでは、回転電機MGが正方向に回転(MG回転速度RM>0)しつつ負方向のトルクを出力(MGトルクTM<0)することにより、正方向に回転する出力部材Oに負方向のトルクを伝達する。このように、回生モードでは、クラッチ装置Cを係合状態とすることにより、第二ワンウェイクラッチF2の係合方向とは無関係に入力部材IとリングギヤRIとを係合させることができる。従って、回転電機MGが正方向に回転している状態で、第二ワンウェイクラッチF2の係合方向に対して反対方向となる負方向のMGトルクTMを出力させた場合にも、当該MGトルクTMを駆動輪W1に伝達することが可能となる。従って、回転電機MGに発電を行わせて駆動輪W1に減速方向(負方向)のトルクを伝達する回生制動を実行することができる。
この回生モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比は、上述した前進高速モードと同じく、前進低速モードにおける変速比よりも小さく設定されており、ここでは、回転電機MGの回転が同速(変速比=1)のまま第一出力部材O1に伝達される。すなわち、上記のとおり、差動歯車装置DGのリングギヤRIは、出力部材Oを構成する第一出力部材O1と一体回転するように駆動連結されているため、クラッチ装置Cの係合状態では、入力部材Iは、第一出力部材O1と一体回転するように駆動連結された状態となる。よって、本実施形態では、回生モードでは、入力部材Iは差動歯車装置DGを介さずに出力部材Oに駆動連結され、差動歯車装置DGは実質的に機能しない状態となる。また、この回生モードでは、回転電機MGは、ジェネレータとして機能する。
図4及び図6に示すように、回生モードでは、クラッチ装置C及びブレーキ装置Bは係合状態とされ、MG回転速度RMは正(RM>0)、MGトルクTMは負(TM<0)とされる。この際、クラッチ装置Cが係合状態とされることにより、図6に直線L2として示すように、回転電機MG及び入力部材Iは、リングギヤRI及び第一出力部材O1と一体回転するように駆動連結され、負方向のMGトルクTMが正方向に回転する第一出力部材O1に伝達される。これにより、カウンタ減速機構CG及び第二出力部材O2を介して正方向(前進方向)に回転する駆動輪W1に負方向(減速方向)のトルクが伝達される。このように、回生モードでは、入力部材Iと第一出力部材O1とが一体回転する状態となる。従って、上述した前進高速モードと同様に、回生モードでの回転電機MGから第一出力部材O1までの変速比は「1」である。
以上に説明したように、回生モードでは、MG回転速度RMは同速のまま第一出力部材O1に伝達され、よってMGトルクTMもそのまま第一出力部材O1に伝達される。そして、第一出力部材O1に伝達されたMG回転速度RM及びMGトルクTMは、カウンタ減速機構CGにより減速及び増幅されて第二出力部材O2及び駆動輪W1に伝達される。従って、回生モードでの変速比は上述した前進高速モードと同じであり、その変速比は前進低速モードよりも小さくなっている。従って、この回生モードでは、回転電機MGの回転速度RMの絶対値を、前進低速モードにおける回転電機MGの回転速度RM(RMA)の絶対値よりも低く抑えることができる。これにより、回生制動を行うことが可能な車速域を広く確保することができる。すなわち、図7に示すように、車両用駆動装置1が回生モードを実行する車速域は上述した前進低速モードよりも広く、図示の例では車速が「0」以上であって第一上限車速VL1より高く設定された第二上限車速VL2以下の範囲に設定されている。従って、高車速域においても、回転電機MGの過回転を抑制しつつ回生制動を行うことが可能となっている。
図4〜図6に示すように、前進高速モードから回生モードへの切り替えは、ブレーキ装置Bを係合状態としたままクラッチ装置Cを係合状態とし、MG回転速度RMが正の状態のままでMGトルクTMの方向を正方向から負方向に反転させることにより行うことができる。すなわち、前進高速モードで走行中にMGトルクTMの方向を反転させると、第二ワンウェイクラッチF2は解放状態となるが、クラッチ装置Cを係合することにより当該負方向のMGトルクTMを出力部材Oに伝達することが可能な状態となる。そこで、正方向に回転する回転電機MGに負方向のトルクTMを出力させることにより、回転電機MGに発電を行わせて駆動輪W1に減速方向(負方向)のトルクを伝達することができる。また、前進低速モードから回生モードへの切り替えは、前進低速モードから一旦前進高速モードへ切り替え、その後上記と同様に回生モードへ切り替えることにより行う。
1−7.後進モード
後進モードは、ブレーキ装置Bを解放状態としてクラッチ装置Cを係合状態とすると共に、回転電機MGが負方向のトルクを出力(MGトルクTM<0)することにより、第一ワンウェイクラッチF1が係合して差動歯車装置DGの全ての回転要素が一体回転する状態となり、回転電機MGのトルクが負方向に回転する出力部材Oに負方向のトルクとして伝達されるモードである。この後進モードでは、回転電機MGはモータとして機能する。この際、差動歯車装置DGは3つの回転要素の全てが一体的に同速で回転する状態となり、回転電機MGの回転は同速(変速比=1)のまま第一出力部材O1に伝達される。このように、後進モードでは、クラッチ装置Cを係合状態とすることにより、第二ワンウェイクラッチF2の係合方向とは無関係に入力部材IとリングギヤRIとを係合させることができる。従って、第二ワンウェイクラッチF2の係合方向に対して反対方向となる負方向のMGトルクTMを出力させた場合にも、当該MGトルクTMをリングギヤRI及び第一出力部材O1に伝達することができる。従って、負方向のMG回転速度RM及び負方向のMGトルクTMを出力部材O及び駆動輪W1に伝達し、駆動輪W1を後進方向(負方向)に回転させて車両3を後進させることができる。
図4及び図6に示すように、後進モードでは、ブレーキ装置Bは解放状態、クラッチ装置Cは係合状態とされ、MG回転速度RMは負(RM<0)、MGトルクTMは負(TM<0)とされる。クラッチ装置Cが係合状態となることにより、入力部材IとリングギヤRIとは一体回転する状態となる。また、MGトルクTMが負となることにより、MG回転速度RMは下降し、入力部材IがサンギヤSに対して負方向に相対回転しようとするので、第一ワンウェイクラッチF1が係合状態となる。これにより、差動歯車装置DGのサンギヤS及びリングギヤRIが入力部材Iと一体回転するように駆動連結され、差動歯車装置DGの全ての回転要素が一体回転する状態となる。図6には、この後進モードでのMG回転速度RMを「RMC」として示している。なお、車両3の後進時には、出力部材Oには走行抵抗としてのトルクが正方向に作用し、このトルクはリングギヤRIに正方向の走行トルクTOとして作用する。
上記のとおり、第一ワンウェイクラッチF1及び第二ワンウェイクラッチF2の作用により、入力部材Iは、サンギヤSよりも負側であってリングギヤRIよりも正側の回転速度となることはできない。そのため、ブレーキ装置Bが係合状態とされたままでは、入力部材Iは負方向に回転することができず、出力部材O及び駆動輪W1も負方向に回転することが規制され、車両3が後進することができない。しかし、この後進モードでは、ブレーキ装置Bを解放状態として差動歯車装置DGのキャリヤCAをケースCSから分離する。これにより、出力部材O及び駆動輪W1が負方向に回転することが許容され、車両3を後進させることが可能となる。そして、後進モードでは、回転電機MGに負方向のMGトルクTMを出力させることにより、MGトルクTM及びMG回転速度RMを出力部材O及び駆動輪W1に伝達して車両3を後進方向に駆動することができる。
2.第二の実施形態
次に、本発明の第二の実施形態について説明する。図8は、本実施形態に係る車両用駆動装置1の構成を示すスケルトン図であるが、出力部材Oの軸に対称な下半分の構成を省略して示している。この車両用駆動装置1は、差動歯車装置DGが4つの回転要素を備える構成となっている点、及びカウンタ減速機構CGを備えておらず、差動歯車装置DGの出力回転が出力部材Oを介して駆動輪W1に直接伝達される構成となっている点で、上記第一の実施形態と相違している。また、この車両用駆動装置1は、差動歯車装置DGが4つの回転要素を備えていることに起因して、出力部材Oが、回転速度の順で第二回転要素E2と第三回転要素E3との間に位置する中間回転要素EMに駆動連結された構成となっている点でも、上記第一の実施形態と相違している。以下では、本実施形態に係る車両用駆動装置1について、上記第一の実施形態との相違点を中心として説明することとし、特に説明しない点については、上記第一の実施形態と同様とする。なお、本実施形態に係る車両3の構成及び車両用駆動装置1の制御システムの構成は、上記第一の実施形態に係る構成と同様とし、本実施形態の説明においても図2及び図3を適宜参照する。
2−1.車両用駆動装置の機械的構成
まず、本実施形態に係る車両用駆動装置1の機械的構成について説明する。図8に示すように、本実施形態においては、差動歯車装置DGは、第一遊星歯車機構DG1と第二遊星歯車機構DG2との2組のシングルピニオン型の遊星歯車機構により構成されている。そして、差動歯車装置DGは、第一遊星歯車機構DG1及び第二遊星歯車機構DG2がそれぞれの有する3つの回転要素のうち、2つずつを互いに一体回転するように接続することにより、全体として4つの回転要素を備えて一体的に動作するように構成されている。
第一遊星歯車機構DG1は、第一サンギヤS1と、第一リングギヤRI1と、第一サンギヤS1及び第一リングギヤRI1の双方に噛み合う複数の第一ピニオンギヤP1と、当該複数の第一ピニオンギヤP1を支持する第一キャリヤCA1とを備えている。また、第二遊星歯車機構DG2は、第二サンギヤS2と、第二リングギヤRI2と、第二サンギヤS2及び第二リングギヤRI2の双方に噛み合う複数の第二ピニオンギヤP2と、当該複数の第二ピニオンギヤP2を支持する第二キャリヤCA2とを備えている。そして、第一キャリヤCA1と第二リングギヤRI2とが互いに一体回転するように駆動連結され、第一リングギヤRI1と第二サンギヤS2とが互いに一体回転するように駆動連結されている。これにより、差動歯車装置DGは、回転速度の順に、第一サンギヤS1、第一キャリヤCA1及び第二リングギヤRI2、第二キャリヤCA2、第一リングギヤRI1及び第二サンギヤS2の4つの回転要素を有することになる。
そして、第一サンギヤS1は、第一ワンウェイクラッチF1を介して入力部材Iに選択的に駆動連結される。第一キャリヤCA1及び第二リングギヤRI2は、ブレーキ装置Bを介してケースCSに選択的に固定される。第二キャリヤCA2は、出力部材Oと一体回転するように駆動連結される。この出力部材Oが駆動輪W1に駆動連結される。第一リングギヤRI1及び第二サンギヤS2は、第二ワンウェイクラッチF2を介して入力部材Iに選択的に駆動連結される。また、これらの第一リングギヤRI1及び第二サンギヤS2は、第二ワンウェイクラッチF2とは独立して動作するクラッチ装置Cによっても入力部材Iに選択的に駆動連結される。従って、本実施形態では、第一サンギヤS1が本発明における第一回転要素E1に相当し、第一キャリヤCA1及び第二リングギヤRI2が本発明における第二回転要素E2に相当し、第一リングギヤRI1及び第二サンギヤS2が本発明における第三回転要素E3に相当する。また、回転速度の順で第一キャリヤCA1及び第二リングギヤRI2(第二回転要素E2)と第一リングギヤRI1及び第二サンギヤS2(第三回転要素E3)との間に位置し、出力部材Oが駆動連結されている第二キャリヤCA2が本発明における中間回転要素EMに相当する。すなわち、本実施形態では、出力部材Oは、差動歯車装置DGの第二回転要素E2とは異なる他の回転要素である中間回転要素EMに駆動連結されている。そして、回転電機MGのロータRoに駆動連結される入力部材Iは、第一ワンウェイクラッチF1を介して差動歯車装置DGの第一サンギヤS1に選択的に駆動連結されると共に、第二ワンウェイクラッチF2又はクラッチ装置Cを介して差動歯車装置DGの第一リングギヤRI1及び第二サンギヤS2に選択的に駆動連結される。
この差動歯車装置DGは、後述する2つの前進駆動モード(前進低速モード及び前進高速モード)の変速比を異なるものとすべく、第一回転要素E1としての第一サンギヤS1の回転が出力部材Oに伝達される際の変速比と第三回転要素E3としての第一リングギヤRI1及び第二サンギヤS2の回転が出力部材Oに伝達される際の変速比とが異なるように設定されている。第一サンギヤS1の回転が出力部材Oに伝達される際の変速比を第一の変速比、第一リングギヤRI1及び第二サンギヤS2の回転が出力部材Oに伝達される際の変速比を第二の変速比とすると、ここでは、第二の変速比は第一の変速比よりも小さく設定されている。より具体的には、図9に示すように、第二回転要素E2としての第一キャリヤCA1及び第二リングギヤRI2がブレーキ装置BによりケースCSに固定されている状態では、第一サンギヤS1の回転、並びに第一リングギヤRI1及び第二サンギヤS2の回転は、いずれも減速されて第二キャリヤCA2及び出力部材Oに伝達される。すなわち、第一の変速比及び第二の変速比は、いずれも「1」より大きいが、その値は第一の変速比の方が第二の変速比より大きく設定されている。図9の下部には、第一の変速比の逆数をλ1、第二の変速比の逆数をλ2として示している。なお、λ1及びλ2はいずれも「1」未満(λ1<1、λ2<1)に設定されており、λ1はλ2より小さく設定されている(λ1<λ2)。ブレーキ装置Bの係合状態では、第一サンギヤS1の回転は第一の変速比「1/λ1」で変速されて出力部材Oに伝達され、第一リングギヤRI1及び第二サンギヤS2の回転は第二の変速比「1/λ2」で変速されて出力部材Oに伝達される。
クラッチ装置Cは、第二ワンウェイクラッチF2とは別に、入力部材Iと差動歯車装置DGの第一リングギヤRI1及び第二サンギヤS2とを選択的に係合又は分離する装置である。すなわち、クラッチ装置Cの係合状態では、第二ワンウェイクラッチF2の係合状態に関わらず入力部材Iは第一リングギヤRI1及び第二サンギヤS2と一体回転するように駆動連結される。一方、クラッチ装置Cの解放状態では、第二ワンウェイクラッチF2の係合状態によって入力部材Iと第一リングギヤRI1及び第二サンギヤS2とが駆動連結されるか否かが定まる状態となる。本実施形態では、上記第一の実施形態と同様に、このクラッチ装置Cとして電磁クラッチ装置を用いる。
ブレーキ装置Bは、差動歯車装置DGの第一キャリヤCA1及び第二リングギヤRI2を非回転部材としてのケースCSに選択的に固定又は分離する装置である。すなわち、このブレーキ装置Bが係合状態では第一キャリヤCA1及び第二リングギヤRI2はケースCSに固定され、解放状態では第一キャリヤCA1及び第二リングギヤRI2はケースCSから分離される。本実施形態では、上記第一の実施形態と同様に、このブレーキ装置Bとして噛み合い式係合装置を用いる。
第一ワンウェイクラッチF1は、入力部材Iが第一サンギヤS1に対して負方向に相対回転することを制限すると共に正方向に相対回転することを許容するように、入力部材Iと第一サンギヤS1との間に設けられている。第二ワンウェイクラッチF2は、入力部材Iが第一リングギヤRI1及び第二サンギヤS2に対して正方向に相対回転することを制限すると共に負方向に相対回転することを許容するように、入力部材Iと第一リングギヤRI1及び第二サンギヤS2との間に設けられている。これにより、図9に実線の「○」及び矢印で示すように、回転電機MGが負方向に回転しつつ負方向のトルクTMを出力した場合には、入力部材Iが第一サンギヤS1に対して負方向に相対回転しようとして第一ワンウェイクラッチF1が係合状態となり、回転電機MG及び入力部材Iは第一サンギヤS1と一体回転するように駆動連結される。このとき、回転電機MG及び入力部材Iの回転速度は第一リングギヤRI1及び第二サンギヤS2の回転速度よりも低くなる(負側となる)ため、第二ワンウェイクラッチF2は解放状態となる。一方、図9に破線の「○」及び矢印で示すように、回転電機MGが正方向に回転しつつ正方向のトルクTMを出力した場合には、入力部材Iが第一リングギヤRI1及び第二サンギヤS2に対して正方向に相対回転しようとして第二ワンウェイクラッチF2が係合状態となり、回転電機MG及び入力部材Iは第一リングギヤRI1及び第二サンギヤS2と一体回転するように駆動連結される。このとき、回転電機MG及び入力部材Iの回転速度は第一サンギヤS1の回転速度よりも高くなる(正側となる)ため、第一ワンウェイクラッチF1は解放状態となる。これらのワンウェイクラッチとしては、例えば、ローラ型やスプラグ型等の公知の各種形式のものを用いることができる。
後で詳しく説明するように、本実施形態では、車両3の前進時にはブレーキ装置Bが係合状態とされる。この状態で回転電機MGが負方向のトルクを出力して負方向に回転すると、第一ワンウェイクラッチF1が係合状態となり、回転電機MGの負方向のトルクが差動歯車装置DGにより反転されて正方向のトルクとして出力部材Oに伝達され、駆動輪W1が正方向(前進方向)に駆動される第一前進駆動モードとなる。また、この状態から回転電機MGが正方向のトルクを出力して正方向に回転すると、第二ワンウェイクラッチF2が係合状態となり、回転電機MGの正方向のトルクがそのまま正方向のトルクとして出力部材Oに伝達され、駆動輪W1が正方向(前進方向)に駆動される第二前進駆動モードとなる。本実施形態では、第一前進駆動モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比が、第二前進駆動モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比よりも大きく設定されている。従って、本実施形態でも上記第一の実施形態と同様に、第一前進駆動モードを低車速域で高い駆動力が要求される状況での使用に適した低速用の前進低速モードとし、第二前進駆動モードを高車速域で高い駆動力が要求されない状況での使用に適した高速用の前進高速モードとする。この車両用駆動装置1によれば、出力部材Oが正方向に回転している状態、すなわち車両3の前進状態において、回転電機MGの回転及びトルクの方向を反転させるだけで前進低速モードと前進高速モードの2つの前進駆動モードを切り替えることができる。
ところで、本実施形態に係る車両用駆動装置1も、上記第一の実施形態と同様に、回生モード及び後進モードを実現するためのクラッチ装置Cを備えている。そして、このクラッチ装置Cを係合状態とすることにより、第二ワンウェイクラッチF2の係合方向とは反対方向にも入力部材Iと第一リングギヤRI1及び第二サンギヤS2とを係合させることができる。これにより、回転電機MGに負方向のトルクを出力させ、駆動輪W1に負方向のトルクとして伝達することができる。また、この車両用駆動装置1は、上記第一の実施形態と同様に、後進モードを実現するためのブレーキ装置Bを備えている。そして、このブレーキ装置Bを解放状態として差動歯車装置DGの第一キャリヤCA1及び第二リングギヤRI2をケースCSから分離することができる。これにより、出力部材O及び駆動輪W1が負方向に回転することが許容され、車両3を後進させることが可能となる。なお、本実施形態の構成においても、ブレーキ装置Bが係合状態とされたままでは、出力部材O及び駆動輪W1も負方向に回転することが規制され、車両3が後進することができないことを利用し、いわゆるヒルホールド機能を、回転電機MGの出力を用いることなく容易に実現することができる。
2−2.車両用駆動装置の動作モード
次に、本実施形態に係る車両用駆動装置1により実現可能な動作モードについて説明する。図9及び図10は、車両用駆動装置1が備える差動歯車装置DGの速度線図を示しており、図9は前進低速モード及び前進高速モードでの速度線図、図10は回生モード及び後進モードでの速度線図をそれぞれ示している。これらの速度線図の記述方法は図5及び図6と同様である。但し、図9の下部には、差動歯車装置DGを構成する遊星歯車機構の歯数比λではなく、第一の変速比の逆数λ1及び第二の変速比の逆数λ2を示している。本実施形態に係る車両用駆動装置1も、上記第一の実施形態と同様に、「前進低速」、「前進高速」、「回生」、及び「後進」の4つのモードを切り替え可能に備えている。なお、本実施形態に係る車両用駆動装置1の各モードでの各係合要素F1、F2、C、Bの係合状態、及び回転電機MGの動作状態としてのトルクTM及び回転速度RMの向きを示す動作表は、上記第一の実施形態に係る図4と同じであるため、以下の説明では適宜図4を用いる。以下、各動作モードでの車両用駆動装置1の動作状態について詳細に説明する。
2−3.前進低速モード
前進低速モードは、回転電機MGが負方向に回転(MG回転速度RM<0)しつつ負方向のトルクを出力(MGトルクTM<0)することにより第一ワンウェイクラッチF1が係合して入力部材Iと第一サンギヤS1とが駆動連結され、回転電機MGのトルクが正方向に回転する出力部材Oに正方向のトルクとして伝達されるモードである。この前進低速モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比は、前進高速モードにおける変速比よりも大きく設定されており、ここでは、回転電機MGの回転が前進高速モードよりも大きい変速比で減速されて出力部材Oに伝達される。よって、この前進低速モードでは、差動歯車装置DGは、回転電機MGの回転速度(MG回転速度RM)を減速して出力部材Oに伝達すると共に回転電機MGの出力トルク(MGトルクTM)を増幅して出力部材Oに伝達するための減速装置として機能する。更に、差動歯車装置DGは、回転電機MGの回転及びトルクの方向を反転させて出力部材Oに伝達する回転方向反転装置としても機能する。また、この前進低速モードでは、回転電機MGは、モータとして機能する。
図4及び図9に示すように、前進低速モードでは、ブレーキ装置Bは係合状態とされ、MG回転速度RMは負(RM<0)、MGトルクTMは負(TM<0)とされる。MGトルクTMが負となることにより、MG回転速度RMは下降し、第一サンギヤS1の回転速度と一致してからも更に負方向に下降しようとする。これにより、入力部材Iが第一サンギヤS1に対して負方向に相対回転しようとし、第一ワンウェイクラッチF1が係合状態となる。図9には、この前進低速モードでのMG回転速度RMを「RMA」として示している。このとき、第一リングギヤRI1及び第二サンギヤS2の回転速度はMG回転速度RM(RMA)よりも高い(正側にある)。すなわち、入力部材Iは第一リングギヤRI1及び第二サンギヤS2に対して負方向に相対回転する状態となっており、第二ワンウェイクラッチF2は解放状態となる。従って、前進低速モードでは、回転電機MG及び入力部材Iは、第一ワンウェイクラッチF1を介して第一サンギヤS1と一体回転するように駆動連結された状態となる。
上記のとおり、差動歯車装置DGの4つの回転要素の回転速度の順は、第一サンギヤS1、第一キャリヤCA1及び第二リングギヤRI2、第二キャリヤCA2、第一リングギヤRI1及び第二サンギヤS2の順となっている。そして、この前進低速モードでは、第一サンギヤS1に回転電機MG及び入力部材Iが一体回転するように駆動連結され、第一キャリヤCA1及び第二リングギヤRI2がブレーキ装置BによりケースCSに固定され、第二キャリヤCA2に出力部材Oが一体回転するように駆動連結される。この際、第一リングギヤRI1及び第二サンギヤS2は何にも連結されず自由に回転可能な状態となる。従って、回転電機MGの回転及びトルクの向きが反転されて出力部材Oに伝達される。上記のとおり、第一サンギヤS1の回転が第二キャリヤCA2及び出力部材Oに伝達される際の第一の変速比「1/λ1」は「1」より大きく設定されている(1/λ1>1、λ1<1)。従って、前進低速モードでは、回転電機MGの回転速度RM(RMA)が差動歯車装置DGにより減速されると共にトルクTAが増幅されて出力部材Oに伝達される。具体的には、前進低速モードでは、MG回転速度RMは、λ1倍に減速されて出力部材Oに伝達される。従って、MGトルクTMは、1/λ1倍に増幅されて出力部材Oに伝達される。この前進低速モードでの回転電機MGから出力部材Oまでの変速比は「1/λ1」である。この前進低速モードの変速比「1/λ1」は、後述する前進高速モードの変速比「1/λ2」よりも大きく設定されている。
以上に説明したように、前進低速モードでは、MG回転速度RM(RMA)を減速することによりMGトルクTMを増幅して出力部材Oに伝達することができる。また、前進低速モードの変速比は前進高速モードの変速比よりも大きいため、前進低速モードでは、後述する前進高速モードに比べて、MG回転速度RM(RMA)を大きく減速すると共にMGトルクTMを大きく増幅して出力部材Oに伝達することができる。従って、この前進低速モードは、低車速域で高い駆動力が要求される状況での使用に適したモードとなっている。また、このような前進低速モードを備えることにより、車両用駆動装置1は、駆動輪W1に伝達可能なトルクの大きさに対して回転電機MGを小型化することが可能となっている。
2−4.前進高速モード
前進高速モードは、回転電機MGが正方向に回転(MG回転速度RM>0)しつつ正方向のトルクを出力(MGトルクTM>0)することにより第二ワンウェイクラッチF2が係合して入力部材Iと第一リングギヤRI1及び第二サンギヤS2とが駆動連結され、回転電機MGのトルクが正方向に回転する出力部材Oに正方向のトルクとして伝達されるモードである。この前進高速モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比は、前進低速モードにおける変速比よりも小さく設定されており、ここでは、回転電機MGの回転が前進低速モードよりも小さい変速比で減速されて出力部材Oに伝達される。よって、この前進高速モードでも、上述した前進低速モードと同様に、差動歯車装置DGは、回転電機MGの回転速度(MG回転速度RM)を減速して出力部材Oに伝達すると共に回転電機MGの出力トルク(MGトルクTM)を増幅して出力部材Oに伝達するための減速装置として機能する。また、この前進高速モードでも、回転電機MGは、モータとして機能する。
図4及び図9に示すように、前進高速モードでは、ブレーキ装置Bは係合状態とされ、MG回転速度RMは正(RM>0)、MGトルクTMは正(TM>0)とされる。MGトルクTMが正となることにより、MG回転速度RMは上昇し、第一リングギヤRI1及び第二サンギヤS2の回転速度と一致してからも更に正方向に上昇しようとする。これにより、入力部材Iが第一リングギヤRI1及び第二サンギヤS2に対して正方向に相対回転しようとし、第二ワンウェイクラッチF2が係合状態となる。図9には、この前進高速モードでのMG回転速度RMを「RMB」として示している。このとき、第一サンギヤS1の回転速度はMG回転速度RM(RMB)よりも低い(負側にある)。すなわち、入力部材Iは第一サンギヤS1に対して正方向に相対回転する状態となっており、第一ワンウェイクラッチF1は解放状態となる。従って、前進高速モードでは、図9に破線「○」で示すように、回転電機MG及び入力部材Iは、第二ワンウェイクラッチF2を介して第一リングギヤRI1及び第二サンギヤS2と一体回転するように駆動連結された状態となる。
上記のとおり、差動歯車装置DGの4つの回転要素の回転速度の順は、第一サンギヤS1、第一キャリヤCA1及び第二リングギヤRI2、第二キャリヤCA2、第一リングギヤRI1及び第二サンギヤS2の順となっている。そして、この前進高速モードでは、第一キャリヤCA1及び第二リングギヤRI2がブレーキ装置BによりケースCSに固定され、第二キャリヤCA2に出力部材Oが一体回転するように駆動連結され、第一リングギヤRI1及び第二サンギヤS2に回転電機MG及び入力部材Iが一体回転するように駆動連結される。この際、第一サンギヤS1は何にも連結されず自由に回転可能な状態となる。従って、回転電機MGの回転及びトルクの向きは反転されることなくそのままの向きで出力部材Oに伝達される。上記のとおり、第一リングギヤRI1及び第二サンギヤS2の回転が第二キャリヤCA2及び出力部材Oに伝達される際の第二の変速比「1/λ2」は「1」より大きく設定されている(1/λ2>1、λ2<1)。従って、前進高速モードでは、回転電機MGの回転速度RM(RMB)が差動歯車装置DGにより減速されると共にトルクTAが増幅されて出力部材Oに伝達される。具体的には、前進高速モードでは、MG回転速度RMは、λ2倍に減速されて出力部材Oに伝達される。従って、MGトルクTMは、1/λ2倍に増幅されて出力部材Oに伝達される。この前進高速モードでの回転電機MGから出力部材Oまでの変速比は「1/λ2」である。この前進高速モードの変速比「1/λ2」は、上述した前進低速モードの変速比「1/λ1」よりも小さく設定されている。
以上に説明したように、前進高速モードでは、MG回転速度RM(RMB)は前進低速モードよりも小さい変速比で減速されて出力部材Oに伝達され、よってMGトルクTMも前進低速モードより小さい程度で増幅されて出力部材Oに伝達される。すなわち、回転電機MGから駆動輪W1までの駆動伝達経路においてMG回転速度RM(RMB)は減速されるが、その変速比は上述した前進低速モードよりも小さくなっている。従って、この前進高速モードは、高車速域で高い駆動力が要求されない状況での使用に適したモードとなっている。そして、この車両用駆動装置1は、上述したように、MG回転速度RM(RMA)を大きく減速して出力部材Oに伝達する前進低速モードと、MG回転速度RM(RMB)を前進低速モードよりも小さい程度で減速して出力部材Oに伝達する前進高速モードとを切り替え可能に備えることにより、車速及び要求される駆動力に応じてモードを切り替え、必要に応じて大きいトルクを駆動輪W1に伝達可能であると共に広い車速域でMGトルクTMを駆動輪W1に伝達して車両3を適切に走行させることが可能となっている。
図4及び図9に示すように、前進低速モードから前進高速モードへの切り替えは、ブレーキ装置Bを係合状態としたまま、MGトルクTMの方向を負方向から正方向に反転させ、MG回転速度RMを負から正に反転させることにより行うことができる。すなわち、前進低速モードで走行中に、MGトルクTMの方向を反転させると、図9に示すように、差動歯車装置DGの各回転要素の回転速度はほぼ一定のまま、MG回転速度RMが第一サンギヤS1と同じ回転速度RMAから上昇し、一旦回転速度が「0」となってから回転方向が反転して第一リングギヤRI1及び第二サンギヤS2と同じ回転速度RMBとなる。これにより、第一ワンウェイクラッチF1の係合が解除されて第二ワンウェイクラッチF2が係合状態となり、回転電機MGのロータRoが第一リングギヤRI1及び第二サンギヤS2と一体回転するように駆動連結される。同様に、前進高速モードから前進低速モードへの切り替えは、ブレーキ装置Bを係合状態としたまま、MGトルクTMの方向を正方向から負方向に反転させることにより行うことができる。従って、この車両用駆動装置1によれば、回転電機MGが出力するMGトルクTMを制御するだけで、前進低速モードと前進高速モードとの切り替えを自在に行うことができる。また、この際には、回転電機MGのトルク及び回転速度(回転方向)の変化以外には、第一ワンウェイクラッチF1又は第二ワンウェイクラッチF2の係合又は解放が行われるだけであるので、摩擦係合式のクラッチやブレーキ等を用いて差回転を吸収しつつモード切り替えを行う構成に比べて、モード切り替えに際して出力部材O及び駆動輪W1に伝達されるショックを低減することが可能となっている。
また、本実施形態では、上記のような走行中のモード切替に際して、第一ワンウェイクラッチF1又は第二ワンウェイクラッチF2が係合する瞬間に、MGトルクTMを小さくする制御、及び第一ワンウェイクラッチF1又は第二ワンウェイクラッチF2を介して係合される回転要素とMG回転速度RMとの差を小さくする制御の一方又は双方を行う。これにより、モード切り替えに際して出力部材O及び駆動輪W1に伝達されるショックを更に低減することができる。
2−5.回生モード
回生モードは、クラッチ装置Cを係合状態とすると共に、回転電機MGが回転方向と反対方向のトルクを出力することにより、クラッチ装置Cを介して、回転電機MGのトルクが正方向に回転する出力部材Oに負方向のトルクとして伝達されるモードである。本実施形態では、クラッチ装置Cは入力部材Iと第一リングギヤRI1及び第二サンギヤS2とを選択的に係合するように設けられている。従って、この回生モードでは、回転電機MGが正方向に回転(MG回転速度RM>0)しつつ負方向のトルクを出力(MGトルクTM<0)することにより、正方向に回転する出力部材Oに負方向のトルクを伝達する。このように、回生モードでは、クラッチ装置Cを係合状態とすることにより、第二ワンウェイクラッチF2の係合方向とは無関係に入力部材Iと第一リングギヤRI1及び第二サンギヤS2とを係合させることができる。従って、回転電機MGが正方向に回転している状態で、第二ワンウェイクラッチF2の係合方向に対して反対方向となる負方向のMGトルクTMを出力させた場合にも、当該MGトルクTMを駆動輪W1に伝達することが可能となる。従って、回転電機MGに発電を行わせて駆動輪W1に減速方向(負方向)のトルクを伝達する回生制動を実行することができる。
この回生モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比は、上述した前進高速モードと同じく、前進低速モードにおける変速比よりも小さく設定されており、ここでは、回転電機MGの回転が前進低速モードよりも小さい変速比で減速されて出力部材Oに伝達される。よって、この回生モードでも、差動歯車装置DGは、回転電機MGの回転速度(MG回転速度RM)を減速して出力部材Oに伝達すると共に回転電機MGの出力トルク(MGトルクTM)を増幅して出力部材Oに伝達するための減速装置として機能する。また、この回生モードでは、回転電機MGは、ジェネレータとして機能する。
図4及び図10に示すように、回生モードでは、クラッチ装置C及びブレーキ装置Bは係合状態とされ、MG回転速度RMは正(RM>0)、MGトルクTMは負(TM<0)とされる。この際、クラッチ装置Cが係合状態とされることにより、図10に直線L2として示すように、回転電機MG及び入力部材Iは、第一リングギヤRI1及び第二サンギヤS2と一体回転するように駆動連結され、負方向のMGトルクTMが正方向に回転する出力部材Oに伝達される。これにより、当該出力部材Oを介して正方向(前進方向)に回転する駆動輪W1に負方向(減速方向)のトルクが伝達される。この回生モードでは、上述した前進高速モードと同様に、回転電機MGの回転及びトルクの向きは反転されることなくそのままの向きで出力部材Oに伝達される。また、回生モードでは、回転電機MGの回転速度RMが差動歯車装置DGにより減速されると共にトルクTAが増幅されて出力部材Oに伝達される。この回生モードの変速比は、前進高速モードと同じ(1/λ2)であり、上述した前進低速モードの変速比「1/λ1」よりも小さく設定されている。
以上に説明したように、回生モードでは、MG回転速度RMは前進低速モードよりも小さい変速比で減速されて出力部材Oに伝達され、よってMGトルクTMも前進低速モードより小さい程度で増幅されて出力部材Oに伝達される。すなわち、回転電機MGから駆動輪W1までの駆動伝達経路においてMG回転速度RM(RMB)は減速されるが、その変速比は上述した前進低速モードよりも小さくなっている。従って、この回生モードでは、回転電機MGの回転速度RMの絶対値を、前進低速モードにおける回転電機MGの回転速度RM(RMA)の絶対値よりも低く抑えることができる。これにより、上記第一の実施形態と同様に、回生制動を行うことが可能な車速域を広く確保することができ、高車速域においても、回転電機MGの過回転を抑制しつつ回生制動を行うことが可能となっている。なお、前進高速モードから回生モードへの切り替え、及び前進低速モードから回生モードへの切り替えは、上記第一の実施形態と同様に行うことができる。
2−6.後進モード
後進モードは、ブレーキ装置Bを解放状態としてクラッチ装置Cを係合状態とすると共に、回転電機MGが負方向のトルクを出力(MGトルクTM<0)することにより、第一ワンウェイクラッチF1が係合して差動歯車装置DGの全ての回転要素が一体回転する状態となり、回転電機MGのトルクが負方向に回転する出力部材Oに負方向のトルクとして伝達されるモードである。この後進モードでは、回転電機MGはモータとして機能する。この際、差動歯車装置DGは4つの回転要素の全てが一体的に同速で回転する状態となり、回転電機MGの回転は同速(変速比=1)のまま出力部材Oに伝達される。このように、後進モードでは、クラッチ装置Cを係合状態とすることにより、第二ワンウェイクラッチF2の係合方向とは無関係に入力部材Iと第一リングギヤRI1及び第二サンギヤS2とを係合させることができる。従って、第二ワンウェイクラッチF2の係合方向に対して反対方向となる負方向のMGトルクTMを出力させた場合にも、当該MGトルクTMを第一リングギヤRI1及び第二サンギヤS2に伝達することができる。この際、回転電機MG及び入力部材Iが第一サンギヤS1に対して負方向に相対回転し、第一ワンウェイクラッチF1が係合して差動歯車装置DGの全ての回転要素が一体回転する状態となる。これにより、負方向のMG回転速度RM及び負方向のMGトルクTMを第二キャリヤCA2に駆動連結された出力部材O及び駆動輪W1に伝達し、駆動輪W1を後進方向(負方向)に回転させて車両3を後進させることができる。
図4及び図10に示すように、後進モードでは、ブレーキ装置Bは解放状態、クラッチ装置Cは係合状態とされ、MG回転速度RMは負(RM<0)、MGトルクTMは負(TM<0)とされる。クラッチ装置Cが係合状態となることにより、入力部材Iと第一リングギヤRI1及び第二サンギヤS2とは一体回転する状態となる。また、MGトルクTMが負となることにより、MG回転速度RMは下降し、入力部材Iが第一サンギヤS1に対して負方向に相対回転しようとするので、第一ワンウェイクラッチF1が係合状態となる。これにより、差動歯車装置DGの第一サンギヤS1並びに第一リングギヤRI1及び第二サンギヤS2が入力部材Iと一体回転するように駆動連結され、差動歯車装置DGの全ての回転要素が一体回転する状態となる。図10には、この後進モードでのMG回転速度RMを「RMC」として示している。なお、車両3の後進時には、出力部材Oには走行抵抗としてのトルクが正方向に作用し、このトルクは第二キャリヤCA2に正方向の走行トルクTOとして作用する。
上記のとおり、第一ワンウェイクラッチF1及び第二ワンウェイクラッチF2の作用により、入力部材Iは、第一サンギヤS1よりも負側であって第一リングギヤRI1及び第二サンギヤS2よりも正側の回転速度となることはできない。そのため、ブレーキ装置Bが係合状態とされたままでは、入力部材Iは負方向に回転することができず、出力部材O及び駆動輪W1も負方向に回転することが規制され、車両3が後進することができない。しかし、この後進モードでは、ブレーキ装置Bを解放状態として差動歯車装置DGの第一キャリヤCA1及び第二リングギヤRI2をケースCSから分離する。これにより、出力部材O及び駆動輪W1が負方向に回転することが許容され、車両3を後進させることが可能となる。そして、後進モードでは、回転電機MGに負方向のMGトルクTMを出力させることにより、全ての回転要素が一体回転する状態となった差動歯車装置DGを介して、MGトルクTM及びMG回転速度RMを出力部材O及び駆動輪W1に伝達して車両3を後進方向に駆動することができる。
3.その他の実施形態
(1)上記の各実施形態では、図2に示すように、左右2個の駆動輪W1をそれぞれ駆動する2個の車両用駆動装置1が車両3に搭載される構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。例えば図11に示すように、左右2個の駆動輪W1を1個の車両用駆動装置1により駆動する構成とすることも、本発明の好適な実施形態の一つである。この場合、車両用駆動装置1は、出力用差動歯車装置11及び駆動軸12を介して2個の駆動輪W1と駆動連結された構成とすると好適である。そして、車両用駆動装置1の回転電機MGのトルクは、出力用差動歯車装置11によって左右2個の駆動輪W1に分配され、駆動軸12を介して各駆動輪W1に伝達される。この場合においても、2つの駆動輪W1は、右後輪及び左後輪とし、或いは右前輪及び左前輪とすることができる。また、前後4つの車輪のそれぞれを駆動輪W1とし、それらを車両用駆動装置1により駆動する構成とすることも、本発明の好適な実施形態の一つである。この場合において、各駆動輪W1を別個の車両用駆動装置1により駆動する構成としてもよいし、複数(例えば2個又は4個)の駆動輪W1を共通の車両用駆動装置1により駆動する構成としてもよい。
(2)上記の実施形態では、車両3が、駆動装置として、回転電機MGを駆動力源とする車両用駆動装置1のみを備えた電動車両として構成される場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。例えば図12に示すように、車両3が、本発明に係る車両用駆動装置1に加えて、内燃機関を駆動力源として備えた駆動装置2を有するハイブリッド車両として構成されても好適である。ここで、駆動装置2は、例えば、駆動力源としてのエンジン21と、エンジン21の回転及びトルクを従動輪W2としての左右前輪に伝達するトランスアクスルユニット22とを備えた構成とすると好適である。ここで、エンジン21は、燃料の燃焼により駆動される内燃機関であり、例えば、ガソリンエンジンやディーゼルエンジン等が好適に用いられる。トランスアクスルユニット22は、エンジン21の出力回転を様々な変速比で変速する有段又は無段の変速装置や、当該変速装置の出力回転及び出力トルクを左右の前輪に分配する出力用差動歯車装置を備えている。駆動装置2が、駆動力源としてエンジン及び回転電機の2つを備えるハイブリッド駆動装置として構成されていることも、本発明の好適な実施形態の一つである。この場合におけるハイブリッド駆動方式は、パラレル方式、シリーズ方式、シリーズ・パラレル方式、遊星歯車機構を用いたスプリット方式等、各種方式を用いることができる。
(3)上記の各実施形態では、第一回転要素E1の回転が出力部材Oに伝達される際の変速比が、第三回転要素E3の回転が出力部材Oに伝達される際の変速比よりも大きく設定され、それにより、第一ワンウェイクラッチF1の係合状態で実現される第一前進駆動モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比が、第二ワンウェイクラッチF2の係合状態で実現される第二前進駆動モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比よりも大きく設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。従って、第一回転要素E1の回転が出力部材Oに伝達される際の変速比が、第三回転要素E3の回転が出力部材Oに伝達される際の変速比よりも小さく設定された構成とすることも、本発明の好適な実施形態の一つである。この場合、第一ワンウェイクラッチF1の係合状態で実現される第一前進駆動モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比は、第二ワンウェイクラッチF2の係合状態で実現される第二前進駆動モードにおいて回転電機MGの回転が出力部材Oに伝達される際の変速比よりも小さく設定されることになるので、第二前進駆動モードを低車速域で高い駆動力が要求される状況での使用に適した前進低速モードとし、第一前進駆動モードを高車速域で高い駆動力が要求されない状況での使用に適した前進高速モードとすると好適である。
(4)上記の各実施形態では、第一係合装置としてのクラッチ装置Cを入力部材Iと差動歯車装置DGの第三回転要素E3との間に設けた構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。例えば、入力部材Iと第三回転要素E3との間に設けたクラッチ装置Cを第一クラッチとし、更に入力部材Iと第一回転要素E1との間に第二クラッチ装置を設けた構成とすることも、本発明の好適な実施形態の一つである。このような構成とすれば、第一ワンウェイクラッチF1の係合状態で実現される第一前進駆動モードでの走行中、及び第二ワンウェイクラッチF2の係合状態で実現される第二前進駆動モードでの走行中のいずれの場合にも、他方の前進駆動モードを介することなく即座に回生モードに切り替えて回生制動を行うことが可能となる。また、クラッチ装置Cを、入力部材Iと第三回転要素E3との間に設けず、入力部材Iと第一回転要素E1との間にのみ設けた構成とすることも可能である。また、回生モードを実現することはできなくなるが、入力部材Iと第一回転要素E1又は第三回転要素E3との間にこのようなクラッチ装置Cを設けない構成とすることも可能である。
(5)上記の各実施形態では、差動歯車装置DGの第二回転要素E2を非回転部材としてのケースCSに対して選択的に固定又は分離するブレーキ装置Bを備える構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、このようなブレーキ装置Bを備えない構成とすることも、本発明の好適な実施形態の一つである。この場合、車両用駆動装置1の出力部材Oが負方向(後進方向)に回転することは規制される。そこで、車両3の後進時に駆動輪W1を後進方向に回転可能とするために、例えば、出力部材Oから駆動輪W1までの間の駆動伝達系等にクラッチ等の係合装置を設け、車両3が後進する際に当該係合装置を解放状態とする構成とすると好適である。この場合、本発明に係る車両用駆動装置1の他に、駆動輪W1を後進方向に駆動する駆動装置が必要となるが、このような駆動装置として、例えば、上述した内燃機関を駆動力源として備えた駆動装置2(図12参照)を用いることもできる。
(6)上記第一の実施形態では、前進高速モード及び回生モードにおいてブレーキ装置Bが係合状態とされる構成について説明した。しかし、上記第一の実施形態に係る車両用駆動装置1においては、前進高速モード及び回生モードでは、入力部材Iは差動歯車装置DGを実質的に介さずに第一出力部材O1と一体回転するように駆動連結されるため、ブレーキ装置Bを解放状態としても同様に前進高速モード及び回生モードを実現することができる。従って、第一の実施形態に係る車両用駆動装置1の構成において、前進高速モード及び回生モードに際してブレーキ装置Bを解放状態とすることも、本発明の好適な実施形態の一つである。
(7)上記第一の実施形態では、差動歯車装置DGが3つの回転要素を有する構成を例として説明し、上記第二の実施形態では、差動歯車装置DGが4つの回転要素を有する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、差動歯車装置DGが5つ以上の回転要素を有する構成とすることも、本発明の好適な実施形態の一つである。この場合においても、差動歯車装置DGの5つ以上の回転要素の中から選択した3つの回転要素を回転速度の順に第一回転要素E1、第二回転要素E2、第三回転要素E3として各部材を駆動連結する。また、中間回転要素EMを設定する場合には、回転速度の順で第二回転要素E2と第三回転要素E3との間の回転要素を当該中間回転要素EMとして出力部材Oを駆動連結する。
(8)上記の各実施形態では、車両用駆動装置1が、前進低速モード、前進高速モード、回生モード、及び後進モードの4つのモードを切り替え可能に備える場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、車両用駆動装置1が、これらの中の一部のモードのみを切り替え可能に備える構成とすることも、本発明の好適な実施形態の一つである。例えば、車両用駆動装置1が、前進低速モード及び前進高速モードの2つのモードのみを切り替え可能に備える構成、前進低速モード、前進高速モード、及び後進モードの3つのモードを切り替え可能に備える構成等としても好適である。
(9)上記の各実施形態では、クラッチ装置Cが電磁クラッチ装置を用いて構成される場合を例として説明した。しかし、発明の実施形態はこれに限定されるものではなく、クラッチ装置Cを他の機構により構成することも可能である。例えば、油圧クラッチ等の油圧式係合装置や、噛み合い式係合装置を用いてクラッチ装置Cを構成することも、本発明の好適な実施形態の一つである。ここで、噛み合い式係合装置とは、2つの回転要素に設けられた噛合部同士が噛み合うことにより係合状態となる装置であり、上述した各実施形態に係るブレーキ装置Bと同様に、例えば、自動変速装置のパーキングロック機構に類似の機構やドグクラッチ等が好適に用いられる。
(10)上記の各実施形態では、ブレーキ装置Bが噛み合い式係合装置を用いて構成される場合を例として説明した。しかし、発明の実施形態はこれに限定されるものではなく、ブレーキ装置Bを他の機構により構成することも可能である。例えば、油圧クラッチ等の油圧式係合装置や、電磁クラッチ等の電磁式係合装置を用いてブレーキ装置Bを構成することも、本発明の好適な実施形態の一つである。
(11)上記の各実施形態において説明した差動歯車装置DGの構成は単なる例示であり、上記以外の構成によっても本発明の構成を実現することが可能な全ての構成が、本発明の範囲に含まれる。
本発明は、回転電機を駆動力源として備える車両用駆動装置に好適に利用可能である。
1:車両用駆動装置
3:車両
W1:駆動輪
MG:回転電機
RO:ロータ
I:入力部材
O:出力部材
DG:差動歯車装置
E1:第一回転要素
E2:第二回転要素
E3:第三回転要素
EM:中間回転要素
F1:第一ワンウェイクラッチ
F2:第二ワンウェイクラッチ
CS:ケース(非回転部材)
C:クラッチ装置(第一係合装置)
B:ブレーキ装置(第二係合装置)

Claims (11)

  1. 回転電機と、当該回転電機のロータに駆動連結される入力部材と、駆動輪に駆動連結される出力部材と、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素の3つの回転要素を有する差動歯車装置と、第一ワンウェイクラッチと、第二ワンウェイクラッチと、を備え、
    前記入力部材は、前記第一ワンウェイクラッチを介して前記第一回転要素に選択的に駆動連結されると共に、前記第二ワンウェイクラッチを介して前記第三回転要素に選択的に駆動連結され、前記第二回転要素は非回転部材に選択的に固定され、
    前記出力部材は、前記第三回転要素、又は前記差動歯車装置の他の回転要素であって回転速度の順で前記第二回転要素と前記第三回転要素との間に位置する中間回転要素に駆動連結され、
    前記差動歯車装置は、前記第一回転要素の回転が前記出力部材に伝達される際の変速比と前記第三回転要素の回転が前記出力部材に伝達される際の変速比とが異なるように設定され、
    前記第一ワンウェイクラッチは、前記入力部材が前記第一回転要素に対して負方向に相対回転することを制限すると共に正方向に相対回転することを許容し、前記第二ワンウェイクラッチは、前記入力部材が前記第三回転要素に対して正方向に相対回転することを制限すると共に負方向に相対回転することを許容するように設けられており、
    前記第二ワンウェイクラッチとは別に、前記入力部材と前記第三回転要素とを選択的に係合又は分離する第一係合装置と、
    前記第二回転要素を非回転部材に対して選択的に固定又は分離する第二係合装置と、を更に備える車両用駆動装置。
  2. 前記第一ワンウェイクラッチとは別に、前記入力部材と前記第一回転要素とを選択的に係合又は分離する第係合装置を更に備える請求項1に記載の車両用駆動装置。
  3. 前記回転電機が負方向に回転しつつ負方向のトルクを出力することにより前記第一ワンウェイクラッチが係合して前記入力部材と前記第一回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第一前進駆動モードと、
    前記回転電機が正方向に回転しつつ正方向のトルクを出力することにより前記第二ワンウェイクラッチが係合して前記入力部材と前記第三回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第二前進駆動モードと、を切り替え可能に備える請求項1又は2に記載の車両用駆動装置。
  4. 前記第一係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第一係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備える請求項1から3のいずれか一項に記載の車両用駆動装置。
  5. 前記第三係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第三係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備える請求項2に記載の車両用駆動装置。
  6. 前記第二係合装置を解放状態として前記第一係合装置を係合状態とすると共に、前記回転電機が負方向のトルクを出力することにより、前記第一ワンウェイクラッチが係合して前記差動歯車装置の全ての回転要素が一体回転する状態となり、前記回転電機のトルクが負方向に回転する前記出力部材に負方向のトルクとして伝達される後進モードを実行可能に備える請求項1から5のいずれか一項に記載の車両用駆動装置。
  7. 前記出力部材は前記差動歯車装置の前記第三回転要素に駆動連結され、前記第一回転要素の回転が減速されて前記出力部材に伝達されると共に、前記第三回転要素の回転が同速のまま前記出力部材に伝達される請求項1から6のいずれか一項に記載の車両用駆動装置。
  8. 前記差動歯車装置は、前記第一回転要素、前記第二回転要素、及び前記第三回転要素に加えてもう一つの他の回転要素として前記中間回転要素を有し、前記出力部材は前記中間回転要素に駆動連結され、前記第一回転要素の回転が第一の変速比で変速されて前記出力部材に伝達されると共に、前記第三回転要素の回転が前記第一の変速比よりも小さい第二の変速比で変速されて前記出力部材に伝達される請求項1から6のいずれか一項に記載の車両用駆動装置。
  9. 回転電機と、当該回転電機のロータに駆動連結される入力部材と、駆動輪に駆動連結される出力部材と、回転速度の順に少なくとも第一回転要素、第二回転要素、及び第三回転要素の3つの回転要素を有する差動歯車装置と、第一ワンウェイクラッチと、第二ワンウェイクラッチと、を備え、
    前記入力部材は、前記第一ワンウェイクラッチを介して前記第一回転要素に選択的に駆動連結されると共に、前記第二ワンウェイクラッチを介して前記第三回転要素に選択的に駆動連結され、前記第二回転要素は非回転部材に選択的に固定され、
    前記回転電機が負方向に回転しつつ負方向のトルクを出力することにより前記第一ワンウェイクラッチが係合して前記入力部材と前記第一回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第一前進駆動モードと、前記回転電機が正方向に回転しつつ正方向のトルクを出力することにより前記第二ワンウェイクラッチが係合して前記入力部材と前記第三回転要素とが駆動連結され、前記回転電機のトルクが正方向に回転する前記出力部材に正方向のトルクとして伝達される第二前進駆動モードと、を切り替え可能に備え、
    前記第一前進駆動モードにおいて前記回転電機の回転が前記出力部材に伝達される際の変速比と、前記第二前進駆動モードにおいて前記回転電機の回転が前記出力部材に伝達される際の変速比とが異なるように設定されており、
    前記第二ワンウェイクラッチとは別に前記入力部材と前記第三回転要素とを選択的に係合又は分離する第一係合装置と、前記第二回転要素を非回転部材に対して選択的に固定又は分離する第二係合装置と、を更に備え、
    前記第二係合装置を解放状態として前記第一係合装置を係合状態とすると共に、前記回転電機が負方向のトルクを出力することにより、前記第一ワンウェイクラッチが係合して前記差動歯車装置の全ての回転要素が一体回転する状態となり、前記回転電機のトルクが負方向に回転する前記出力部材に負方向のトルクとして伝達される後進モードを実行可能に備える車両用駆動装置。
  10. 記第一係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第一係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備える請求項9に記載の車両用駆動装置。
  11. 前記第一ワンウェイクラッチとは別に、前記入力部材と前記第一回転要素とを選択的に係合又は分離する第三係合装置を更に備え、
    前記第三係合装置を係合状態とすると共に、前記回転電機が回転方向と反対方向のトルクを出力することにより、前記第三係合装置を介して、前記回転電機のトルクが正方向に回転する前記出力部材に負方向のトルクとして伝達される回生モードを実行可能に備える請求項9又は10に記載の車両用駆動装置。
JP2009185969A 2009-08-10 2009-08-10 車両用駆動装置 Expired - Fee Related JP5077709B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185969A JP5077709B2 (ja) 2009-08-10 2009-08-10 車両用駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185969A JP5077709B2 (ja) 2009-08-10 2009-08-10 車両用駆動装置

Publications (2)

Publication Number Publication Date
JP2011038585A JP2011038585A (ja) 2011-02-24
JP5077709B2 true JP5077709B2 (ja) 2012-11-21

Family

ID=43766557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185969A Expired - Fee Related JP5077709B2 (ja) 2009-08-10 2009-08-10 車両用駆動装置

Country Status (1)

Country Link
JP (1) JP5077709B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667122A4 (en) * 2017-11-17 2020-07-08 Aisin Aw Co., Ltd. VEHICLE DRIVE APPARATUS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622050B2 (ja) * 2011-04-18 2014-11-12 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP2014061726A (ja) * 2012-09-20 2014-04-10 Hino Motors Ltd ハイブリッド車両
DE102017214160A1 (de) * 2017-08-14 2019-02-14 Robert Bosch Gmbh Getriebeanordnung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831473U (ja) * 1971-08-23 1973-04-17
JPS53150383U (ja) * 1977-05-02 1978-11-27
JPS58654A (ja) * 1981-06-23 1983-01-05 Honda Motor Co Ltd 車両用変速機
JPH02104326A (ja) * 1988-10-14 1990-04-17 Kumaki Nobuyoshi 回転ブラシ装置の減速装置
JP3291871B2 (ja) * 1993-11-10 2002-06-17 株式会社エクォス・リサーチ ハイブリッド型車両
JP3870505B2 (ja) * 1997-08-29 2007-01-17 アイシン・エィ・ダブリュ株式会社 車両用ハイブリッド駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667122A4 (en) * 2017-11-17 2020-07-08 Aisin Aw Co., Ltd. VEHICLE DRIVE APPARATUS

Also Published As

Publication number Publication date
JP2011038585A (ja) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5051476B2 (ja) 車両用駆動装置
JP4257800B1 (ja) ハイブリッド駆動装置
JP4158122B2 (ja) ハイブリッド駆動装置
EP2810839B1 (en) Drive apparatus for hybrid vehicle
JP6666449B2 (ja) 動力装置
US20180022203A1 (en) Hybrid vehicle
JP2010076680A (ja) ハイブリッド駆動装置
JP5884897B2 (ja) ハイブリッド車両の駆動制御装置
WO2013145100A1 (ja) ハイブリッド車両の駆動制御装置
JP6743617B2 (ja) 動力伝達装置
JP4993200B2 (ja) ハイブリッド駆動装置
JP2010076679A (ja) ハイブリッド駆動装置
JP2010125900A (ja) ハイブリッド駆動装置
JP4906665B2 (ja) ハイブリッド駆動装置
JP2008256075A (ja) 動力伝達装置
JP5077709B2 (ja) 車両用駆動装置
JP2007314033A (ja) ハイブリッド駆動装置
JP5190701B2 (ja) ハイブリッド駆動装置
JP2010234830A (ja) ハイブリッド駆動装置
JP2015182609A (ja) ハイブリッド車両用駆動装置
JP7268799B2 (ja) 車両用駆動装置
JP7371573B2 (ja) 車両用駆動装置
JP2022073265A (ja) 車両用駆動装置
JP2017206213A (ja) 車両用駆動装置
JP2011105118A (ja) ハイブリッド駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees