JP5077489B2 - Power storage device and railway vehicle - Google Patents

Power storage device and railway vehicle Download PDF

Info

Publication number
JP5077489B2
JP5077489B2 JP2011515833A JP2011515833A JP5077489B2 JP 5077489 B2 JP5077489 B2 JP 5077489B2 JP 2011515833 A JP2011515833 A JP 2011515833A JP 2011515833 A JP2011515833 A JP 2011515833A JP 5077489 B2 JP5077489 B2 JP 5077489B2
Authority
JP
Japan
Prior art keywords
series
storage device
explosion
power storage
series unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011515833A
Other languages
Japanese (ja)
Other versions
JPWO2010137182A1 (en
Inventor
誠司 石田
裕 有田
尊善 西野
豊田  瑛一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2010137182A1 publication Critical patent/JPWO2010137182A1/en
Application granted granted Critical
Publication of JP5077489B2 publication Critical patent/JP5077489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/425Multimode batteries, batteries with "reserve cells"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、鉄道車両に搭載する蓄電装置に関する。   The present invention relates to a power storage device mounted on a railway vehicle.

鉄道車両等を制動するときに、運動エネルギーを電動機で電気エネルギーに変換し蓄電装置に充電するハイブリッドシステムや、発電電力の大きい風力発電等が電力系統の安定性に与える影響を抑制するように蓄電装置の充放電させる装置など、大容量の蓄電装置の開発が進められている。
こうした蓄電装置には、リチウムイオン二次電池のような密閉構造のセルが用いられている。こうした密閉構造のセルでは、システムの誤動作等で過充電状態に陥ると、電解液の分解でガスが発生し電池内圧が極端に上昇することがあるため、防爆機構を有するものがある。こうした防爆機構を有するセルでは、セル内圧が上昇すると、セル内部の電流経路が防爆機構により破断して電流が遮断され、さらに内圧が上昇すると防爆機構によりセル内のガスが放出されて、セル内圧が低減する。
こうした電池を用いて、大容量の蓄電装置を実現するためには、多数のセルを直列に接続して高電圧化し、さらに並列接続する必要がある。このような蓄電装置としては、特開平10−322915号公報に記載のものがある。
When braking a railway vehicle, etc., it stores electricity so as to suppress the influence of the hybrid system that converts kinetic energy into electrical energy by an electric motor and charges the power storage device, and wind power generation with large generated power on the stability of the power system. Development of a large-capacity power storage device such as a device for charging and discharging the device is underway.
In such a power storage device, a sealed cell such as a lithium ion secondary battery is used. Some cells having such an airtight structure have an explosion-proof mechanism because when an overcharged state occurs due to a malfunction of the system or the like, gas is generated due to decomposition of the electrolytic solution and the internal pressure of the battery may extremely increase. In a cell having such an explosion-proof mechanism, when the cell internal pressure rises, the current path inside the cell is broken by the explosion-proof mechanism and the current is cut off, and when the internal pressure rises further, the gas in the cell is released by the explosion-proof mechanism, and the cell internal pressure Is reduced.
In order to realize a large-capacity power storage device using such a battery, it is necessary to increase the voltage by connecting a large number of cells in series and to connect them in parallel. As such a power storage device, there is one described in JP-A-10-322915.

特開平10−322915号公報Japanese Patent Laid-Open No. 10-322915

多数のセルを直列に接続した場合、前述した防爆機構が動作し電流経路が破断しても電流が遮断できない場合がある。
第2図に示す回路例を用いて、課題を具体的に説明する。第2図において、11a〜11fは防爆弁、12a〜12fは正極,負極,セパレータなどで構成されたセル要素、13a〜13fは防爆弁とセル要素を含むセル、14はリアクトル、15aと15bはスイッチング素子、16aと16bはダイオード、17aと17bは端子、18は昇降圧チョッパである。リアクトル14,スイッチング素子15a,15b、及びダイオード16a,16bは昇降圧チョッパ18を構成し、スイッチング素子15aと15bを交互にオンすることにより、端子17a,17bとセル13a〜13fの直列回路の電力を変換し、セル13a〜13fに流れる電流を制御する。
リアクトル14に、セル13aからスイッチング素子15bに向かう電流が流れており、スイッチング素子15bが導通状態にあるとき、防爆弁11dがセル13dの内圧上昇に開放した場合を考えると、防爆弁11dには、セル13a〜13fの電圧総和と、回路の開放に伴う電流変化によりリアクトル14に発生する逆起電力が印加される。第2図に示す回路では、セル数が6個であるが、大容量高電圧の蓄電装置の場合には、セル数が数百個になるため、防爆弁には高電圧が印加されることになり、防爆弁の絶縁破壊に伴うアークが発生し、発火する可能性がある。よって、従来、蓄電装置の電圧を、セルの防爆弁で遮断できる(絶縁可能な)電圧よりも大きくすることができなかった。つまり、セルの防爆弁の絶縁性能を超えて、直列接続されるセル数を増やすことはできなかった。
When a large number of cells are connected in series, the current may not be interrupted even if the explosion-proof mechanism described above operates and the current path is broken.
The problem will be specifically described with reference to the circuit example shown in FIG. In FIG. 2, 11a to 11f are explosion-proof valves, 12a to 12f are cell elements composed of positive electrodes, negative electrodes and separators, 13a to 13f are cells including explosion-proof valves and cell elements, 14 is a reactor, 15a and 15b are Switching elements, 16a and 16b are diodes, 17a and 17b are terminals, and 18 is a step-up / down chopper. The reactor 14, the switching elements 15a and 15b, and the diodes 16a and 16b constitute a step-up / step-down chopper 18, and the switching elements 15a and 15b are alternately turned on, whereby the power of the series circuit of the terminals 17a and 17b and the cells 13a to 13f. And the current flowing through the cells 13a to 13f is controlled.
Considering the case where the current flowing from the cell 13a to the switching element 15b flows through the reactor 14 and the explosion-proof valve 11d is opened to increase the internal pressure of the cell 13d when the switching element 15b is in a conducting state, The total voltage of the cells 13a to 13f and the back electromotive force generated in the reactor 14 due to the current change accompanying the opening of the circuit are applied. In the circuit shown in FIG. 2, the number of cells is six. However, in the case of a large-capacity and high-voltage power storage device, the number of cells is several hundred, so that a high voltage is applied to the explosion-proof valve. Therefore, there is a possibility that an arc is generated due to the insulation breakdown of the explosion-proof valve, and it is ignited. Therefore, conventionally, the voltage of the power storage device cannot be made larger than the voltage that can be shut off (insulated) by the explosion-proof valve of the cell. That is, the number of cells connected in series could not be increased beyond the insulation performance of the explosion-proof valve of the cell.

本発明の目的は、防爆弁の耐圧性能によらず高電圧な蓄電装置を構成することである。
上記課題の第一の解決手段は、内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備え、負荷へ電力を供給する蓄電装置において、前記直列ユニットの電圧は前記防爆弁の耐圧より高く、前記防爆弁が開放した際に、前記開放した防爆弁を有する直列ユニットの電圧の上昇を抑制する手段を備えたことを特徴とする蓄電装置である。
(ここで、「防爆弁の耐圧」とは、防爆弁の開放により絶縁可能な電圧の意味である。)
上記課題の第二の解決手段は、内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備え、負荷へ電力を供給する蓄電装置において、前記直列ユニットと直列に接続された遮断器と、前記直列ユニットの異常を検出して前記遮断器を開放するコントローラとを備え、前記直列ユニットと前記遮断器とを備える直列回路は、複数並列接続されており、前記コントローラは、前記遮断器が1個だけ導通状態になることを防止するように前記遮断器の開放を制御することを特徴とする蓄電装置である。
(ここで、直列ユニットの異常とは、直列ユニットを構成するセルの内圧の異常,セルの過放電,過充電,セルの破損,防爆弁の開放の少なくともいずれか1つを含む意味である。)
上記課題の第三の解決手段は、内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備え、負荷へ電力を供給する蓄電装置において、前記直列ユニットを複数並列接続した回路と直列に接続された遮断器と、前記直列ユニットの異常を検出して前記遮断器を開放するコントローラとを備えることを特徴とする蓄電装置である。
上記課題の第四の解決手段は、内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備え、負荷へ電力を供給する蓄電装置において、前記直列ユニットの電圧は前記防爆弁の耐圧より高く、前記直列ユニットと並列に接続されたコンデンサを備えることを特徴とする蓄電装置である。
上記課題の第五の解決手段は、内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備え、負荷へ電力を供給する蓄電装置において、前記直列ユニットと直列に接続された遮断器と、前記直列ユニットと遮断器の直列回路と並列に接続されたコンデンサと、2個のスイッチング素子を互いに直列に接続し、一方のスイッチング素子の両端子をリアクトルを介して前記コンデンサと接続したことを特徴とする蓄電装置である。
上記課題の第六の解決手段は、内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備える蓄電装置において、前記直列ユニットの電圧は前記防爆弁の耐圧より高く、前記防爆弁が開放した際に、前記直列ユニットが複数並列接続されていることを特徴とする蓄電装置である。
An object of the present invention is to configure a high-voltage power storage device regardless of the pressure resistance performance of the explosion-proof valve.
A first means for solving the above-described problem is a power storage device that includes a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an internal pressure increase and is connected in series, and that supplies power to a load. The voltage is higher than the pressure resistance of the explosion-proof valve, and is a power storage device comprising means for suppressing an increase in voltage of the series unit having the opened explosion-proof valve when the explosion-proof valve is opened.
(Here, “explosion-proof valve pressure resistance” means a voltage that can be insulated by opening the explosion-proof valve.)
A second means for solving the above-mentioned problem includes a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an increase in internal pressure are connected in series, and in a power storage device that supplies power to a load, the series unit and A circuit breaker connected in series and a controller that detects an abnormality of the series unit and opens the circuit breaker, and a series circuit including the series unit and the circuit breaker are connected in parallel. The controller is a power storage device that controls opening of the circuit breaker so as to prevent only one of the circuit breakers from being turned on.
(Herein, the abnormality of the series unit is meant to include at least one of abnormality of internal pressure of the cells constituting the series unit, overdischarge of the cells, overcharge, damage of the cells, and opening of the explosion-proof valve.) )
According to a third means for solving the above-mentioned problem, in a power storage device that includes a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an increase in internal pressure are connected in series, and that supplies power to a load, the series unit is A power storage device comprising: a circuit breaker connected in series with a plurality of circuits connected in parallel; and a controller that detects an abnormality of the series unit and opens the circuit breaker.
According to a fourth means for solving the above-mentioned problem, in a power storage device that includes a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an increase in internal pressure are connected in series, and that supplies power to a load, The voltage is higher than the breakdown voltage of the explosion-proof valve, and is a power storage device comprising a capacitor connected in parallel with the series unit.
A fifth means for solving the above-mentioned problem includes a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an internal pressure increase are connected in series, and in a power storage device that supplies power to a load, A circuit breaker connected in series, a capacitor connected in parallel with the series circuit of the series unit and the circuit breaker, and two switching elements are connected in series with each other, and both terminals of one switching element are connected via a reactor. The power storage device is connected to the capacitor.
A sixth means for solving the above-mentioned problem is a power storage device including a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an increase in internal pressure are connected in series, wherein the voltage of the series unit is a pressure resistance of the explosion-proof valve. The power storage device is characterized in that a plurality of the series units are connected in parallel when the explosion-proof valve is opened.

本発明によれば、防爆弁の耐圧性能によらず、高電圧な蓄電装置を構成することが可能となる。   According to the present invention, it is possible to configure a high-voltage power storage device regardless of the pressure resistance performance of the explosion-proof valve.

第1図は第1の実施例の蓄電装置の構成。
第2図は本発明の課題を説明する回路図。
第3図はコントローラ104の機能を説明する流れ図。
第4図は本発明の効果を説明する回路図。
第5図は第2の実施例の蓄電装置の構成。
第6図は第3の実施例の蓄電装置の構成。
第7図は第4の実施例の鉄道車両の構成。
FIG. 1 shows the configuration of the power storage device of the first embodiment.
FIG. 2 is a circuit diagram illustrating the problem of the present invention.
FIG. 3 is a flowchart for explaining the function of the controller 104.
FIG. 4 is a circuit diagram for explaining the effect of the present invention.
FIG. 5 shows the configuration of the power storage device of the second embodiment.
FIG. 6 shows the configuration of the power storage device of the third embodiment.
FIG. 7 shows the configuration of the railway vehicle of the fourth embodiment.

第1図に本発明の第1の実施例の蓄電装置の構成を示す。
102aは、防爆弁を内蔵したセル101a〜101fを直列接続して構成される直列ユニットであり、遮断器103aは、直列ユニットと直列接続される。直列ユニット102b〜102fと遮断器103b〜103fとが直列接続された直列回路は、それぞれ並列接続され、端子105aと105bに接続される。第1図では図示していないが端子105aと105bは負荷へ接続される。コントローラ104は、直列ユニット102a〜102fの状態を監視する。直列ユニットに異常が発生した場合には、コントローラ104は、対応する遮断器103a〜103fを開放することにより、直列ユニットを回路から切り離す。このような切り離しにより、切り離された直列ユニット分だけ蓄電装置の性能は低下するが、蓄電装置の使用を継続することができる。尚、セル101a〜101fに内蔵される防爆弁の耐圧は、直列ユニット102b〜102fの電圧より低い。
コントローラ104は、一定周期毎に第3図に示す処理を行う。始めに、処理201において、直列ユニット102a〜102fの状態を取得する。処理202において、異常の発生している直列ユニットがあるかを判定し、異常がない場合はその周期の処理を終了する。異常がある場合は、処理203において、遮断器が開放されていない他の直列ユニット数(つまり、導通状態となっている直列ユニット数)を判定し、直列ユニット数が1である場合は処理204を、それ以外の場合は処理205を実行する。例えば、第1図の構成で6個全ての直列ユニットが開放されていない状態で、ある1個の直列ユニットに異常が発生した場合、他の直列ユニット数は5である。
処理204において、異常の発生している当該直列ユニットと遮断器が開放されていない他の1つの直列ユニットに対応する両方の遮断器を開放し、その周期の処理は終了する。処理205では、異常の発生している当該直列ユニットのみを開放する。すなわち、上記の処理を行うことにより、蓄電装置が使用状態にある場合には、開放されていない遮断器が常に2個以上となり、直列ユニットが1個だけ導通状態となることはない。
第4図を用いて、上記構成における防爆弁開放時の動作を説明する。上記構成においては、常に複数の直列ユニットが並列接続された状態で蓄電装置が運転される。第4図では、直列ユニットの最小の並列数が2の場合について説明するが、並列数が3以上の場合でも同様の効果が得られる。尚、第4図においては第1図に記載の遮断器は省略している。第4図において、第2図と異なる点は、防爆弁11a′〜11f′とセル要素12a′〜12f′を含むセル13a′〜13f′を直列接続された直列ユニットが並列に接続されている点である。
第2図の場合と同様に、リアクトル14に、セル13aからスイッチング素子15bに向かう電流が流れており、スイッチング素子15bが導通状態にあるとき、防爆弁11dがセル13dの内圧上昇により開放した場合を考える。この場合、セル13a′〜13f′の直列ユニットに電流が流れるため、リアクトル14に逆起電力はほとんど発生しない。また、防爆弁が開放したセル13a〜13fの直列ユニットの両端電圧は、並列接続されたセル13a′〜13f′の直列ユニットの両端電圧と等しくなり、セル13a〜13fの電圧を考慮すると、防爆弁11dにほとんど電圧は印加されない。第4図は直列ユニットの直列数が6の場合を示しているが、直列数が6よりも大きくなっても同様に開放した防爆弁に印加される電圧は、蓄電装置の電圧に対しては、小さな値となる。よって、直列ユニットの直列数を増やして、セルに内蔵される防爆弁の耐圧よりも高電圧の蓄電装置を構成した場合においても、防爆弁の開放に伴いアークが発生することない。つまり、防爆弁の耐圧性能によらず高電圧な蓄電装置を構成することが可能となる。すなわち、直列ユニットを複数並列接続した状態を維持するなど、防爆弁が開放した場合においても、防爆弁が開放した直列ユニットの電圧が維持される構成となっていれば、開放した防爆弁に印加される電圧を低く抑えることができる。
尚、第1図の蓄電装置では、セルの直列数が6、並列数が6の場合を示しているが、直列数に制限はなく、並列数は2以上であればよい。
また、本実施例においては、リアクトル14を有する構成について説明したが、リアクトル14を有さない構成においても本発明の効果を達成することができる。
FIG. 1 shows a configuration of a power storage device according to a first embodiment of the present invention.
102a is a series unit configured by connecting cells 101a to 101f with built-in explosion-proof valves in series, and the circuit breaker 103a is connected in series with the series unit. The series circuits in which the series units 102b to 102f and the circuit breakers 103b to 103f are connected in series are connected in parallel and connected to the terminals 105a and 105b, respectively. Although not shown in FIG. 1, terminals 105a and 105b are connected to a load. The controller 104 monitors the state of the series units 102a to 102f. When an abnormality occurs in the series unit, the controller 104 disconnects the series unit from the circuit by opening the corresponding circuit breakers 103a to 103f. By such disconnection, the performance of the power storage device is reduced by the amount of the disconnected serial units, but the use of the power storage device can be continued. In addition, the pressure resistance of the explosion-proof valve built in the cells 101a to 101f is lower than the voltage of the series units 102b to 102f.
The controller 104 performs the process shown in FIG. 3 at regular intervals. First, in the process 201, the state of the serial units 102a to 102f is acquired. In process 202, it is determined whether there is a series unit in which an abnormality has occurred. If there is no abnormality, the process in that cycle is terminated. If there is an abnormality, the number of other series units in which the circuit breaker is not opened is determined in processing 203 (that is, the number of series units in a conductive state). If the number of series units is 1, processing 204 is performed. Otherwise, process 205 is executed. For example, when an abnormality occurs in one serial unit in a state where all six serial units are not opened in the configuration of FIG. 1, the number of other serial units is five.
In process 204, both the circuit breaker corresponding to the series unit in which an abnormality has occurred and the other one series unit in which the circuit breaker is not opened are opened, and the process of the cycle ends. In the process 205, only the serial unit in which an abnormality has occurred is released. That is, by performing the above processing, when the power storage device is in use, there are always two or more open circuit breakers, and only one series unit is not in a conductive state.
The operation when the explosion-proof valve is opened in the above configuration will be described with reference to FIG. In the above configuration, the power storage device is always operated with a plurality of series units connected in parallel. FIG. 4 illustrates the case where the minimum parallel number of the series units is 2, but the same effect can be obtained even when the parallel number is 3 or more. In FIG. 4, the circuit breaker shown in FIG. 1 is omitted. 4 differs from FIG. 2 in that a series unit in which cells 13a ′ to 13f ′ including explosion-proof valves 11a ′ to 11f ′ and cell elements 12a ′ to 12f ′ are connected in series is connected in parallel. Is a point.
As in the case of FIG. 2, when the current flowing from the cell 13a to the switching element 15b flows through the reactor 14, and the switching element 15b is in the conductive state, the explosion-proof valve 11d is opened due to the increase in the internal pressure of the cell 13d. think of. In this case, since a current flows through the series unit of the cells 13a ′ to 13f ′, the counter electromotive force is hardly generated in the reactor 14. In addition, the voltage across the series unit of the cells 13a to 13f with the explosion-proof valve opened is equal to the voltage across the series unit of the cells 13a 'to 13f' connected in parallel, and considering the voltage of the cells 13a to 13f, Little voltage is applied to the valve 11d. FIG. 4 shows the case where the series number of the series units is 6, but the voltage applied to the opened explosion-proof valve in the same way even when the series number becomes larger than 6, the voltage of the power storage device is , Become a small value. Therefore, even when the number of series units is increased to configure a power storage device having a higher voltage than the explosion-proof valve built in the cell, no arc is generated when the explosion-proof valve is opened. That is, a high-voltage power storage device can be configured regardless of the pressure resistance performance of the explosion-proof valve. In other words, even if the explosion-proof valve is opened, such as maintaining a state where multiple series units are connected in parallel, if the voltage of the series unit with the explosion-proof valve opened is maintained, the voltage is applied to the opened explosion-proof valve. Can be kept low.
In the power storage device of FIG. 1, the number of series cells is 6 and the number of parallel cells is 6, but the number of series is not limited, and the number of parallel cells may be 2 or more.
Moreover, although the structure which has the reactor 14 was demonstrated in the present Example, the effect of this invention can be achieved also in the structure which does not have the reactor 14. FIG.

第5図に本発明の第2の実施例の蓄電装置の構成を示す。尚、第1図と同一の構成については、同じ符号を付けて説明を省略する。第5図において、直列ユニット102aと直列ユニット102b,直列ユニット102cと直列ユニット102d、及び直列ユニット102eと直列ユニット102fはそれぞれ並列接続されて2並列回路を構成している。さらに遮断器403a〜403cは、それぞれ2並列回路に直列に接続されており、2並列回路は、遮断器403a〜403cを介して端子105aに接続されている。コントローラ404は直列ユニット102a〜102fの状態を監視し、直列ユニットに異常が発生した場合には、対応する遮断器403a〜403cを開放することにより、直列ユニットを回路から切り離す。この切り離し動作により、切り離された直列ユニット分だけ蓄電装置の性能は低下するが、蓄電装置の使用を継続することができる。尚、セル101a〜101fに内蔵される防爆弁の耐圧は、直列ユニット102b〜102fの電圧より低い。
第5図に示す構成の場合、遮断器403a〜403cの状態によらず、直列ユニット102a〜102fは二個単位で切り離されるため、直列ユニットが単独で接続されて導通状態となることはない。このため、実施例1の説明の中で述べたように、防爆弁が開放した場合に負荷への電流の供給が継続され、さらに他の導通状態の直列ユニットの電圧と防爆弁の開放した直列ユニットの電圧が等しくなるため、防爆弁に印加される電圧は、小さな値となる。つまり、防爆弁の耐圧性能によらず高電圧な蓄電装置を構成することが可能である。
尚、第2図の蓄電装置では、遮断器に接続される直列ユニットの並列数は2であるが、並列数が複数であれば、同様の効果が得られる。また、遮断器も3個の例を示しているが、1個を含め、個数に制限はない。
FIG. 5 shows the configuration of the power storage device of the second embodiment of the present invention. In addition, about the same structure as FIG. 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. In FIG. 5, the series unit 102a and the series unit 102b, the series unit 102c and the series unit 102d, and the series unit 102e and the series unit 102f are respectively connected in parallel to form a two parallel circuit. Furthermore, the circuit breakers 403a to 403c are respectively connected in series to two parallel circuits, and the two parallel circuits are connected to the terminal 105a via the circuit breakers 403a to 403c. The controller 404 monitors the state of the series units 102a to 102f, and when an abnormality occurs in the series unit, the series unit is disconnected from the circuit by opening the corresponding circuit breakers 403a to 403c. By this disconnection operation, the performance of the power storage device is reduced by the amount of the disconnected serial unit, but the use of the power storage device can be continued. In addition, the pressure resistance of the explosion-proof valve built in the cells 101a to 101f is lower than the voltage of the series units 102b to 102f.
In the case of the configuration shown in FIG. 5, the series units 102a to 102f are disconnected in units of two regardless of the state of the circuit breakers 403a to 403c, so that the series units are not connected independently and become conductive. For this reason, as described in the description of the first embodiment, when the explosion-proof valve is opened, the supply of current to the load is continued, and the voltage of another series unit in the conductive state and the series where the explosion-proof valve is opened. Since the unit voltages are equal, the voltage applied to the explosion-proof valve is a small value. That is, a high-voltage power storage device can be configured regardless of the pressure resistance performance of the explosion-proof valve.
In the power storage device of FIG. 2, the parallel number of the series units connected to the circuit breaker is 2, but the same effect can be obtained if the parallel number is plural. Moreover, although the example of three circuit breakers is shown, the number is not limited including one.

第6図に本発明の第3の実施例の蓄電装置の構成を示す。尚、第1図及び第5図と同一の構成については、同じ符号を付けて説明を省略する。第6図において、コントローラ304は直列ユニット102a〜102fの状態を監視し、直列ユニットに防爆弁の開放を含む異常が発生した場合には、対応する遮断器103a〜103fを開放することにより、直列ユニットを回路から切り離す。この切り離し動作により、切り離された直列ユニット分だけ蓄電装置の性能は低下するが、蓄電装置の使用を継続することができる。尚、セル101a〜101fに内蔵される防爆弁の耐圧は、直列ユニット102b〜102fの電圧より低い。また、コンデンサ106は、端子105aと105bに接続されている。さらに、直列ユニット102a〜102f,遮断器103a〜103f,端子105a〜105b、及びコンデンサ106は一つのバッテリ箱107に格納されている。
第6図に示す構成において、遮断器103a〜103fのうち1個だけがオンしている状態で防爆弁が開放した場合を考える。この場合、コンデンサ106から負荷へ電流が供給され、並列に接続されている防爆弁の開放した直列ユニットの電圧はコンデンサ106により保持されるため、防爆弁に印加される電圧は、小さな値となる。コンデンサ106の放電に伴い、コンデンサ106の電圧が徐々に低下すると防爆弁に印加される電圧も徐々に上昇する。このとき、コントローラ304が防爆弁の開放を検知して、1個だけオンしていた遮断器を開放すれば、当該防爆弁が開放した直列ユニットは回路から切り離されるため、防爆弁に耐圧を超えるような高電圧が印加されることはない。また、遮断器103a〜103fが複数オンしている場合には、上述したように問題はない。よって、高電圧な蓄電装置を構成することが可能である。
尚、第6図の蓄電装置では、セルの直列数が6、並列数が6の場合を示しているが、直列数及び並列数に制限はない。
FIG. 6 shows the configuration of the power storage device of the third embodiment of the present invention. In addition, about the same structure as FIG. 1 and FIG. 5, the same code | symbol is attached | subjected and description is abbreviate | omitted. In FIG. 6, the controller 304 monitors the state of the series units 102a to 102f, and when an abnormality including the opening of the explosion-proof valve occurs in the series unit, by opening the corresponding circuit breakers 103a to 103f, Disconnect the unit from the circuit. By this disconnection operation, the performance of the power storage device is reduced by the amount of the disconnected serial unit, but the use of the power storage device can be continued. In addition, the pressure resistance of the explosion-proof valve built in the cells 101a to 101f is lower than the voltage of the series units 102b to 102f. The capacitor 106 is connected to the terminals 105a and 105b. Further, the series units 102a to 102f, the circuit breakers 103a to 103f, the terminals 105a to 105b, and the capacitor 106 are stored in one battery box 107.
In the configuration shown in FIG. 6, consider a case where the explosion-proof valve is opened while only one of the circuit breakers 103a to 103f is on. In this case, current is supplied from the capacitor 106 to the load, and the voltage of the series unit with the explosion-proof valve connected in parallel is held by the capacitor 106. Therefore, the voltage applied to the explosion-proof valve becomes a small value. . As the capacitor 106 discharges, the voltage applied to the explosion-proof valve gradually increases as the voltage of the capacitor 106 gradually decreases. At this time, if the controller 304 detects the opening of the explosion-proof valve and opens the circuit breaker that has been turned on only one, the series unit with the explosion-proof valve opened is disconnected from the circuit, so the explosion-proof valve exceeds the pressure resistance. Such a high voltage is not applied. Further, when a plurality of circuit breakers 103a to 103f are turned on, there is no problem as described above. Thus, a high-voltage power storage device can be configured.
6 shows the case where the number of series cells is 6 and the number of parallel cells is 6, the number of series and the number of parallel cells are not limited.

第7図に、上述した蓄電装置を鉄道車両に搭載した実施例の構成を示す。鉄道車両は、エンジン1,発電機2,コンバータ3,インバータ4,2台の電動機5,バッテリ箱107,昇降圧チョッパ18、及びコントローラ304により構成される。ここで、バッテリ箱107は、上述の実施例1〜3のいずれかに示した蓄電装置で構成される。エンジン1により駆動される発電機2が出力する交流電圧をコンバータ3で直流電圧に変換し、インバータ4で可変電圧可変周波数の交流電圧に変換し電動機5及び車輪を駆動する。昇降圧チョッパ18はインバータ4と並列に接続され、蓄電装置の充放電を制御する。
鉄道車両が制動状態の時には、電動機5からの回生電力を、インバータ4及び昇降圧チョッパ18を介してバッテリ箱107に搭載された蓄電装置のセルに充電する。鉄道車両が力行状態の時には、セルの充電率に応じて、バッテリ箱107から昇降圧チョッパを介して、コンバータ3と共にインバータ4に電力を供給して、アシストを行う。蓄電装置として、バッテリ箱107を用いることにより、長編成や高速車両など高出力高電圧が要求される車両への適用が可能となる。
実施例4では、実施例1〜3に記載の蓄電装置をバッテリ箱として構成し、鉄道車両に搭載する例を示したが、実施例1〜3に記載の蓄電装置の用途は鉄道車両に限られるものではなく、多数のセルを直列に接続した大容量の蓄電装置を用いる分野であれば、さまざま用途に適用可能である。
FIG. 7 shows a configuration of an embodiment in which the above-described power storage device is mounted on a railway vehicle. The railway vehicle includes an engine 1, a generator 2, a converter 3, an inverter 4, two electric motors 5, a battery box 107, a step-up / down chopper 18, and a controller 304. Here, the battery box 107 includes the power storage device shown in any one of the first to third embodiments. The AC voltage output from the generator 2 driven by the engine 1 is converted into a DC voltage by the converter 3, and the inverter 4 converts the AC voltage into an AC voltage having a variable voltage and a variable frequency, thereby driving the motor 5 and the wheels. The step-up / down chopper 18 is connected in parallel with the inverter 4 and controls charging / discharging of the power storage device.
When the railway vehicle is in a braking state, the regenerative electric power from the electric motor 5 is charged to the cell of the power storage device mounted on the battery box 107 via the inverter 4 and the step-up / step-down chopper 18. When the railway vehicle is in a power running state, electric power is supplied from the battery box 107 to the inverter 4 together with the converter 3 via the step-up / step-down chopper according to the charging rate of the cell to perform assist. By using the battery box 107 as the power storage device, it can be applied to a vehicle requiring a high output high voltage such as a long train or a high-speed vehicle.
In the fourth embodiment, the power storage device described in the first to third embodiments is configured as a battery box and mounted on a railway vehicle. However, the use of the power storage device described in the first to third embodiments is limited to the rail vehicle. However, the present invention can be applied to various applications as long as it is a field using a large-capacity power storage device in which a large number of cells are connected in series.

14 リアクトル
15a,15b スイッチング素子
101a〜101f セル
102a〜102f 直列ユニット
103a〜103f,403a〜403c 遮断器
104,304,404 コントローラ
106 コンデンサ
107 バッテリ箱
14 Reactors 15a and 15b Switching elements 101a to 101f Cells 102a to 102f Series units 103a to 103f, 403a to 403c Breakers 104, 304, 404 Controller 106 Capacitor 107 Battery box

Claims (10)

内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備える蓄電装置において、
前記直列ユニットの電圧は前記防爆弁の耐圧より高く、
前記防爆弁が開放した際に、前記開放した防爆弁を有する直列ユニットの電圧の上昇を抑制する手段を備えたことを特徴とする蓄電装置。
In a power storage device including a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an internal pressure increase are connected in series,
The voltage of the series unit is higher than the pressure resistance of the explosion-proof valve,
A power storage device comprising: means for suppressing an increase in voltage of the series unit having the opened explosion-proof valve when the explosion-proof valve is opened.
内部の電圧上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備える蓄電装置において、
前記直列ユニットの電圧は前記防爆弁の耐圧より高く、
前記直列ユニットと直列に接続された遮断器と、
前記直列ユニットの異常を検出して前記遮断器を開放するコントローラとを備え、
前記直列ユニットと前記遮断器とを備える直列回路は、複数並列接続されており、
前記コントローラは、前記遮断器が1個だけ導通状態になることを防止するように前記遮断器の開放を制御することを特徴とする蓄電装置。
In a power storage device comprising a series unit in which a plurality of cells having explosion-proof valves that open an electrical circuit due to an internal voltage rise are connected in series,
The voltage of the series unit is higher than the pressure resistance of the explosion-proof valve,
A circuit breaker connected in series with the series unit;
A controller for detecting an abnormality of the series unit and opening the circuit breaker,
A plurality of series circuits each including the series unit and the circuit breaker are connected in parallel.
The power storage device, wherein the controller controls opening of the circuit breaker so as to prevent only one of the circuit breakers from being turned on.
内部の電圧上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備える蓄電装置において、
前記直列ユニットの電圧は前記防爆弁の耐圧より高く、
前記直列ユニットを複数並列接続した回路と直列に接続された遮断器と、
前記直列ユニットの異常を検出して前記遮断器を開放するコントローラとを備えることを特徴とする蓄電装置。
In a power storage device comprising a series unit in which a plurality of cells having explosion-proof valves that open an electrical circuit due to an internal voltage rise are connected in series,
The voltage of the series unit is higher than the pressure resistance of the explosion-proof valve,
A circuit breaker connected in series with a circuit in which a plurality of the series units are connected in parallel;
A power storage device comprising: a controller that detects an abnormality of the series unit and opens the circuit breaker.
内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備える蓄電装置において、
前記直列ユニットの電圧は前記防爆弁の耐圧より高く、
前記直列ユニットと並列に接続されたコンデンサを備えることを特徴とする蓄電装置。
In a power storage device including a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an internal pressure increase are connected in series,
The voltage of the series unit is higher than the pressure resistance of the explosion-proof valve,
A power storage device comprising a capacitor connected in parallel with the series unit.
請求項4に記載の蓄電装置において、
前記直列ユニットと直列に接続された遮断器と、
前記直列ユニットの異常を検出して前記遮断器を開放するコントローラとを備え、
前記直列ユニットと前記遮断器とを備える直列回路は、複数並列接続されていることを特徴とする蓄電装置。
The power storage device according to claim 4,
A circuit breaker connected in series with the series unit;
A controller for detecting an abnormality of the series unit and opening the circuit breaker,
A plurality of series circuits each including the series unit and the circuit breaker are connected in parallel.
請求項4に記載の蓄電装置において、
前記直列ユニットと直列に接続された遮断器と、
前記防爆弁の開放を検知する手段と、
開放を検知した前記防爆弁を有する直列ユニットに接続された前記遮断器を開放するコントローラとを備えることを特徴とする蓄電装置。
The power storage device according to claim 4,
A circuit breaker connected in series with the series unit;
Means for detecting the opening of the explosion-proof valve;
A power storage device comprising: a controller that opens the circuit breaker connected to a series unit having the explosion-proof valve that detects opening.
請求項4に記載の蓄電装置において、
前記直列ユニットと前記遮断機と前記コンデンサとが、同一の箱に格納されたことを特徴とする蓄電装置。
The power storage device according to claim 4,
The power storage device, wherein the series unit, the circuit breaker, and the capacitor are stored in the same box.
内部の電圧上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備える蓄電装置において、
前記直列ユニットの電圧は前記防爆弁の耐圧より高く、
前記直列ユニットと直列に接続された遮断器と、
前記直列ユニットと遮断器の直列回路と並列に接続されたコンデンサと、
2個のスイッチング素子を互いに直列に接続し、一方のスイッチング素子の両端子をリアクトルを介して前記コンデンサと接続したことを特徴とする蓄電装置。
In a power storage device comprising a series unit in which a plurality of cells having explosion-proof valves that open an electrical circuit due to an internal voltage rise are connected in series,
The voltage of the series unit is higher than the pressure resistance of the explosion-proof valve,
A circuit breaker connected in series with the series unit;
A capacitor connected in parallel with the series circuit of the series unit and circuit breaker;
An electrical storage device, wherein two switching elements are connected in series with each other, and both terminals of one switching element are connected to the capacitor via a reactor.
発電機により発電される交流電力を直流電力へ変換するコンバータと、
前記直流電力を電動機駆動用の交流電力へ変換するインバータを備える鉄道車両において、
前記コンバータおよび前記インバータの直流部に接続された蓄電装置を備え、
前記蓄電装置は、請求項1〜8に記載の蓄電装置であって、前記電動機からの回生電力を充電することを特徴とする鉄道車両。
A converter that converts AC power generated by the generator into DC power;
In a railway vehicle comprising an inverter that converts the DC power into AC power for driving an electric motor,
A power storage device connected to the converter and the DC part of the inverter;
The electric storage device according to claim 1, wherein the electric storage device charges regenerative electric power from the electric motor.
内部の圧力上昇により電気回路を開放する防爆弁を有する複数のセルを直列接続した直列ユニットを備える蓄電装置において、
前記直列ユニットの電圧は前記防爆弁の耐圧より高く、
前記防爆弁が開放した際に、前記直列ユニットが複数並列接続されていることを特徴とする蓄電装置。
In a power storage device including a series unit in which a plurality of cells having explosion-proof valves that open an electric circuit due to an internal pressure increase are connected in series,
The voltage of the series unit is higher than the pressure resistance of the explosion-proof valve,
A plurality of the series units are connected in parallel when the explosion-proof valve is opened.
JP2011515833A 2009-05-29 2009-05-29 Power storage device and railway vehicle Active JP5077489B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060305 WO2010137182A1 (en) 2009-05-29 2009-05-29 Accumulator and rail vehicle

Publications (2)

Publication Number Publication Date
JPWO2010137182A1 JPWO2010137182A1 (en) 2012-11-12
JP5077489B2 true JP5077489B2 (en) 2012-11-21

Family

ID=43222319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011515833A Active JP5077489B2 (en) 2009-05-29 2009-05-29 Power storage device and railway vehicle

Country Status (2)

Country Link
JP (1) JP5077489B2 (en)
WO (1) WO2010137182A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337793B2 (en) * 2015-02-12 2018-06-06 株式会社豊田自動織機 Power storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113377U (en) * 1984-12-24 1986-07-17
JPH0696803A (en) * 1992-09-11 1994-04-08 Hitachi Maxell Ltd Explosion-proof sealed battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321192B2 (en) * 2003-09-18 2009-08-26 パナソニック株式会社 Capacitor unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113377U (en) * 1984-12-24 1986-07-17
JPH0696803A (en) * 1992-09-11 1994-04-08 Hitachi Maxell Ltd Explosion-proof sealed battery

Also Published As

Publication number Publication date
JPWO2010137182A1 (en) 2012-11-12
WO2010137182A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US8410755B2 (en) Fault tolerant modular battery management system
US9809128B2 (en) System for multiple energy storage and management and method of making same
US8026638B2 (en) System for multiple energy storage and management and method of making same
JP5616500B2 (en) Charging device and operation method thereof
US8471529B2 (en) Battery fault tolerant architecture for cell failure modes parallel bypass circuit
US8193761B1 (en) Hybrid power source
JP6178328B2 (en) DC voltage source including an electrochemical cell
US20150372279A1 (en) Active battery stack system and method
WO2015137222A1 (en) Power supply system
JP2017112809A (en) Drive apparatus, transportation equipment, and control method
JP5864320B2 (en) Balance correction device and power storage system
US20160288649A1 (en) Vehicle and charging and discharging system using vehicle
JP6256384B2 (en) Power supply
WO2021020029A1 (en) Vehicle-mounted power supply system
CN108136931B (en) Improved power supply device with multiple power sources
JP2013027236A (en) Battery charging system and vehicle charging system
JP5077489B2 (en) Power storage device and railway vehicle
JP2014079078A (en) Motor driving system
JP2015061504A (en) Power storage system
CN116054577A (en) Energy system for electric vehicle
CN112572173A (en) Driving system for electric vehicle and electric vehicle
CN116054576A (en) Energy system for electric vehicle
JP2013116015A (en) Vehicle control apparatus
WO2023080793A1 (en) A circuit module for controlling a plurality of energy cell units

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5077489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3